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via Subtopic Attention
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Abstract—Search result diversification aims to retrieve diverse results to satisfy as many different information needs as possible.
Supervised methods have been proposed recently to learn ranking functions and they have been shown to produce superior results to
unsupervised methods. However, these methods use implicit approaches based on the principle of Maximal Marginal Relevance
(MMR). In this paper, we propose a learning framework for explicit result diversification where subtopics are explicitly modeled. Based
on the information contained in the sequence of selected documents, we use attention mechanism to capture the subtopics to be
focused on while selecting the next document, which naturally fits our task of document selection for diversification. As a preliminary
attempt, we employ recurrent neural networks and max pooling to instantiate the framework. We use both distributed representations
and traditional relevance features to model documents in the implementation. The framework is flexible to model query intent in either a
flat list or a hierarchy. Experimental results show that the proposed method significantly outperforms all the existing search result
diversification approaches.

Index Terms—search result diversification, subtopics, attention.
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1 INTRODUCTION

IN real search scenario, queries issued by users are usually
ambiguous or multi-faceted. In addition to being relevant

to the query, the retrieved documents are expected to be as
diverse as possible in order to cover different information
needs. For example, when users issue “apple”, the under-
lying intents could be the IT company or the fruit. The
retrieved documents should cover both topics to increase
the chance to satisfy users with different information needs.

Traditional approaches to search result diversification
are usually unsupervised and adopt manually defined
functions with empirically tuned parameters. Depending
on whether the underlying intents (or subtopics) are ex-
plicitly modeled, they can be categorized into implicit and
explicit approaches [1], [2]. Implicit approaches [3] do not
model intents explicitly. They emphasize novelty, i.e. the
following document should be “different” from the former
ones based on some similarity measures. Instead, explicit
approaches [4], [5], [6], [7], [8], [9] model intents (or subto-
pics) explicitly. They aim to improve intent coverage, i.e. the
following document should cover the intents not satisfied
by previous ones. Intents or subtopics can be determined
by techniques such as query reformulation [10], [11], [12],
[13] and query clustering based on query logs and other
types of information. Existing studies showed that explicit
approaches have better performance [5], [6], [7], [8], [9] than
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implicit approaches due to several reasons: on the one hand,
they provide a more natural way to handle subtopics than
implicit approaches; on the other hand, their ranking functi-
ons are closer to the diversity evaluation metrics which
are mostly based on explicit subtopics. Furthermore, most
similarity measures used in the implicit approaches, e.g.,
those based on language model or vector space model, are
determined globally on the whole documents, regardless of
possible search intents. This might be problematic for search
result diversification: two documents could contain similar
words and considered globally similar, but this similar part
may be unrelated to underlying search intents.

To avoid heuristic and handcrafted functions and para-
meters, a new family of research work using supervised
learning is proposed. They try to learn a ranking function
automatically. Their major focus lies in the modeling of
diversity, including structural prediction [14], rewarding
functions for novel contents [15], measure-based direct op-
timization [16], and neural network based method [17]. Re-
gardless of diversity modeling and optimization methods,
all these solutions inherit the spirit of MMR which is an
implicit approach and do not take intents into consideration.
Although the learning methods may result in a better simi-
larity measure, they are hindered by the gap between redu-
cing document redundancy and improving intent coverage.
They suffer from similar problems with implicit unsuper-
vised approaches. Without modeling subtopics explicitly,
they cannot directly improve intent coverage. Hence, there
is a need to incorporate explicit subtopic modeling into
supervised diversification methods.

To address the above issue, we propose to model sub-
topics in a general supervised learning framework. Our
framework combines the strengths of both explicit unsu-
pervised approaches and (implicit) supervised approaches.
First, subtopics are explicitly modeled, allowing us to im-
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TABLE 1
Subtopic relevance example.

doc\subtopic i1 i2 i3

d1
√ √

×
d2

√ √
×

d3 × ×
√

d4 ×
√

×
d5 × ×

√

prove intent coverage in a proactive way. Second, it auto-
matically learns the diversification ranking function, and is
able to capture complex interaction among documents and
subtopics. We call this framework Document Sequence with
Subtopic Attention (DSSA). More specifically, to select the
next document, we first model the sequence of selected
documents in order to capture their contents as well as
their relationship with the subtopics. Then based on the
information contained by previous documents, attention
mechanism is used to determine the under-covered subto-
pics to which we have to pay attention in selecting the next
document. Attention mechanism has been successfully used
to deal with various problems in image understanding [18]
and NLP [19], [20]. This mechanism corresponds well to the
document selection problem in search result diversification:
attention on subtopics changes along with the addition of
a document in the result list. For example. Assume that
we have 3 subtopics and 4 documents whose relevance
judgments are shown in Table 1. Given that we have selected
d1 and d2, which cover subtopics i1 and i2, the attention for
next choice should incline to i3 which is not covered, thus d3
is a better choice than d4 at this position. We will show that
the DSSA framework is general enough to cover the ideas
of previous unsupervised explicit methods.

We propose a specific implementation of DSSA using
recurrent neural networks (RNN) and max-pooling to le-
verage both distributed representations and relevance fea-
tures, which we call DSSA-RNNMP. We further extend this
model to introduce hierarchical subtopics. The basic idea is
that subtopics inherently exist as a hierarchical structure,
where subtopics on high levels represents general user
intents while subtopics on low levels are more specific [8],
[21]. Only considering coarse or fine-grained subtopics may
result in suboptimal intent coverage. In particular, attention
is calculated for subtopics on different levels. A document’s
matching scores to subtopics on the same level are combined
by attention to obtain the score of this level. The final score
is the weighted sum of the scores of different levels. We
call this hierarchical model HDSSA-RNNMP. Experimental
results on TREC Web Track data show that DSSA-RNNMP
outperforms the existing methods significantly and HDSSA-
RNNMP further improves the performance. To our kno-
wledge, this is the first time that a supervised learning
framework with attention mechanism is used to model
subtopics explicitly for search result diversification.

2 RELATED WORK

2.1 Implicit Diversification Approaches
The basic assumption of implicit diversification approaches
is that dissimilar documents are more likely to satisfy dif-

TABLE 2
Categorization of diversification approaches.

unsupervised supervised

implicit MMR SVM-DIV, R-LTR,
PAMM, NTN

explicit IA-Select, xQuAD, PM2, TxQuAD,
TPM2, HxQuAD, HPM2, 0-1 MSKP

DSSA
(our approach)

ferent information needs. The most representative approach
is MMR [3]:

SMMR(q, d, C) = (1− λ)Srel(d, q)− λmax
dj∈C

Sdiv(d, dj), (1)

where Srel and Sdiv model document d’s relevance to the
query q and its similarity to a selected documents dj re-
spectively. To gain high ranking score, a document should
not only be relevant, but also be dissimilar from the selected
documents. The definition of measures for relevance and do-
cument similarity is crucial, which is done manually in this
approach. Based on desirable facility placement principle
[22], [23] proposes first clustering the candidate documents
then composing the diverse result set, which achieves a
good balance between effectiveness and efficiency.

Recently, machine learning methods have been levera-
ged to learn score functions. Yue and Joachims [14] pro-
posed SVM-DIV which uses structural SVM to learn to
identify a document subset with maximum word coverage.
However, word coverage may be different from intent co-
verage. Optimizing the former may not necessarily lead
to optimizing the latter. Similar to MMR, Zhu et al. [15]
proposed relational learning-to-rank model (R-LTR) which
learns to score a document based on both relevance and
novelty automatically, in order to maximize the probability
of optimal rankings. Based on R-LTR score function, Xia et
al. [16] proposed a perceptron algorithm using measures as
margins (PAMM) to directly optimize evaluation metrics by
enlarging the score margin of positive and negative ran-
kings. They further proposed to use a neural tensor network
(NTN) [17] to measure document similarity automatically
from document representations, which avoids the burden to
define handcrafted diversity features.

The above supervised approaches are shown to out-
perform the unsupervised counterparts. However, they are
all implicit approaches without using subtopics. In this
paper, we propose a learning-based explicit approach which
models subtopics explicitly.

2.2 Explicit Diversification Approaches
Explicit approaches model subtopics underlying a query,
aiming at returning documents covering as many subtopics
as possible. These approaches leverage external resources
to explicitly represent information needs in subtopics. IA-
Select [4] uses classified topical categories based on ODP
taxonomy. xQuAD [5] is a probabilistic framework that
uses query reformulations as intent representations. PM2
[6] tackles search result diversification problem from the
perspective of proportionality. TxQuAD and TPM2 [7] re-
present intents by terms and transform intent coverage to
term coverage. Hu et al. [8] proposed to use a hierarchical
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structure for subtopics instead of a flat list, which copes
with the inherent interaction among subtopics. The benefit
of hierarchical subtopics lies in that user intents of diffe-
rent granularities are modeled simultaneously. Two specific
models, namely HxQuAD and HPM2, were proposed using
hierarchical structure. Yu et al. [9] formulated diversification
task as a 0-1 multiple subtopic knapsacks (0-1 MSKP) pro-
blem where documents are chosen like filling up multiple
subtopic knapsacks. To tackle this NP-hard problem, max-
sum belief propagation is used.

As summarized in Table 2, all existing explicit appro-
aches are unsupervised and the functions and parameters
are defined heuristically. In this paper, we use supervised
learning to model the interaction among documents and
subtopics simultaneously.

2.3 RNN with Attention Mechanism

RNN can capture the interdependency between elements
in a sequence. Attention mechanism, which is usually built
on RNN, mimics human attention behavior focusing on
different local region of the object (an image, a sentence, etc.)
at different times. In computer vision, [18] used RNN with
attention to extract information from an image by adapti-
vely selecting a sequence of the most informative regions
instead of the whole image. In NLP, attention mechanism is
typically used in neural machine translation (NMT). Tradi-
tional encoder-decoder models encode the source sentence
into a fixed-length vector from which the target sentence
is decoded. Such fixed-length vector may not be powerful
enough to reflect all the information of the source sentence.
An attention-based model [19] was proposed to automa-
tically pay unequal and varied attention to source words
during decoding process. In particular, to decide the next
target word, not only the fixed-length vector, but also the
hidden states corresponding to source words relevant to
the target word are used. Luong et al. [20] generalized
the idea and proposed two classes of attention mechanism,
namely global and local approaches. In this paper, attention
mechanism is used on subtopics, which guides the model to
emphasize different intents at different positions.

In the following section, we will first propose a general
framework, then instantiate it with a specific implementa-
tion.

3 DOCUMENT SEQUENCE WITH SUBTOPIC ATTEN-
TION FRAMEWORK

Given a query set Q, a document set Dq and a subtopic set
Iq for each query q ∈ Q, the goal of explicit methods is
to learn a ranking function f(q,Dq, Iq) which is expected
to output a ranking of documents in Dq that is both rele-
vant and diverse. The loss function could be written in the
following general form:∑

q∈Q
L(f(q,Dq, Iq),Yq), (2)

where L measures the quality gap between the ranking
outputted by f and the best ranking Yq . Different from
traditional retrieval tasks, diversity has to be considered in
the ranking and evaluation process. Theoretically, diversity
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Fig. 1. Illustration of DSSA framework.

ranking is NP-hard [4], [24]. Hence, a common strategy
is to make greedy selections [3], [5]: at the t-th position,
we assume that t − 1 documents have been selected and
formed a document sequence Ct−1. The task is to select a
locally optimal document dt from the remaining candidate
documents based on a score function S(q, dt, Ct−1, Iq). Note
that implicit supervised methods correspond to the case
where Iq is an empty set. Ct−1 should be modeled as a
sequence instead of a set, which means that the order of
documents matters. The reason is that users scan docu-
ments sequentially and better utility could be achieved by
making adjacent documents diverse. For example, given
C2 = [d1, d3] as showed in Table 1, it is better to rank d2
at the third position than d5.

To motivate our approach, we start with the ideas of the
unsupervised explicit approaches, which can be formulated
as the following general form:

Sunsupervised(q, dt, Ct−1, Iq) =
(1− λ)Srel(dt, q)+ ⇒ relevance

λ
∑

ik∈Iq

Sdiv(dt, ik)A(Ct−1, Iq)k︸ ︷︷ ︸
subtopic weights

, ⇒ diversity
(3)

where ik ∈ Iq is the k-th subtopic of q and Srel and Sdiv cal-
culate document dt’s relevance to a query and to a subtopic
respectively. The essence of diversity lies in the function A
which calculates the weights for subtopics Iq based on pre-
vious document sequence Ct−1. For xQuAD, A(Ct−1, Iq)k =
P (ik|q)

∏
dj∈Ct−1

(1− P (dj |ik)) where P (ik|q) is the initial
importance of subtopic ik, P (dj |ik) is the probability that
dj is relevant to ik. The weight of a subtopic is deter-
mined by the likelihood that previous documents are not
relevant to this subtopic. PM2 mimics seats allocation of
competing political parties to adjust subtopic weights after
each selection, i.e. A(Ct−1, Iq) is estimated according to the
difference between the subtopic’s distributions in Ct−1 and
in Iq . All these methods don’t model the selected documents
as a sequence. In addition, the functions and parameters are
heuristically defined, which may not best fit the final goal.

To tackle the above problems, we extend Equation (3) to
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TABLE 3
Notations in DSSA.

Notation Definition

r, dt a ranking, the t-th document.

q, ik the query, the k-th subtopic.

vdt representation of the document at the t-th position.

vq representation of the query.

vik representation of the k-th subtopic.

ht hidden state of previous t documents.

at,k attention on the k-th subtopic at the t-th position.∑K
k=1 at,k = 1, at,k ∈ [0, 1] where K is the number of

subtopics. A large value means that this subtopic is less
satisfied by previous t − 1 documents and thus needs
more attention at the t-th position.

sdt the final score of the document at the t-th position.

the following general learning framework:

SDSSA(q, dt, Ct−1, Iq) = sdt =

(1− λ)Srel(vdt ,vq)+ ⇒ relevance

λSdiv
(
vdt

,vi(·) ,A
(
H([vd1

, ...,vdt−1
]),vi(·)

)
︸ ︷︷ ︸

subtopic attention

)
, ⇒ diversity

(4)
where documents, queries, and subtopics are denoted by
their representations, as explained in Table 3. In this pa-
per, we focus on learning a ranking function only and
assume that these representations are given and will not
be modified. There are three main components, namely (1)
document sequence representation component H, (2) sub-
topic attention component A, and (3) scoring component
Srel and Sdiv, which are also illustrated in Figure 1. This
framework is inspired from the attention models used in
image understanding [18] and neural machine translation
[19], [20], however adapted to our diversification task.

Next, we briefly describe the three components. The
document sequence representation component H encodes
the information contained in document sequence Ct−1 into
a fixed-length hidden state ht−1, which could consider the
interaction and dependency among these documents. ht−1

could be viewed as a comprehensive and high-level repre-
sentation of Ct−1. The subtopic attention at,(·) is calculated
by the subtopic attention component A using ht−1 and
subtopic representations vi(·) . The attention evolves from
the first to the last ranking position, driving the model to
emphasize different subtopics based on previous document
sequence. Finally, the scoring components Srel and Sdiv

calculate relevance and diversity scores respectively. Notice
that Sdiv is not limited to be a weighted sum over all
subtopics as Equation (3). It can incorporate more complex
interaction among subtopics.

The essence of this framework can be summarized as
follows. Along with the selection of more documents, we
encode the information of previous document sequence,
and the attention mechanism will monitor the degree of
satisfaction for each subtopic. High scores are assigned to
the documents relevant to less covered subtopics. Finally,
multiple subtopics would be well covered by adaptively

TABLE 4
Parameters in DSSA-RNNMP.

Notation Definition

Wn, bn parameters of RNN with vanilla cell.

W a, wp parameters used in subtopic attention.

W s, wr parameters used in scoring.

learning the attention. In this way, our framework builds an
intuitive approach to explicitly model subtopics. We name
the framework Document Sequence with Subtopic Atten-
tion (DSSA). DSSA is a unified architecture that takes both
relevance and diversity into consideration, and diversity
is achieved by modeling the interaction among documents
and subtopics.

4 RESULT DIVERSIFICATION USING DSSA
In this section, we instantiate DSSA to a concrete form
and articulate the training and prediction algorithms. The
main idea of DSSA is to dynamically capture accumulative
relevance information of previous document sequence, so
as to calculate subtopic attention. Inspired by the recent
progress on sequence data modeling, we adapt RNN to
capture the information of previous document sequence
based on distributed representations of documents. Howe-
ver, the effectiveness of distributed representation heavily
depends on a large amount of training data. Typically,
the representation is built automatically using the data to
optimize an objective function [25]. We do not have such
large data and we can only use unsupervised methods (e.g.
doc2vec) to create representation, of which the effectiveness
could be suboptimal. Indeed, our preliminary experiments
using only the distributed representation created by unsu-
pervised methods yield low effectiveness. To compensate
this weakness, we also use traditional relevance features
such as BM25 score, which are proven useful, to calculate
subtopic attention and final score. Such a combination of
distributed representations and features has been used in
several previous works [17], [26]. In addition to RNN, we
also adopt the way using max-pooling [17], which has been
shown effective, to implement subtopic attention mecha-
nism. We call this model DSSA-RNNMP (DSSA model using
RNN and Max-Pooling), as illustrated in Figure 2. Based
on this implementation, we further incorporate hierarchical
subtopics to consider user intents on different granularities.
In addition, we also propose a list-pairwise approach for
optimization, which is different from the existing studies.

4.1 A Neural Network Implementation
We first describe the constitution of representations, namely
vdt , vq , and vik , then elaborate how we implement do-
cument sequence representation, subtopic attention, and
scoring components. The parameters are listed in Table 4.

vdt
: the representation of a document is composed of two

parts: distributed representations and relevance features.
Distributed representation can be constructed in different
ways. In this paper, we consider three methods: SVD, LDA
[27], and doc2vec [28]. Relevance features are those used
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Fig. 2. Architecture of DSSA-RNNMP. Previous t − 1 documents are
encoded into ht−1 from distributed representations ed1 , ..., edt−1

. At-
tention on the k-th subtopic at,k is then calculated based on (1) hidden
state ht−1 and subtopic representation eik (2) max-pooling on rele-
vance features xd1,ik , ...,xdt−1,ik .

in traditional IR, such as BM25 score etc. Suppose that we
have a distributed representation of size Ed, K subtopics,
and R relevance features, the total size of vdt would be
Ed + R + KR. We use edt ∈ REd , xdt,q and xdt,ik ∈ RR

to denote distributed representation, relevance features for
a query and a subtopic respectively.

vq , vik : we first retrieve top Z documents using some
basic retrieval model (such as BM25). These documents are
concatenated as a pseudo document, then similar to edt ,
a distributed representation of size Eq is generated. For
consistency, we also use eq and eik ∈ REq to represent these
representations.

4.1.1 Document Sequence Representation
H is instantiated using RNN to encode the information of
previous document sequence. Several types of RNN cell can
be used, ranging from the simple vanilla cell, GRU cell [29],
to LSTM cell [30]. For simplicity, we only show the vanilla
cell here. At the t-th position, we derive the (accumulative)
document sequence representation as follows:

ht = tanh(W n[ht−1; edt
] + bn), (5)

where W n ∈ RU×(U+Ed) (U is the size of the hidden state),
bn ∈ RU and [; ] is a concatenation. The cell transforms
previous hidden layer ht−1 and current document distribu-
ted representation edt to another space, where a bias bn is
added and a non-linear activation (i.e. tanh) then happens,
producing the next hidden layer ht. h0 is initialized as
a vector of zeros. The vanilla cell can be easily replaced
by GRU and LSTM cells, whose results will be report in
Section 6.2.

4.1.2 Subtopic Attention
By looking at ht−1 which stores the information of previous
t − 1 documents and ei(·) which represents the meaning of

each subtopic, we are capable of discovering which intents
are not satisfied and thus need to be emphasized at the t-
th position. To capture this idea, we use A′

(ht−1, eik) to
measure the (unnormalized) importance of the k-th subtopic
at the t-th position, which could be implemented in many
ways. We consider the following two ways similar to [20]:

A
′
(ht−1, eik) =

{
hᵀ
t−1W

aeik , (general)
−hᵀ

t−1 · eik , (dot)
(6)

where W a ∈ RU×Eq . The “general” operation uses bili-
near tensor product to relate two vectors multiplicatively
through its nonlinearity [31]. The “dot” product requires
both vectors to be in the same space. Similar ht−1 and
eik mean that previous documents are likely to satisfy this
subtopic, and thus a lower attention score will be attributed
to it. The above way mainly relies on distributed represen-
tations, which may not always be effective, especially under
limited data.

Hence, we further leverage relevance features to enhance
the subtopic attention. xdt,ik directly reflects the degree of
satisfaction for a subtopic-document pair and is combined
linearly using wp to form an explicit signal. To derive
the accumulative information of the document sequence,
we adopt commonly used max-pooling to select the most
significant signal from previous documents, which is similar
to the max operation used in MMR. Max-pooling could also
be interpreted as a regularizer, which reduces the number
of parameters and thus avoids overfitting:

A
′′
(xd1,ik , ...,xdt−1,ik) = max([xᵀ

d1,ik
·wp, ...,xᵀ

dt−1,ik
·wp]),

(7)
where A′′

(xd1,ik , ...,xdt−1,ik) measures the degree of sa-
tisfaction of the k-th subtopic based on relevance featu-
res through max-pooling. Lower value indicates that the
previous documents are more likely to be relevant to this
subtopic. Note that if we view the signals produced by
max-pooling (i.e. the vectors in “max-pooling” section of
Figure 2) as a part of the general hidden states, our concrete
implementation fit in DSSA framework.

We adopt an addictive way to integrate both parts and
then use softmax to produce (normalized) attention distri-
bution:

a
′

t,k = A
′
(ht−1, eik) +A

′′
(xd1,ik , ...,xdt−1,ik),

at,k =
wik exp(a

′

t,k)∑K
j=1 wij exp(a

′
t,j)

(wij ≥ 0,∀j).
(8)

softmax is modified to include the initial subtopic im-
portance wik , which encodes our intuition that important
subtopics are more likely to gain attention.

4.1.3 Scoring

The final score consists of relevance score srel
dt

and diversity
score sdiv

dt
, which are combined by a coefficient λ:

sdt = (1− λ)srel
dt

+ λsdiv
dt

(0 ≤ λ ≤ 1). (9)
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The relevance and diversity score are calculated as follows:

srel
dt

= S
′
(edt

, eq) + xᵀ
dt,q
·wr,

sdiv
dt

= aᵀ
t,(·) ·


S ′

(edt , ei1) + xᵀ
dt,i1
·wr

...
S ′

(edt , eiK ) + xᵀ
dt,iK

·wr

 ,
(10)

where wr ∈ RR and at,(·) is the attention derived from sub-
topic attention component. The diversity score is calculated
as a weighted combination of the document’s relevance to
each subtopic by attention distribution. We use the same
way to calculate document’s relevance to a query and to
its subtopics using both distributional representations and
relevance features, although different ways can be used.
Specifically, dt’s relevance to a query q (or a subtopic ik)
is calculated based on both the similarity between two
distributed representations S ′

(edt
, eq) (or S ′

(edt
, eik)) and

relevance features xdt,q (or xdt,ik ). S ′
intends to produce

a matching score between two representations and wr li-
nearly combines features. Similar to A′

, S ′
could also be

implemented as:

S
′
(edt

, eik) =

{
eᵀ
dt
W seik , (general)

eᵀ
dt
· eik , (dot)

(11)

where W s ∈ REd×Eq . Then the score of a ranking r is
calculated by summing up all the |r| documents’ scores:

sr =

|r|∑
t=1

sdt . (12)

Vector interaction operations A′
and S ′

could be im-
plemented using more complex models, such as multilayer
perceptron (MLP), to model the interaction between two
vectors more accurately. We could also use convolutio-
nal neural network (CNN) instead of RNN to model the
interaction among a sequence of documents and encode
their information. We deliberately choose to use simple
mechanisms in this implementation in order to show that
the general framework is capable of capturing the essence
of diversification even without complex operations. More
complex implementations will be examined in future work.

4.2 Hierarchical Diversification
Inspired by the idea of organizing subtopics in a hierarchical
structure proposed by Hu et al. [8], we introduce hierarchi-
cal subtopics into DSSA. The intuition behind hierarchical
subtopics is that user intents have different granularities. It
would be biased if we consider only coarse or fine-grained
subtopics. To better understand the deficiency of using
subtopics without considering different granularities, we
use the query “defender” (query #20) as example, of which
the hierarchical subtopics mined from search engine’s query
suggestions are shown in Figure 3. If we only use first-level
subtopics which are crude, we cannot identify the difference
between the document relevant to i1,1,1 and the document
relevant to i1,1,3, as they are relevant to the same first-level
subtopic i1,1. In other words, diversification algorithms
have risks to select multiple documents covering i1,1,1 while
ignoring documents corresponding to i1,1,3 because they

(q) defender

defender

windows
1,1i

defender

arcade game
2,1i

defender windows home1,1,1i

defender windows download2,1,1i

defender windows problems3,1,1i

defender arcade game for sale1,2,1i

defender arcade game manual2,2,1i

first-level second-levelquery

1i arcade game

defender

land rover
3,1i

defender arcade game online3,2,1i

defender land rover for sale1,3,1i

defender land rover usa2,3,1i

defender land rover parts3,3,1i

Fig. 3. Two-level hierarchical subtopics of query “defender”.

cannot perceive the subtle difference between these two
subtopics. In contrast, if we only consider second-level
subtopics which are fine-grained, the algorithms may select
three documents covering i1,1,1, i1,1,2, and i1,1,3 respectively
without realizing that these subtopics are generally similar.
Comparing to choosing documents with subtle difference, it
is more reasonable to select documents satisfying i1,1, i1,2,
and i1,3 respectively to cover a wider range of intents.

The model incorporating hierarchical subtopics is de-
noted as HDSSA-RNNMP. Assume that we have already
obtained hierarchical subtopics using query suggestions
provided by search engines (like Figure 3), we need to
decide how to derive the attention paid on all subtopics of
different levels and how to calculate the final score. Inspired
by [8], we also calculate the attention and the score in a
layer-wise approach. The hierarchical subtopic tree, with the
query as the root, is split into several layers according to
the depth of the nodes. All the subtopics of different layers
are organized as a flat list, then attention of each subtopic
is calculated just like Section 4.1.2. A document’s matching
scores to the subtopics on the same layer are combined by
attention to get the score of this layer. Final score is the
weighted sum of the score of each layer. In particular, the
first layer only consists of the query; all the suggestions of
the query constitute the second layer; the third layer is the
suggestions of the subtopics of the second layer. Because
the query acts as the “root subtopic” (i1 in Figure 3), we can
treat the query in the same way as other subtopics, which
means that the attention is also calculated for the query.
In consequence, parameter λ in Equation (9) is no longer
necessary. In other words, the attention on the query serves
as “query-wise λ”, which controls the trade-off between
relevance and diversity in a query-aware approach.

Formally, we use ik1,.,kl
to represent the kl-th child

subtopic of parent subtopic ik1,.,kl−1
. Query is denoted as

i1. Its child subtopics are denoted as i1,1, i1,2, and etc. The
subscript of a subtopic completely conveys its path to the
root. The attention for each subtopic is calculated as follow:

a
′

t,(k1,.,kl)
= A

′
(ht−1, eik1,.,kl

) +A
′′
(xd1,ik1,.,kl

, ...,xdt−1,ik1,.,kl
),

at,(k1,.,kl) =
wik1,.,kl

exp(a
′

t,(k1,.,kl)
)

L∑
m=1

∑
k1,.,km

wik1,.,km
exp(a

′

t,(k1,.,km))

,

(13)
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0

Fig. 4. Difference between HDSSA and DSSA. The initial weight of each
subtopic is shown in parentheses and visualized via color scale. The
colored subtopics are the ones to pay attention to.

where the attention score for subtopic ik1,.,kl
is also cal-

culate using both distributed representation and relevance
features. The denominator of the softmax sums over all the
subtopics of different layers. Consistent with [8], the initial
weight of ik1,.,kl−1

is the sum of the weights of its child
subtopics:

wik1,.,kl−1
=

∑
kl

wik1,.,kl
. (14)

To guarantee that each layer has the same initial weight,
all the leaf nodes must appear on the deepest layer. If a
subtopic without a child is not on the deepest layer, we treat
itself as the only descendant. The final score of a document
is calculated as follow:

sdt =
L∑

l=1

βl

∑
k1,.,kl

at,(k1,.,kl)(S
′
(edt , eik1,.,kl

)+

xᵀ
dt,ik1,.,kl

·wr),

(15)

where the outer sum is over all L layers (in this paper
L = 3) and the inner sum is over all subtopics of the l-th
layer. In order to control the importance of the subtopics of
different granularities, we use another layer-wise parameter
β. We investigate two ways of defining β: balanced and
unbalanced. In balanced setting, all the layers have the
same weights, while in the unbalanced setting, we learn the
weights of each layer simultaneously with other parameters.
Both results are reported in Section 6. Figure 4 depicts
the difference between HDSSA and DSSA. In DSSA, the
importance of each subtopic is affected by its attention and
λ, while the importance of the query is only affected by
λ. However, in HDSSA, the importance of both query and
subtopics is controlled by attention and layer-wise weight β,
which is more flexible. DSSA based on a flat list of subtopics
is a special case of HDSSA.

4.3 A List-pairwise Approach for Optimization

Liu [32] classifies LTR approaches into three categories:
pointwise, pairwise, and listwise. Search result diversifica-
tion is naturally a listwise problem because the score of a
document depends on the previous documents. Take Table 1
as an example, under no previous documents, d2 is better

1
d

2
d

3
d

4
d

(a) list-pairwise

1
d 3

d
2
d

2
d

4
d

3
d

4
d

1
d

rank1

rank2

(b) PAMM

Fig. 5. Pair sample examples of (a) list-pairwise and (b) PAMM. Both
samples are positive.

than d3 because d2 covers one more subtopic (subtopics are
of equal weight). However, given that we have selected d1,
which is similar to d2 while dissimilar to d3, d3 becomes
superior because it provides additional information.

4.3.1 List-pairwise Training
We propose a list-pairwise training approach. We call it list-
pairwise because a sample in our algorithm consists of a pair
of rankings (r1, r2): r1 and r2 are totally identical except
the last document. The sample can be written as (C, d1, d2),
where C is the shared previous document sequence. The
pairwise preference ground-truth is generated based on an
evaluation metric M , such as α-nDCG. If M(r1) > M(r2),
it is positive, otherwise it is negative. Our approach is
similar to pairwise approaches because it aims to compare
a pair of documents, but this is done within some context.
Similarly to pairwise, the loss function can be defined as
binary classification logarithmic loss:

Llist-pairwise =∑
q∈Q

∑
o∈Oq

w(o)

(
y(o) log

(
P (r

(o)
1 , r

(o)
2 )

)
+

(1− y(o)) log
(
1− P (r

(o)
1 , r

(o)
2 )

))
,

(16)

where Oq is all the pair samples of query q, y(o) = 1

indicates positive and 0 for negative, and P (r
(o)
1 , r

(o)
2 ) is the

probability of being positive calculated by 1
1+exp(s

r
(o)
2

−s
r
(o)
1

) .

To enhance effectiveness, we weight pairs with w(o) =

|M(r
(o)
1 )−M(r

(o)
2 )|, which means that the bigger the metric

score gap, the more important the pair.
Because DSSA calculates document d’s score sCd based

on previous document C, we could also use Maximum
Likelihood Estimation (MLE) or PAMM to optimize our
model. We use Plackett-Luce model [33] to estimate the
probability of a ranking r:

P (r) =

|r|∏
i=1

exp(s
r[:i−1]
di

)∑|r|
j=i exp(s

r[:i−1]
dj

)
, (17)

where r[: i − 1] means the top i − 1 documents of ranking
r. Then the loss functions could be written as:

LMLE =
∑
q∈Q
− log(P (r+q )), (18)

LPAMM =
∑
q∈Q

∑
r+q ,r−q

JP (r+q )− P (r−q ) ≤M(r+q )−M(r−q )K,
(19)
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where JconditionK is 1 if the condition is satisfied, 0 ot-
herwise, MLE maximizes the probability of positive ran-
kings, and PAMM enlarges the probability margin between
positive and negative rankings according to an evaluation
metric. For MLE, the number of best rankings is usually
small if we only have hundreds of queries, which may
not be enough to train adequately the parameters. PAMM
uses preferences between very different rankings that are
not comparable (see Figure 5(b)). In contrast, list-pairwise
method only allows the last document to be different (Fi-
gure 5(a)). This corresponds better to the decision-making
situation in which we have to choose a document under a
given context. It is expected that such a pair sample allows
us to better train the ranking function. Experiments will
show that our approach works better.

As shown in Figure 2, our architecture is a unified neural
network and the attention function is continuous, so the
gradient of the loss function can be backpropagated directly
to train the model. We use mini-batch gradient descent to
facilitate training process.

Unfortunately, it is impossible to acquire all the list-
pairwise samples, which has in total |Dq|! (|Dq| is the
number of candidate documents) different permutations.
So we develop a sampling strategy similar to negative
sampling [34] as described in Algorithm 1: for each query
q, we sample a large number of pairs of rankings, whose
length ranges from 1 to |Dq|. We first obtain some contexts
C from both best rankings and randomly sampled negative
rankings (rankings that are not optimal). Then under each C,
a pair of documents (d1, d2) are sampled from the remaining
documents Dq \ C if and only if they lead to different metric
scores.

4.3.2 Prediction
In prediction stage, for each query, we sequentially and
greedily choose the document with the highest score and
append it to the ranking list. Specifically, the first document
is selected under initial subtopic importance from the whole
candidate set Dq . Once the top t − 1 documents have been
selected (i.e. |C| = t − 1), we feed each document in Dq \ C
into DSSA at the t-th position one by one and choose the
one with the highest sdt

. This process continues until all the
documents in Dq are ranked.

4.3.3 Time Complexities
The training time complexity with vanilla cell and “general”
operation is O(V · |Q| · Γ · |Dq| ·Θ) where V is the number
of iterations, |Q| is the number of training queries, Γ = N ·
|Dq|2 is the number of sampled pairs where N is the number
of random permutations, |Dq| is the number of candidate
documents, and Θ is the complexity for each position:

Θ = U(U + Ed)︸ ︷︷ ︸
document sequence

representation

+KUEq +KR︸ ︷︷ ︸
subtopic
attention

+KEdEq +KR︸ ︷︷ ︸
scoring

, (20)

where the dominating terms are KUEq and KEdEq which
are proportional to the number of subtopics K. How to
efficiently handle a large number of subtopics is our future
work. The prediction complexity is O(|Dq|2Θ) for each
query. We can limit |Dq| to a small number (say 50), so the
prediction time can be reasonable. On a 24 core 2.1 GHz

Algorithm 1 A List-pairwise Approach For Optimization
1: procedure LIST-PAIRWISE TRAINING

input: loss function L, learning rate r, epochs V , query
set Q, document set D, evaluation metric M , random
permutation count N
output: DSSA with trained parameters θ

2: initialize θ
3: for i from 1 to V do
4: for batch b ∈ GetSamples(Q,D,M,N) do
5: g ← GetGradient(L(b, θ))
6: θ ← θ − rg

return DSSAθ

7: procedure GETSAMPLES
input: query set Q, document set Dq for each query q,
evaluation metric M , random permutation count N
output: a set of ranking pairs with weight and prefe-
rence {(q1, C1, d11, d12, w1, y1), (q2, C2, d21, d22, w2, y2), ...}
include: GetPerms(Dq, l, N,M) return a best ranking
(under metric M ) and N random permutations of length
l.

8: R← ∅
9: for query q in Q do

10: for l from 0 to |Dq| − 1 do
11: for perm C in GetPerms(Dq, l, N,M) do
12: R← R∪ GetPairs(q,Dq, C,M)

return R
13: procedure GETPAIRS

input: query q, document set Dq , selected documents
list C, evaluation metric M
output: a set of ranking pairs with weight and prefe-
rence {(q, C1, d11, d12, w1, y1), (q, C2, d21, d22, w2, y2), ...}

14: R← ∅
15: for all doc pair (d1, d2) in Dq \ C do
16: r1 ← [C, d1], r2 ← [C, d2]
17: if M(r1) ̸= M(r2) then
18: w ← |M(r1)−M(r2)|
19: y ← JM(r1) > M(r2)K
20: R← R∪ (q, C, d1, d2, w, y)

return R

CPU server, the ranking takes about 150ms pre query. The
ranking time of xQuAD and C-GLS are:

xQuAD: O(|Dq|2 ·KR),

C-GLS: O(V · |Dq| ·M3),
(21)

where we use R features and ListMLE to calculate the
relevance between documents and queries (subtopics) for
xQuAD; M is the size of the diverse subset (say 20) se-
lected from the candidate set Dq . Comparing to xQuAD,
the matrix multiplication of distributed representation is the
bottleneck, which could be accelerated by GPU. C-GLS uses
pre-calculated distance to promote efficiency.

5 EXPERIMENTAL SETTINGS

5.1 Data Collections
We use the same dataset as [8] which consists of Web Track
dataset from TREC 2009 to 2012. There are 198 queries
(query #95 and #100 are dropped because no diversity
judgments are made for them), each of which includes 3 to 8



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2810873, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JULY 2017 9

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1  2  3  4  5  6  7  8  9  10

#
q

u
er

y

#first-level subtopic

(a) hist of #first-level subtopics

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10 20 30 40 50 60 70 80 90 100

#
q

u
er

y

#second-level subtopic

(b) hist of #second-level subtopics

Fig. 6. Histogram of the number of subtopics.

subtopics identified by TREC assessors. The relevance rating
is given in a binary form at subtopic level. All experiments
are conducted on ClueWeb09 [35] collection.

We use query suggestions of Google search engine as
the first-level subtopics. Then the first-level subtopics are
issued as queries to Google to retrieve their suggestions as
the second-level subtopics. Finally, 1,696 first-level subtopics
and 10,527 second-level subtopics are collected, which are
released by Hu et al. [8] on their website1. Almost all
queries have 9 or 10 first-level subtopics. But the first-level
subtopics have variant number of second-level subtopics.
The histogram of the number of subtopics of a query is
shown in Figure 6. For DSSA, we only use the first-level
subtopics. For HDSSA, we use both first and second level
subtopics. Following the existing work [8], we simply use
uniform weights in DSSA. For HDSSA, the weight of the
root subtopic (the query) is 1. Then the weight is evenly
distributed to child subtopics in a top-down manner. Note
that the absolute value of the initial weights will not affect
the final score because of the normalization of softmax.

5.2 Evaluation Metrics
We use ERR-IA [36], α-nDCG [37], and NRBP [38], which
are official diversity evaluation metrics used in Web Track.
They measure the diversity by explicitly rewarding novelty
and penalizing redundancy. D♯-measures [39], the primary
metric used in NTCIR Intent [40] and IMine task [41], is
also included. We also use traditional diversity measures
Precision-IA (denoted as Pre-IA) [4] and Subtopic Recall
(denoted as S-rec) [42]. Consistent with existing works [15],
[16], [17] and TREC Web Track, all these metrics are compu-
ted on top 20 results of a ranking. We use two-tailed paired
t-test to conduct significance testing with p-value < 0.05.

5.3 Baseline Models
We compare DSSA and HDSSA2 to various unsuper-
vised and supervised diversification methods. The non-
diversified baseline is denoted as Lemur. We use C-GLS
[23], xQuAD [5], PM2 [6], TxQuAD, TPM2 [7], HxQuAD,
and HPM2 [8] as our unsupervised baselines. We use Lis-
tMLE [43], R-LTR [15], PAMM [16], and NTN [17] as our
supervised baselines. Top 20 results of Lemur are used
to train supervised methods. Top 50 (i.e. |Dq|) results of
Lemur are used for diversity re-ranking. To construct the
representation of a query or a subtopic, we use the top 20

1. hierarchical diversification: http://www.playbigdata.com/dou/hdiv
2. data and code: http://www.playbigdata.com/dou/DSSA/

TABLE 5
Relevance features. Each of the first 3 features is applied to body,

anchor, title, URL, and the whole documents.

Name Description #Features

TF-IDF the TF-IDF model 5
BM25 BM25 with default parameters 5
LMIR LMIR with Dirichlet smoothing 5

PageRank PageRank score 1
#inlinks number of inlinks 1
#outlinks number of outlinks 1

TABLE 6
Diversity features. Each feature is extracted over a pair of documents.

Name Description

subtopic diversity euclidean distance based on SVD
text diversity cosine-based distance on term vector
title diversity text diversity on title
anchor text diversity text diversity on anchor
link-based diversity link similarity of document pair
URL-based diversity URL similarity of document pair

(Z) documents. We use 5-fold cross validation to tune the
parameters in all experiments based on α-nDCG@20, which
is one of the most widely used metrics. A brief introduction
to these baselines is as follows:

Lemur. We use the same non-diversified results as [8].
They are produced by language model and retrieved using
the Lemur service3 of which the spams are filtered. These
results are released by Hu et al. [8] on the website1.

ListMLE. ListMLE is a representative listwise LTR met-
hod without considering diversity.

C-GLS. We use k-means for clustering and tune the
parameters λ, b, and α in the same way as [23].

xQuAD, PM2, TxQuAD, TPM2, HxQuAD, and HPM2.
These are competitive unsupervised explicit diversification
methods, as introduced in Section 2.2. All these methods
use λ to control the importance of relevance and diversity.
HxQuAD and HPM2 use an additional parameter α to
control the weight of each layer of the hierarchical structure.
Both λ and α are tuned using cross validation. They all
require a prior relevance function to fulfill diversification
re-ranking. Following [15], we use ListMLE.

R-LTR, PAMM, and NTN. For PAMM, we use α-
nDCG@20 as the optimization metric. We optimize NTN
based on both R-LTR and PAMM, denoted as R-LTR-NTN
and PAMM-NTN respectively.

To achieve optimal results, for R-LTR and PAMM, we
tune the relational function hS(R) from minimal, maximal,
and average. For PAMM, we tune the number of positive
rankings τ+ and negative rankings τ− per query. For NTN,
the number of tensor slices is tuned from 1 to 10. LDA
is used to generate distributed representations of size 100
for NTN and DSSA. For all these supervised methods, the
learning rate r is tuned from 10−7 to 10−1. For DSSA, we
have different settings possible. In our first set of results,
we will use “general” as the implementation of vector
interaction operations A′

and S ′
, LSTM with hidden size

3. Lemur: http://boston.lti.cs.cmu.edu/Services/clueweb09 batch/
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of 50 as the cell of RNN. We set random permutation count
as 10 in list-pairwise sampling. Similarly, λ of DSSA is tuned
by cross validation. We also test the impact of different
model settings and permutation counts on performance in
Section 6.2 and Section 6.3 respectively. For HDSSA, we
investigate both the balanced (denoted as HDSSA-B) and
the unbalanced settings (denoted as HDSSA). To avoid
overfitting, we use dropout [44] with probability 0.5 and L2
regularization. The dataset is split into three parts, namely
training, validation, and testing. If the α-nDCG did not
improve on the validation set after a certain number of
epochs or the maximun epochs is reached, we stop the
training process.

Similar to [15], we implement 18 relevance features and 6
diversity features, as listed in Table 5 and 6 respectively. We
collect the candidate and retrieved documents of all queries
and subtopics to generate the distributed representations.

6 EXPERIMENTAL RESULTS

6.1 Overall Results
The overall results are shown in Table 7. We find that DSSA
significantly outperforms all implicit and explicit baselines,
including both unsupervised and supervised. The impro-
vements are statistically significant (two-tailed paired t-test)
for all metrics, except S-rec. The results clearly show the
superiority of DSSA. Using hierarchical subtopics further
improves all metrics, which demonstrates the usefulness of
leveraging hierarchical subtopics.

(1) DSSA vs. unsupervised explicit methods. DSSA out-
performs unsupervised explicit methods (xQuAD, PM2,
TxQuAD, TPM2, HxQuAD, and HPM2) on all the me-
asures. The relative improvement of DSSA over HxQuAD
and HPM2, the best unsupervised explicit approaches, is
up to 8.3% and 8.6% respectively in terms of α-nDCG. The
relative improvement of HDSSA over HxQuAD and HPM2
is 10.9% and 11.2% respectively. This comparison shows the
great advantage of using supervised method for learning
the ranking function.

(2) DSSA vs. supervised implicit methods. DSSA also
outperforms supervised implicit methods (R-LTR, PAMM,
R-LTR-NTN, and PAMM-NTN) by quite large margins.
The improvement over R-LTR-NTN and PAMM-NTN, the
best supervised implicit approaches is up to 9.9% and 9.4%
respectively on α-nDCG. This result demonstrates the utility
of taking into account subtopics explicitly in supervised
approaches. The improvements are similar to those obser-
ved between explicit approaches and implicit approaches in
unsupervised framework [5], [6], [7], [8]. The combination
of the two observations suggests that explicit modeling of
subtopics can improve result diversification, whether it is in
a supervised or unsupervised framework.

(3) HDSSA vs. DSSA. HDSSA outperforms DSSA on
all the measures. Through paying attention to subtopics of
different granularities, HDSSA has the potential to detect
the most unsatisfied intents and keep balance between
general and fine-grained intents. It also indicates that our
framework is flexible enough to model hierarchical subto-
pics. HDSSA outperforms HDSSA-B, which indicates that
scoring documents with different and tunable layer weights
is beneficial. However, the improvement of the hierarchical

TABLE 7
Performance comparison of all methods. The best result is in bold.

Statistically significant differences between DSSA and baselines are
marked with various symbols. H indicates significant improvement over

all baselines (p < 0.05).

Methods ERR-IA α-nDCG NRBP D♯-nDCG Pre-IA S-rec

LemurÀ .271 .369 .232 .424 .153 .621
ListMLE¶ .287 .387 .249 .430 .157 .619

C-GLSÁ .288 .391 .246 .435 .153 .640
xQuADÂ .317 .413 .284 .437 .161 .622
TxQuADÃ .308 .410 .272 .441 .155 .634
HxQuADÄ .326 .421 .294 .441 .158 .629
PM2Å .306 .411 .267 .450 .169 .643
TPM2Æ .291 .399 .250 .443 .161 .639
HPM2Ç .317 .420 .279 .455 .172 .645

R-LTR· .303 .403 .267 .441 .164 .631
PAMM¸ .309 .411 .271 .450 .168 .643
R-LTR-NTN¹ .312 .415 .275 .451 .166 .644
PAMM-NTNº .311 .417 .272 .457 .170 .648

DSSA .356H .456H .326H .473H .185H .649ÀÂ¶

HDSSA-B .366H .465H .335H .475H .186H .648ÀÂ¶

HDSSA .369H .467H .337H .478H .187H .653ÀÂ¶

subtopics over the flat list of subtopics is not significant.
A possible reason is that we calculate attention and score
for each subtopic separately, which fail to fully explore the
dependency among the subtopics of different granularities.
A promising direction is that the calculation of attention
and score of parent subtopic is directly dependent on its
child subtopics. Modeling the subtopics in a more unified
and integrated way is our future work.

6.2 Effects of Different Settings
We conduct experiments with different settings of DSSA to
investigate whether the performance is sensitive to these
settings. Different aspects of settings are listed follow. For
simplicity, when investigating the impact of each aspect,
we keep other aspects the same as the settings specified in
Section 5.3.

1) Representation generation methods: SVD, LDA, and
doc2vec with window size of 5.

2) Implementation of vector interaction operations A′

and S ′
: “general” and “dot”.

3) RNN cell: vanilla, GRU, and LSTM cell.
4) Dimensionality: we test several representative set-

tings on the size of distributed representations Ed

and Eq , the size of hidden state U as (25, 10), (50,
25), (100, 50), (200, 100).

5) Max-pooling: we experiment without using max-
pooling (denoted as DSSA-RNN) in subtopic atten-
tion component.

The results are reported in Table 8. We can observe that
DSSA does not heavily rely on specific settings. As for dif-
ferent representation generation methods, LDA has slightly
better results. doc2vec could have been more appropriate
if we had large datasets with more queries. The “general”
operation yields slightly better results. A possible reason is
that it is bilinear and thus is more powerful than “dot” to
model the interaction. GRU and LSTM cells yield slightly
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TABLE 8
Effects of different settings.

Methods ERR-IA α-nDCG NRBP D♯-nDCG Pre-IA S-rec

SVD .348 .450 .315 .470 .184 .646
LDA .356 .456 .326 .473 .185 .649
doc2vec .351 .452 .318 .471 .184 .646

general .356 .456 .326 .473 .185 .649
dot .347 .450 .314 .470 .184 .647

vanilla .354 .454 .322 .471 .184 .649
GRU .357 .457 .326 .473 .185 .649
LSTM .356 .456 .326 .473 .185 .649

DSSA-RNN .342 .445 .306 .466 .172 .657
DSSA-RNNMP .356 .456 .326 .473 .185 .649
HDSSA .369 .467 .337 .478 .187 .653

 0.43

 0.44

 0.45

 0.46

 0.47

(25,10) (50,25) (100,50) (200,100)

α-
n
D

C
G

dimensionality

(a) α-nDCG w.r.t. different size

 0.43

 0.44

 0.45

 0.46

 0.47

0 5 10 15 20

α-
n
D

C
G

#random permutation

(b) α-nDCG w.r.t. different random
permutation count

Fig. 7. Performance tendency of different settings.

better results than vanilla cell because of their ability of
modeling long-term dependency. The difference is however
small. This may be due to that with a limited number of
training data, a model is unable to take advantage of its hig-
her complexity to capture the fine-grained subtlety. Results
with different size of distributed representation and hidden
state shown in Figure 7(a) also indicate no strong correlation
between performance and settings. α-nDCG remains above
0.45 using different sizes. The best performance is achieved
using 100-dimensional representation and 50-dimensional
hidden state. This suggests that high dimensionality may
result in overfitting. Without using max-pooling, α-nDCG
drops to 0.445, which demonstrates the usefulness of using
max-pooling to enhance subtopic attention. The small dif-
ferences between different settings suggest that DSSA is
a stable and robust framework. Note that we use both
distributed representations and relevance features, which
are complementary to each other. This may be one of the
reasons of the stability.

6.3 Effects of Different Optimization Methods
Results in Table 9 shows that list-pairwise is more effective
than MLE and PAMM. This confirms our earlier intuition

TABLE 9
Effects of different optimization methods.

Methods ERR-IA α-nDCG NRBP D♯-nDCG Pre-IA S-rec

MLE .349 .446 .315 .462 .176 .644
PAMM .348 .445 .315 .463 .175 .644
list-pairwise .356 .456 .326 .473 .185 .649

TABLE 10
Effects of different layers in HDSSA.

Methods ERR-IA α-nDCG NRBP D♯-nDCG Pre-IA S-rec

HDSSA-1 .356 .457 .323 .475 .186 .654
HDSSA-2 .364 .464 .333 .480 .190 .655
HDSSA .369 .467 .337 .478 .187 .653

i1 i2 i3 i4 i5 i1 i2 i3 i4 i5

d1

d2

d3

d4

d5

DSSA PAMM-NTN

(a) ranking of query #58

i1 i2 i3 i4 i1 i2 i3 i4

DSSA PAMM-NTN

(b) ranking of query #182

Fig. 8. Case study for DSSA and PAMM-NTN. White means relevant and
black means irrelevant.

that list-pairwise optimization corresponds better to the
situation of diversification ranking than the two other met-
hods. Note that even using MLE or PAMM as optimization
methods, DSSA could also achieve state-of-the-art perfor-
mances, which confirms the effectiveness of our explicit
learning framework from another perspective.

We vary the number of random permutations used in
list-pairwise sampling from 0 to 20 to investigate its effect.
As depicted in Figure 7(b), the performance does not heavily
rely it. The best performance is achieved around 10. More
permutations lead to lower effectiveness, which could be
explained by model overfitting.

6.4 Effects of Different Layers in HDSSA
We further investigate the effects of using different layers
in HDSSA in Table 10, where HDSSA-1 only uses first-
level subtopics and HDSSA-2 only uses second-level sub-
topics. Basically, using both levels yields the best results
and the second-level subtopics yield better performance
than the first-level. This experimental result is consistent
with learned parameter β for controlling layer importance:
β3(second-level) > β1(query) > β2(first-level). A possible
explanation is that the second-level subtopics are more
informative and specific than the first-level so that it can
consider subtle variation of intent coverage (see Section 6.6
for further illustration). Note that using hierarchical subto-
pics outperforms both models using a single level of sub-
topics in terms of ERR-IA and α-nDCG. This indicates the
effectiveness of modeling intents on different granularities.

6.5 Visualization and Discussion of DSSA
We visualize the ranking results of DSSA and the variation
of subtopic attention to better understand why DSSA per-
forms well.

We show the top 5 ranking results of query #58 and #182
in Figure 8 to illustrate why DSSA outperforms implicit
learning methods. We choose PAMM-NTN as comparison
method, which is the best existing learning method. In
Figure 8, white means relevant and black means irrelevant.
For query #58, DSSA ranks a document relevant to subto-
pics i3 and i4 first and a document relevant to i1 and i2
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d1 d2 d3 d4 d5

z1. quit smoking tips (i1)

z2. quit smoking app (i1)

z3. quit smoking calculator (i1)

z4. quit smoking help (i1)

z5. quit smoking benefits (i2)

z6. quit smoking cold turkey (i3)

z7. quit smoking hypnosis (i4)

i1. What are the ways you

can quit smoking?

i2. What are the benefits of

quitting smoking?

i3. Can you quit smoking using

the cold turkey method?

i4. How can hypnosis help

someone quit smoking?

subtopics

from Google

official

subtopics

someone quit smoking?

Fig. 9. Subtopic attention variation of query #182. The top part is
attention and the bottom part is relevance judgment.

at the second position, while the first two documents of
PAMM-NTN cover the same subtopics. Note that there is
no document covering i5 in the candidate set. For query
#182, DSSA successively chooses documents that cover i1,
i3, i2, and i4. One additional intent is satisfied at every
position. PAMM-NTN, however, just covers i1 and i2 by
top 5 documents, which is obviously not optimal. We see
that the unequal and varied subtopic attention is capable
of discovering unsatisfied subtopics at different positions,
which eventually leads to more subtopic coverage.

To study attention mechanism, we further visualize the
variation of subtopic attention of top 5 documents of query
#182, namely “quit smoking”, which has 4 official subtopics
(i1 to i4), as shown in Figure 9. The top part is subtopic
attention variation and the bottom part is relevance judg-
ment. For attention part, the darker the cell is, the lower the
attention (weight) on this subtopic is. Note that we actually
leverage query suggestions of Google (z1 to z7) to serve as
subtopics, which do not match official ones exactly. We ma-
nually align subtopics mined from Google to official ones.
At the beginning, all the subtopics have equal attention. The
first selected document d1 is relevant to i1, i.e. to the Google
subtopics z1, z2, z3 and z4. We see that the attention to these
latter decreases at second position. Then the document d2 is
selected, which is relevant to uncovered i3. We see that the
attention to the corresponding z6 begins to diminish from
the third position. d3 and d4 satisfy additional i2 and i4
respectively, which leads to the reduction of attention on
z5 and z7 at the following position. The subtopic attention,
initialized as uniform distribution, ends up with more emp-
hasis on z4, z6, and z7. This example illustrates how the
unequal and varied attention drives the model to emphasize
different subtopics at different positions, which is crucial in
explicit diversification. This example also shows a potential
problem inherent for any method using automatically disco-
vered subtopics: those topics may be different from the ones
defined by human assessors. Equal distribution is assumed

i1 i2 i3 i1 i2 i3

d1

d2

d3

d4

d5

HDSSA DSSA

(a) ranking of query #103

i1 i2 i3 i1 i2 i3

HDSSA DSSA

(b) ranking of query #139

Fig. 10. Case study for HDSSA and DSSA. White means relevant and
black means irrelevant.

on all the subtopics zi. However, this implies an unequal
distribution among the manually defined subtopics (more
emphasis is put on i1). Assuming an equal distribution at
the beginning may not necessarily be the best approach. We
will deal with this problem in our future work.

6.6 Visualization and Discussion of HDSSA

We also visualize the ranking results of HDSSA and the
variation of subtopic attention to investigate the effect of
using hierarchical subtopics.

We show the top 5 ranking results of query #103 and
#139 in Figure 10 to illustrate the superiority of HDSSA
over DSSA. For query #103, HDSSA covers all subtopics
within 5 results, while DSSA fails to satisfy i3. For query
#139, HDSSA successfully selects 3 adjacent documents that
cover i2, i1, and i3 respectively, while DSSA ignores i3. The
above cases demonstrate the usefulness of the hierarchical
subtopics, which can detect unsatisfied intents based on
different granularities.

In Figure 11, we visualize the variation of subtopic
attention of HDSSA on query #103 (“madam cj walker”),
which has 3 official subtopics listed at the bottom. We
collected 9 first-level subtopics and 35 second-level subto-
pics to construct the hierarchical structure. The first column
of attention (attention of d1) is the initial weight of all
subtopics, which is allocated in a top-down manner so that
each layer obtains equal attention at the beginning. After se-
lecting a document satisfying i1 and i2, the attention of next
position should turn to i3 which is “Madam C. J. Walker’s
involvement in the political and social issues”. If we only
use the first-level subtopics which are not specific enough,
we cannot find suitable subtopics to match i3. However in
second-level subtopics, z1,6,4 (“timeline madam cj walker
achievements”) has the potential to cover her social and po-
litical achievements. Using hierarchical subtopics is useful
to perceive the subtle variation of unsatisfied intents. So it
can further improve the diversity of the search results. The
attention on different levels and subtopics keeps changing
throughout document selection process in Figure 11, which
is beneficial to introduce diversity on different granularities.
In fact, the latent intents of real users are much more than 3
official ones. Hierarchical subtopics keep balance between
crude and fine-grained intents, which have potential to
achieve more diversity even beyond the official judgement.
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d1 d2 d3 d4 d5

query z1 madam cj walker (~)

z1,1 ~ quotes

z1,2 ~ net worth

z1,3 ~ bio

z1,4 ~ hair products

z1,5 ~ house

z1,6 ~ timeline

z1,7 ~ invention

z1,8 ~ estate

z1,9 ~ museum

z1,1,1 ~ short quotes

z1,1,2 some of ~ quotes

z1,2,1 ~ net worth

z1,3,1 ~ biography wikipedia

z1,3,2 ~ biography video

z1,3,3 ~ biography timeline

first-level

subtopic

z1,3,3 ~ biography timeline

z1,3,4 ~ biography pdf

z1,3,5 ~ bio poem

z1,3,6 ~ facts

z1,4,1 ~ hair products reviews

z1,4,2 ~ hair products ingredients

z1,4,3 ~ hair products today

z1,4,4 ~ hair products name

z1,4,5 ~ hair care products reviews

z1,5,1 ~ house irvington

z1,5,2 ~ house in harlem

z1,5,3 ~ house in ny

z1,5,4 ~ home indianapolis

z1,5,5 ~ mansion address

z1,5,6 ~ home in harlem

z1,6,1 ~ early life

z1,6,2 ~ biography timeline

z1,6,3 ~ history timeline

z1,6,4 timeline ~ achievements

z1,7,1 ~ invention important

z1,7,2 ~ invention date

z1,7,3 some of ~'s inventions

second-level

subtopic

1,7,3

z1,8,1 ~ mansion

z1,8,2 ~ house tour

z1,8,3 ~ house in harlem

z1,8,4 ~ house irvington

z1,8,5 ~ mansion address

z1,9,1 ~ museum indianapolis

z1,9,2 ~ virtual museum

z1,9,3 the ~ beauty shoppe and museum

i2.Find information about the business

that ~ started
i3.Find information about ~'s involvement

in the political and social issues of her

official

subtopics

i1.Find historical information about ~

Fig. 11. Subtopic attention variation of query #103. The top part is
attention and the bottom part is relevance judgment. To save space, we
use “~” to replace the query string “madam cj walker” in all subtopics.

7 CONCLUSIONS

In this paper, we propose a general learning framework
DSSA to model subtopics explicitly for search result diversi-
fication. Based on the sequence of selected documents, une-
qual and varied subtopic attention is calculated, driving the
model to emphasize different subtopics at different positi-
ons. This is the first time that attention mechanism is used to
model the process. We further instantiate DSSA using RNN
and max-pooling to handle both distributed representations
and relevance features, which outperforms significantly the
existing approaches. The results confirm that modeling sub-
topics explicitly in a learning framework is beneficial and
effective and this also avoids heuristically defined functions

and parameters. Through using hierarchical subtopics, per-
formance is further improved because of the consideration
of subtopics of different granularities. However, accurately
modeling the interaction among documents and subtopics
is still challenging. There are many other more complex
implementations besides our particular way, which will be
investigated in future work. The proposed model contains
a number of parameters to be learned. This requires a large
number of training data. Collecting more training data to
fully unlock the potential of the model is another direction.
Finally, this work only deals with the learning of a ranking
function, assuming that subtopics have been obtained in
advance and document and query representations have alre-
ady been created. In practice, mining subtopics and learning
these representation are another interesting aspects, which
could be incorporated into our framework, provided with
sufficient training data.
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