
Vol:.(1234567890)

Information Retrieval Journal (2020) 23:136–158
https://doi.org/10.1007/s10791-019-09360-1

1 3

ECOMMERCE SEARCH AND RECOMMENDATION

Deep cross‑platform product matching in e‑commerce

Juan Li1,2 · Zhicheng Dou1,2   · Yutao Zhu1,2 · Xiaochen Zuo1,2 · Ji‑Rong Wen1,2

Received: 25 October 2018 / Accepted: 5 August 2019 / Published online: 13 August 2019 
© Springer Nature B.V. 2019

Abstract
Online shopping has become more and more popular in recent years, which leads to a pros-
perity on online platforms. Generally, the identical products are provided by many sell-
ers on multiple platforms. Thus the comparison between products on multiple platforms 
becomes a basic demand for both consumers and sellers. However, identifying identical 
products on multiple platforms is difficult because the description for a certain product can 
be various. In this work, we propose a novel neural matching model to solve this problem. 
Two kinds of descriptions (i.e. product titles and attributes), which are widely provided on 
online platforms, are considered in our method. We conduct experiments on a real-world 
data set which contains thousands of products on two online e-commerce platforms. The 
experimental results show that our method can take use of the product information con-
tained in both titles and attributes and significantly outperform the state-of-the-art match-
ing models.

Keywords  Product matching · Neural network · Text matching

1  Introduction

With the development of Internet and mobile technologies, online shopping becomes more 
and more popular. Massive offline transactions have been moved to online which leads to 
a prosperity on online platforms such as Amazon, eBay, Tmall, and JD. As different con-
sumers prefer different platforms, it is common for sellers to sell their products on multiple 

 *	 Zhicheng Dou 
	 dou@ruc.edu.cn

	 Juan Li 
	 juanli@ruc.edu.cn

	 Yutao Zhu 
	 ytzhu@ruc.edu.cn

	 Xiaochen Zuo 
	 zuoxc@ruc.edu.cn

	 Ji‑Rong Wen 
	 jrwen@ruc.edu.cn

1	 School of Information, Renmin University of China, Beijing, People’s Republic of China
2	 Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China

http://orcid.org/0000-0002-9781-948X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-019-09360-1&domain=pdf


137Information Retrieval Journal (2020) 23:136–158	

1 3

online platforms simultaneously. For consumers, purchasing a product from a certain plat-
form is usually decided based on the comparison of prices, qualities, and users’ feedbacks 
(comments). For example, consumers tend to choose the cheapest one if identical products 
are offered on multiple platforms. When both price and quality are analogous, they prefer 
the one offered by a seller with better service. Meanwhile, comparing their products with 
competitors is an effective way to do pricing and sales strategy adjustment for both sellers 
and platform managers. Therefore, it is valuable to study the problem of identifying identi-
cal products on different platforms.

On online e-commerce platforms, products usually described by their product titles 
and product attributes. A product title usually contains the key information about this 
product, and it is generally a brief and free text. Attributes are provided to specify 
more details about products, and they are usually in the format of name-value pairs 
from catalog data or from structured tables on web pages. Let us use an actual exam-
ple (showed in Fig. 1) to demonstrate it. In Fig. 1, the title of product (a) is Head and 
Shoulders Anti-Dandruff Shampoo (Fresh and Oil Control) 750  ml, which refers to 
a kind of shampoo made by Head and Shoulders. In addition to the brand name, this 
title also contains information about the net weight and other main product specifica-
tions. Moreover, the attributes of product (a) include Place of Origin: Mainland China 
and N.W.: 750 ml, etc. The examples in Fig. 1 are sampled from two online platforms 
Tmall and JD. And these products are also provided by other online platforms such as 
Amazon and eBay. Both titles and attributes are useful for identifying identical prod-
ucts. However, given the titles and attributes of two products, it is still difficult to iden-
tify whether they are identical or not. One difficulty is that products are described in 
different manners according to sellers’ demands and the format of titles and attributes 
is different. As illustrated in Fig. 1, (a) and (b) are the same products sold on two plat-
forms, but their titles and attributes are different. Another difficulty of product match-
ing is the synonyms. Synonyms not only appear in product titles, but also appear in 

(a)

(b)

(c)

Fig. 1   An example of three products sold on two platforms. Product a is sold on Tmall, while product b 
and c are sold on JD. The text in gray background is product title and product attributes are listed under it. 
In this example, a and b are identical products, while a and c are different. There are synonyms in product 
attribute names. The last attribute name Effect in b and the last attribute name Function in a represent the 
same meaning



138	 Information Retrieval Journal (2020) 23:136–158

1 3

product attributes. As illustrated in Fig.  1, the last attributes of product (a) and (b) 
are Function and Effect, but they represent the same meaning substantially. Therefore, 
how to match products by considering both titles and attributes simultaneously is very 
challenging.

To tackle aforementioned two difficulties, we propose to make use of product titles 
and attributes respectively, rather than fusing titles and attributes into documents by sim-
ple processing. We design a neural product matching model to judge whether two prod-
ucts are matched and identical. Given two products’ descriptions, for each product title, 
we use a bidirectional long short term memory network (Bi-LSTM) to generate their rep-
resentations. Then convolutional neural network (CNN) is introduced to extract features 
for matching. This structure is inspired by some state-of-the-art models on text matching. 
Bi-LSTM is proved to be useful in extracting positional information  (Schuster and Pali-
wal 1997), while CNN can be utilized to model the similarities between words in similar 
positions (Shen et al. 2014; Hu et al. 2014; Pang et al. 2016). We call this module Title 
Matching Module (TMM shortly). As for attributes, they are usually represented as name-
value pairs. Note that the aforementioned structure of TMM is not applicable for attrib-
ute matching due to their different formats. So we design an Attributes Matching Module 
(AMM shortly). The attribute names and values are taken into account respectively and 
two interaction matrices are built on them in this module. A special convolution operation 
is used to extract matching features from the interaction matrix of attribute values, and 
a K-Max pooling operation is used to extract the strongest features from the interaction 
matrix of attribute names. Then the matching features on attributes are combined together. 
Consequently, the outputs of TMM and AMM are matching features excerpted from prod-
uct titles and attributes respectively, and we further fuse them by multi-layer perceptron 
(MLP) to generate final matching features. The uniform model is named as Product Match-
ing Model (PMM shortly).

To evaluate our model, we simulate two real application scenarios. The first one 
is identifying if two products are identical when given their titles and attributes. This 
simulates the scenario that a consumer selects two products to compare. Under this 
circumstance, only two products are considered, so the task can be categorized as a 
classification problem. The second application scenario is more complex: one product 
is provided as a query product and a number of products are given as candidates. The 
target is to rank the candidate product list according to their similarities with the query 
product. This scenario aims at simulating behaviors of the sellers and platforms when 
they use their own products as query products to retrieve similar products on another 
platform. We conduct experiments on a data set containing about 20 product categories 
from two real online platforms. The experimental results show that our model outper-
forms state-of-the-art models in both application scenarios.

To summarize, our contributions are as follows:

1.	 To our best knowledge, we are the first to investigate product matching problem based 
on both product title and attributes of products. We design a novel model that makes 
use of the information contained in titles and attributes respectively. The experimental 
results prove the effectiveness of our model.

2.	 We evaluate our model in two typical application scenarios: a classification scenario and 
a ranking scenario. Both applications are designed by simulating behaviors of consum-
ers, sellers and platforms when comparing products on two platforms. The results show 
that our model can work well in both scenarios.



139Information Retrieval Journal (2020) 23:136–158	

1 3

2 � Related work

In this section, we introduce the related work in two categories. The first category includes 
methods proposed for product matching problem. We use similar product descriptive infor-
mation but our methods are apparently different. The second group of related work is about 
text matching task. These methods can be extended to product matching problem by con-
sidering only product titles or considering both titles and attributes.

2.1 � Algorithms for product matching

A number of methods have been proposed for product matching problems. At first, product 
resolution is a common task for product search engines. In this task, product queries are 
given by users to search for product entities. Product entities usually include product titles, 
product attributes, or product reviews. The matching is conducted between users’ queries 
and product entities. Duan et al. (2013) propose a language modeling approach to optimize 
search over structured product entities in databases with keyword queries. This approach 
is suitable for users who are not familiar with SQL language. Duan and Zhai (2015) pro-
pose a novel language model to represent users’ intent by capturing both query terms and 
structured product entities. Van Gysel et al. (2016) introduce a novel latent vector space 
model that jointly learns unsupervised representations of queries, product entities and the 
mapping between them. These matching approaches are made between textual queries and 
products. However, they cannot deal with product matching problem directly since the 
matching process is made between users’ queries and product entities, rather than between 
product entities. Things are much more difficult when matching products across platforms. 
To tackle this problem, many methods have been proposed including record linkage, dupli-
cate detection and entity resolution (Winkler 1999, 2006; Fellegi and Sunter 1969; Chris-
ten 2012; Nauman and Herschel 2010).

In fact, on real online platforms, product descriptions typically include product titles 
and attributes, and they are free data rather than structured data. In the early stage, Kan-
nan et al. (2011) attempt to convert product offers into structured product specifications, 
and match them with structured data stored in databases, then utilize the aforementioned 
methods on databases for product matching. Thereafter, researchers gradually pay more 
attention to match two products based on their descriptions directly. Gopalakrishnan et al. 
(2012) propose to match two products by their titles, they use a web search engine to 
assign different weights for words in titles and match them based on weighted word simi-
larities. Köpcke et al. (2012) take a step further to utilize both product titles and attributes 
to identify identical products, but they only extracted features from descriptions to train a 
matching model where semantic information is lost.

Our model is distinguished with these existing methods in two aspects: (1) No database 
in involved. Product titles and attributes are free data without constraints of database struc-
tures. (2) Product titles and the corresponding attributes are processed separately by two 
modules according to their different forms. Their matching features are fused together to 
generate final product matching score.

2.2 � Text matching approaches

Many tasks in natural language processing, such as information retrieval, automatic ques-
tion answering, machine translation, dialogue system, and repetition, can be categorized 



140	 Information Retrieval Journal (2020) 23:136–158

1 3

into text matching problems. A large number of text matching methods based on deep 
learning have been proposed. Different tasks owe different matching targets. The informa-
tion retrieval task is to calculate the matching scores between given queries and documents, 
and some literature reviews introduce the current landscape of Neural IR research (Mitra 
and Craswell 2018; Onal et al. 2018). The automatic question answering task is to judge 
whether an answer is for the given question. Here, the target of our product matching task 
is to determine whether two products are identical based their product titles and attributes.

When using product titles or both titles and attributes by concatenating them into text 
instances to match, models proposed for text matching can be applied to the product 
matching problem. Therefore, some text matching methods are involved as related work. It 
is worth noting that we only introduce neural network-based models on text matching that 
are comparable with our model. These models can be roughly categorized into two groups: 
representation-based methods and interaction-based methods.

Representation-based methods commit to obtain better representations for each text, 
which is basis for further matching. The state-of-the-art models include DSSM (Huang 
et al. 2013), CDSSM (Shen et al. 2014), ARC-I (Hu et al. 2014), CNTN (Qiu and Huang 
2015) and MV-LSTM (Wan et al. 2016). DSSM is one of the earliest deep models in text 
matching. Each text is vectorized separately by a five-layer network, and cosine similar-
ity is used to calculate the similarity between two text segments. Compared with DSSM, 
CDSSM replaces the full connection layer with a convolution layer and a pooling layer to 
generate text vectors. ARC-I uses convolution operations to represent two texts, and the 
representations of two texts are concatenated and further used for matching by a linear 
transformation. CNTN also adopts convolution neural network to represent two texts, and 
it proposes the neural tensor network to model the similarities between two texts. MV-
LSTM uses Bi-LSTM to obtain representation for each text and adopts interaction methods 
to measure similarities between any two texts, then applies a K-Max pooling strategy to get 
matching features.

Unlike representation-based approaches, interaction-based approaches usually build an 
interaction matrix between two texts, and focus on extracting useful information from the 
interaction matrix for matching. Typical models include ARC-II (Hu et al. 2014), Match-
Pyramid  (Pang et  al. 2016), DRMM  (Guo et  al. 2016), DUET  (Mitra et  al. 2017) and 
KNRM (Xiong et al. 2017). ARC-II first builds an interaction matrix, then conducts sev-
eral convolution and pooling operations to extract matching features. MatchPyramid also 
first builds an interaction matrix, and uses hierarchical convolution and pooling to cap-
ture matching patterns. DRMM also builds an interaction matrix and transforms it into a 
fixed-length matching histogram to obtain matching degree for each word in queries, and it 
considers the weights and matching degree of words in queries to generate final matching 
score. DUET considers both distributed representations and local representations to build 
distributed model and local model, and obtains final matching score based the two models. 
KNRM also first builds translation matrix, then adopts kernel-pooling technique to extract 
soft matching features. Some of aforementioned models, including DSSM, CDSSM, 
DRMM, DUET and KNRM, are designed specifically for information retrieval tasks. And 
we select some baselines from these classical text matching models according to their per-
formance on our early experiments.

When regarding product title and attributes as semi-structured document, product 
matching problem is similar with multiple-field document retrieval task, in which docu-
ments are ranked by measuring similarities between user queries and semi-structured 
documents. NRM-F (Zamani et al. 2018) is a neural matching model proposed specially 
for multiple-field document retrieval, which models the representations of queries and 



141Information Retrieval Journal (2020) 23:136–158	

1 3

documents with multiple fields, then measures similarities by the interaction of their repre-
sentations. Due to the similarity of the two tasks, we extend NRM-F to work with product 
titles and attributes by regarding products as documents with multiple fields.

3 � Product matching model

In this Sect., we introduce our Product Matching Model (PMM shortly). PMM consists of 
a product title matching module (TMM shortly) and a product attributes matching module 
(AMM shortly). Before introducing our model, we formally define the product matching 
problem. Then we present the structure of PMM. And its two sub modules, i.e., TMM and 
AMM are described respectively in detail thereafter.

3.1 � Problem definition

As illustrated in Fig.  2, assuming two products X and Y, the title of X is repre-
sented by a sequence of words (x1, x2,… , xm) , where xi is the ith word in the title 
and m is the title length. The attributes are denoted as a set of name-value pairs, i.e., 
{(k1 ∶ v1),… , (kp ∶ vp)} , where (kj ∶ vj) is the jth attribute pair which consists of an attrib-
ute name kj and its value vj . p is the number of attribute pairs. In fact, both attribute names 

Fig. 2   The data pre-processing and the structure of PMM. In the data pre-processing, all words are seg-
mented in Chinese which are marked with a “/” as an interval. PMM consists of two modules, where TMM 
calculates the similarity between two product titles while AMM computes the similarity between two prod-
uct attribute sets. The results are further combined to calculate the final matching score



142	 Information Retrieval Journal (2020) 23:136–158

1 3

and values consist of several words. We represent word set of the product attribute names 
as (wK

1
,wK

2
,… ,wK

u
) and word set of the product attribute values as (wV

1
,wV

2
,… ,wV

v
) . u and 

v are the number of words in each set. For product Y, the title is (y1, y2,… , yn) and attrib-
utes are {(k�

1
∶ v�

1
),… , (k�

q
∶ v�

q
)} . The word sets of product attribute names and product 

attribute values are (w�K
1
,w�K

2
,… ,w�K

u�
) and (w�V

1
,w�V

2
,… ,w�V

v�
) . Then, we define the simi-

larity between title (x1, x2,… , xm) and (y1, y2,… , yn) as title similarity. And the similarity 
between attribute sets {(k1 ∶ v1),… , (kp ∶ vp)} and {(k�

1
∶ v�

1
),… , (k�

q
∶ v�

q
)} is defined as 

attribute similarity. In this paper, our target is to identify whether two products are identi-
cal and matched based on their title similarity and attribute similarity.

3.2 � Overview

To achieve our target, we propose PMM which leverages both product titles and attrib-
utes to generate the matched score of two products. The structure of PMM is illustrated 
in Fig. 2. As product titles and attributes are in different forms, we design two modules 
(TMM and AMM) to make use of them respectively. TMM is designed to compute the 
similarities between any two product titles, and AMM works on measuring the similarities 
between any two product attribute sets. After obtaining these two kinds of similarities, we 
combine them to generate the final matching score.

3.3 � TMM: title matching module

On real online platforms, sellers usually present product names and some important prod-
uct specifications in product titles (examples in Fig. 2). And for consumers, product titles 
can provide basic information of products and help them find a certain product quickly. 
So the similarities between product titles can play a role in identifying identical products. 
In our observations, product titles can be treated as natural language texts, thus we design 
TMM based on some text matching techniques. In the state-of-the-art text matching mod-
els, RNNs are always used to extract sequential information in natural language texts while 
CNNs are always utilized to excerpt the information in adjacent words. Here we leverage 
both of them to calculate title similarities. The structure of TMM is presented in Fig. 3. 
And we introduce the module in four steps:

•	 Sequential sentence representation In this step, we represent two titles by two groups of 
positional vectors for further matching. To achieve this, we involve bi-directional long 
short term memory recurrent network (Bi-LSTM) (Schuster and Paliwal 1997). Bi-LSTM 
has the ability to utilize both previous and future information by two separate LSTMs 
and generates representation vectors for each position in the text. Formally, give an input 
product title ( x1, x2,… , xm ), the positional representation ht of xt is computed as: 

which is the concatenation of vectors ��⃗ht and �⃖�ht . ��⃗ht and �⃖�ht are computed by the forward 
and backward direction LSTMs respectively. For ��⃗ht : 

(1)ht = [��⃗ht;
�⃖�ht],

(2)��⃗ht = ��⃗ot tanh(��⃗ct),

(3)��⃗ot = 𝜎(Wxoxt +Who
������⃗ht−1 +

���⃗bo),



143Information Retrieval Journal (2020) 23:136–158	

1 3

where tanh(⋅) and �(⋅) are activation functions. To reduce the notation redundancy, we 
use the same symbol xt to represent the embedding of word xt . The embedding are 
initialized by Word2Vec (Mikolov et al. 2013a). The backward LSTM is defined like-
wise. Consequently, the hidden states ( h1, h2,… , hm ) are positional representations of 
the title (x1, x2,⋯ , xm).

•	 Generation of interaction matrix In this step, we build an interaction matrix M to repre-
sent matching features between two titles. Each element Mij stands for the basic interac-
tion, i.e. similarity between word xi and yj in the two titles. Formally, Mij is computed as: 

where hxi and hyj are corresponding positional representations obtained in the former 
step for word xi and yj . We can adopt several kinds of ⊗ to model the similarity between 
two positional representations, including Cosine, Dot Product, Euclidean Distance and 
Bilinear. In this paper,we try these four different interaction methods as follows. Cosine 
is a common function to model interaction, where the similarity of two words is 
regarded as the angle cosine of two word embedding. 

Dot product is proportional to the angle cosine of word vectors. 

(4)��⃗ct =
�⃗ft �����⃗ct−1 +

�⃗it tanh(Wxcxt +Whc
������⃗ht−1 +

��⃗bc),

(5)�⃗it = 𝜎(Wxixt +Whi
������⃗ht−1 +

��⃗bi),

(6)�⃗ft = 𝜎(Wxf xt +Whf
������⃗ht−1 +

��⃗bf ),

(7)Mij = hxi ⊗ hyj ,

(8)Cosine (hxi , hyj ) =
hT
xi
⋅ hyj

‖hxi‖ ⋅ ‖hyj‖
,

Fig. 3   The structure of TMM. TMM is designed for title matching. Bi-LSTM is used to represent each title 
as positional sentence representations, and generate an interaction matrix by interacting between those sen-
tence representations. Then a CNN is used to extract features. These features are finally fed into a MLP to 
generate title similarity



144	 Information Retrieval Journal (2020) 23:136–158

1 3

Bilinear introduces additional parameters M to reweight the interactions between dif-
ferent dimensions. 

Euclidean distance measures the linear distance between two vectors in Euclidean 
space. 

If the lengths of two titles are m and n, the interaction matrix has a size m × n.
•	 Convolution and pooling operation After obtaining the matching matrix, we apply 

typical convolutional neural network (CNN) to extract matching patterns. Assum-
ing a kernel zk ∈ Rr×s , where k is the index of kernels, we scan over M from left to 
right and from top to bottom then output a future map Fk

i,j
 : 

where i and j point to a certain position in the interaction matrix. Multiple feature maps 
are generated by different filters. Note that, the parameters are not shared among filters, 
thus they can capture different matching patterns. Then max-pooling operation is con-
ducted to aggregate the most important information along each feature map: 

where dk and d′
k
 denote the width and length of the corresponding pooling kernel.

•	 Title similarity Finally, we flatten the output of the pooling layer and concatenate 
them together as G. And we use a multi-layer perception (MLP) to produce title 
similarity SIMt : 

where W and b are parameters and tanh(⋅) is a nonlinear activation function.

It is worth noting that TMM is flexible in different applications. When only product 
titles are provided, TMM can be an independent model and title similarity is used as prod-
uct matching score. On the contrary, when both product titles and attributes are provided, 
TMM can be used as a module and title similarity will be further combined with attrib-
utes similarity (introduced in Sect. 3.4) to generate the final product matching score.

3.4 � AMM: attributes matching module

As the example showed in Fig. 1, the attributes are presented in name-value pairs. Prod-
uct attribute names are analogous within a product category, and they are different across 

(9)Dot (hxi , hyj ) = hT
xi
⋅ hyj ,

(10)Bilinear (hxi , hyj ) = hT
xi
Mhyj + b,

(11)Euclidean (hxi , hyj ) =

√√√√
n∑

k=1

(hxik − hyik )
2,

(12)Fk
i,j
=

r−1∑

u=0

s−1∑

v=0

zk
u,v

⋅Mi+u,j+v + bk,

(13)Gk
i,j
= max

0≤s<dk

max
0≤t<d�

k

Fk

i⋅dk+s,j⋅d
�
k
+t
,

(14)SIMt = tanh(W ⋅ G + b),



145Information Retrieval Journal (2020) 23:136–158	

1 3

categories. In Fig. 1, product (a) and product (c) are two different products but they are 
both shampoos, thus they have some similar attribute names such as place of origin and 
N.W.. But attribute names are not always the same, like the attribute name “function” of 
product (a) has the similar meaning with the attribute name “effect” of product (b). Based 
on these observations, we compute the matching matrix based on word embedding to rep-
resent the similarity between the attribute names of two products. A max pooling operation 
is then conducted to extract the most important matching patterns. As for attribute values, 
things are different. For product (a) and product (c), they both have the attribute “N.W.”, 
but their attribute values are different, i.e. 750 ml and 730 ml. From that, we can distin-
guish these two products are different and mismatched because their size (N.W.) are differ-
ent. Although “730 ml” and “750 ml” are close in the embedding space, they are different 
words essentially. These attribute values are pivotal for identifying whether products are 
identical and matched. Therefore, we cannot calculate the similarity between two sets of 
attribute values based on their embedding. Here we build attribute value matching matrix 
based on indicator function. And we design a special convolution operation to extract 
matching patterns. These features are further combined with attribute name matching fea-
tures to generate attribute similarity. The matching structure of AMM is showed in Fig. 4.

Before we introduce the detail of AMM, we demonstrate the form of input data again. 
As the problem definition part we introduced in Sect. 3.1, both attribute names and val-
ues consist of several words. We segment the attribute names and values into two sets 
of words. For product X, the word set of attribute names is (wK

1
,wK

2
,… ,wK

u
) , while the 

word set of attribute values is (wV
1
,wV

2
,… ,wV

v
) . For Y, they are (w�K

1
,w�K

2
,… ,w�K

u�
) and 

(w�V
1
,w�V

2
,… ,w�V

v�
) . Attribute name matching is conducted on word sets of attribute names 

in Sect. 3.4.1, and attribute value matching is processed on word sets of attribute values in 
Sect. 3.4.2.

Fig. 4   The structure of AMM. AMM is designed for attribute matching. The attribute names and values are 
processed separately. For attribute name matching, we use max pooling operation to extract the most similar 
pattern directly. For attribute value matching, we use 1-D convolution operation to extract matching pat-
terns. The two matching features are fed into MLP and the MLP outputs the attribute similarity



146	 Information Retrieval Journal (2020) 23:136–158

1 3

3.4.1 � Attribute name matching

We first build an interaction matrix between two word sets of attribute names. Like in the 
TMM, the similarity between two words is calculated by word embedding. The matrix 
measures the semantic similarities between two word sets of attribute names. In our exam-
ple, the attribute name “function” would have a high similarity with the attribute name 
“effect”, and both of them represent similar meaning. After obtaining the matrix, we use 
K-Max pooling operation to extract top-k important matching patterns. Formally, the simi-
larity MN

i.j
 between word of attribute name wK

i
 and w′K

j
 is computed as:

where e(⋅ ) represents the corresponding word embedding, and ⊗ is dot product here. Then 
the K-Max pooling operation is:

where GN is a vector with size k × 1 that represents matching patterns of attribute names.

3.4.2 � Attribute value matching

For attribute value matching, things are more complex. As we introduced, the similarity 
based on word embedding is not suitable here, since two different attribute values could be 
strong indicators for two products.

Here we use indicator function to build interaction matrix, i.e. for attribute value wV
i
 and 

w′V
j

 , MV
ij

 is computed as:

where ⊙ is indicator function defined as:

If calculating similarity of words by the indicator function, two different words in sets of 
attribute values cannot match, i.e. the similarity between “730 ml” and “750 ml” is 0.

Next, we use convolution operation to extract matching patterns. The size of convolu-
tion window is set as v × 1 and the window moves horizontally. Our motivation is, for each 
attribute value word of product X, all identical words for product Y should be considered. 
To extract multiple matching patterns, we use L convolution kernels ( L = 3 in our example). 
After this step, L matching patterns are derived, and we flatten and concatenate them together 
as matching patterns of attribute values. Formally, the kth kernel z′k works on the matching 
matrix MV and outputs a matching pattern F′k where the ith element is computed as:

The size of F′k is 1 × v� . After being concatenated and flattened, we obtain attribute value 
matching patterns GV with size (v� × L) × 1.

(15)MN
ij
= e(wK

i
)⊗ e(w�K

j
),

(16)GN = max
k

{MN},

(17)MV
ij
= wV

i
⊙ w�V

j

(18)a⊙ b =

{
1 if a and b are the samewords,

0 otherwise.

(19)F�k
i
=

v�−1∑

j=0

z�k
j
⋅MV

∶,j
+ b�k.



147Information Retrieval Journal (2020) 23:136–158	

1 3

3.4.3 � Attribute similarity

After carrying out attribute name matching process and attribute value matching process, 
AMM generates two matching patterns. To mix the matching information of these two pat-
terns, we concatenate them as a joint vector, which is a simple but effective method in prac-
tice  (Zhang et al. 2015; Yan et al. 2016). The joint vector is then passed through a 2-layer 
MLP, which allows rich interactions between attribute names and attribute values. The fea-
tures are extracted automatically and combined hierarchically from lower-level to higher-level. 
Finally, we obtain the attribute matching similarity SIMa:

where W ′ and b′ are parameters in MLP.

4 � Two application scenarios

From the above sections, our model generates both the similarity between product titles ( SIMt ) 
and the similarity between attributes ( SIMa ). However, how to combine them depends on our 
different application scenarios:

4.1 � A classification scenario

The first application scenario we simulated is on the consumers’ perspective: they select two 
products and want to compare them by their titles and attributes to judge whether they are 
identical and matched. In this scenario, the input is two product descriptions including their 
titles and attributes. The output is in two classes: 1—represents the two products are identical 
and 0—represents that they are different. Essentially, this is a classification problem. We con-
catenate SIMt and SIMa into a whole vector, and then feed it into a MLP to generate the prob-
abilities on two classes. The class with higher probability is our predicted result.

We use the cross-entropy loss function to train our whole model:

where y(i) is the label of the ith data instance. p(i)
1

 is the predicted probability that the two 
inputs are identical products, while p(i)

0
 is on the contrary.

4.2 � A ranking scenario

The second application scenario we considered is on the sellers’ or platform managers’ 
perspective: they use their own products as query products to retrieve similar products sold 
by other sellers or on other platforms. In this scenario, the input is a query product descrip-
tion and a list of candidate product descriptions. A product description consists of a prod-
uct title and product attributes. The output is also a list of sorted candidate products. This is 

(20)SIMa = tanh(W �
⋅ [GN ∶ GV ] + b�),

(21)L = −

N∑

i=1

[y(i)log(p
(i)

1
) + (1 − y(i))log(p

(i)

0
)],

(22)pk =
esk

es0 + es1
, k = 0, 1,



148	 Information Retrieval Journal (2020) 23:136–158

1 3

a ranking problem virtually. We concatenate SIMt and SIMa into a whole vector, then feed 
it into a MLP to generate a matching score for a given query product and a given candidate 
product. All candidate products are sorted by their matching scores to generate the result 
list.

Formally, given a triple ( q, d+, d− ), where q is the query product description, d+ is the 
product that is identical with q, and d− is different with q. The goal of the ranking function 
is to rank d+ higher than d− . Thus the loss is:

where s(⋅) denotes the matching scores output by our model.

5 � Experiments

In this section, we conduct experiments to verify the effectiveness of our model and evalu-
ate it in two scenarios we introduced. We first introduce the data set we use and various 
baselines, then introduce the evaluation metrics we used. The experimental results and 
analysis based on them are reported later.

5.1 � Datasets

To build our data sets, we choose 20 product categories, including cosmetics, snacks, etc., 
to collect product description texts. We separately collect product data for each category 
from JD1 and Tmall,2 two most popular online platforms in China. There are more than 
hundreds of millions of products in JD and Tmall which cover varieties of categories. We 
finally crawl 695,171 products’ description texts from JD and crawl 382,907 products’ 
description texts from Tmall, and these data are used to train a Word2Vec (Mikolov et al. 
2013b) model for obtaining word embedding. Each product’s description texts consist of 
a category type, a product title, several product attributes and a product brand name. Cat-
egory type values are categories of products. Product titles are brief and free texts of prod-
ucts. Product attributes are provided in product detail pages by platforms to specify more 
details about products. The format of titles and attributes is different. Titles are short texts 
with semantic structure, while attributes are name-value pairs.

Matched and mismatched product pairs are used as positive and negative samples to 
train product matching models. To obtain these samples, we build a retrieval-based tag-
ging system. This system uses an open source IR system (Solr3) to retrieve similar products 
in Tmall when given a product title in JD as query. In the process of manual labeling, we 
choose a lot of popular products in different categories from JD, and utilize the tagging 
system to retrieve similar products from Tmall for each selected popular product. Then 
we label these product pairs with matched and mismatched labels. Finally, these matched 
pairs and mismatched pairs are stored in database. The criterion for determining whether 
two products are matched is the consistence of their product brands and key product speci-
fications. This annotation needs much human resource, thus we eventually label 30,545 

(23)L(q, d+, d−) = max(0, 1 − s(q, d+) + s(q, d−)),

1  JD, http://www.jd.com/.
2  Tmall, https​://www.tmall​.com/.
3  Apache Solr, http://lucen​e.apach​e.org/solr/.

http://www.jd.com/
https://www.tmall.com/
http://lucene.apache.org/solr/


149Information Retrieval Journal (2020) 23:136–158	

1 3

matched product pairs. Each pair consists of a product from JD and a product from Tmall. 
For the generation of mismatched pairs, we use our tagging system to retrieve similar but 
mismatched products for each query product instead of using random sampling, which is 
mainly because we expect our model to be able to distinguish similar products and this is 
also consistent with real application scenarios. To guarantee the correctness of labeling, 
we invite several experienced e-commercial platform workers for manual labeling and 
inspection.

The statistic of the data set is showed in Table 1. We divide the data set of matched pairs 
based on product categories, and split them into positive pairs of training set and test set 
with a ratio of 4:1. For each positive pair in data set, we use the aforementioned sampling 
strategy to generate some mismatched pairs (regarded as negative pairs) and add them into 
corresponding data set. Specifically, for each product title, we retrieve 100 negative prod-
ucts by our tagging system. All of them are used in our ranking scenario. As for the clas-
sification scenario, 10 of them were selected randomly as negative products, and we adopt 
over-sampling method to ensure the equilibrium of categorical data. We use fivefold cross 
validation to get validation set from training data to tune the parameters of our model.

5.2 � Experimental settings

Our model is implemented based on TensorFlow.4 The optimization of our model is con-
ducted with Adam optimizer (Kingma and Ba 2014). For network configurations (e.g., the 
size of word embedding and hidden layer sizes), we set the batch size as 64 and tune these 
hyper-parameters based on our validation set. Word embedding is initialized by Word2Vec. 
The embedding size is tested in 50, 100, 200. The learning rate is selected from 1e− 3, 1e− 4, 
1e− 5. In the network architecture of TMM, we select 20 as the maximum length of product 
titles. Titles with more than 20 words are truncated and ones with less than 20 words are 
padded by zero vectors. And we select the hidden layer size of Bi-LSTM from 50, 100, 
200. Convolution window size and pooling window size are from 2 × 2, 3 × 3, 4 × 4 . In 
network architecture of AMM, we select k value of K-Max pooling layer from 10, 20, 30 
and the kernel number in attribute value matching layer from 50, 100, 200.

Final optimal hyper-parameters are determined by grid search in validation set. Early 
stopping is used to prevent over fitting. Finally, we set the word embedding size as 100, 

Table 1   The statistic of data set Classification Ranking

Training
 Identical pairs 22,811 22,811
 All 456,580 2,303,911

Validation
 Identical pairs 4562 4562
 All 91,316 460,782

Testing
 Identical pairs 5677 5677
 All 113,540 5,733,77

4  http://tenso​rflow​.org/.

http://tensorflow.org/


150	 Information Retrieval Journal (2020) 23:136–158

1 3

and set learning rate as 1e− 3. In TMM, we use 100 as hidden layer size, and select 2 × 2 as 
convolution window size and pooling window size. In AMM, we use 20 as k value 50 as 
kernel numbers. Following Zamani et al. (2018), we use tanh as the activation function for 
all hidden layer.

5.3 � Evaluation metrics

Since our experiments are conducted in two application scenarios, the evaluation metrics 
are different.

In the classification scenario, we use Precision, Recall and F1 to evaluate the models. 
Precisely, assume the number of matched pairs is T (true samples) and the number of mis-
matched pairs is F (false samples). The number of pairs predicted as matched by the model 
is P, while the number of samples predicted as mismatched is N. Under this circumstance, 
Precision, Recall and F1 are defined as follows:

where TP denotes the number of pairs which are matched and also correctly predicted as 
matched by the model. FP is the number of pairs that are mismatched but wrongly pre-
dicted as matched by the model.

In the ranking scenario, we use the precision at 1 (P@1 shortly), mean reciprocal rank 
(MRR shortly) and mean average precision (MAP shortly).

P@1 calculates mean precision of top one product for all ranking lists. MRR measures 
average position of first matched product for all ranking lists. We have:

where N is the number of ranking lists in test set. S+(i)
Y

 is the first matched product in the 
ith ranking list, rank(⋅) denotes the rank of a item in the ranking list, and � is the indicator 
function.

MAP is mean of average precision scores for all ranking lists. This metric is computed 
as follows:

Precision = TP∕(TP + FP),

Recall = TP∕P,

F1 = 2∕(1∕Precision + 1∕Recall),

P@1 =
1

N

N∑

i=1

�(rank(S
+(i)

Y
) = 1),

MRR =
1

N

N∑

i=1

(
1

rank(S
+(i)

Y
)

)
,

AveP(i) =
1

R(i)

R(i)∑

r=1

r

rank(S
r+(i)

Y
)
,

MAP =
1

N

N∑

i=1

AveP(i),



151Information Retrieval Journal (2020) 23:136–158	

1 3

where AveP(i) denotes average precision score of the ith ranking list, R(i) is the number of 
matched products in the ith ranking list. Sr+(i)

Y
 denotes the rth matched item in the ith rank-

ing list.

5.4 � Baseline models

We apply a product retrieval approach to product matching problem based on product 
attributes.

•	 PM-LM (Duan et al. 2013): PM-LM is a probabilistic entity retrieval model based on 
query generation. The model is proposed to optimize search over structured product 
entities with keyword queries. When extending this method to product matching prob-
lem, we use the product title from JD as query to retrieve structured product attributes 
from Tmall. The ranking process is based on the likelihood that product attributes are 
matched with the given product title. This entity retrieval model can only be applied to 
our ranking scenario.

Many text matching models have been proposed, thus we compare our model with some 
state-of-the-art text matching models. We firstly apply these text matching models for 
product matching by considering only product titles. And we trivially extend these models 
to work with title and attributes by concatenating all of them into a single text instance. We 
use t as the subscript to indicate that the matching model only considers product titles to 
match, and use ta to denote that the model considers both titles and attributes.

•	 ARC-I (Hu et al. 2014): ARC-I uses layers of convolution and pooling to generate the 
fixed length compositional representation for each text, and then merges them as the 
input of the last layer to generate final matching score.

•	 ARC-II  (Hu et al. 2014): ARC-II first builds interaction spaces between two texts by 
1D convolution, and conducts interaction operation to consider the similarities between 
any two segments from two texts instead of considering the similarities between any 
words from two texts. Then layers of 2D convolution and pooling are used to obtain 
high level features. Finally, MLP is used to generate matching score.

•	 MatchPyramid(CNN) (Pang et al. 2016): MatchPyramid firstly interacts between two 
texts to generate the matching matrix, then uses hierarchical convolution and pooling 
to capture rich matching patterns, finally adopts MLP as the final layer to generate the 
matching score or classification result.

•	 MV-LSTM(Bi-LSTM + K-Max pooling) (Wan et al. 2016): MV-LSTM firstly adopts 
bi-directional long short term memory (Bi-LSTM) to generate multiple positional sen-
tence representations for each sentence, and then interacts between these positional 
sentence representations to form interaction matrix by using different similarity func-
tions. Finally adopts K-Max pooling strategy to select important features as the input of 
the multi-layer perceptron (MLP).

•	 KNRM (Xiong et al. 2017): KNRM is a kernel based neural model for document rank-
ing. It uses word embedding to measure word-level similarity and generates a transla-
tion matrix. Then it adopts kernel-pooling technique to extract multi-level soft match-
ing features from translation matrix, finally these features are used as the input of 
learning-to-rank layer to get final ranking score. The training process is end-to-end and 
pair-wise ranking loss function is used to implement document ranking.



152	 Information Retrieval Journal (2020) 23:136–158

1 3

•	 DRMM (Guo et al. 2016): DRMM first builds local interaction between each pair of 
words from queries and documents, then transforms the variable-length local interac-
tion matrix into fixed-length matching histogram to obtain matching degree for each 
word in queries, finally it generates final ranking scores based the weighted sum of 
matching degrees and word weights that obtained by word embedding or TF-IDF.

•	 DUET (Mitra et al. 2017): DUET is a document ranking model that consists of distrib-
uted model and local model, and it matches texts by considering both distributed repre-
sentations and traditional local representations. The local model uses one-hot encoding 
to represent words and emphasizes exact matching while distributed model uses distrib-
uted embedding to represent words and concerns semantic matching. Then the sum of 
two scores generated from the two models is final ranking score and the two models are 
jointly trained as part of a single neural network.

It is worth noting that we use Bi-LSTM to generate positional representations for each title 
in our title matching module (TMM). Meanwhile, we also replace Bi-LSTM with a single 
direction LSTM and compare them:

•	 LSTM + CNN: We adopt long short term memory (LSTM) to generate multiple rep-
resentations for each sentence, and use these representations to generate interaction 
matrix, then CNN is used to select features. Finally, these features are feed into a MLP. 
The only difference between itself and our title matching module is the difference 
between LSTM and Bi-LSTM. Experimental purpose of LSTM + CNN is to make a 
contrast with TMM and verify the usefulness of Bi-LSTM.

We also extend an information retrieval model to work with product titles and attributes by 
regarding products as documents with multiple fields.

•	 NRM-F (Zamani et al. 2018): NRM-F is a document ranking model that takes advan-
tage of full document structure. The model matches each query with multiple fields 
that consists of multiple instances. We apply this model to our product matching prob-
lem by regarding two input products as two documents with multiple fields. The model 
semantically represents two products separately. For the semantic representation of 
products, NRM-F first uses convolution layers and pooling layers to obtain instance-
level representations, then aggregates these instance-level representations to generate 
field-level representations. Finally, all field-level representations are concatenated to 
generate product representations. After getting two product representations, the model 
uses Hadamard product to compare across all the field representations and obtain their 
final interaction similarities. These similarities are finally fed into a MLP to obtain a 
final matching score.

Since two modules in our model (TMM and AMM) can also work separately, we also 
conduct experiments on them respectively.

5.5 � Experimental results and analysis

To evaluate the performance of these product matching models, we apply these models to 
a ranking scenario and a classification scenario and evaluate these models based on their 
respective evaluation metrics. We show the experimental results in Table 2. 



153Information Retrieval Journal (2020) 23:136–158	

1 3

We compare the performance of baseline models with our proposed title matching mod-
ule (TMM), attribute matching module (AMM) and product matching model (PMM). Two-
tailed paired Student’s t test is performed to compare our product matching model (PMM) 
with all baselines. And no adjustment is conducted on the t test. Values showing significant 
improvement over baseline methods are marked ( ‡ for p value < 0.01 and † for p value < 
0.1).

In our title matching module (TMM), bidirectional long-term and short-term memory 
neural networks are used to semantically represent product titles, and different meth-
ods can be introduced to interact between titles. Experimental results of TMM by using 
different interaction methods are showed in Table  3. From the table, we can see that 

Table 2   Experimental results of PMM model and other baselines

The bold values denote the best results
The ‡ symbols represent the significant improvement of PMM in effect

Precision Recall F1 P@1 MRR MAP

PM-LM – – – 0.387 0.478 0.407
ARC-I

t
0.697 0.774 0.721 0.056 0.114 0.106

ARC-I
ta

0.694 0.666 0.663 0.048 0.100 0.091
ARC-II

t
0.698 0.747 0.711 0.048 0.111 0.118

ARC-II
ta

0.636 0.469 0.511 0.051 0.110 0.113
MatchPyramid

t
0.589 0.556 0.547 0.205 0.288 0.259

MatchPyramid
ta

0.642 0.860 0.727 0.173 0.253 0.225
MV-LSTM

t
0.779 0.899 0.827 0.221 0.330 0.319

MV-LSTM
ta

0.663 0.814 0.712 0.175 0.271 0.261
DRMM

t
0.848 0.933 0.883 0.327 0.428 0.396

DRMM
ta

0.860 0.867 0.853 0.301 0.424 0.406
KNRM

t
0.780 0.817 0.784 0.401 0.506 0.471

KNRM
ta

0.849 0.802 0.812 0.307 0.409 0.370
DUET

t
0.819 0.883 0.838 0.446 0.543 0.498

DUET
ta

0.822 0.860 0.828 0.426 0.531 0.486
NRM-F 0.802 0.796 0.784 0.346 0.602 0.508
LSTM + CNN

t
0.903 0.893 0.890 0.515 0.655 0.551

LSTM + CNN
ta

0.919 0.909 0.906 0.523 0.658 0.544
TMM

cosine
0.931 0.921 0.923 0.594 0.718 0.609

AMM 0.785 0.752 0.738 0.465 0.611 0.495
PMM 0.934‡ 0.926‡ 0.925‡ 0.595‡ 0.719‡ 0.612‡

Table 3   Experimental results 
of TMM model based different 
interaction methods

The bold values reflect the best experimental results

Precision Recall F1 P@1 MRR MAP

TMM
Bilinear

0.920 0.910 0.907 0.462 0.608 0.511
TMM

dot
0.930 0.920 0.918 0.564 0.693 0.595

TMM
euclidean

0.928 0.919 0.919 0.593 0.711 0.601
TMM

cosine
0.931 0.921 0.923 0.594 0.718 0.609



154	 Information Retrieval Journal (2020) 23:136–158

1 3

Cosine interaction method ( TMMcosine ) outperforms other interaction methods, includ-
ing TMMeuclidean , TMMdot and TMMBilinear . And Student’s t test is conducted to compare 
TMMcosine with other interaction methods. Results show very significant improvement (p 
value < 0.01) over TMMBilinear and TMMdot , and show significant improvement (p value < 
0.05) over TMMeuclidean.

From experimental results in Table 2, we see that our title matching module TMMcosine 
outperforms all selected text matching baselines, including ARC − It , ARC − IIt , 
MatchPyramidt , MV − LSTMt , DRMMt , KNRMt , and DUETt , which shows the combina-
tion of RNNs and CNNs in our model is a better way to exact product matching features. 
We also observe that TMMcosine outperforms LSTM + CNNt . This explains that Bi-LSTM 
can better represent product titles than LSTM. Compared with TMM and AMM, PMM has 
a better experimental performance, which is expected because PMM leverages both prod-
uct titles and attributes and it models product titles and product attributes separately. All 
these also indicate the feasibility and usefulness of our model structure.

The experimental performance of AMM is slightly worse than some other models. We 
observe our data set and discover that many important product specifications are incom-
plete or missing in attributes. Based on the reason, the performance of AMM is not consid-
erable, thus combining product attributes as supplementary information with product titles 
is more reasonable.

We compare text matching models that use product titles to match with those that con-
sider both product titles and attributes to match, experimental results show that there is lit-
tle improvement or even a decline, which is mainly because the formats of titles and attrib-
utes are different, and concatenating them directly is inappropriate. PMM considers the 
different format of titles and attributes, and it uses different modules to extract their differ-
ent matching features. We compare it with NRM-F that also considers products’ structure 
and text matching models that concatenating title and attributes directly to match. Results 
show that PMM and NRM-F outperform these text matching models, which illustrates that 
considering the different formats of titles and attributes is beneficial for product matching.

PM-LM is an unsupervised entity retrieval model, and we extend it as a product match-
ing model in our ranking scenario. It outperforms our many neural text matching baselines, 
and shows that the product language model can well describe structured product attributes, 
and structured attributes are generally conducive to product matching.

5.6 � Model extension

In this section, we first investigate some classic machine learning models in general clas-
sification and ranking problems. Then we extract some handcraft features to verify if our 
model can be further improved.

5.6.1 � Classic machine learning models

For the first attempt, note that both title matching result and attribute matching result gen-
erated by TMM and AMM are vectors (features), thus it is easy to apply other machine 
learning methods based on them. To achieve this, we remove MLP in our PMM and train 
TMM and AMM separately to obtain the title matching features and attribute matching 
features. Then we feed these features into SVM, Naive Bayes and Decision tree for classifi-
cation scenario, and feed them into Mart and LambdaMart for ranking scenario. We denote 
these models as:



155Information Retrieval Journal (2020) 23:136–158	

1 3

•	 TMM + AMM + SVM: we adopt SVM to train classification model by considering the 
outputs of both TMM and AMM.

•	 TMM + AMM + Bayes: we adopt Bayes to train classification model by considering 
the outputs of both TMM and AMM.

•	 TMM + AMM + Decision tree: we adopt Decision tree to train classification model by 
considering the outputs of both TMM and AMM.

•	 TMM + AMM + Mart: we adopt Mart to train ranking model by considering the out-
puts of both TMM and AMM.

•	 TMM + AMM + LambdaMart: we adopt LambdaMart to train ranking model by con-
sidering the outputs of both TMM and AMM.

5.6.2 � Handcraft features

In order to verify if our model can be further augmented, we extract some handcraft 
features:

•	 The number and proportion of co-occurrence words and characters of two products 
titles;

•	 The number of co-occurrence digits and letters in the titles and attribute values of two 
products;

•	 The Jaccard similarity between titles, attribute names and attribute values of two prod-
ucts;

•	 The similarity between TF-IDF vectors of two product titles.

Then we add these features into aforementioned advanced models, and we denote them as:

•	 TMM + AMM + extra features + SVM: Different from TMM + AMM + SVM, we 
also consider extra features to train classification model.

•	 TMM + AMM + extra features + Bayes:Different from TMM + AMM + Bayes, we 
also consider extra features to train classification model.

•	 TMM + AMM + extra features + Decision tree: Different from Decision tree, we also 
consider extra features to train classification model.

•	 TMM + AMM + extra features + Mart: Different from TMM + AMM + Mart, we also 
consider extra features to train ranking model.

•	 TMM + AMM + extra features + LambdaMart: Different from TMM + AMM + Lamb-
daMart, we also consider extra features to train ranking model.

For each machine learning classification algorithm, we train two models separately by 
considering whether extra features are added to training stage. The experimental results are 
showed in Table 4. We compare machine learning classification models with PMM, and we 
find that PMM works best. The potential reason is that both TMM and AMM are trained 
simultaneously in PMM, which leads to better performance than other models. By compar-
isons, we also observe that the performance of Naive Bayes is slightly better than SVM and 
Decision Tree. Besides, for each classification algorithm, we compare the performance of 
the model that considering extra features and the model that not considering these features 
to judge the usefulness of extra features. And we find that there is little improvement and 
the usefulness of extra features is not obvious under classification scenario.



156	 Information Retrieval Journal (2020) 23:136–158

1 3

For each ranking algorithm, we also train two ranking models separately by consider-
ing whether extra features are added to training stage. The experimental results are showed 
in Table 5. We compare these learning to rank algorithms with PMM, and we find PMM 
works best, which is consistent with classification scenario. And the performance of Lamb-
daMart is better than MART, which is in line with expectation. Whether for LambdaMart 
or for Mart, we consider the outputs of both TMM and AMM to train ranking models, and 
also consider adding extra features to train ranking models. After comparisons, we find 
that the improvement of ranking models considering extra features is not great, which also 
explain that the features extracted automatically from our neural product matching model 
are effective.

6 � Conclusion

In order to study the problem of identifying identical products on different platforms, we 
proposed a neural product matching model by considering the respective characteristics 
of product titles and attributes, and we casted the problem as ranking and classification 
scenarios. We also tried different classical classification algorithms and ranking algorithms 
to combine our neural matching features and some other features. The experiments were 
conducted on the data collected from real online platforms and the results showed that our 
model can outperform all the state-of-the-art models under both classification and ranking 
scenarios. In the future, we will further explore a better way to measure the importance of 

Table 4   Experimental results under classification scenario

The bold values are used to reflect the improvement of PMM in classification effect

Precision Recall F1

PMM (TMM + AMM + MLP) 0.934 0.926 0.925
TMM + AMM + SVM 0.920 0.900 0.909
TMM + AMM + Bayes 0.914 0.928 0.921
TMM + AMM + Decision tree 0.907 0.888 0.898
TMM + AMM + extra features+SVM 0.925 0.865 0.900
TMM + AMM + extra features+Bayes 0.914 0.929 0.922
TMM + AMM + extra features+Decision tree 0.924 0.897 0.911

Table 5   Experimental results under ranking scenario

The bold values are used to reflect the improvement of PMM in ranking effect

P@1 MRR MAP

PMM (TMM + AMM + MLP) 0.595 0.719 0.612
TMM + AMM + Mart 0.532 0.650 0.561
TMM + AMM + LambdaMart 0.556 0.679 0.580
TMM + AMM + extra features + Mart 0.559 0.681 0.582
TMM + AMM + extra features + LambdaMart 0.583 0.702 0.595



157Information Retrieval Journal (2020) 23:136–158	

1 3

different attributes, and take into account more product information (such as product pic-
tures and richer product descriptions) for product matching.

Acknowledgements  This work was supported by National Key R&D Program of China No. 
2018YFC0830703, National Natural Science Foundation of China No. 61872370, and the Fundamental 
Research Funds for the Central Universities, and the Research Funds of Renmin University of China No. 
2112018391.

References

Christen, P. (2012). Data matching: Concepts and techniques for record linkage, entity resolution, and 
duplicate detection. Data-Centric Systems and Applications, Springer 2012 (pp. 1–270).

Duan, H., & Zhai, C. X. (2015). Mining coordinated intent representation for entity search and recommen-
dation. In Proceedings of the 24th ACM international conference on information and knowledge man-
agement, CIKM 2015, Melbourne, VIC, Australia, October 19–23, 2015 (pp. 333–342).

Duan, H., Zhai, C. X., Cheng, J., & Gattani, A. (2013). Supporting keyword search in product database: A 
probabilistic approach. PVLDB, 6(14), 1786–1797.

Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage. Publications of the American Statistical 
Association, 64(328), 1183–1210.

Gopalakrishnan, V., Sengamedu, S., Sengamedu, S., Sengamedu, S., & Sengamedu, S. (2012). Match-
ing product titles using web-based enrichment. In ACM international conference on information and 
knowledge management (pp. 605–614).

Guo, J., Fan, Y., Ai, Q., & Croft, W. B. (2016). A deep relevance matching model for ad-hoc retrieval. In 
Proceedings of the 25th ACM international conference on information and knowledge management, 
CIKM 2016, Indianapolis, IN, USA, October 24–28, 2016 (pp. 55–64).

Hu, B., Lu, Z., Li, H., & Chen, Q. (2014). Convolutional neural network architectures for matching natural 
language sentences. In Advances in neural information processing systems 27: Annual conference on 
neural information processing systems 2014, December 8–13 2014, Montreal, Quebec, Canada (pp. 
2042–2050).

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. P. (2013). Learning deep structured semantic 
models for web search using clickthrough data. In 22nd ACM international conference on information 
and knowledge management, CIKM’13, San Francisco, CA, USA, October 27–November 1, 2013 (pp. 
2333–2338).

Kannan, Anitha, Givoni, I. E., Agrawal, R., & Fuxman, A. (2011). Matching unstructured product offers to 
structured product specifications. In Proceedings of the 17th ACM SIGKDD international conference 
on knowledge discovery and data mining, San Diego, CA, USA, August 21–24, 2011 (pp. 404–412).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR arXiv​:1412.6980.
Köpcke, H., Thor, A., Thomas, S., & Rahm, E. (2012). Tailoring entity resolution for matching product 

offers. In 15th international conference on extending database technology, EDBT ’12, Berlin, Ger-
many, March 27–30, 2012, proceedings (pp. 545–550).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vec-
tor space. CoRR, arXiv​:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.  S., & Dean, J. (2013b). Distributed representations of 
words and phrases and their compositionality. In Advances in neural information processing systems 
26: 27th annual conference on neural information processing systems 2013. Proceedings of a meeting 
held December 5–8, 2013, Lake Tahoe, Nevada, United States (pp. 3111–3119).

Mitra, B., & Craswell, N. (2018). An introduction to neural information retrieval. Foundations and Trends in 
Information Retrieval, 13(1), 1–126.

Mitra, B., Diaz, F., & Craswell, N. (2017). Learning to match using local and distributed representations of 
text for web search. In Proceedings of the 26th international conference on World Wide Web, WWW 
2017, Perth, Australia, April 3–7, 2017 (pp. 1291–1299).

Nauman, F., & Herschel, M. (2010). An introduction to duplicate detection. Synthesis Lectures on Data 
Management, 2(1), 1–87.

Onal, K. D., Zhang, Y., Altingovde, I. S., Rahman, Md., Mustafizur, K., Pinar, B., et  al. (2018). Neural 
information retrieval: At the end of the early years. Information Retrieval Journal, 21(2–3), 111–182.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1301.3781


158	 Information Retrieval Journal (2020) 23:136–158

1 3

Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., & Cheng, X. (2016). Text matching as image recognition. In Pro-
ceedings of the thirtieth AAAI conference on artificial intelligence, February 12–17, 2016, Phoenix, 
Arizona, USA (pp. 2793–2799).

Qiu, X., & Huang, X. (2015). Convolutional neural tensor network architecture for community-based ques-
tion answering. In Proceedings of the twenty-fourth international joint conference on artificial intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015 (pp. 1305–1311).

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transaction on Signal 
Processing, 45(11), 2673–2681.

Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014). Learning semantic representations using convolu-
tional neural networks for web search. In 23rd international World Wide Web conference, WWW ’14, 
Seoul, Republic of Korea, April 7–11, 2014, Companion Volume (pp. 373–374).

Van Gysel, C., de Rijke, M., & Kanoulas, E. (2016). Learning latent vector spaces for product search. In 
Proceedings of the 25th ACM international conference on information and knowledge management, 
CIKM 2016, Indianapolis, IN, USA, October 24–28, 2016 (pp. 165–174).

Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., & Cheng, X. (2016). A deep architecture for semantic matching 
with multiple positional sentence representations. In Proceedings of the thirtieth AAAI conference on 
artificial intelligence, February 12–17, 2016, Phoenix, Arizona, USA (pp. 2835–2841).

Winkler, W. (2006). Overview of record linkage and current research directions (pp. 603–623). Suitland: 
Bureau of the Census.

Winkler, W. E. (1999). The state of record linkage and current research problems. Suitland: Statistical 
Research Division, U.S. Census Bureau.

Xiong, C., Dai, Z., Callan, J., Liu, Z., & Power, R. (2017). End-to-end neural ad-hoc ranking with kernel 
pooling. In Proceedings of the 40th international ACM SIGIR conference on research and development 
in information retrieval, Shinjuku, Tokyo, Japan, August 7–11, 2017 (pp. 55–64).

Yan, R., Wu, H., Wu, H., & Wu, H. (2016). “Shall I be your chat companion?”: Towards an online human–
computer conversation system. In ACM international on conference on information and knowledge 
management (pp. 649–658).

Zamani, H., Mitra, B., Song, X., Craswell, N., & Tiwary, S. (2018). Neural ranking models with multiple 
document fields. In Proceedings of the Eleventh ACM international conference on web search and data 
mining, WSDM 2018, Marina Del Rey, CA, USA, February 5–9, 2018 (pp. 700–708).

Zhang, B., Su, J., Xiong, D., Lu, Y., Duan, H., & Yao, J. (2015). Shallow convolutional neural network for 
implicit discourse relation recognition. In Conference on empirical methods in natural language pro-
cessing (pp. 2230–2235).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Deep cross-platform product matching in e-commerce
	Abstract
	1 Introduction
	2 Related work
	2.1 Algorithms for product matching
	2.2 Text matching approaches

	3 Product matching model
	3.1 Problem definition
	3.2 Overview
	3.3 TMM: title matching module
	3.4 AMM: attributes matching module
	3.4.1 Attribute name matching
	3.4.2 Attribute value matching
	3.4.3 Attribute similarity


	4 Two application scenarios
	4.1 A classification scenario
	4.2 A ranking scenario

	5 Experiments
	5.1 Datasets
	5.2 Experimental settings
	5.3 Evaluation metrics
	5.4 Baseline models
	5.5 Experimental results and analysis
	5.6 Model extension
	5.6.1 Classic machine learning models
	5.6.2 Handcraft features


	6 Conclusion
	Acknowledgements 
	References




