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Abstract Weibo is one of the widely used social media platforms for online sharing and
communication. Some widely-received topics have been formed into Weibo hot topics by being
forwarded, reviewed, and searched by a large number of users in Weibo. And the widespread
dissemination of these hot topics may further stimulate and promote users’ offline behaviors. As a
typical representative of it, some hot topics on Weibo may stimulate sales of products related to the
topics under the e-commerce platform. Mining out the relevant product categories of Weibo’s hot
topics in advance can help e-commerce platforms and sellers to do a good job of commodity operation
and inventory deployment as well as promote the search conversion rate of users and bring about an
increase in the sales of corresponding products. This paper proposes a method of mining potential
shopping categories associated with hot topics of Weibo. First, the method builds a product knowledge
map, and then uses a variety of in-depth network models to perform textual matching between the
information of the associated knowledge of product categories and the content of the Weibo topics.
The strength of association of each hot topic and product category is identified. Experiments show that
the method can effectively identify the relationship between hot topics and shopping categories, and
most of the hot topics of Weibo can be associated with at least one product category in the e-commerce

platform.
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) K-KCM (KNRM-
knowledge graph Weibo content matching model).
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Fig. 3 Knowledge graph of product category 2
3 Table 2 Examples of Knowledge Graph Structure
2
3 ’ 3
s s Category Ring
. . K Gold Ring, Diamond Ring,
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Wedding Ring, Silver Ring
Brand AFN, LOQI, CGC
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Table 1 Examples of Generic Product Category
1 , . ceeene
Category Generic Product Category ’ ’
Leisure and Leisure Shopping, Leisure Fitness,
Entertainment Leisure Vacation, Catering and Leisure
VR VR Glasses, VR Helmet, ’ ’

Device VR Device, VR Head Display Device

Insulation Pot, Hot Water Bottle,
Thermal Flask, Thermos

Insulation, Pot
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Table 3 Model Parameters
’
3
Model Hyperparameter Value
’ Y Y
Sigma 0.1
KNRM Exact Sigma 0.001
Kernel Number 21
’ Convolution Kernel Number 32
ARC-T
’ Convolution Kernel Size 3X3
Solr 1D Convolution Kernel Number 4
) 1D Convolution Kernel Size 3X3
ARC-1I
, 2D Convolution Kernel Number [4,3]
500 , 3000 2D Convolution Kernel Size [3Xx3,2X2]
10:1:1 Convolution Kernel Number 32
> ’ Matchpyramid
Convolution Kernel Size 3X3
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Table 4 Overall Result

4
Model Acc F1 Pre Rec

ARG I+KCM 0.682 0.343 0.270 0.521
ARCG-II+KCM 0.671 0.341 0.274 0.509
MVLSTM+KCM 0.729 0.300 0.264 0.375
Matchpyramid+KCM 0.507 0.336 0.222 0.798
Learning to rank 0.597 0.359 0.230 0.813

KNRM+KCM(K-KCM) 0.689 0.386 0.290 0.580

Note: Bold figures represent the best-performing results under the

corresponding metric.

KNRM+ KCM

Accuracy L, F1 Precision

Learning to rank

MVLSTM+KCM ).
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