Session 6B: Personalization and Personal Data Search

SIGIR 19, July 21-25, 2019, Paris, France

PSGAN: A Minimax Game for Personalized Search with Limited
and Noisy Click Data

Shugqi Lu!, Zhicheng Dou'?, Jun Xu'?, Jian-Yun Nie* and Ji-Rong Wen!23
1School of Information, Renmin University of China, 4DIRO, Université de Montréal
2Beijing Key Laboratory of Big Data Management and Analysis Methods
Key Laboratory of Data Engineering and Knowledge Engineering, MOE
lusq@ruc.edu.cn,dou@ruc.edu.cn,junxu@ruc.edu.cn,nie@iro.umontreal.ca,jirong. wen@gmail.com

ABSTRACT

Personalized search aims to adapt document ranking to user’s per-
sonal interests. Traditionally, this is done by extracting click and
topical features from historical data in order to construct a user
profile. In recent years, deep learning has been successfully used in
personalized search due to its ability of automatic feature learning.
However, the small amount of noisy personal data poses challenges
to deep learning models to learn the personalized classification
boundary between relevant and irrelevant results. In this paper, we
propose PSGAN, a Generative Adversarial Network (GAN) frame-
work for personalized search. By means of adversarial training,
we enforce the model to pay more attention to training data that
are difficult to distinguish. We use the discriminator to evaluate
personalized relevance of documents and use the generator to learn
the distribution of relevant documents. Two alternative ways to
construct the generator in the framework are tested: based on the
current query or based on a set of generated queries. Experiments
on data from a commercial search engine show that our models
can yield significant improvements over state-of-the-art models.

KEYWORDS

personalized web search; generative adversarial network;

ACM Reference Format:

Shugi Lu, Zhicheng Dou, Jun Xu, Jian-Yun Nie, and Ji-Rong Wen. 2019. PS-
GAN: A Minimax Game for Personalized Search with Limitedand Noisy
Click Data. In SIGIR’19: The 42st International ACM SIGIR Conference on
Research & Development in Information Retrieval, July 21-25, 2019, Paris,
France. ACM, New York, NY, USA, 10 pages.
https://doi.org/lo.l145/3331184.3331218

1 INTRODUCTION

Traditional search engines employ the one-size-fits-all strategy.
They use the same ranking function for a query for any user. It is
known that this strategy cannot cope with the different search infor-
mation needs of users behind the same query. Personalized search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR °19, July 21-25, 2019, Paris, France

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6172-9/19/07...$15.00
https://doi.org/10.1145/3331184.3331218

555

offers a possible solution to the problem. Most existing personal-
ized search approaches extract click and topical features from users’
search history and calculate document relevance according to both
the query and the induced user interests [1, 5, 8, 11, 26, 29, 32, 33, 35].
However, the features are usually designed manually. It is difficult
to expect that these features have a complete coverage of the impor-
tant factors. Deep learning offers a new alternative to personalized
search [9, 16, 27]. Compared with the traditional methods, deep
learning models can automatically learn the representations of doc-
uments, user profiles, and other relevant features from training
data without manual design and extraction. They could also cover
a wider range of features.

However, training data is a critical issue for deep learning meth-
ods, which involve a large number of parameters and need a consid-
erable amount of training data. This is a very challenging issue for
personalized search because a personalization model heavily relies
on user’s personal data while the search history of a specific user is
always limited. There are only a few clicks on each search. In addi-
tion, the available data is noisy. For example, if the user has clicked
on a search result and not on another, it is usually assumed that the
former is preferred to the latter, which may not always be true. This
is because the user may click on some of the relevant documents
only, and she may also click on irrelevant documents. Blindly using
all such data may lead to a wrong user profile. In such a context, it
is important to select appropriate training data that bring the most
useful information. Even among the true preferences, some are
deemed more useful than others. For example, assuming that a user
has a historical query “JAVA Language”, then for the current query
on “JAVA”, the preference of a document on “Java IDE” over another
one on “Java island” does not provide much additional information
about the user’s interests because the difference is easy to make
whatever the user profile is. However, a preference of “JAVA IDE”
over “JAVA book” is more difficult to detect, and may help detect
the subtle preference of the user on the topic. This is the type of
preference that can help the most. In this paper, our goal is to devise
a method to select the latter type of preference as training data.

Inspired by IRGAN [34], our method is based on Generative
Adversarial Network [10], which contains a generator and a dis-
criminator. Through the minimax game of adversarial training, gen-
erator tries to generate high-quality negative examples to confuse
discriminator, while discriminator provides reward for generator in
order to help generator adjust the data distribution. However, due
to the discreteness of text data, it is not possible to generate a free
text vector as a negative sample. Following IRGAN [34], we sample
examples from the negative data space (e.g., unclicked document
or unlabelled document) as the generated examples.

https://doi.org/10.1145/3331184.3331218

Session 6B: Personalization and Personal Data Search

We design a general framework, named PSGAN, for personal-
ized search, which generalizes the above idea based on GAN. We
propose two implementations of the general model. In the first one,
we borrow the idea of IRGAN [34] for personalization. We let the
generator directly select a negative sample from the document can-
didates according to the relevance distribution for the current query
and user interests. We call it document selection based GAN model
for personalized search. In the second method, we first generate
related queries that are consistent with the user’s intent (through
historical information) and the current query, and then calculate
the relevance of the document through the generated queries. We
hope that document relevance can be better estimated through the
generated queries because of enriched information. We call this
model query generation based GAN model for personalized search.

We compare these two implementation alternatives with the
query log data from a commercial search engine. Experimental
results show that adversarial training can effectively improve the
quality of search personalization, and can yield significant improve-
ments over state-of-the-art models. In addition, the second model
can select better negative examples than the first model, leading to
a better personalization.

The main contribution of this paper is threefold: first, this is
the first attempt to apply GAN to personalized search; second, we
enhanced the training data and improved the training effect by
using the Generative Adversarial Network; third, we put forward
a method of generating the queries consistent with user intent in
order to determine better document samples. Experimental results
on a real search engine log confirm the effectiveness of our method.

The rest of paper is organized as follows. We introduce related
work in Section 2. Our GAN-based personalized search model is
presented in Section 3. We describe experimental results Section 4,
then conclude our work in Section 5.

2 RELATED WORK

Traditional Personalized Search. Personalized search has been
extensively studied for selecting documents that fit user’s search
intent. This is usually done through analyzing the historical search
data in order to infer the user’s current interest, which is used in
turn to influence document ranking [4]. Traditional methods rely on
user’s click behavior and document topic in historical search data.
Among click-based approaches, Dou et al. [8] proposed a method
called P-click, to evaluate relevance according to the number of
clicks on the documents. A similar approach was used in [30]. Other
approaches relied on topical user profiles defined by terms or topics
of the clicked documents [1, 5, 11, 18, 26, 32, 33, 35]. The click-
based features and topic-based features have been combined in
some studies [31, 35] and learning to rank methods have bee used
to combine them [2, 3, 37]. SLTB [2] is a state-of-the-art approach
among these approaches and we will compare with it in Section 4.

Despite the improvements they can bring, a common limitation
of the traditional approaches is that the features used to help per-
sonalized document ranking are defined manually. Not only the
manual design of such features is a heavy burden, but also we
may miss important features not yet discovered by experts. Deep
learning provides an interesting alternative.

556

SIGIR 19, July 21-25, 2019, Paris, France

Application of Deep Learning in Personalized Search. Deep learn-
ing methods automatically learn representations of documents and
the interaction between queries and documents, which can allevi-
ate the problems with manually designed features. This interesting
characteristic is being widely exploited in the fields of information
retrieval and personalized search. A wide range of deep learning
approaches have been developed for IR. One can learn document
and query representations through word embedding [19, 22], docu-
ment and query pair embedding [13, 25], or LSTM encoding [12, 23]
and estimate the semantic similarity between the query embedding
and document embedding. Severyn et al. [24] used a convolutional
deep neural network to capture semantic similarity features. Song
et al. [27] adapted a generic RankNet for personalized search. Li
et al. [16] generated semantic features from in-session contextual
information, and incorporated them into the ranking model. Dai
et al. [21] used a capsule network to embed the user, query and
document, and re-rank the results through the embedding. Ge et
al. [9] trained a hierarchical RNN to capture both long-term and
short-term interests of users, and used attention mechanism to
dynamically construct user profiles.

Our model is also built within the deep learning framework. Dif-
ferent from the above studies that focus on the design of neural
models, we address the problem of selection of training examples,
which is important in general deep learning training, and espe-
cially critical for personalized search model due to the very limited
amount of data available for a user. Inspired by IRGAN [34], we
propose an adversarial training framework for this task.

Applications of Generative Adversarial Network (GAN). For each
user, the available data is usually limited and contains inevitably
some noise. This will heavily affect deep learning models to be
trained. The adversarial framework provides an interesting idea of
data enhancement through semi-supervised training and interac-
tion between the generator and discriminator. The original GAN
[10] aims to generate realistic simulation pictures. Since then GAN
has been gradually used for different tasks in NLP. Yu et al. [38]
employed GAN to generate sentences which are similar to natural
language. Lin [17] employed GAN to enable the model to analyze
and rank a collection of human-written and machine-written sen-
tences in order to produce better generated sentences. GAN has
also been used in information retrieval. Wang et al. proposed the
IRGAN [34], which combines a generative retrieval method and a
discriminative retrieval method. The generator aims to estimate
the relevance distribution which is used to select good/confusing
training examples, while the discriminator tries to distinguish good
and bad examples. Our model is inspired by IRGAN. However, we
apply the idea to personalizing search results. This paper discusses
how to enhance a deep learning model by means of adversarial
training to more accurately depict the user’s search intent. In the
next section, we will provide details of our model.

3 PSGAN - A GAN FRAMEWORK FOR
PERSONALIZED SEARCH
3.1 Problem Formulation

As we have introduced in Section 1, despite the successes achieved
by existing personalized search methods, several limitations remain

Session 6B: Personalization and Personal Data Search

due to the noisy and limited historical user data. Inspired by the
data enhancement mechanism in GAN, in this paper, we propose
the use of GAN for personalized search. Through the minimax game
in adversarial training between the generator and the discriminator,
we expect that the discriminator can provide reward signals to the
generator, for better approaching the distribution of documents
satisfying user intent, and the generator can generate high-quality
negative examples and better sample weights for the discriminator.
In such a way, the generator can provide additional semi-supervised
information to enhance the training data and further to promote
the training of the discriminator to better model search intent.

The notations used in the paper are listed in Table 1. Suppose
that we are given set of queries Q and each query g € Q is is-
sued by a user u. Let’s use U to represent all historical search be-
haviours (search sessions) of u before the current query g. We split
the sessions in U into two parts according to their timing: the past
sessions L, and the current session Syy, i.e., U = L, U {Spm}-
We have £, = {S1,---,Si, -+ ,Sym-1}, where M is the num-
ber of sessions associated with u. Each session S; is comprised
of a sequence of queries and each query includes a query string
and a list of documents returned by the search engine. For ex-
ample, if there are n queries in the i-th session, we have S; =
{(qi, D{) RN (q]’ D]’) RN (qfl, D};)},where qji. is the j-th query
in i-th session, and D! is the search results. Sy includes the queries
issued before g in the same session.

Without causing ambiguity, in the remaining of the paper we
omit the superscripts and subscripts of the notations. We use d to
denote a document in the results of query q issued by user u, whose
historical search data is denoted by U.

Let’s define pirue(d|q, U, r) as the underlying true distribution
of relevance r which is the personalized relevance preference of
user u over document d with respect to query g and u’s historical
search data Y. Similar to IRGAN [34], we have two components in
the adversarial framework:

discriminator: tries to learn relevance distribution fy(d, g, U)
between U, query g and d, that is, to distinguish relevant documents
from irrelevant documents w.r.t. to g and U. The data sampled from
relevant documents are treated as positive examples and the data
generated by the generator are treated as negative examples. fy is
the discriminator function.

generator: tries to learn a distribution pg(d|q, U, r) to approxi-
mate prye(d|g, U, r) through a function gy, and generates negative
examples according to the learned pg to confuse discriminator.

Next, we will introduce the proposed framework, namely PSGAN,
to adapt the generative adversarial network to personalized search,
and two different implementations of models within the framework.

3.2 PSGAN - the Framework

The minimax game in PSGAN can be described as: given a query
posted by a user, the generator tries to produce a (negative) doc-
ument that looks like fitting the user’s intent and to fool the dis-
criminator; while the discriminator tries to draw a clear distinction
between the relevant documents and the negative document sam-
ples generated by the generator. Formally, given a set of queries Q,

557

SIGIR 19, July 21-25, 2019, Paris, France

Table 1: Notations in our framework.

N. Explanation H N. Explanation
Q aset of queries q, q’ a query, generated query
d adocument d a negative sample
u auser Uu u’s historical data
L, past sessions of u Sy the current session
0 parameters in generator || ¢ parameters in discriminator
gg function of generator fo function of discriminator
D aset of documents Po generated distribution
we have:

]G*’D*—minmax Z E log Dy (dlgq, U) +

T) d~pie(d|q, U, r) 108 L g \d]q,

qeQ

4]
Ed-pe(d|q, u,r)108(1 — Dy(dlq, 71))) ,

where the generator G is written as pg(d|q, U, r) and the discrimi-
nator D is the estimated relevance probability calculated by:

exp fy(d, g, U)
1+exp fg(d, q, U)

Note that different from IRGAN, PSGAN has an additional compo-
nent U for modeling the user profiles.

Dy(dig. U) = o (f3 (d.q. 1)) = @

3.2.1 Optimizing Discriminator. According to Eq. (1), optimizing
the discriminator is to optimize ¢ to maximize the whole result
given the relevant documents and the ones selected from the current
optimal generator py (d|q, U,), i.e.,

¢* = arg mq?_x Z (Ed“Ptrue(dlq’ Uu,r) log D¢ (d)+

9<Q 3)

Bu-po(dlq 14,1 108(1 = Dy ()

We transform the above learning form into pairwise training.
With a positive and a negative sample in the form of a document
pair, we change Eq. (3) into:

¢* = argmax » Eq, 4, [logD¢ () + log (1 - Dy (dg))] ,
¢ qeQ

where d; is sampled by pirue(d|q, U, r) and dg is sampled by the
generator pyg(d|q, U, r). It can be further written as Eq. (4) without
changing the optimization objective:

P* = arg mq?x Z Eq, d, (logD¢ (d+) —log Dy (dg)) C @
qeQ

To force the discriminator to pay more attention to those docu-
ments that are difficult to distinguish, we assign a weight for each
document pair. A higher weight means that the negative document
is more similar to a relevant document. So more attention should
be paid to it. We weight (d, dy) by rg, according to the generation
probability produced by the generative model:

¢ = argmgx Z Eq,,d,"0(d+, dg)(log Dy (d+)—log Dy (dg)))
qeQ

!n the remaining part of the paper, we may use Dy(d), f¢(d), po(d|q) as the abbre-
viation of Dg(d|q, U), f¢(d, q, U), and po(d|q, U, r) to save space.

Session 6B: Personalization and Personal Data Search

Here rg(d+,dg) = po(dglq, U, r)—pe(d+|q, U, r)+1,and ry(d+, dg)
gets the highest score 2.0 when pg(dglq, U, r) is 1 while that of
other documents are 0, and in this case dy is extremely difficult to
distinguish. rg(d4, dy) gets 1 when the two documents have equal
probability and are hard to distinguish.

3.2.2 Optimizing Generator. In practice, it is difficult to generate
text data due to its discrete nature. Following IRGAN [34], we
generate the negative examples D’ by selecting documents with
high quality from candidate document set 9. Formally, the gradient
of the generative model is:

VoI%@= 157) Valogpo(dia. 14, log (1-+ exp(fy(d)).
deD’

Then, a document d is selected according to the probability pg. The
weight of the document is set as ryg = rg(d+,dy). The feedback

component log (1 +exp(fy (d))) given by the discriminator works
as the reward to the generator.

So far we have introduced PSGAN, the general GAN frame-
work for personalized search. In the next section, we will introduce
two models based on this framework, and introduce the specific
parametrisation of pg(d|q, U, r) and f4(d, ¢, U).

3.3 Document Selection based Model

In this model, we adopt a consistent structure for both the dis-
criminator and the generator. We start from the definition of func-
tion fi which will be used in the discriminator by Eq. (2).

3.3.1 The Discriminator. Recall that the discriminator tries to es-
timate personalized document relevance given the current query
q and user data U, i.e, f¢(d) = score¢(d|q, Sy, SM-15---S1). In
this model, we think the relevance can be further divided into three
parts: the relevance of the document to the query, the relevance
to the user’s long-term profile and the relevance to the short-term
profile. Specifically, we define fy(d) as:

fold) = 77 (score¢ (dlg), score (d] L), scoreys (d|SM)) . (6

where score(d|q) reflects the adhoc relevance between the docu-
ment and the current query, score(d|Sar) represents the personal-
ized relevance of a document in terms of the short-term user profile,
and score¢(d | Ly) is the relevance between the document and the
long-term user profile. ¥ is dense layer which is used to combine
the three scores and output a final personalized relevance score.
We follow the state-of-art work HRNN? [9] which uses a hi-
erarchical RNN model and attention mechanism for building the
long-term and short-term user profiles. However, HRNN only takes
the user’s historical queries and satisfied click as historical data, but
ignores irrelevant documents. Note that we follow existing work
[2, 9, 14, 33] and regard the click that has a dwelling time of more
than 30 seconds or is the last click in a session as a satisfied click
and regard those skipped documents above a satisfied click and
the unclicked next document as irrelevant documents. We propose
to improve the model by taking those irrelevant documents into
account. We define this model as HRNN+. The structure of the
model is shown in Figure 1. The details are introduced as follows.

ZNote that here we use HRNN to represent the state-of-art work HRNN+QA in [9] for
convenience

558

SIGIR 19, July 21-25, 2019, Paris, France

relevance features

long-term profile D fydy)
) Y, (@ hd) »
current query ¢ i dy fy(dy)

e f,(dy

Session 2 Sessioy M-1 Sessionp M
N g

Z, Su
Figure 1: Structure of the HRNN+, which is used as an dis-
criminator in the document selection model.

Session 1

(1) For scorey(d|q), we follow SLTB [2] and extract the origi-
nal ranking of documents, query click entropy and other topical
features as relevance features Tq.d> and we have:

score(d|q) = tanh(Fq(rg), (7)

where ¥ is a dense layer, and ry, 4 represents for relevance features.
(2) For score4(d|Sm), for each query in session Spy, we generate
a vector by concatenating the average vector of relevant documents
and the average vector of irrelevant documents as input to an RNN
layer, i.e., we have x; = [q;, vg+, vdi—], where x; is the input in
i-th step in the session, q; is the vector of the query string. v+ is
the average vector of relevant documents, and vg,- is the averlage
vector of irrelevant documents as introduced previously. For session
Sy with n queries before g, the last-step output is the encoding
of the session, and is taken as the user’s short-term profile, i.e.,
h}w = RNN(h]lVLnfl, xn), Then the relevance score of document d
in terms of user’s short-term interest is:
score(d|Sy) = tanh (Ts(h}w,d)) . ®)
(3) For score(d| Ly,), we use the output encodings of historical ses-
sions in the first layer as an input to the second RNN layer, i.e., h? =
RNN(h?_l, hl!) (superscript ‘2’ means the second layer). Similar to
HRNN [9], we use an attention mechanism for weighting historical
exp(e;) _
jN:IIl exp(e;) -
softmax(e;), where e; = ul.Tud. u; = tanh(%4(q, hf)) is a vector rep-
resenting the matching degree between q and session S;. Then we
compute the dynamic long-term user profile by hf\/kl = Z?i;l a; h?.
So,

sessions on building the long-term profile, and «; =

©)

HRNN-+ simply compute the relevance of a document according
to fy (d) we just introduced, and rank the documents based on the
relevance. In our document selection based model, we directly use
fo (d) as the discriminator function. The difference between HRNN+
and the document selection based model is that HRNN+ only uses
the historical click information for training, and it calculates f4(d)
for one time and output the ranking list. Whereas in the document
selection based model, f¢ (d) is trained in multiple epochs, and in
each epoch, the training data will be updated by the generator.

scorey(d|L,) = tanh (ﬁ(hfwfl,d)) .

Session 6B: Personalization and Personal Data Search

3.3.2 The Generator. The generator aims at selecting a negative
document from the set of candidate documents that looks like a
relevant document. As introduced, we use a similar model for the
generator as the discriminator. Specifically, the generator function
gp is defined as follows:

9o(d. g, U)=F4 (scoreg(d|q), scoreg(d| Ly), scoreg(d|Sy))
The component py defined in Eq. (1) is then defined by:

exp (9o (d,q,U))
2Zaenexp(ge (d,q,U))

3.4 Query Generation based Model

Since the user’s intent is likely to deviate from his current query, in
order to better fit the distribution of documents to the real intent
of users, we further propose the second method, namely the query
generation based model. We use the same way as in the doc-
ument selection based model, to train the discriminator, to
learn the relevance relationship between the query, the document
and the user profiles. However, for the generator, to better estimate
the user’s real intent, we propose to first generate queries more
likely to be in line with the user’s current intent through analyzing
the user’s historical search log. And then we use the generator to
judge the document relevance through the generated queries to
better estimate the distribution of documents with respect to the
user’s real intent. There are some models used to generate queries
in query recommendation [15, 20, 28, 36]. They take the next query
in the search log as the target query and train the model by mini-
mizing the cross entropy of the generation probability between the
generated query and the target query. Different from those training
methods, we train the generator to fit the distribution of related
queries through the feedback given by the discriminator.

po(dlg, U) = = softmax (g¢ (d, ¢, U)) .

3.4.1 The Generator. If we generate k queries, we can calculate the
generation probability of each query using the softmax function.
More specifically, for each generated query q, , we have:

(10)

Where gg is the function of generator, and pg is the probability
distribution calculated by the generator.

At the same time, we can calculate the probability distribution
of the documents under each generated query through the function
given by discriminator. We have:

Poldlg) = softmax (fy(d. ¢, 1) = py(dlq)

So according to the conditional probability formula, we can
define the probability distribution py of the document as:

poldig)= " po(q 9. Uhpo(dlq)=) po(q lg. Uhps(dlg) ;)
q q

Po(q 19, U) = softmax (g (', 9. 20))

In this case the gradient of the generative model changes to:

1
1D’

VoJ(q) = > Volog| > po (q/lq,ﬂ)pzﬁ (dlq/) *
deD’ q'

log (1 + exp(f¢(a')))

559

SIGIR 19, July 21-25, 2019, Paris, France

decoder

S d
d
H d,

Pd) =Y p*pldlq)
short-term encoder

Figure 2: Structure of generator in the query generation
based model. The long-term encoder uses a RNN to encode
query sequences in the past sessions. The short-term en-
coder uses a hierarchical RNN to model the fine-grained in-
formation in the current session. The decoder uses two at-
tention mechanisms over a RNN to generate queries which
help estimate the probability of selecting a document.

Aslog(1+exp(fy(d))) and py (d|q,, U, r) work as the feedback given
by the discriminator, we can see that optimizing the parameters of
generator 6 is equivalent to making the generated queries more in
line with the user’s real intent.

For discriminator, we use the same training goal and function fy
shown in Eq. (6) with the document selection based model. Next,
let’s focus on the generator’s function gy.

For generator, we employ a sequence-to-sequence model, which
will be introduced in the next section, to generate queries, then
apply Eq. (11) to select documents.

3.4.2 Query Generation. We employ two encoders to encode his-
torical information, and a decoder to generate queries. Since the
user’s query intention can be inferred from the relevant queries in
the user’s historical queries in some cases, we first use a long-term
encoder to process the historical information in the past sessions.
As the user’s query intention is often consistent in a session, in
order to accurately depict the user’s session intention, we employed
a short-term encoder to process the historical queries in the current
session. The model is shown in Figure 2.

(1) For the long-term encoder, we use an RNN to take the his-
torical queries sequence in the past sessions {q1, ..., i, ...qm} as
input (we assume there are m queries in £, in total). For each step
when a new query g; is fed in, we have h; = RNN(h;_1, q;).

(2) Since there are several queries in a session, in order to describe
more fine-grained, we use a hierarchical structure to encode the cur-
rent search intent. Both the relationship between the internal terms
of a query and the relationship between queries are considered. For
the short-term encoder, again we assume there are n queries before
q in the current session. We first use a bi-directional RNN to encode
each query over the query terms as the first layer, and then use
another RNN to encode the outputs of the first layer as the second
—

w

—
layer. Specifically, for the first layer, we have h}Y = RNN(h;}" |, w;)

— —
and hy’ w;). And for the outputs of the first layer

= RNN(h}, |,
for g, suppose L; is the number of terms contained in query string

Session 6B: Personalization and Personal Data Search

— —
qi, we have hll. = [h{"i,hﬁ_]. Similarly, for the second layer, the
representation of the i-th query is encoded by hlz. = RNN(h?_l, h}).
(3) For the decoder, we use the last output of the short-term
encoder to initialize the state by so = tanh(7,(h%)). We further
add an attention mechanism for the decoder over both encoders.
The generation of ¢-th word of the query ¢’ is supervised by com-
paring the similarity between this word and hidden states learned
by the long-term and short-term encodes. Specifically, for the i-
th query in the long-term encoder, the associated attention is

L _ T L _

a;; = softmax (u; um) where u; is a shorten form for u;~; =

tanh(F7,(s¢—1, hi)) and (uiTum) is used to measure the correla-
tion between the previous state s;—; of the decoder and the i-th
query’s encoding h;. Finally, the hidden state of the next term
is htL = afihi. Similarly, the hidden state of the next term

weighted by the short term encoder is: h;S(H = af;thZ.,

SH T SH = tanh(Fp(s;-1. h2).

a = softmax((ufl. u,) where u =
We concatenate htL and h}S'H as the final context vector for the

and

t,i t,i

decoder to select next term: ¢; = [hf, h‘tS(H]. And for each step of
the decoder, the generation probability is calculated as:

P(wt|wi, wa, ..., wr—1, ¢r) = softmax (Fo (RNN (s¢-1, [cz, we]))) .

Finally, for a generated query ql = [w1, wy, ..., wi], which is
composed of k words, its generation probability is estimated by:

90(q . q. U) = l_lp(wi|wl:i—1)- (12)
i=1

The implementation of gy (q’, g, U) can then be applied to Eq. (10)
to calculate pg(q |g, U), which is used in Eq. (11) for estimating pg
and train the generator.

3.4.3 Query Candidate Selection. The above model assumes that
we generate queries based on the user’s previous search histories.
However, we find some difficulties if we directly generate queries.
Firstly,the impact of the generated queries to the final ranking is
difficult to evaluate, because some relevance features between the
query and documents such as click information are unavailable if
the query never appeared in the search log before. Second, because
the word dictionary is too large, the quality of generated query is
not stable. Therefore, we require that the generated query must
have appeared in our search log, i.e, we train the query generation
model but only apply the model to a limited set of candidate queries
which are in the query log. This can control the risk to a certain
extent and make the model more stable.

To decide the list of candidate queries we can generate, we use
the following ranking function to rank the historical queries in the
log and select the top 10. For a candidate query g, we simply use
the following equation to calculate its importance to g:

R(qjlq) = e(q,q;) + s(q.95) + f(q.q;) + (g, q;)

1 i)—1
where: (1) e(q,q;) = %(qe)n(q)

otherwise, we let e(q, gj) = 0. This component simply evaluates the
specificity between q; and q. The more words the expansion query
gj contains, the more spefic g; is to ¢; (2) s(q,q;) = sim(q, q;) is
the similarity between two vectors of q and g;. This evaluates the

when g; is the expansion of g,

560

SIGIR 19, July 21-25, 2019, Paris, France

ng.q;
g
ng,q; represents the number of times the two queries appear in

the same session at the same time and ng represents the number

Cq.q;
Cq

indicates the click relevance between the two queries, where cg, aj

is the number of URLs both clicked under the two queries g and g;,
and cq is the number of URLs clicked under g.

Once the candidate queries are selected, we use Eq. (12) to eval-
uate the importance of each candidate, and select documents based
on Eq. (11). In this way, we can provide a better choice when the
user’s real intent is inconsistent with the current query. In order to
ensure that the model can degenerate to the current query in the
case that the current query is consistent with the user’s intent or
there is no better choice than the current query in the candidate set,
we also add the current query into the candidate set when training
and testing the model.

5

semantic relationship between the two queries; (3) f(q, q;) =

of times g appears in the whole search log; (4) r(q,q;) =

3.5 Review of Our Models

Our model attempts to solve the problem of limited and noisy data in
personalized search by introducing generative adversarial network.
By means of adversarial training, the generator and discriminator
promote each other and finally yields better ranking models. For the
document selection based model, we follow the idea of IRGAN[34]
to convert the document generation into document selection. How-
ever, IRGAN dose not deal with search result personalization. Our
first method is a natural extension of IRGAN to personalized search.
For the query generation based model, we focus on how to better
personalize the search results by first predicting real user intent.
Because the user does not click on the document based on the cur-
rent query when searching, but judges whether the document is
relevant through the search intent in their mind, we assume that the
relevance of documents can be better estimated if the search intent
can be detected. In the generator of this model, we first considers
generating queries to fit the distribution of user intent, and then fits
the distribution of documents. With this kind of mechanism, the
relevance probability of the document under the user’s intent can
be better judged, and this can further improves the effectiveness of
search result personalization.

4 EXPERIMENTS
4.1 Dataset

We experiment with the proposed models and the baselines based
on a search log collected from a commercial search engine during
January to February in 2013. Each data record in the log contains
user id, query string, time the query was issued, URLs retrieved
by the search engine, a tag identifying whether the user clicked
a document, and dwelling time for the click document. The log is
extracted from the search engine based on a list of sampled user id,
to make sure all search histories during the time period for these
users are kept in our dataset. The dataset contains 33,204 users and
2,665,625 queries. Following the existing work [2, 8, 9], we segment
the logs into sessions according to the query issuing inactivity of
longer than 30 minutes without overlap. Finally we obtain 654,776
sessions. Because in the second method proposed in this paper
we needs to generate queries based on the current queries, some

Session 6B: Personalization and Personal Data Search

meaningless queries are filtered, such as queries that contain only
a single meaningless word like ‘a’.

We divide the user search log into historical data and experimen-
tal data in order to ensure that each user has historical data. For
historical data we used the first six weeks in user’s search history
of each user, and this part of the data only provides the user’s his-
torical information during training and testing. To ensure the this,
we filtered the users who have no historical data and experimental
data. Then we use the last four weeks data in each user’s search log
as experimental data. We further divide the experimental sessions
into training set, validation set and test set according to the ratio
of 4:1:1.

We pre-train a 300-dimension word vector model based on the

queries and document content in the experimental data with word2vec.

In the experiments, we simply average the word vectors of a query
as the representation of the query, and use the tf-idf weighted
average word vectors as the document vector.

We follow existing work [2, 9, 33] and regard the click that has
a dwelling time of more than 30 seconds or is the last click in a
session as a satisfied click (sat-click) and call other documents non-
sat-clicked. The original training data are document pairs formed by
sat-clicked documents and some non-sat-clicked documents. We use
the sat-clicked documents as relevant documents, and the selected
non-sat-clicked documents as irrelevant. Our models enhance the
training data by sampling non-sat-clicked documents which are
more difficult to distinguish as irrelevant documents and weighting
the data pairs.

4.2 Baselines and Our Models

Although IRGAN [34] applied generative adversarial network to
web search, its main goal of optimization is not personalizing the
search results, and hence it cannot be directly applied to personal-
ized search. We cannot directly compare with it in the experiments.
However, our document selection based model can be seen as a
natural extension of IRGAN to personalized search. Our query
generation based model goes a step further to utilize the character-
istic of personalized search and is expected to be more effective on
personalization.

In order to verify the effectiveness of our models, we compare
our models with the state-of-the-art personalized models based on
traditional features and the deep learning based methods. These
models are listed as follows.

P-Click: This method was proposed by Dou et al. in [8]. In the
model, documents are reranked by the number of clicks the same
user has made on the same query with the Borda Count ranking
fusion method. This model can stably reflect the effect of click
features in personalization.

SLTB: SLTB [2] integrates clicks features and topical features
and uses LambdaMART to train the personalized ranker. Previous
works [2, 9] show this is the state-of-the-art approach before deep
learning is applied.

HRNN: This model [9] builds user profiles using a hierarchical
RNN and uses attention to dynamically highlight different queries
when personalizing the next query. It is considered as a state-of-
the-art personalized search model based on deep learning.

561

SIGIR 19, July 21-25, 2019, Paris, France

Table 2: Overall performances. Best results are in bold. * in-
dicates the model significantly outperforms Ori.Ranking, P-
Click, and SLTB, and * indicates the model significantly out-
perform all baselines (p < 0.05 in two-tailed paired t-test).

Model MAP MRR AClk #Better #Worse P-Imp.
Ori. R 73217419 2211 - - -

P-Click 7426 7541 2.073 3,662 33 .0687
SLTB 7876 7982 1.935 13,181 2,016 .2140
HRNN 8021 8139 1.887 15,113 1,958 .2490
HRNN+ .8029% .8142% 1.860™ 15,227 1,989* .2506
PSGAN-D .8082* .8191* 1.838* 14,952* 1,609* .2527*
PSGAN-G .7923* .8054* 1.967* 14,755* 2,749* .2273*
QG-D .8104* .8214* 1.834* 15,458* 1,716* .2601*
QG-G .8018* .8131% 1.866* 15,044% 2,654* .2374*

We experiment with the following ranking models correspond-
ing to the two models we proposed in the paper:

HRNN+: An improved version of HRNN introduced in Sec-
tion 3.3. It is used to initialize the parameters of the discriminators.

PSGAN-D and PSGAN-G: They rank the documents using the
document relevance score calculated by the discriminator (D) and
generator (G), using the document selection based model.

PSGAN-QG-D and PSGAN-QG-G: These are two ranking mod-
els based on the query generation model. We use the shorten form
QG-D and QG-G in the table.

For all deep learning based models, we use GRU cells to construct
the recurrent neural network. The size of the word vector and other
representations is 300. The size of hidden state of the GRU layer
and the size of the decoder output is 512.

4.3 Evaluation Metrics

We evaluate the models using the widely used IR metrics MAP
and MRR in this paper, with the assumption that the sat-clicked
documents are relevant and others are irrelevant. We further use
the average rank position of the sat-clicked documents (Avg. Click)
to intuitively indicate where the relevant documents are ranked.
A lower Avg. Click value indicates a better personalized ranking
because relevant documents are ranked higher. As stated in [7, 14],
due to the influence of original ranking of documents in search
engine, taking the documents skipped above the click or the non-
clicked next document as irrelevant is more creditable. Therefore,
we count the number of inverse document pairs on documents
skipped above and documents non-clicked next to reflect the per-
sonalized effect of the results more credibly. For document pairs
constructed by documents skipped above and the clicked docu-
ments, reranking the document list can only produce better effect.
So we take the metric #Better as the number of inverse document
pairs on which the model ranks the clicked document higher than
the skipped document. For document pairs constructed by the click
and non-clicked next, reranking the documents can only produce
worse results. So we take the metric #Worse as the number of in-
verse document pairs on which the non-clicked next document
is ranked higher. Taking the number of all pairs constructed by
documents skipped above and clicked documents as S-pair, and
the number of all pairs constructed by clicked documents and non-
clicked next documents as N-pair, we define a new metric P-Improve

Session 6B: Personalization and Personal Data Search

#Better—#Worse
S-pair+N-pair

evaluate the ranking improvement over a baseline ranking with

reliable relevance preferences other than absolute relevance ratings.

as P-Improve = . P-Improve is an intuitive metric to

4.4 Overall Performance

We first give the overall results and compare our models with the
baselines to explore whether the PSGAN framework can effectively
improve personalization. The overall results are shown in Table 2.

(1) All personalization models outperform the original ranking
- the ranking returned by the search engine. The improvement of
P-Click model confirms the effectiveness of refinding behavior in
search engines. Using learning to rank, SLTB combining simple click
features and topical features outperforms the simple click-based
model. HRNN, which uses deep neural networks and attentions to
build the dynamic user profiles through user’s sequential search
data, outperforms SLTB. This confirms the effectiveness of deep
learning on personalized search. Our proposed model HRNN+ is
better than HRNN a little bit, which shows that our method consid-
ering the irrelevant documents in historical search data is feasible.

(2) Compared with the baseline models, we find that our discrim-
inator based ranking models (PSGAN-D and PS-QG-D) significantly
improve the quality of personalized search in terms of all evalu-
ation metrics. Especially compared with HRNN, our adversarial
personalized models also have significant improvements. The MAP
has been improved 6.1%.by PSGAN-D and 8.3%.by PSGAN-QG-D
(shown as QG-D in the table) compared with HRNN. In terms of
P-Improve, which shows the personalization quality from a more
credible angle, the improvement made by PSGAN-D is 3.7%.and by
PSGAN-QG-D is 11.1%.. These results show adversarial training can
promote the effectiveness of deep learning models for personalized
search. Note that the improvement of the adversarial model over
the existing deep learning model HRNN is not as large as that of the
deep learning model over traditional personalization models. We
think this is because in the search data we use, the original ranking
is already quite good. For example, the value of MAP has reached
0.73. Therefore, it leaves little room for the deep learning model to
improve. While based on the deep learning model, the space for the
adversarial model is even smaller. However, we can still see that
the application of adversarial model is effective in improving the
quality of deep learning model by enhancing the data.

(3) The query generation based model outperforms the docu-
ment selection based model. In terms of all metrics but #Worse, the
discriminator of the query generation based model (PSGAN-QG-D)
outperforms the document selection based model (PSGAN-D). For
generators, we find PSGAN-QG-G outperforms PSGAN-G. This
shows that the relevance between documents and real user intent
can be better predicted by first fitting the user intents through gen-
erating better queries and then fitting the distribution of relevant
documents under the generated queries. And the generator with
the support of generated queries can also promote the quality of
discriminator correspondingly.

(4) Comparing the discriminators (PSGAN-D, PSGAN-QG-D)
with the generators(PSGAN-G, PSGAN-QG-G), we can see in both
adversarial models, the discriminator performs better than gen-
erators. One possible reason is that the generator does not really
generate new data and cannot obtain new information by exploring

562

SIGIR 19, July 21-25, 2019, Paris, France

0.811
0.801
o 0.791
<
=
0.781
0.771 [, ——- HRNN+ —— PSGAN-QG-D
S PSGAN-D —— PSGAN-QG-G
0.761 ‘ ‘ ‘ ‘ : :
0 2 4 6 8 10 12

Training epochs
Figure 3: Learning curves of discriminators and generators.

more other data space. The data space is limited in the original space
observed by discriminator, and all feedback depends on discrimina-
tor, so the generator’s effect is difficult to exceed discriminator.

To summarize, experimental results show that our personal-
ized adversarial framework PSGAN can effectively improve
the data quality and promote the training of the deep learn-
ing model. In addition, it is also effective to predict the users’
current real query intent and use the generated queries to rerank
the documents.

4.5 Learning Curves

In order to analyze the effectiveness of the adversarial training in
our models, we show the learning curves during the adversarial
training in Figure 3. In this figure, we plot the change of MAP in
each epoch of our discriminators and generators in the models. It
can be seen that with the increase of training epochs, the quality
of the generators and discriminators is continuously improved and
finally tends to be stable. And in the process of training, the discrim-
inator and the generator interact and promote each other. Com-
pared with HRNN, the performance of our discriminators is steadily
above HRNN. And comparing the two discriminators, the query
generation based model (PSGAN-QG-D) can better approach the
personalized relevance classification boundary through adversarial
training than the document selection based model (PSGAN-D).

In the following analysis, we will mainly compare the effects of
our discriminators (PSGAN-D and PSGAN-QG-D) with those of
other comparative models.

4.6 Experiments with Click Entropy

As reported by previous study [8, 9, 29], personalized search is less
effective on queries with a smaller click entropy than queries with a
larger entropy. Here we divide queries into two categories by click
entropy [8]. We split the queries into two groups: the queries with
click entropy less than 1.0 (usually they are navigational and clear
queries) and those with click entropy no less than 1.0 (tending to
be ambiguous, broad, or informational queries). We calculate the
average MAP improvement of the models on the two categories, and
show the results in Fig