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ABSTRACT
Search results returned by search engines need to be diversified
in order to satisfy different information needs of different users.
Several supervised learning models have been proposed for diver-
sifying search results in recent years. Most of the existing super-
vised methods greedily compare each candidate document with
the selected document sequence and select the next local optimal
document. However, the information utility of each candidate doc-
ument is not independent with each other, and research has shown
that the selection of a candidate document will affect the utilities of
other candidate documents. As a result, the local optimal document
rankings will not lead to the global optimal rankings. This prob-
lem is especially serious when the selected document sequence is
short or empty in the early stage of ranking, since almost any of
the candidate documents can be estimated as “satisfying new user
intents” following on the selected document sequence. In this paper,
we propose a new supervised diversification framework to address
this issue. Based on a self-attention encoder-decoder structure, the
model can take the whole candidate document sequence as input,
and simultaneously leverage both the novelty and the subtopic
coverage of the candidate documents. Comparing with existing
supervised methods, this framework can model the interactions
between all candidate documents and return their diversification
scores based on the whole candidate document sequence. Exper-
imental results show that our proposed framework outperforms
existing methods. These results confirm the effectiveness of model-
ing all the candidate documents for the overall novelty and subtopic
coverage globally, instead of comparing every single candidate doc-
ument with the selected sequence document selection.
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1 INTRODUCTION
Research shows that most queries issued by users are short [1–4],
and these queries could be ambiguous or vague. For example, a user
who issues the query “Java” may expect a result about “Java island”,
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while another user with the same query may want information
about “JAVA programming language”. Even for a same user, she
may also want diversified results which cover different aspects of
the information she is looking for (for example, seeking for different
cooking methods for “roast beef”). Search result diversification is
proposed to solve the above problem by returning a diversified
document list that can satisfy different information needs.

Existing search result diversification models can be divided into
supervised and unsupervised models depending on whether su-
pervised learning approaches are used. Most of the traditional ap-
proaches to search result diversification are unsupervised and they
are based on handcrafted features and functions [5–9]. While in
recent years, more and more researchers tried to use machine learn-
ing methods in search result diversification in order to learn an
optimized ranking function automatically [10–14]. To generate di-
versified results, these methods either explicitly model subtopic
coverage of the results [6–9, 14] (i.e., explicit approaches), or di-
rectly reduce result redundancy by comparing document-document
similarity regardless the use of subtopics [5, 10–13] (i.e., implicit
approaches).

To simplify the problem and accelerate the online ranking, ex-
isting methods usually formalize the diverse ranking process as
the greedy document sequential selection. Those methods compare
each of the candidate document with the selected document se-
quence and select the best candidate document which can provide
the maximum additional information utility for the current selected
document sequence. However, researchers [15] have already proved
that this greedy document selection mechanism may not lead to
the global optimal rankings. This is because the previous methods
only model the interaction between every single candidate docu-
ment and the selected document sequence, ignoring the candidate
document’s interactions with other candidate documents. While
the information utilities of all the candidate documents are not
independent, when a candidate document is selected, the utilities
of other documents will be affected. As a result, the sequential se-
lection of every locally optimal document may not lead to a global
optimal document ranking.

This problem may be even more serious when the selected se-
quence is short or empty in the early stage of ranking. For example,
assuming there are three candidate documents 𝑑1, 𝑑2, 𝑑3, with 𝑑1
covering the subtopic 𝑞1, 𝑑2 covering 𝑞2, 𝑞3 and 𝑑3 covering 𝑞1, and
the three documents has got similar relevance scores to the given
query. A greedy selection based model may select 𝑑1 for the first
ranking position. Since the selected sequence is empty, any of the
candidate documents can be seen as a “diversified document” after
the empty selected sequence. However, the diverse ranking task
aims to satisfy more user intents at former position, in the view

https://doi.org/10.1145/3340531.3411914


CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Xubo Qin2 , Zhicheng Dou1 , and Ji-Rong Wen3,4

of intent-based diversification metrics e.g. 𝛼−nDCG, 𝑑2 may be a
better selection comparing with 𝑑1. In order to achieve the global
optimal ranking, the model has to search all the ranking space,
which is an NP-hard problem. Feng et al. [15] proposed the M2DIV
model with Monte-Caro Tree Search (MCTS) in order to explore a
larger ranking space and raise the probability of selecting the global
optimal document ranking. However, as a deep reinforced learning
model with MCTS, the M2DIV is difficult to train since MCTS is
so time consuming that the M2DIV propose another raw policy
without MCTS [15] in adaption to some online ranking tasks.

In this paper, we propose a new search result diversification
framework to address the issues above. This framework can model
all the candidate documents as a whole sequence, and leverage both
the novelty and the subtopic coverage of every candidate document
simultaneously. More specifically, we use a self-attention based
encoder-decoder structure to model the interactions between can-
didate documents and subtopics. We call this framework Diversity
Encoder with Self-Attention (DESA). The self-attention network
has been widely used in order to learn the context-aware represen-
tations of words. Comparing with CNN and RNN, the self-attention
network allows every item in thewhole sequence to interact directly
with each other simultaneously, and it can learn the long-range de-
pendencywell. In the task of search result diversification, we use the
self-attention network to build an encoder-decoder framework for
modeling the candidate document sequence and the subtopics. The
encoder component can learn the document interactions globally
in the whole candidate document sequence, indicating the novelty
of every candidate document. And the decoder component can
learn the matching distributions between the documents and the
subtopics. Instead of comparing every single candidate document
with the selected document sequence, the framework will model the
whole candidate document sequence and jointly return the ranking
scores of all the candidate documents in the ranking task. We also
give a theoretical analysis of how self-attention mechanism works
in the task of search result diversification. Since self-attention net-
work is suitable for parallel computing, the proposed DESA model
is easy to train. Experimental results with the TRECWeb Track data
show that the model outperforms the state-of-the-art diversification
models significantly.

The contributions of the paper are summarized as follows:
(1) We propose a framework which can take the whole candidate
document sequence as input and model the interactions between
all the candidate documents for measuring their information utili-
ties globally. Comparing with the greedy sequential selection ap-
proaches, this framework will get a higher probability of achieving
the global optimal ranking.
(2) More specifically, we use a self-attention based encoder-decoder
structure and model both the novelty and the subtopic coverage of
the candidate documents. This self-attention based model is suit-
able for parallel computing and can be trained in limited time.
(3) We theoretically analyze why self-attention is suitable to the
search result diversification task. Experimental results verify the
effectiveness of the proposed model.

2 RELATEDWORK
2.1 Implicit and Explicit Diversification Models
Existing search result diversification models can be divided into
implicit and explicit ones depending on modeling the user intents
(represented as subtopics) explicitly. The implicit ranking model
calculates the similarity between every candidate document and the
previous selected documents, and assume that the more dissimilar
the candidate document is to the selected documents, the more
diversified it will be. The most typical implicit model is the MMR
(Max Margin Relevance) [5] model:

ScoreMMR = 𝜆score(𝑑𝑖 , 𝑞) − (1 − 𝜆)max𝑑 𝑗 ∈𝑆 sim(𝑑𝑖 , 𝑑 𝑗 ),

where score(𝑑𝑖 , 𝑞) is relevance score of the current document candi-
date 𝑑𝑖 and the given query 𝑞, sim(𝑑𝑖 |𝑑 𝑗 ) is the similarity between
𝑑𝑖 and the selected document 𝑑 𝑗 in the selected set 𝑆 . In the view
of the MMR model, the less similar the candidate document is with
the selected documents, the more diversified it will be. The final
ranking score of the candidate document is the linear combination
of the relevance score and the novelty score. Inheriting the spirit
of MMR, researchers have also proposed supervised methods, such
as SVM-DIV [10], R-LTR [11]), PAMM [12], and PAMM-NTN [13]),
for learning a better document similarity function automatically.

The explicit approaches model the underlying user intents of the
issued query, those intents are represented as subtopics. In the view
of explicit diverse ranking, comparing with the selected document
sequence, a diversified candidate document should cover as many
new subtopics under the given query which has not been covered
by the selected document as possible. Nowadays both unsupervised
and supervised explicit approaches are proposed e.g. xQuAD [7],
PM2 [8], HxQuAD/HPM2 [9] and DSSA [14].

Those existing approaches used greedy document sequential
selection. They compare every single candidate document with
the selected document sequence, and choose the locally optimal
document one-by-one to fill in the document ranking list. Since the
information utilities of the candidate documents are not indepen-
dent, this strategy may not lead to global optimal rankings. Based
on the reinforced learning approach MDP-DIV [14], Feng [15] pro-
posed the M2DIV model with the Monte-Caro Tree Search (MCTS)
to search a larger ranking space and minimize the gap between
the local optimal and global optimal rankings. However, M2DIV is
difficult to train since MCTS is time consuming [15], and M2DIV
only models the document novelty, ignoring the subtopic coverage.

2.2 Self-Attention in Information Retrieval
The self-attention mechanism is a kind of attention mechanism
modeling each position in a sequence and compute the represen-
tation for each hidden state of the sequence. Recently, the models
fully based on self-attention mechanism (denoted as self-attention
network), such as Transformer [16] in the Neural Machine Trans-
lation (NMT) task, have achieved great successes on many NLP
tasks. Researchers have used self-attention networks, e.g. GPT [17],
BERT [18] and ERNIE [19], as alternatives to RNNs and CNNs in
many NLP tasks. However, to the best of our knowledge, only a few
researchers [20, 21] have tried to use the self-attention network in
the information retrieval tasks. There are no self-attention based
models designed for the search result diversification task.
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Table 1: Notations used in this paper

Notation Description
𝑞 the input query
I,𝑞𝑖 subtopics corresponding to 𝑞, 𝑞𝑖 ∈ I
D the candidate document sequence
𝑫 embeddings of the candidate document sequence
𝑰 embeddings of all the subtopics
R the returned document rank list
𝑥𝑞 document relevance features to the query
𝑥𝑞𝑖 document relevance features to the 𝑖-th subtopics
𝒅𝑡 initial document embedding for the 𝑡-th document
𝒒𝑡 initial subtopic embedding for the 𝑡-th subtopic
𝒉enc𝑡 the encoder output for 𝑡-th document
𝒉dec𝑡 the decoded output for 𝑡-th document
𝑠𝑞𝑖 relevance score of the document to the 𝑖-th subtopic
𝒗𝑑𝑡 ,𝑞,𝑞𝑖 document vector for generating the ranking score
[; ] concatenation operation

In this paper, we propose using self-attention to model the in-
teractions of candidate documents and subtopics for search result
diversification.

3 THE DIVERSIFICATION FRAMEWORK
In this section, we will first describe the overall structure of the self-
attention based diversification framework DESA, then introduce
the details of each component and the optimization process. We
also propose a theoretical analysis to explain why self-attention is
suitable to the search result diversification task. Finally, we compare
DESA with existing models and discuss their relationships.

3.1 Problem Formulation
Table 1 shows the notations and their descriptions used in this paper.
Given a query 𝑞, we have 𝑘 subtopics I representing different
user intents, and 𝑞𝑖 is the 𝑖−th subtopic (𝑖 ∈ [1, 𝑘] and 𝑞𝑖 ∈ I).
Suppose D is a list of candidate documents for 𝑞, the target of
search result diversification is to return a new ranked document
list R based on initial ad-hoc rank list D, where diverse documents
covering different subtopics are ranked higher in R and redundant
documents are ranked lower.

Different from the ad-hoc retrieval task which is solely designed
for returning relevant documents, search result diversification needs
to consider both the relevance of each single document and the
similarity between them. As introduced in Section 1, most existing
diversification models used the greedy selection approach: they it-
eratively select the next best document by evaluating the relevance
of each remaining document and its novelty bring to the results
based on the list of documents which are already selected in early
iterations.

3.2 DESA: the Overall Framework
In Figure 1, we show the overall structure of our proposed DESA
framework. Different from existing approaches which greedily se-
lect the next best documents and sequentially generate R, DESA

calculates all diverse ranking scores for each candidate document
simultaneously, then sorts the documents based on the scores and
gets the diverse ranking list directly. i.e., DESA directly gets a list
of ranking scores S𝐷 by:

S𝐷 = DESA(D, 𝑞,I) . (1)

DESA takes the whole candidate document sequence as input
and models the interactions between all the candidate documents
for measuring their information utilities globally. Comparing with
the greedy sequential selection approaches, this framework will get
a higher probability of achieving the global optimal ranking. More
specifically, we use an encoder-decoder structure based on self at-
tention to model the relationship between each document in D
and each subtopic 𝑞𝑖 ∈ I. The encoder component takes the whole
candidate document sequenceD as input, and returns the represen-
tations of all the documents simultaneously. After interacting with
every other candidate document, the document representations can
indicate the novelty or dissimilarity of a document. Then the de-
coder component takes both document sequence and subtopics as
input, returning the decoded document representations indicating
the subtopic coverage of the documents. Finally, those represen-
tations will be used by a learning-to-rank function to judge the
diverse ranking scores of the documents. Key components of the
framework are briefly introduced as follows.

(1) Document Representations. Suppose 𝑑𝑡 is the 𝑡-th docu-
ment in D, 𝒅𝑡 is the initial distributed representation of the docu-
ment 𝑑𝑡 . In order to avoid overfitting, we follow [22] and use un-
supervised methods doc2vec [23] to generate the initial document
representations instead of building the document representations
automatically.

(2) Self-attention Encoder. The self-attention encoder in the
framework of DESA takes 𝑫 as input and returns the represen-
tations 𝑯 enc

𝑫 of the whole document sequence. The encoder also
takes the embeddings of subtopics 𝑰 as input and returns the repre-
sentations 𝑯 enc

𝑰 for all the subtopic. i.e., we have:

𝑯 enc
𝐷 = SelfAttnEnc(𝑫),

𝑯 enc
𝐼

= SelfAttnEnc(𝑰 ),

where the self-attention encoder is denoted as SelfAttnEnc, which
will be introduced in the next section.

(3) Self-attention Decoder. The decoder will take the encoded
representation of document sequence 𝑯 enc

𝐷
and subtopics 𝑯 enc

𝐼
as

an input, and return the decoded representations 𝑯dec
𝐷

for all the
documents. These decoded representations model the subtopic cov-
erage of the documents. This step can be described as the following
equations, and the decoder is denoted as SelfAttnDec:

𝑯dec
𝐷 = SelfAttnDec(𝑯 enc

𝐷 ,𝑯 enc
𝐼 ),

𝒉enc𝑡 = 𝑯 enc
𝑫 [index(t)],

𝒉dec𝑡 = 𝑯dec
𝑫 [index(t)],

where 𝑖𝑛𝑑𝑒𝑥 (𝑡) is the operation of getting the vector at index 𝑡 . For
the 𝑡−th document, the encoded and decoded representations 𝒉enc𝑡

and 𝒉dec𝑡 are used to get the document’s ranking score.
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(4) Subtopic Document Ranking. We use learning-to-rank
to learn the relevance score of the 𝑖-th subtopic 𝑠𝑞𝑖 through the
subtopic relevance features 𝒙𝑞𝑖 :

𝑠𝑞𝑖 = 𝒙𝑇𝑞𝑖𝒘𝑟 (𝑖 ∈ [1, 𝑘]).

Here𝒘𝑟 is a learnable parameter.We use the same relevance features
as the previous work [14] for 𝒙𝑞 and 𝒙𝑞𝑖 , including BM25, TF-IDF,
language model scores, Page Rank, the numbers of incoming links
and outgoing links, et al. More details about these features can be
found in [14] and we omit the details due to space limitation. In the
future, we plan to explore more neural-based features.

(5) The Final Ranking. The summarized document feature
vectors 𝒗𝑇

𝑑𝑡 ,𝑞,𝑞𝑖
are concatenated by the following components: the

query relevance features 𝒙𝑞 , the encoded document representation
𝒉enc𝑡 and decoded document representation 𝒉dec𝒕 , and the relevance
scores of all the𝑘 subtopics [𝑠𝑞1 , . . . , 𝑠𝑞𝑘 ]. Note that we use the same
set of ranking features for query 𝑞 with those used for subtopics as
introduced in step (4). Given the document feature vectors 𝒗𝑇

𝑑𝑡 ,𝑞,𝑞𝑖
,

we use learning-to-rank to train the final ranking models. The
ranking model then returns the ranking score 𝑠𝑡 ∈ S𝐷 for the 𝑡−th
document 𝑑𝑡 . We then generate the diversified ranking list R by
sorting all the candidate documents with their ranking scores in
S𝐷 . Recall that different from those greedy sequential selection
based models, DESA doesn’t depend on the sequential selection
process. This is similar to some ad-hoc ranking models such as
SetRank [20].

This process is formulated as the following equations:

𝒗𝑑𝑡 ,𝑞,𝑞𝑖 = [𝒙𝑞 ;𝒉enc𝑡 ;𝒉dec𝒕 ; 𝑠𝑞1 , . . . , 𝑠𝑞𝑘 ], (2)

𝑠𝑡 = 𝒗𝑇
𝑑𝑡 ,𝑞,𝑞𝑖

𝒘𝑣 . (3)

where𝒘𝑣 is a learnable parameter, [; ] means the concatenation.
In the remaining part of this section, we will introduce the com-

ponents in details.

3.3 The Self-Attention Encoder Component
Thewhole self-attention encoder component denoted as SelfAttnEnc
takes all the candidate document embeddings as a whole docu-
ment sequence 𝑫 , and returns all the document representations
as a whole matrix denoted as 𝑯 enc

𝑫 in parallel. The representa-
tions will indicate the novelty of each document comparing with
other candidate documents. In this section we will introduce the
implementation of self-attention encoder in details.

3.3.1 The Attention Function. In the search result diversification
task, the vector representations of documents are used as input to
the self-attention layer. Different from RNN, self-attention network
will not model the sequence information explicitly, so the standard
Transformer structure also includes an optional component of po-
sitional encoding to incorporate the sequence information. Here
we deploy an optional learnable position embeddings for capturing
the sequence information of the documents and concatenate them
with the document embeddings.

We use the multi-layer encoder block of the Transformer to
implement DESA’s self-attention component, based on the scaled

𝑥𝑞1 , … , 𝑥𝑞𝑘

MLP

𝑠𝑞1, … , 𝑠𝑞𝑘

𝐷 = [𝑑1 , … 𝑑𝑛]

SelfAttention

Encoder

𝐻𝐷
𝑒𝑛𝑐 = [ℎ1

𝑒𝑛𝑐 , … ℎ𝑛
𝑒𝑛𝑐 ]

𝐼 = [𝐼1 , … 𝐼k]

SelfAttention

Encoder

Document embeddings Subtopic embeddings Subtopic relevance features

Subtopic 

Encoded

Representations

Document 

Encoded

Representations

Subtopic weighted scores

𝑠𝑞1, … , 𝑠𝑞𝑘
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𝑒𝑛𝑐

Query relevance features

𝑥𝑞

MLP

Ranking score for the 𝑡-th document

SelfAttention

Decoder Document

Decoded

Representations

ℎ𝑡
𝑑𝑒𝑐

𝐻𝐼
𝑒𝑛𝑐 = [ℎ𝑞1

𝑒𝑛𝑐 , … ℎ𝑞𝑘
𝑒𝑛𝑐 ]

𝐻𝐷
𝑑𝑒𝑐 = [ℎ1

𝑑𝑒𝑐 , … ℎ𝑛
𝑑𝑒𝑐]
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𝑒𝑛𝑐 = 𝐻𝐷

𝑒𝑛𝑐[𝑖𝑛𝑑𝑒𝑥(𝑡)]
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𝑑𝑒𝑐[𝑖𝑛𝑑𝑒𝑥(𝑡)]

Figure 1: The Overall Structure of DESA. The framework
takes thewhole candidate document sequence and subtopics
together as input, and returns the encoded and decoded rep-
resentations of every candidate document simultaneously.
For the 𝑡−th document 𝑑𝑡 , the learning-to-rank function
takes the query relevance features 𝑥𝑞 , the encoded and de-
coded representation ℎenc𝑡 and ℎdec𝑡 and subtopic relevance
scores 𝑠𝑞𝑖 as input, and returns the ranking score 𝑠𝑡

dot-product attention function denoted as Attn follows:

Attn(𝒒,𝑲 , 𝑽 ) = Softmax( 𝒒𝑲
𝑇

√
𝑑

)𝑽 . (4)

where 𝒒, 𝑲 and 𝑽 denote the query, key and value matrices of the
attention function. It should be addressed that the concept “query”
here represents the query in dot-product attention, which is not
the “query” in information retrieval. In search result diversification
tasks, the model will take the sequence of document representations
𝑫 as an input, and the query matrix can be defined as 𝒒 = 𝑫 .

3.3.2 The Multi-Head Attention Component. Following by some
previous work e.g. SetRank [20], we use the multi-head strategy in
order to learn multiple aspects of different documents. The multi-
head attention strategy denoted as MultiHead will first project the
inputs 𝒒,𝑲 , 𝑽 into ℎ different heads with the dimension 𝐸 = 𝐸/ℎ:

MultiHead(𝒒,𝑲 , 𝑽 ) = [𝒂1; . . . ; 𝒂ℎ], (5)
where 𝒂𝑖 is defined by:

𝒂𝑖 = Attn(𝒒𝑾𝑄

𝑖
,𝑲𝑾𝐾

𝑖 , 𝑽𝑾𝑉
𝑖 ), 𝑖 ∈ [1, ℎ] . (6)
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Here all those𝑾 parameters are learnable. Previous research [20]
has shown that using the multi-head strategy may help the self-
attention network to learn better document similarity distribution
at multi aspects. For the self-attention, 𝒒 = 𝑲 = 𝑽 .

3.3.3 The Overall Structure of the Self-Attention Encoder. The over-
all structure of the encoder component is a multi-layer stack of
multi-head self-attention block. Similar as the original Transformer
encoder block, each of those self-attention encoder layers contains
a dropout layer and a fully connected feed-forward network (de-
noted as FeedForward) with ReLU function as activation function.
The 𝑖−th layer of the block is denoted as MSB𝑖 and the encoder
component SelfAttnEnc with 𝐿 layers can be described as follows:

SelfAttnEnc(𝑫) = MSBL (MSBL−1 (. . .MSB1 (𝑫)), (7)
MSB(𝑯prev) = LayerNorm(𝑿 + FeedForward(𝑿 )), (8)

𝑿 = LayerNorm(𝑯prev +MultiHead(𝑯prev,𝑯prev,𝑯prev)), (9)

where LayerNorm denotes the layer normalization operation [24],
𝑯prev is the output hidden state matrix of the previous encoder
layer, and 𝑯prev = 𝑫 is for the first layer.

After multi-layers of multi-head attention interactions, the out-
put hidden state of 𝑛 input documents 𝑯output = [𝒉enc1 , . . . ,𝒉enc𝑛 ]
can be used as the encoded document representations 𝑯 enc

𝐷
. This

representation can indicate the novelty of a document, and the
learning-to-rank function can take this representations to judge if
a candidate document is novel or redundant comparing with other
candidate documents.

3.4 The Self-Attention Decoder Component
As we described in Section 3.2, the encoder can also take the
subtopics as inputs, and return the encoded representation of the
subtopics. This is because the subtopic embeddings we used are
actually the document embeddings. We use the subtopic embed-
dings released by Jiang et al. [14] based on doc2vec. The subtopic
embeddings is produced from the pseudo documents of those corre-
sponding subqueries: retrieve top Z documents with traditional IR
model (e.g. BM25) first, and then concatenate these documents to-
gether to produce the pseudo documents. Those embeddings of the
pseudo documents will be used as the embeddings of the subtopics.

The encoded subtopic representations are important to the de-
coder, since these representations include the attention distributions
of the subtopics. In diverse ranking tasks, the available subtopics
are mined from the query and they are usually more than the actual
user intents. Comparing with the user intents, the subtopics may
still contain redundancy and mislead the diversification model. And
the encoded subtopic representations include the encoder attention
distributions of the subtopics, these distributions can be used to
leverage the subtopics’ potential redundancy and minimize the
misleading.

The decoder structure will take the representation of documents
as query matrix, and subtopics as key and value matrix, returning
the 𝑯dec representation matrix for the documents with multi-head
attention:

𝑯dec = SelfAttnDec(𝑯 enc
𝐷

,𝑯 enc
𝐼

) (10)
SelfAttnDec(𝑯 enc

𝐷 ,𝑯 enc
𝐼 ) = MultiHead(𝑯 enc

𝐷 ,𝑯 enc
𝐼 ,𝑯 enc

𝐼 ) . (11)

The output of the decoder𝒉dec𝑡 will be the subtopic representation of
the document 𝑑𝑡 , this representation models the subtopics coverage
of document 𝑑𝑡 . The rest part of the decoder component is just the
same as the encoder component, including feed-forward network,
ReLU activation function and layer normalization.

3.5 Training and Optimization
In this section we will introduce the training and optimization
process of DESA in details. As we described above, DESA will
take the document sequence and subtopics as input, and return
the ranking scores of all those documents in the given document
sequence. In the training phase, the score of a ranking 𝑟 is calculated
by summing up all the scores of documents in 𝑟 :

𝑠𝑟 =

|𝑟 |∑
𝑖=1

𝑠𝑖 . (12)

3.5.1 The list-pairwise sampling. Since the dataset of search result
diversification task is limited, we inherit the list-pairwise sampling
approach from Jiang et al. [14] in order to get enough training
samples. We are using pairs of training samples (𝐶,𝑑1, 𝑑1) with
common context𝐶 , appending document pair 𝑑1 and 𝑑2 to generate
the document sequence pair 𝑟1 and 𝑟2, and the metric(e.g. 𝛼-nDCG)
of positive ranking𝑀 (𝑟1) should be better than the negative rank-
ing𝑀 (𝑟2).

The sampling process is described as follows: first the contexts
𝐶 with different lengths are obtained from both ideal rankings and
random sampled rankings, then the rest of the candidate documents
are traversed, sampling a pair of document (𝑑1, 𝑑2) when [𝐶,𝑑1]
and [𝐶,𝑑2] are leading to different metrics.

When using the list-pairwise samples, the original loss function
can be defined as a binary classification log-loss formation:

𝐿𝑜𝑠𝑠 =∑
𝑞∈𝑄

∑
𝑠∈𝑆𝑞

|Δ𝑀 | [𝑦𝑠 log(𝑃 (𝑟1, 𝑟2)) + (1 − 𝑦𝑠 ) log(1 − 𝑃 (𝑟1, 𝑟2))]

(13)
where 𝑠 is a pair of samples and 𝑆𝑞 is all the sample pairs of

query 𝑞, 𝑄 is the set of all the queries, 𝑦𝑠 = 1 for positive and 0
for negative, 𝑃 (𝑟1, 𝑟2) = 𝜎 (𝑠𝑟1 − 𝑠𝑟2 ) for the probability of being
positive. Δ𝑀 = 𝑀 (𝑟1)−𝑀 (𝑟2) represents the weights of this sample,
meaning that if the metric gap between the positive and negative
rankings is larger, the sample will be more important.

3.5.2 The sequence mask for training. In the training phase, both
the positive and the negative samples are the ground truth rank-
ings, not the candidate document sequence. So the self-attention
components are modified with a sequence mask used in the original
Transformer decoder structure. Similar as the behavior of the users,
the diverse ranking task is a top-down process and the evaluation
metrics of the document at position 𝑖 should not be affected by the
document at position 𝑗 ( 𝑗 > 𝑖). The sequence mask will prevent
the unexpected self-attention interactions and make sure every
document will only interact with itself and those documents at
former positions. The scores of documents at former position will
not be affected by the documents at latter position. Notice that the
sequence mask will only take effect in the training phase.
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3.5.3 The context-based pairwise loss function. As we described
in Equation (12), the scores of a ranking 𝑟 is the sum of all the
document ranking scores in the sequence. For the sampling pair
𝑟1 = [𝐶,𝑑1] and 𝑟2 = [𝐶,𝑑2] we’ve got 𝑠𝑟1 =

∑
𝑖∈𝐶1 𝑠𝑖 + 𝑠𝑑1 and

𝑠𝑟2 =
∑
𝑖∈𝐶2 𝑠𝑖 + 𝑠𝑑2 . Here 𝐶1 = 𝐶2 = 𝐶 .

As we described above, ignoring the effect of dropout layers, the
sequence mask in training phase will strictly ensure that

∑
𝑖∈𝐶1 𝑠𝑖 =∑

𝑖∈𝐶2 𝑠𝑖 . So we’ve got:

𝑠𝑟1 − 𝑠𝑟2 = 𝑠𝑑1 − 𝑠𝑑2 ,

𝑃 (𝑟1, 𝑟2) = 𝑃 (𝑑1, 𝑑2) .
(14)

Denoting the binary classification log-loss function as 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 ,
Equation (13) can be simplified as:

𝐿𝑜𝑠𝑠 =
∑
𝑞∈𝑄

∑
[𝐶,(𝑑1,𝑑2) ] ∈𝑆𝑞

|Δ𝑀 |LogLoss(P(d1, d2)) . (15)

This is the definition of the context-based pairwise function. For
search result diversification task, the scores of 𝑑1 and 𝑑2 depends
on the context 𝐶 , but since the metrics of the context documents
should not be affected by the latter documents, the ranking scores
of

∑
𝑖∈𝐶 𝑠𝑖 will not affect the loss function. This means that the

context-based pairwise loss function is actually a pairwise loss
function for the document pair (𝑑1, 𝑑2), not a listwise function.
The target of the model optimization is to maximize the distance
between positive document𝑑1 and negative document𝑑2. When the
model is being trained, the goal of optimization is to improve the
model’s ability of indicating if a single document in the candidate
sequence is novel and covers more subtopics comparing with the
other candidate documents.

3.6 The Ranking Process with Self-Attention
As we described above, research shows that the diversity ranking
is NP-hard and for most of the previous models, greedy sequential
selection is a common solution [25]. Those models will compare
every candidate document with the selected sequence and select
the best candidate document one-by-one appending it into the se-
lected sequence. For our self-attention based framework, when the
ranking process starts, the model will take all the non-diversified
candidate document ranking as an initial input, and jointly return
the diversified ranking scores of all those documents. Similar as
some other self-attention based ad-hoc ranking approach e.g. Se-
tRank [20], the model can return the ranking list with sorting all
the candidate documents with their ranking scores. Different from
the greedy document sequential selection models, DESA doesn’t
depend on the selected document sequnece.

With globally measuring all the candidate documents, DESA will
outperform the previous models especially at former ranking posi-
tions. We will take the example in Section 1 to explain. Assuming
there are three candidate documents 𝑑1, 𝑑2, 𝑑3, with 𝑑1 covering the
subtopic 𝑞1, 𝑑2 covering 𝑞2, 𝑞3 and 𝑑3 covering 𝑞1, and the three
documents has got similar relevance scores to the given query.
Comparing with the greedy document selection models, DESA will
return a higher ranking scores for 𝑑2. since 𝑑2 is novel and covers
more subtopics comparing with 𝑑1 and 𝑑3. Then the 𝑑2 will be put
on a former ranking position. This process indicates the advan-
tage of DESA, because the goal of search result diversification is to

satisfy more user intents at former ranking positions, and promot-
ing the documents covering more subtopics to the former ranking
positions will be more suitable to improve the user experience.

3.7 Theoretical Analysis
In this section we will analyze the effect of self-attention in the
encoder-decoder structure of DESA. Here we will describe why
self-attention is suitable in the diverse ranking task in details. For
simplicity, we will first focus on a single-layer self-attention func-
tion in the encoder component and ignore those assist strategies e.g.
positional embedding, multi-head attention or layer normalization.

The self-attention interaction of the document sequence D is
calculated in parallel as a whole matrix, and the attention score can
be written as the following equation focusing on the 𝑡-th document
𝑑𝑡 represented as 𝑞𝑡 , discarding the scalar factor

√
𝑑 :

ScoreAttn (𝒒𝒕 ,𝑲 ) = Softmax(𝒒𝒕𝑲𝑇 ). (16)

As we described above, for self-attention, it can be approximated
that 𝒒 = 𝑲 = 𝑽 = 𝑫 , and 𝒒𝒕 ≈ 𝒅𝒕 . The 𝒒𝒕𝑲𝑇 in Equation (16) can
be seen as the dot product scores between the 𝑡-th document and
each document in the sequence including itself. With the softmax
function, those scores will be converted into weights. Since the
dot product of two documents can represent the similarity score
between the two documents, those weights model the similarity
distribution between 𝑑𝑡 and every document in the sequence. The
self-attention output of 𝑑𝑡 is defined as follow:

ℎ𝑡 = Softmax( [𝑠1, . . . , 𝑠𝑛])𝑇 𝑽
= [𝑤1, . . . ,𝑤𝑛]𝑽

=𝑊𝑇
𝑡 𝑽 .

Here 𝑛 is the length of document sequence, 𝑠𝑖 is the dot product
between document 𝑑𝑡 and 𝑑𝑖 , and𝑤𝑖 is the similarity weight con-
verted from 𝑠𝑖 . Section 3.5.1 shows the details of list-pairwise sam-
pling for training. With shared selected context document sequence
𝐶 , positive and negative document pair 𝑑pos, 𝑑neg, the positive and
negative samples can be written as [𝐶,𝑑p] and [𝐶,𝑑n].

Due to the property of softmax function,
∑𝑛
𝑖=1𝑤𝑖 = 1, for the

weights distribution of document 𝑑𝑡 , the equation can be written
as: ∑

𝑖∈𝐶
𝑤𝑖 +𝑤𝑡 = 1.

In the view of MMR, comparing with the context 𝐶 , the positive
document 𝑑pos should be a novel document, which means that
𝑑pos should be dissimilar with the documents in the context 𝐶 .
The dot product scores of 𝑑pos with other documents 𝑑𝑖 (𝑖 ∈ 𝐶)
should be significantly smaller than the scores of 𝑑pos with itself,
indicating 𝑠pos >>

∑
𝑖∈𝐶 𝑠𝑖 (𝑖 ∈ 𝐶). After the softmax function,

it has got 𝑤pos >>
∑
𝑖∈𝐶 𝑤𝑖 (𝑖 ∈ 𝐶). For the negative document

𝑑neg, since it’s a redundant document, the dot product scores with
the context documents will be close to the score with itself, and
𝑤neg >>

∑
𝑖∈𝐶 𝑤𝑖 (𝑖 ∈ 𝐶) is no longer valid.

As a result, a positive document will gain an attention distribu-
tion concentrated to the document itself, while a negative document
will gain an average distribution. This is identical to the spirit of
MMR, since a novel document should be dissimilar with the other
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documents, and its similarity scores with other documents should
be much smaller than the score with itself.

With the context-based pairwise optimization, the attention dis-
tribution distance gap the positive and negative documents will
get bigger, and the learning-to-rank function of the model will be
trained to return a ranking score of 𝑑pos higher than 𝑑neg. With
more self-attention layers, the distribution distance between the
positive and negative samples will be expanded and the learning-
to-rank function will be more effective to judge the novelty of a
candidate document.

This analysis mainly depends on the self-attention encoder, and
the principle of the decoder component is similar as the encoder:

𝒉dec𝑡 = Attn(𝒉enc𝑡 ,𝑯 enc
𝐼

,𝑯 enc
𝐼

)

= [𝑤dec
1 , . . . ,𝑤dec

𝑛 ]𝑯 enc
𝐼

= (𝑊 dec
𝑡 )𝑇𝑯 enc

𝐼
.

Here the𝑤dec
𝑖

is the attention weights between document 𝑑𝑡 and
subtopic 𝑞𝑖 . Similar as the encoder attention distribution, the de-
coder attention distribution of 𝒉dec𝑡 will be focusing on the subtopics
relevant to 𝑑𝑡 , and the irrelevant subtopics will be ignored with
lower attention weights. The decoder attention distributions of
positive and negative documents will be similar as the encoder
attention. For the positive document the attention distribution will
be concentrated to the relevant subtopics, and for the negative doc-
ument, the distribution will be average since none of the subtopics
are relevant to the document.

The decoder takes the encoded output representations of doc-
uments 𝑯𝑒𝑛𝑐D and subtopics 𝑯𝑒𝑛𝑐I as input, and a redundant doc-
ument will also be affected by its encoder attention distribution,
letting its decoder attention distribution more average than the
decoder attention distribution for its original representation. This
effect is also valid for subtopics. With a subtopic 𝑞𝑖 with redundant
encoder attention, since 𝒉enc𝑞𝑖

= (𝑾𝑒𝑛𝑐
𝑞𝑖

)𝑇 𝑰 , its corresponding de-
coder attention weights 𝑤dec

𝑖
will also be affected and weakened

through the average distribution of𝑾enc
𝑞𝑖

.
Taking 𝒉dec𝑡 as input, the learning-to-rank function will be able

to model the subtopic coverage of 𝒅𝑡 together with the relevance
scores of subtopics.

3.8 Discussion
DESA is inspired by several existing models in IR based on self-
attention e.g. SetRank [20]. And the implicit implementation of
DESA with no subtopics can be seen as an adaption of SetRank for
search result diversification task. While the properties of diverse
ranking task is significantly different from ad-hoc ranking task,
and the training dataset of diverse ranking task is very limited.
Comparing with SetRank, DESA has got the following differences:

(1) SetRank is not designed for search result diversification
task, it’s Transformer encoder structure will be unable to take the
subtopics into consideration. While DESA is using a full encoder-
decoder structure, and it can leverage both the document novelty
and subtopic coverage.

(2) DESA takes the preliminary representations of the document
sequence as input, instead of the relevance features used in Se-
tRank. The self-attention networks in DESA only focus on learning

the representations of the documents to indicate if a document is
novel and covers more subtopics, and the framework deals with
the relevance features separately.

(3) SetRank is using the attention rank loss function as a listwise
function, focusing on measuring the attention distribution of the
whole ranking list. And DESA is using context-based pairwise
function as a pairwise function, the attention distributions stand
for the similarity distribution and subtopic satisfaction distribution
of every single document.

4 EXPERIMENTAL SETTINGS
4.1 Data Collections and Evaluation Metrics
4.1.1 The data collections. In the experiments we are using the
same dataset as many previous diversification models(e.g.HxQuAD,
PAMM-NTN, DSSA) which includes the Web Track dataset from
TREC 2009 to 2012. There are in total 200 queries and 198 queries
are used since query #95 and #100 have got no diversity judgements
to use. Each of them includes 3 to 8 annotated subtopics, and the
relevance rating is marked as relevant or irrelevant at subtopic level.
We conduct all the experiments on the ClueWeb09 dataset [26].

The subtopics used by the model come from the Google query
suggestions provided by Hu et al.1, and we only use the first level
of the subtopics with no hierarchical subtopics. The max subtopic
number of the queries is 10, and the average subtopic number
is about 9.48. As those previous works do [9] we treat all those
subtopics with uniform weights.

For a fair comparison, we are using the document relevance
features and embeddings exactly the same as the DSSA, which have
been released by Jiang et al. [14] in the repository on GitHub2.
Those training data includes 18 relevance features for each query
and subquery produced by traditional IR models e.g. BM25 and TF-
IDF, and the document embeddings are generated by doc2vec with
window size 5. In the future work we will try to import several deep-
learning based technologies for feature extraction and document
representation e.g. K-NRM [27] or BERT [18].

4.1.2 The evaluation metrics. The official diversity evaluation met-
rics of Web Track include ERR-IA [28], 𝛼-nDCG [29] and NRBP
[30], which are used in our experiments. Besides the metrics above,
we also include the metrics of Precision-IA [6] (denoted as Pre-IA)
and Subtopic Recall [31] (denoted as S-rec). Inheriting the spirit
of the previous works [11–14], all those metrics are computed on
top 20 results of a document ranking list. Two-tailed paired t-test
are used to conduct significance testing with p-value<0.05. In the
significance testing, DESA is compared with the DSSA as the SOTA
explicit supervised model.

4.2 Model Settings
On our GPU machine, the training phase of DESA with the training
samples of 160 queries can be finished in 3 hours. We tune the
layer number 𝐿 of the self-attention network in order to avoid
overfitting, here 𝐿 = 𝐿enc+𝐿dec, 𝐿enc is the layer number of encoder
component and 𝐿dec is the number of decoder. We compare DESA
with the undiversified baseline and those previous implicit/explicit

1http://www.playbigdata.com/dou/hdiv
2https://github.com/jzbjyb/dssa
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supervised models, the detail settings of DESA will be described
below. We use 5-fold cross validation to turn the parameters in all
experiments with the widely used metrics 𝛼-nDCG@20.

4.2.1 Baseline models. The settings of the baseline models are
described as follows:

Lemur. We use the search results produced by language model
and retrieved by the Lemur service3 as the non-diversified baseline.
These results are released by Hu et at. [9] and can be found on the
website4.

xQuAD [7], PM2 [8], HxQuAD andHPM2 [9]. These are the
unsupervised explicit baseline approaches for comparison. All the
unsupervised methods use the parameter 𝜆 to combine the rele-
vance and diversity linearly. HxQuAD and HPM2 requires extra
parameter 𝛼 to control the weights of the hierarchical subtopic
layers. The parameters are tuned with cross validation and ListMLE
[10] is used to learn a prior relevance function with no diversifica-
tion.

R-LTR [11], PAMM [12] and PAMM-NTN [13]. Inspired by
previous work [14], we use the metric of 𝛼 − 𝑛DCG@20 to tune
the parameters. The neural tensor network(NTN) is used with
both R-LTR and PAMM, denoted as R-LTR-NTN and PAMM-NTN.
The number of tensor slices for NTN is tuned from 1 to 10, and
the number of positive ranking 𝜏+ and negative ranking 𝜏− are
tuned per query for the PAMM. The distributed representations of
documents here are 100-dimensional vectors generated by the LDA
[32].

DSSA [14]. We train the DSSA model with the code and data
released by Jiang et al. on GitHub5, and use the following optimized
settings described in the work of DSSA: LSTM cells, max-pooling on
subtopic attention, hidden size 50, doc2vec embedding dimension
100 and random permutation count 10 for the list-pairwise samples.
We do not use the embedding of LDA reported in the work, instead
we use the doc2vec embedding released for a fair comparison. The
result is denoted as DSSA (doc2vec).

Since the deep reinforced learning based models e.g. MDP-DIV
[14] and M2DIV [15] are taking too much time to train, we do not
take those models as baseline.

5 EXPERIMENTAL RESULTS
5.1 Overall Results
Table 2 shows the results overall of all the models above. DESA
outperform all the baselines include the state-of-the-art implicit and
explicit approaches. The performance improvement is statistically
significant on all the metrics except the Pre-IA. These experimental
results shows the advantage of DESA clearly. Comparing the state-
of-the-art supervised approach, DESA’s improvement over DSSA on
𝑎𝑙𝑝ℎ𝑎−nDCG is about 3%. As an explicit model, DSSA use the RNN
and attention mechanism to select the best document satisfying
the subtopics needed by the selected sequence. Since the RNN
can’t measure the interactions between each document directly,
DESA outperforms DSSA by leveraging both document novelty
and subtopic coverage simultaneously. And as a greedy sequential

3Lemur service: http://boston.lti.cs.cmu.edu/Services/clueweb09_batch/
4http://www.playbigdata.com/dou/hdiv
5https://github.com/jzbjyb/dssa

Table 2: Performance comparison for all the approaches.
Best Results are in bold. ⋆ indicates that the model signifi-
cantly outperforms all baselines.

Methods ERR-IA 𝛼-nDCG NRBP Pre-IA S-rec
Lemur .271 .369 .232 .153 .621
xQuAD .317 .413 .284 .161 .622
PM2 .306 .411 .267 .169 .643
HxQuAD .326 .421 .294 .158 .629
HPM2 .317 .420 .279 .172 .645
R-LTR .303 .403 .267 .164 .631
PAMM .309 .411 .271 .168 .643
R-LTR-NTN .312 .415 .272 .166 .644
PAMM-NTN .311 .417 .272 .170 .648
DSSA (doc2vec) .350 .452 .318 .184 .645
DESA .363⋆ .464⋆ .332⋆ .184 .653⋆

selection model, DSSA may select the local optimal document at
each step, leading to a global suboptimal ranking. While DESA can
learn the interactions between all the candidate documents and
subtopics globally, significantly minimizing the gap between local
and global optimal rankings.

5.2 Effects of Hyperparameter Settings
We produce several experiments in order to investigate the effects of
different settings to the performance of DESA. Since DESA mainly
depends on the effect of self-attention, we focus on the self-attention
component and deploy different experiments to test the different
settings of the self-attention encoder. The baseline settings of the
self-attention component include the following items: the initial
document/subtopic embedding in 100 dimensions projected into 256
dimensions as the input of the self-attention network, the 𝑑FF = 400
in the feed-forward network and the head number 𝐻 = 8 for multi-
head attention.

We test the effect of different encoder layer numbers 𝐿enc from
1 to 3 with decoder layer numbers 𝐿dec=1, and the effect of 𝐿dec=1
and 𝐿dec=2 with encoder layer number 𝐿enc=1 or 𝐿enc=2.

The effects of different settings are shown in Table 3. As we
can see, different settings of the self-attention component may
slightly influence the effect of the whole DESA framework. In our
experiment, we find that the total number of self-attention layer
𝐿 should be strictly limited in order to prevent over-fitting and
ensure the performance. In the diverse ranking task, 𝐿enc=2,𝐿dec=1
will lead to the best performance. Since the dataset is limited, more
self-attention layers will cause more computational cost and may
lead to overfitting.

5.3 Effects of Subtopic Settings
In DESA, the decoder component takes the subtopics as the key and
value matrices and returns the decoded document representations
indicating the coverage of the subtopics. Here we conduct several
experiments to check the effect of different decoder settings.

The encoder-only framework can be seen as a simple adaption
of SetRank to the diverse ranking task, so we proposed two settings
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Table 3: Effects of Different Settings

Settings ERR-IA 𝛼-nDCG NRBP Pre-IA S-rec
𝐿enc=1, 𝐿dec=1 .357 .457 .324 .183 .650
𝐿enc=2, 𝐿dec=1 .364 .464 .332 .184 .653
𝐿enc=3, 𝐿dec=1 .355 .455 .323 .182 .654
𝐿enc=1, 𝐿dec=2 .361 .462 .329 .182 .658
𝐿enc=2, 𝐿dec=2 .358 .460 .324 .180 .658
No Subtopics .344 .445 .311 .177 .648
Relevance Scores .357 .458 .326 .183 .653
Encoded Subtopics .364 .464 .332 .184 .653
Original Subtopics .349 .453 .313 .180 .655

in order to show the effect of the decoder components. The two
settings are denoted as:“No Subtopics” and “Relevance Scores”. The
“No Subtopics” indicates the framework with encoder and query
relevance features only, none of the subtopic information is used
in ranking task. This framework can be seen as a simple adaption
of SetRank to the diverse ranking task. Another expansion of the
SetRank adaption is denoted as “Relevance Scores”, where the rel-
evance scores of the subtopics 𝑠𝑞𝑖 (𝑖 ∈ [1, 𝑘]) are included, and
neither decoder component nor subtopic embeddings are used in
the framework. These two adaptions use the optimized settings of
𝐻 = 8 and 𝐿 = 𝐿enc = 3.

We also propose two settings to check the effect of the encoded
subtopic representations in the decoder component. The “Encoded
Subtopics” denotes using the encoded subtopic representations
𝑯 enc
𝐼

produced by the encoder component, and “Original Subtopics”
denotes using the original subtopic embeddings after projection.
Their hyperparameter settings are 𝐻 = 8 and 𝐿enc = 2, 𝐿dec = 1.

The experiment result shows that the full encoder-decoder struc-
ture of DESA outperforms the simple adaption of SetRank. The
structure of SetRank is not designed for search result diversifica-
tion task, and it can’t take fully use of the subtopic embeddings.
The results have prove the effectiveness of the full encoder-decoder
structure specialized for explicit search resuld diversification. Com-
paring with the simple adaption of SetRank, the decoder component
in DESA can measure the attention distribution of every docu-
ment for the satisfaction of subtopics, leveraging both novelty and
subtopic coverage together.

Besides the SetRank adaptions, the outperforming result of “En-
coded Subtopics” proves that the encoded representation of the
subtopics can be used to reduce the latent redundancy of the subtopics.
As we described in Section 4.1.1, the average subtopic number is
9.48 among all the queries, however, the actual user intent numbers
are only 3 to 8, which are smaller than the subtopic numbers in
diverse ranking task. This result indicates that the subtopics used
in ranking process may still contain redundancy and mislead the
diversification model.

We can take the query #1 “obama family tree” in the TREC
WebTrack dataset as an example. There are 10 subtopics based
on Google query suggestions, while there are only 3 actual user
intents in the TREC official subtopic annotations. And there are two
subtopics 𝑞1 for “obama family tree pictures” and 𝑞2 for “obama

Table 4: Metrics improvement per ranking position. “Total
Imp.” denotes the total improvement of DESA on all the 200
queries, “Avg Imp.” denotes the average improvement per
position.

Model ERR-IA 𝛼-nDCG
@5 @10 @20 @5 @10 @20

DSSA .328 .344 .351 400 .428 .452
DESA .343 .356 .363 .417 .439 .464
Total Imp. 2.98 2.51 2.64 3.50 2.06 2.37
Avg Imp. .597 .252 .132 .701 .206 .118

family tree photos” in the query suggestions. While both 𝑞1 and 𝑞2
are corresponding to the same user intent, the redundant subtopics
may mislead the model to select a document which covers the
“different” subtopics and increase the actual redundancy.

Comparing with original subtopic embeddings, the encoded
subtopic representations can integrate the subtopics’ encoder at-
tention distribution into the decoder attention. Similar as the docu-
ment’s attention distribution, the subtopic’s attention distribution
can also indicate the redundancy of a subtopic, and the decoder
attention of the redundant subtopic will also be affected. As a result,
the decoder attention will be adjusted to reduce the negative effect
of the latent subtopic redundancy to the diverse ranking task.

5.4 Analysis of Former Ranking Position
As we described in Section 3.6, theoretically our proposed DESA
frameworkwill perform better than the greedy document sequential
selection based model at former ranking positions. Here we analyze
the effect of DESA at different ranking positions. We compare
DESA with DSSA, the state-of-the-art greedy document sequential
selection based model. In this experiment we use the ERR-IA and
𝛼-nDCG metrics computed on top 5, top 10 and top 20 results of
a document ranking list to analyse the effect of DESA at former
ranking positions. Results are shown in Table 4

We calculate the total metric improvement of DESA comparing
with DSSA. For simplicity of calculation we use the metrics sum of
all the 200 queries instead of the meanmetrics, denoted as Total Imp.
And we calculate the average metrics improvement per position to
measure the improvement of DESA at different ranking position
ranges, this value is denoted as Avg Imp. For example, the ERR-
IA@5 of DESA and DSSA (doc2vec) is 0.343 and 0.328, the total
improvement of ERR-IA@5 is calculated as (0.343 − 0.328) × 200 ≈
2.98, and the average improvement of ERR-IA@5 is 2.98÷5 ≈ 0.597.

From this table it can be seen that the average metrics improve-
ment numbers per position of short ranking lists are larger than
the numbers of longer ranking lists. The experimental results are
identical to the analysis in Section 3.6, indicating that in the early
stage of ranking, the sequential selection based models may fail to
select the globally best candidate document after a short or empty
selected sequence. DESA can measure all the candidate documents
globally and promote the diversified documents at former posi-
tions, satisfying the user intents earlier comparing with the greedy
sequential selection based models.
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6 CONCLUSIONS
In this paper, we propose a self-attention based supervised diversifi-
cation framework leveraging both document novelty and subtopic
coverage. Instead of greedy document sequential selection, this
framework can model all the candidate documents globally and
sort those documents jointly with their ranking scores to generate
the ranking list. Comparing with the previous works of search re-
sult diversification, this is the first time to model all the candidate
documents simultaneously and select the best candidate document
globally without greedy sequential selection. The experimental
results show that modeling the candidate document interaction
between each other can significantly minimize the gap between
the local and global optimal rankings. In this work our model is fo-
cusing on the candidate document sequence, ignoring the selected
document sequence. Simultaneously modeling every document’s in-
teraction with both the other candidate documents and the selected
document sequence may be a potential future work.
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