
PSTIE: Time Information Enhanced Personalized Search
Zhengyi Ma2, Zhicheng Dou1, Guanyue Bian2, and Ji-Rong Wen3,4

1Gaoling School of Artificial Intelligence, Renmin University of China
2School of Information, Renmin University of China

3Beijing Key Laboratory of Big Data Management and Analysis Methods
4Key Laboratory of Data Engineering and Knowledge Engineering, MOE

zymaa@ruc.edu.cn,dou@ruc.edu.cn,yueliang0104@ruc.edu.cn,jirong.wen@gmail.com

ABSTRACT
Personalized search aims to improve the quality of search results
by re-ranking the candidate document list based on the historical
behavior of each user. Existing approaches focus on modeling the
order information of the user’s historical behaviors by sequential
methods such as Recurrent Neural Network (RNN). However, these
methods usually ignore the fine-grained time information associ-
ated with user actions. In fact, the time intervals between queries
can help to capture the evolution of query intent and document
interest of users. Besides, the time intervals between past actions
and current query can reflect the long-term re-finding interest more
accurately than discrete steps in RNN and its variants. In this paper,
we propose PSTIE, a fine-grained Time Information Enhanced
model for constructing more accurate user interest representations
for Personalized Search. To capture the short-term interest of users,
we design time-aware LSTM architectures for modeling the subtle
interest evolution of users in continuous time. We further lever-
age time in calculating the re-finding possibility of each historical
query and document to capture the long-term interest of users. We
propose two methods to utilize the time-enhanced user interest
in personalized ranking. Extensive experiments on two real-world
datasets show that our approach can effectively improve the quality
of search results over state-of-the-art models.
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1 INTRODUCTION
Traditional search engines give the same results to different users
when they issue the same query. However, this strategy cannot
distinguish different information needs of different users, such as
the query “Apple” (Apple fruit or Apple company?). Personalized
search aims to improve the quality of search results by re-ranking
the candidate document list based on the historical behaviors of
users. Traditional studies of personalized search manually extract
features from search logs of each user [4–6, 8, 11, 15, 22, 29, 33].
However, these feature-based methods cannot cover all aspects of
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Figure 1: ri is the representation of user behavior at the i-th
query qi , and ∆ti refers to the time interval between qi and
qi+1. As shown in Figure 1(a), existing personalizedmethods
based on RNN ignored time information ∆ti .

the data distribution. Deep learning can automatically learn rep-
resentations of queries, documents, and users, then capture user
interest dynamics from large scale user behavior data automati-
cally [14, 20, 21, 30, 37, 39]. Inspired by successful applications of
RNN in natural language processing tasks, most existing neural
personalized search methods build distributed representations of
user interest with RNN or its variants as shown in Figure 1(a). They
then re-rank the document list based on the similarity of computed
interest representation and document representation. These RNN-
based sequential methods [14, 21, 37] have been proved effective
and significantly improved search quality.

However, none of the abovemethods has considered explicit time
information, such as time intervals between historical queries, as
shown in Figure 1(b). They mainly considered the relative order of
user behaviors. In fact, time intervals between past queries can help
model user interests more accurately. For example, if the user issues
another query 30 days after a previous query, these two queries
may have little correlations between each other. Thus, the former
query and the corresponding documents tend to have relatively
lower influence when the user issues the latter query. Conversely,
two queries within a short time, like 5 minutes, tend to be more rel-
evant. Thus, user’s interest evolution within a short time is
time-sensitive. Traditional RNN architectures are good at model-
ing the order information of sequential data of users [14]. However,
they cannot distinguish the above phenomenon because they ignore
time interval information between actions. Therefore, the interest
representations constructed by traditional RNN architectures can
be inaccurate. Besides, several personalized methods group histori-
cal user behaviors into sessions based on time intervals between
queries (for example, splitting sessions based on 30-minutes in-
activity [5, 11, 14, 21]). These strategies can lead to propagation
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errors in the user interest modeling module due to some incor-
rectly identified sessions. The above problem can be alleviated if
we can directly exploit the time information in sequential modeling
without identifying sessions.

In the meanwhile, users tend to have long-term re-finding be-
havior. They often seek some information they have encountered
before after a relatively long time. Previous studies tried to help
users re-find documents they are interested in, by measuring the
lexical or semantic similarities of documents to historical user be-
haviors [31, 32]. However, they cannot track how the tendency of
re-finding behavior fluctuates with time explicitly. As a result, they
fail to capture various temporal dynamics of the user’s interests.
For example, some users tend to visit the official website of the
“CIKM” conference once a year due to its yearly-held feature. To
find the website, they may issue “CIKM” or its related queries like
“CIKM 2020” once a year. In fact, users tend to seek some informa-
tion again near the end of its lifetime. Thus, re-finding behavior
is time-sensitive. We believe that considering time-sensitive re-
finding behavior is useful for learning more accurate interests of
users. However, most existing studies have ignored this.

In this paper, we present PSTIE: a Time Information Enhanced
model for Personalized Search, which leverages the fine-grained
time information between search behaviors of users to improve
ranking quality. We exploit time information to construct two kinds
of time-sensitive representations: time-sensitive query intent and
time-sensitive document interest. The query intent representation
can help personalized models understand user’s current query more
accurately, while document interest can reflect the user’s preference
for documents. We classify both representations into short- and
long-term representations based on the two kinds of time-sensitive
behaviors of users that we mentioned above. Short-term query
intent refers that users tend to have similar intent within a short
time and issue a related query since the last query. Long-term query
intent means that the user’s intent follows a lifetime distribution
that drifts with time, and users tend to issue a similar query near
the lifetime of the intent. Short-term document interest refers that
users tend to click similar documents within a short time, while
long-term one means that the re-finding for similar documents
follows a lifetime distribution drifting with time.

To model the time-sensitive short-term interest, we design
two time-aware LSTM architectures to separately model the evo-
lution of query intent and document interest in continuous time.
To model the time-sensitive long-term interest, we calculate the
probability of long-term re-finding behavior by a query-specific
Gaussian mixture distribution that drifts with time. Besides, we
introduce two matching methods to fuse the time-sensitive interest
of users into the ranking module. The first one is using the cosine
similarity of interest representation and document representation
as to the time-sensitive personalized score. The second one is using
the query intent representations and document interest represen-
tations to initialize the hidden states of the LSTM network in our
interactive matching model. Experimental results on two real-world
datasets show that our model can effectively improve search quality.
This indicates that modeling fine-grained time information in user
profiling is beneficial to personalized search.

Our main contributions are three-fold: (1) We leverage fine-
grained time information within user’s historical behaviors to im-
prove personalized ranking quality. To the best of our knowledge,
this is the first study where fine-grained time information is con-
sidered for personalized search. (2) We track two kinds of time-
sensitive evolution of users, including query intent evolution and
document interest evolution. We consider both short-term local
correlations and long-term re-finding influences between user’s
search history. (3) We use two matching methods, a representation-
based matching and an interaction-based matching, to fuse the
time-sensitive interest representations into personalized ranking.

The rest of paper is organized as follows. We introduce related
works in Section 2. We then introduce our time-enhanced person-
alized model in Section 3. We describe experimental settings and
results in Section 4, then conclude the paper in Section 5.

2 RELATEDWORK
2.1 Personalized Search
Personalized search aims to return personalized document list based
on user interests [7]. Traditional personalized methods focus on
modeling the influence of click behavior and topic features [4, 8, 11,
15, 22, 29, 33]. To combine these features, some studies proposed
to utilize learning to rank algorithm for training a better ranking
model [5, 6]. However, these methods suffered from heavy burden
for its manually extracted features, and they cannot learn abstract
sequential and temporal factors automatically.

Deep learning can learn distributed representations of queries,
documents, and even users automatically [16, 18, 24, 25, 28, 37, 39].
Because of this, it has been utilized into personalized search by some
previous studies and achieved adorable results [14, 20, 21, 30]. Song
et al. [30] introduced a general RankNet framework for personalized
search. Li et al. [20] improved the personalized performance by
applying semantic features from in-session context into models.
Ge et al. [14] proposed a sequential method based on hierarchical
RNN, considering both long- and short-term interest and applying
query-aware attention to interact between the current query and
historical sessions. Lu et al. [21] trained a generative adversarial
network with GRU to make the model more robust with noisy click
data. These RNN based methods are good at capturing sequential
information, especially order information, but they cannot model
the time intervals between queries explicitly. We can model more
accurate interest representations of users by modeling the fine-
grained time information into our neural sequential model.

2.2 Sequential Models with Time Information
While RNN and its variants achieved great success in capturing
sequential patterns automatically, it only considers the order in-
formation and ignores the time intervals between events. Several
works have proved that time intervals are important to capture
the correlations between actions [3, 17, 40]. One naive and general
method to deal with continuous-time features is to bucketize the
time according to the time distribution [9]. However, it brings the
unwanted discretization error, which formally refers to the Modifi-
able Areal Unit Problem, as revealed by [12]. Several studies [38, 40]
designed gates in LSTM to model the event correlations based on
time intervals or distances. These gated models are easy to employ
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Figure 2: The architecture of PSTIE. Given search history, we design two time-aware LSTM architectures to model interest
evolution drifting with time, and calculate the short-term query intent and document interest representations at the current
time. After modeling the probability of two kinds of re-finding behavior by a lifetime distribution, long-term query intent
and document interest are collected. Two methods are designed for combining interest representations into re-ranking.

and inherit from the powerful ability of RNN to model sequential
patterns. However, it cannot explicitly model complex temporal
patterns like lifetime re-finding distributions of users, and usually
show poor performance when the sequence is long.

Another way to exploit time information is to model the discrete
events in continuous time. These approaches can directly absorb the
raw timestamp of each discrete event, avoiding loss of time informa-
tion. Bai et al. [3] designed a neural demand-aware Hawkes process
framework to capture the long- and short-term demands of users in
continuous time based on Mei and Eisner [23]. However, it cannot
model the lifetime demands of users explicitly and interpretably.
Wang et al. [35] factorized the repeat consumption influence as
a short-time and lifetime effect, and introduced the Hawkes pro-
cess into collaborative filtering. However, the personalized search
problem is relatively more difficult than recommendation systems
since we have to consider the complex interaction between queries,
documents, click information, and others.

3 METHODOLOGY
3.1 Problem Formulation
Personalized search aims to construct interest representations of
users to re-rank candidate documents. Assume we have a user set
U = {u1,u2, ...uM }. For each user u, we have its query log Lu =
{(q1,D1, t1), (q2,D2, t2), ...(qnu ,Dnu , tnu )}, where (qi ,Di , ti ) refers
that user u issued the i-th query qi at time ti and get the search re-
sults Di . Moreover, Di can be defined as Di = {di1, ...dim }, where
di j refers to the j-th document in the candidate document list of
qi . Each candidate document contains a clicked label to record

whether it is clicked by u. We also calculate the average of the
clicked documents under query qi as d̂i . Until now, we get the
search history of user u. For simplicity, we omit the subscript of u
and use L = {(q1,D1, t1), ...(qn,Dn, tn )} to denote the search his-
tory of a user, where n represents the number of queries in uses’s
history. We define the output of our model as p(d |q, t, L), where q
represents the current query that user issues at current time t and
d represents a candidate document that has been retrieved by the
search engine based by query q. The output p(d |q, t, L) represents
the final score of document d for the user. We calculate p(d |q, t, L)
for every document d in the candidate document list and re-rank
the list by p(d |q, t, L) in a descending order. Specifically, the output
of our model is:

p (d |q, t, L) = ϕ (pT (d |q, t, L) ,p (d |q)) , (1)

where pT (d |q, t, L) represents time-sensitive personalized score
of document d at current time t , and p(d |q) refers to the ad-hoc
relevance between the documentd and queryq.ϕ(·) is a Multi-layer
Perception (MLP) with tanh(·) as an activation function. We use
MLP to learn the weights of the two parts and combine them to get
the final score of a document.

3.2 PSTIE: the Overall Framework
The architecture of our PSTIE framework is shown in Figure 2. Since
RNN cannot model the time intervals between historical behaviors
explicitly, we design two time-aware LSTM architectures for mod-
eling the sequence of queries and clicked documents in continuous
time. We get the query intent and document interest representa-
tions of the user at the current time via time-aware LSTM sequences.
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As these representations focus on the local interest of users within
a short time, we call them the short-term interest of users. As we
have illustrated in Section 1, users tend to have re-finding behavior
near the end of the lifetime of information. We further calculate the
contribution of historical queries and documents to the long-term
re-finding behavior based on the query-specific Gaussian mixture
distribution that drifts with time. We calculate the long-term query
intent and document interest of users by summing up the historical
information based on the contribution we calculated. For the final
personalized re-ranking, we introduce two methods to combine the
interest of users with the current query and document for unified
document scoring. We calculate the final score of the candidate
document based on the personalized score and ad-hoc relevance
score as Equation (1).

Before introducing the detailed model, we firstly represent the
historical queries and documents based on word embedding. We
train the word embedding on the query log with Glove [27]. Then
we calculate the weighted average of word embedding by TF-IDF
weights as the embedding of queries and documents.

3.3 Short-term Interest Modeling with Time
We wish to leverage time intervals between the search history of
users to improve ranking quality. Inspired by [23], we design the
framework of document-driven time-aware LSTM for modeling
query sequences, and query-driven time-aware LSTM for clicked
document sequences. Differently from [23], the application scenario
of our model is web search, which has more complex correlations
between queries, documents, and users than recommendation sys-
tems. Thus, we design two architectures considering the special
characteristic of search behavior to model the intent and interest
evolution of users that fluctuates with time. We use time-aware
LSTM to calculate the short-term interest of users at the current
time. We believe that the query intent representation we calculate
in continuous time can reflect the query that the user is going to
issue. In the meanwhile, the document interest calculated by query-
driven time-aware LSTM can reflect the preference of users for
documents.

3.3.1 Document-driven Time-aware LSTM for Query Intent. When
a user issues a query in a search engine, it can be predicted that he
is describing his information need through this query and he may
probably hold similar intent at several next queries. We can see
from the above phenomenon that the query intent of users shows
self-exciting characteristic [3, 23]. In the meanwhile, the intent of
users will decay with time because users will have different infor-
mation need later. The characteristic of query intent drifting with
time inspires us to design an architecture that can accurately model
the intent evolution. Based on the above phenomenon, we design
document-driven time-aware LSTM, which leverages time intervals
between query sequence {q1,q2, ...qn } to model the intent evolu-
tion of users. The hidden state vector h(t) of time-aware LSTM is
calculated in continuous time as follows:

h(t) = ok ⊙ [2σ (2c(t)) − 1] , (2)

where ok refers to the output gate of time-aware LSTM and t ∈
[tk , tk+1]. At each time step ti , the time-aware LSTM will treat the
i-th query qi as its input, and update the c(t) to a new initial value

ci+1 as follows:

ci+1 ← fi+1 ⊙ c(ti ) + ii+1 ⊙ zi+1, (3)

where fi+1, ii+1, zi+1 refers to the forget gate, input gate and candi-
date memory in time-aware LSTM, and they are calculated based on
the input qi and hidden state h(ti ) at each time step following [23].
The jump of c(t) to a specific value at each time step models the
self-exciting characteristic of the user’s search behaviour. As t in-
creases between ti and ti+1, user’s need of information related to
the queryqi will decay. Specifically, the cell memory c(t)will decay
exponentially from ci+1 towards target ci+1 as follows:

ci+1 ← f i+1 ⊙ ci + ii+1 ⊙ zi+1 + di+1 ⊙ d̂i , (4)
c(t) = ck+1 + (ck+1 − ck+1) exp(−δk+1(t − tk )), (5)

where the target cell ci+1 is not only controlled by the previous cell
state ci , but is also driven by the clicked documents d̂i under the
query qi . This is based on the fact that the clicked documents can
satisfy user’s information need after the issued query qi . Specifi-
cally, we tailor ci+1 in Equation (4) with a document gate di+1 and
the average of clicked documents d̂i at ti . The document gate di+1
is calculated as follows:

di+1 ← σ (W 1
dqi +W

2
d d̂i +Udh(ti ) + dd ), (6)

whereW 1
d ,W

2
d , Ud and dd are parameter matrices and vector to

be learned for calculating the document gate di+1.
Now we have modeled the query sequence with document-

driven time-aware LSTM as Equation (2)-(6). We calculate the hid-
den states Hq = {hq (t1),hq (t2)...hq (tn )} at each time step as the
context-aware representation of historical query intent of user. We
also calculate the hidden state hq (t) at current query time t as the
short-term query intent representation. hq (t) contains the local
information need of user at current time.

3.3.2 Query-driven Time-aware LSTM for Document Interest. Be-
sides query intent, clicked documents are also crucial for building
more accurate user interest representations. We should build docu-
ment interest representations that reflect the user’s preference for
documents. To model the document interest evolution that drifts
with time, we design query-driven time-aware LSTM for model-
ing the clicked documents sequence {d̂1, d̂2, ...d̂n } in continuous
time. The document interest also has characteristics of self-exciting
and decaying. Specifically, the user’s preference for documents will
jump discontinuouslywhen they have read some certain documents,
and the interest for those documents will decay with time. Besides,
the document interest should be influenced by the corresponding
queries, because the query straightly reflects the information need
of users. As a result, the document interest should jump to a certain
initial value based on the issued query at each time step. As time
decays, the document interest will decay while users are reading
the documents. Specifically, the initial value ci+1 that document
interest will jump to depends on the issued query as follows:

ci+1 ← fi+1 ⊙ c(ti ) + ii+1 ⊙ zi+1 + qi+1 ⊙ qi , (7)

ci+1 ← f i+1 ⊙ ci + ii+1 ⊙ zi+1, (8)

where the calculation of hidden state h(t) and cell memory c(t) is
the same as Equation (2) and (5). qi+1 represents the query gate
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that controls the influence of the issued query, which is defined as:

qi+1 ← σ (W 1
qqi +W

2
q d̂i +Uqh(ti ) + qq ), (9)

whereW 1
q ,W 2

q , Uq and qq are parameter matrices and vector to
be learned for calculating the query gate qi+1. We organize the
clicked documents based on queries for two reasons: (1) The clicked
documents under each query tend to be semantically similar. Thus,
they can better reflect the overall document preference of users
and alleviate some misclick noise. (2) The number of documents in
one real-world search engine is too large. As a result, it will lead to
poor performance because of the sparsity.

Using query-driven time-aware LSTM, we calculate the hidden
states of document sequenceHd = {h

d (t1),hd (t2), ...hd (tn )} as the
context-aware representations of document interest. We further
calculate hd (t) as the short-term document interest vector, which
represents the user’s preference for documents within a short time.

3.4 Long-term Re-finding Interest Modeling
The short-term interest representations straightly represent query
intent and document interest of users within a short time. However,
time-aware LSTM can hardly capture the influence of queries or
documents if they were issued or clicked a long time ago. It is a
common shortcoming of RNN-based sequential methods. As we
illustrated in Section 1, users usually have time-sensitive re-finding
behavior following lifetime distribution. Specifically, users tend
to show similar query intent or document interest near the end
of the lifetime of information. The probability of re-finding will
rise with time after the last query or reading documents, and reach
its top value at the lifetime of information. After the lifetime, the
re-finding probability of the user will decay with time. Inspired
by [35], we choose a Gaussian mixture distribution to model the
above long-term re-finding interest evolution of users.

It is natural to use Gaussian mixture distribution to model the
lifetime evolution of re-finding behavior drifting with time. Besides,
it has good interpretability to explain the lifetime and influence
of information. We consider two kinds of re-finding behavior in
our model: query-based re-finding and document-based re-finding.
The former means that users may try to follow a specific topic with
similar queries. The latter focuses on the user’s interest in a specific
document. As we have introduced in the previous Section 3.3.2,
we use the query-specific lifetime distribution to model the two
kinds of re-finding interest. Specifically, each queryqi has a specific
parameter set {µi ,σi } for its lifetime distribution. We calculate the
probability of re-finding behavior αi based on the query-specific
Gaussian mixture distribution as follows:

αi = N (δti |µi ,σi ), (10)

where µi can represent the lifetime of query intent and document
interest at the i-th query, and σi can reflect the influence of the
re-finding. αi can reflect the re-finding probability of the i-th query
intent or document interest, and it varies with the time interval
δti = t − ti , where t is the current time and ti is the issued time of
query qi . We sum up the history intent representations weighted

by the softmax of the re-finding probability, and calculate the long-
term query intent vector Lq (t). Specifically,

Lq (t) =
n∑
i=1

exp(αi )∑n
j=1 exp(α j )

hq (ti ), (11)

where n is the number of queries in history, and hq is the historical
query intent representations we calculate in the previous section.
We also calculate the weighted sum of the historical document
interest representations to get the long-term document interest
vector Ld (t) as follows:

Ld (t) =
n∑
i=1

exp(αi )∑n
j=1 exp(α j )

hd (ti ). (12)

Now, we have got the long-term query intent and document
interest representations. The long-term query intent will attend
more on the historical information need that users tend to pose at
the current time. The long-term document interest focus on some
documents that users want to re-seek.

3.5 Time-Sensitive Personalized Ranking
Now we have calculated out the short-term query intent vector
hq (t), the short-term document interest vector hd (t), the long-term
query intent vector Lq (t) and the long-term document interest
vector Ld (t) at time t with the current issued query q. We will
utilize these interest representations to calculate the time-sensitive
personalized score pT (d |q, t, L) for each document d , and finally
calculate the final score p(d |q, t, L). We will introduce two different
methods to utilize the personalized interest representations into
the personalized ranking, which are shown in Figure (2).

3.5.1 Representation-based Similarity. The first method is based
on representation. We will concatenate the short-term query intent
vector hq (t) with the short-term document interest vector hd (t)
as the final short-term user interest. The long-term user interest
is calculated by concatenating the long-term query intent Lq (t)
and long-term document interest Ld (t). We calculate the personal-
ized score of document d by measuring the similarity between the
document vector and two final interest vectors.

pST (d |q, t, L) = sim
(
ϕ
(
[hq (t);hd (t)]

)
,d

)
, (13)

pLT (d |q, t, L) = sim
(
ϕ([Lq (t);Ld (t)]),d

)
, (14)

where [; ]means a concatenation. We apply anMLP layer to the con-
catenated interest to maintain its same semantic space as the docu-
ment.pST (d |q, t, L) represents the short-term personalized score and
pLT (d |q, t, L) is the long-term personalized score. Many functions
for measuring similarity between two distributed vectors can be
used for the similarity function in the above equation. In this work,
we use Cosine as our similarity function, which is commonly used
for modeling interactions. It is viewed as the angle of two vectors:

sim(u,v) = uTv

| |u | | · | |v | |
. (15)
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We use MLP to learn the weights of short- and long-term personal-
ized score, then calculate the final score pT (d |q, t, L) by:

pT (d |q, t, L) = ϕ(pST (d |t, L),p
L
T (d |t, L)). (16)

The representation-based re-ranking approach is commonly used
in previous works [14, 21]. However, it cannot naturally incorporate
the current query q into the scoring module. In fact, the word-
level information in query and document can bring fine-grained
matching features and help to calculate more accurate similarity.
However, the representation-based method cannot leverage it since
it has compressed query and document into distributed vectors.

3.5.2 Interaction-based Matching. Interactive matching applies
pooling strategy across the similarity matrices, then calculates
the matching score between query and document. Since it calcu-
lates word-level similarity score, it can detect some fine-grained
matching signals between words in queries and documents. In-
spired by [34], we build our model based on MV-LSTM. Compared
to another well-known matching method K-NRM [36], MV-LSTM
can calculate multiple positional sentence representations for query
and document dynamically. Besides, we can fuse the interest repre-
sentations into interactive matching more naturally. As shown in
Figure (2), we concatenate the short-term query intent hq (t) with
long-term query intent Lq (t) as the final query intent vector, and
use the final query intent representation to initialize the hidden
state of Bidirectional LSTM of queries in MV-LSTM. We believe
the query intent can help the Bidirectional LSTM to calculate more
accurate sentence representations at each position. Similarly, we
use the concatenated vector of short-term document interest hd (t)
and long-term document interest Ld (t) to initialize the hidden state
of document Bidirectional LSTM.

Since we use interest representations to initialize the calculation
of the positional encoding of queries and documents, our model
can help to solve the ambiguity problem in personalized search. For
example, when a user issues a query “apple”, it can be interpreted
as both the apple company or the fruit apple. If one user has issued
many queries about apple company or its related products, we
can calculate the query intent vector that preferred the semantic
meaning “apple company”. Then, the query intent vector can help
the bidirectional LSTM to calculate the query representation that
is semantically more related to the preferred meanings of users. In
the meanwhile, the document interest vector can help to compute
more accurate document representations that focus more on the
aspects that the user may be interested in documents.

3.6 Model Training
Until now, we have defined the personalized score of one candidate
document d as pT (d |q, t, L). For ad-hoc relevance p(d |q), we follow
the idea of [5] and extract several traditional topic features and
click features for every document. We feed the feature vector of
document d to a multi-layer perception(MLP) with tanh(·) activate
function to calculate the base score of one document:

p(d |q) = ϕ(W F fq,d + b
F ). (17)

Now we can calculate the final score p(d |q, t, L) for every doc-
ument d in our candidate list based on Equation (1). We get the
re-ranked list of document based on the score as the output of our

Table 1: Statistics of the Datasets

AOL Commercial
Item Statistic Item Statistic
days 92 days 58
users 118,067 users 7,648
queries 3,461,636 queries 694,837

distinct queries 1,555,829 distinct queries 278,661
SAT-clicks 4,701,531 SAT-clicks 443,428
Co-queries 8,184,227 Co-query 4,109,396
Re-queries 84.70% Re-query 80.75%

model. As for training, we apply the learning-to-rank framework
with a pair-wise strategy in our model. We select a satisfying clicked
document as a positive sample and a skipped document as a nega-
tive sample. We wish to maximize the distance of the positive score
and the negative score. Thus, we use a weighted cross-entropy to
measure the loss between the true distance disTi , j and the predicted
distance disPi , j , i.e.,

loss = −λi , j (dis
T
i , j log(dis

P
i , j ) + (1 − dis

T
i , j log(1 − dis

P
i , j )), (18)

where we use the change of swapping the positions of the two
documents as λi , j as the weights motivated by LambdaRank [6].
We calculate the score distance between two documents as follows:

disi , j =
1

1 + exp(p(dj |q, t, L) − p(di |q, t, L))
. (19)

In summary, we introduce a framework to leverage the fine-grained
time information between search behaviors of users to build more
accurate user interest representations. We design two time-aware
LSTM based on the characteristic of search behavior for building
short-term user interest in continuous time, including query intent
and document interest. We further integrate the lifetime charac-
teristic of re-finding behavior into our model and build long-term
interest of users. We propose two methods to combine the interest
of users for document re-ranking, including representation-based
similarity and interaction-based matching. We rank the document
list based on the final score we calculated for each document.

4 EXPERIMENTS
4.1 Datasets
We experiment with our model and baselines on two real-world
datasets: AOL search log [26] and a search log from a commercial
search engine (COM). The statistics of the two datasets are shown
in Table (1). Besides basic statistics, we calculate “Co-query” and
“Re-query” to verify whether short- and long-term interest exists
in our dataset. “Co-query” represents the number of two queries
that co-occur at least twice within a time window of five queries. It
can reflect the short-term local correlations between queries. In the
meanwhile, “Re-query” means the percentage of users that have
re-query behavior. The statistics of the two metrics show that there
indeed exists short- and long-term interest phenomenon in the
search behavior of users.

The AOL search log [26] is a popular and publicly available
dataset, which contains a query log of three months. Each record
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Table 2: Overall performances of baseline and PSTIE on two datasets: AOL and commercial query log. “†” indicates the model
outperforms all baseline models significantly with paired t-test at p < 0.05 level. The best results are shown in bold.

Models AOL Query Log Commercial Query Log
MAP MRR P-Imp P@1 P@3 P@5 MAP MRR P-Imp P@1 P@3 P@5

Ori.R .2529 .2640 - .1531 .2769 .3492 .7399 .7506 - .6162 .8459 .9394
K-NRM .4298 .4399 .6633 .2718 .5130 .6089 .4927 .5007 .0665 .2855 .3391 .3646

MV-LSTM .4315 .4452 .6605 .2762 .5186 .6131 .4893 .4966 .0624 .2816 .3348 .3592
P-Click .4221 .4305 .1657 .3780 .4128 .4431 .7509 .7634 .0611 .6260 .8823 .9598
SLTB .5113 .5237 .3374 .4693 .5244 .5507 .7921 .7998 .1184 .6901 .9016 .9573
HRNN .5438 .5565 .5927 .4841 .5663 .6042 .8065 .8191 .2401 .7127 .9061 .9590
PSGAN .5482 .5609 .5985 .4898 .5741 .6190 .8135 .8234 .2494 .7174 .9114 .9658

HRNN+time .5452 .5554 .5934 .4861 .5623 .6076 .8017 .8136 .2324 .7097 .9012 .9526
HTime-LSTM .5476 .5578 .5975 .4896 .5677 .6097 .8077 .8210 .2413 .7156 .9131 .9610
H-CTLSTM .5479 .5574 .5984 .4875 .5687 .6127 .8094 .8231 .2386 .7199 .9165 .9645
PSTIE-REP .5506 .5610 .6042 .4929 .5734 .6261 .8105 .8238 .2445 .7210 .9181 .9680
PSTIE-ITE .5639† .5769† .6847† .5033† .5965† .6413† .8211† .8301† .2636† .7295† .9274† .9766†

contains an anonymous user ID, a query string, query issued time,
a clicked document title, a clicked URL and its original ranking.
For each query, we need both clicked and unclicked documents to
train our model in a pair-wise way, while the AOL dataset only
records the clicked documents. Following [1, 2], we collect the
candidate documents for each query from the top documents ranked
by BM25 algorithm to solve the above problem. Besides, we keep
the background set to provide historical search sequences of each
user to build their search interest for the personalized task. We
use the first five weeks as the background set to track the search
histories of users, the next six weeks for training, and the last two
weeks for valid and test set. We sample 5 candidate documents per
query for training and validating, and 50 candidates per query in
the test set. Following [2, 13, 18], we simply use the document title
to measure the relevance of each document.

The commercial (COM) search log was collected from a large-
scale commercial search engine from January to February in 2013 [14,
21]. Each record contains a user ID, a query string, query issued
time, the top 20 retrieved URLs, click labels and dwell time. This
dataset fully keeps the histories of each user because the users
are sampled in the dataset construction processing period [21]. Be-
sides, the candidate documents are fully recorded for each query in
this dataset, which provides text body for each document. Follow-
ing [14], we select documents with a dwell time of longer than 30
seconds as clicked documents. We use the first three-quarters of
data for background set, and divide the last quarter of the data into
the training set, validation set and test set in a 4:1:1 ratio.

4.2 Baselines
We evaluate the performance of our approach by comparing it
with several baseline methods. Our baseline models include several
traditional ad-hoc search models and state-of-the-art personalized
models. We select several RNN-based personalized models to verify
the advantage of ourmodel that leverages time information. Besides,
we also include several state-of-the-art models that exploit the time
information into sequential modeling to prove the effectiveness of
our model. Our baseline models include:

K-NRM [10]: This is an ad-hoc interactive matching model,
which uses word-level translation matrix and kernel pooling to
extract soft match features for query and document.

MV-LSTM [34]: It is an ad-hoc interactive model that matches
query and document with multiple positional sentence representa-
tions and k-Max pooling to extract the strongest match features.

P-Click [11]: It is a widely used personalized model that counts
the number of clicks of documents to measure relevance between
query and search history straightly.

SLTB [5]: It is the state-of-the-art traditional personalizedmethod
that summarizes features including click-based features, topic fea-
tures and short- and long-term features by learning to rank.

HRNN [14]: It is a personalized neural model that uses hierar-
chical RNN and query-aware attention with for modeling dynamic
user profiles. It is a suitable baseline because of its clear structure
and good scalability to involve time information.

PSGAN [21]: It is the state-of-the-art personalized approach that
applies generative adversarial networks to improve the ranking
quality. We choose the discriminator and document selection based
approach in [21] as our baseline.

HRNN+time: As a naive approach to model time information,
we add time interval between each query and each session into the
input of HRNN [14] as an additional feature.

HTime-LSTM: Time-LSTM [40] equips LSTM with time gates
to model time intervals. We change the GRU cell in [14] to the third
architecture of Time-LSTM cell to exploit the time information.

H-CTLSTM: Time-aware LSTM [23] models the self-exciting
dynamics of events in continuous time. We change the GRU cell
in [14] to time-aware LSTM cell to exploit time information.

4.3 Settings and Evaluation Metrics
We train the following two proposed models to verify the person-
alized framework to leverage time information. We use the same
parameter set and experiment settings for the two models:

PSTIE-REP: We calculate the personalized score of a candidate
document by the query, document, interest, and feature represen-
tations we build in our model as we illustrated in Section 3.5.1.
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Figure 3: The effectiveness of interest modeling in PSTIE

PSTIE-ITE: We use time-sensitive interest representations to
initialize the query and document positional encoding LSTM, then
calculate the final personalized score by the interactive component
output as proposed in Section 3.5.2. We combine the interactive
score and feature score as the final score of a document.

For all datasets, we use 256 as the hidden state of time-aware
LSTM, 1e−3 as the learning rate, k=10 for k-max pooling layer inMV-
LSTM, 300 for training batch size. We use Adam Optimizer to train
our model. For the AOL dataset, the pre-trained word embedding
dimension is 50. For the commercial search engine dataset, the
pre-trained word embedding dimension is 300.

We evaluate the results generated by baseline models and our
proposed model using Mean Average Precision(MAP), Mean Recip-
rocal Rank(MRR), Precision in the top k position(P@K). For P@K,
we will report P@1, P@3 and P@5 in our experiment. Besides,
for measuring more creditable performance on inverse document
pairs [19], we also compute the percentage of improved pairs(P-
Improve) following previous personalized studies [14, 21].

4.4 Overall Performance
We compare PSTIE that we proposed in our paper with the baselines
on two datasets, and present the result in Table 2. We find the
results are entirely consistent among the datasets.We have obtained
observations as follows:

(1)Our PSTIE approach outperforms all baselinemethods,
including ad-hoc models, personalized models, and time in-
formation enhanced models. Compared with the state-of-the-
art model PSGAN on the AOL dataset, The MAP has been im-
proved 4.4‰ by PSTIE-REP and 28.6‰ by PSTIE-ITE, proving that
leveraging time information can help to build more accurate user
interest for personalized search. Besides, the MAP has been im-
proved 4.9‰ by PSTIE-REP and 29.2‰ by PSTIE-ITE compared
to H-CTLSTM that replaces the cell in HRNN with time-aware
LSTM cell. The MAP improvement shows that we can exploit time
information more effectively by considering the special interest
evolution and long-term re-finding behavior. Our models on the
commercial dataset show less improvement than AOL. One possible
reason can be that the original ranking of the commercial dataset is
already of high quality, leaving little room for our model to improve.

(2) The interaction based model PSTIE-ITE outperforms base-
line models with a significant improvement, which validates the
effectiveness of our model. Compared to PS-ITE, the representation
based model PS-REP only achieves comparable results with state-
of-the-art model PSGAN, which indicates that interactive methods
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Figure 4: Experiments with different types of queries

considering the matching features between each word of query and
document can be more effective than representation-based methods.
However, we find the performance of PSTIE-REP is more stable
than PSTIE-ITE in multiple trials, indicating that representation-
based methods can retain more interest information of users than
interactive methods. Besides, the model we propose can be ensem-
bled with other models such as PSGAN to achieve better results.
The improvement of the two methods compared to baselines shows
that each of them can fully leverage the time information to capture
the long- and short-term user interests for personalized search.

(3) Ad-hoc methods, including MV-LSTM and K-NRM, can im-
prove the results significantly on the AOL log but show poor per-
formance on the commercial log. One possible reason is that the
original ranking list generated based on BM-25 is quite naive in the
AOL log, leaving enough improvement room for K-NRM and MV-
LSTM to re-rank the documents by extracting document and query
matching features. The personalized methods (e.g., P-Click, HRNN,
PSTIE), which use the history of users to re-rank the document
list, can significantly outperform the original ranking result and
ad-hocmethods without a search history. Neural personalizedmeth-
ods (e.g., HRNN, PSGAN, PSTIE) can dramatically outperform the
feature-based techniques (e.g., P-Click, SLTB), proving the power
of deep learning to capture sequential patterns and user profiles.

(4) The methods that consider time information(e.g., HTime-
LSTM, PSTIE) perform better than HRNN, showing the effective-
ness of time information for building more accurate user interests.
HTime-LSTM equips LSTM with time gates to model the time inter-
vals, while H-CTLSTM models the interest of users in continuous
time with a decay rate over time. Both models perform better than
HRNN and naive HRNN+time, but have some limitations: they can-
not capture the long-term re-finding behavior of users effectively.
Therefore, it yields worse performance than our proposed PSTIE.

In summary, the results show that leveraging the time in-
formation by considering the short-term time-sensitive in-
terest evolution and long-term re-finding behavior can help
build more accurate interest of users than previous neural
sequential models. We will further analyze the effectiveness of
short-term and long-term interests next.

4.5 Long- and Short-Term User Interest
In this section, we conduct several experiments to explore the
effectiveness of learning the long- and short-term user interest.
We compare the performance of our methods with only the long-
term user interest construction model PSTIE-L and the short-term
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Figure 5: Visualization of change of long-term interest

user interest construction model PSTIE-S. For each model, both the
query intent and document interest are included. We report the
performance of each model on the AOL log, evaluated on ∆MAP.

As shown in Figure 3(a), we can find that all of our proposed
models outperform baselinemodel PSGAN, demonstrating the effec-
tiveness of ourmethods leverage time information. The PSTIE-S per-
forms better than PSTIE-L on both representation- and interaction-
basedmethods, proving that short-term interest and local sequential
patterns contribute more to personalized search. One possible rea-
son can be that many queries have not been re-queried, and many
documents have a small number of clicks, which long-term re-
finding interest cannot fit. Besides, combining PSTIE-S and PSTIE-L
using both short- and long-term user interest can effectively im-
prove the personalized performance, validating that incorporating
short- and long-term can be useful to construct user interest more
accurately and is beneficial to personalized search.

4.6 Query Intent and Document Interest
We conduct experiments to validate the effectiveness of query intent
and document interest in this section. We compare the performance
of our approach with its variants without query intents or/and
document interest on the AOL log. In the representation-based
method, the method “None” only uses relevance features for re-
ranking. In the interaction-based method, it initializes bi-directional
LSTM with random states by the uniform distribution.

According to Figure 3(b), incorporating either query intent or
document interest can effectively improve the performance of our
approach. Besides, the methods with document interest outperform
the methods with query intent in both situations. One possible
reason is that the clicked document can reflect the preference and
interest of users more straightly and thoroughly, while the issued
query may deviate from his real intent [21]. Moreover, we find that
combining query intent and document interest perform the best,
validating the effectiveness of our approach in exploiting both query
and document history sequences for constructing user interests.

4.7 Different Types of Queries
We conduct experiments to validate the effectiveness of our model
on different queries and situations in the AOL log. We design two
situations of different queries to experiment on.

4.7.1 Navigational queries and Informational queries. Queries of
users can be divided info navigational queries and informational
queries based on its click entropy [11, 14]. Navigational queries
represent queries with clear intent, while informational queries can
be ambiguous and have more rich semantics. Informative queries

Time

R
e-
fin

di
ng

 in
te
nt

google
runtime error

Figure 6: Re-finding intent Gaussianmixture distribution of
query “google” and “runtime error”

tend to leave more improvement space for personalization since
different users can have various preferences behind the same query.
Based on that, we divide the queries into two groups with the cutoff
of click entropy at 1.0. We compare the personalized performance
of our model and baseline models on these two groups of queries.

As shown in Figure 4(a), our methods can outperform all base-
line models on both two query sets. However, differently from the
previous work [14, 21], The performance of all models on naviga-
tional queries is better than that on informational queries on AOL
log. One possible reason can be that the original ranking of the
AOL dataset is based on BM25, whose quality is lower than that
in commercial search engine log. However, the improvement of
our model on both groups of queries is significant, validating the
ability of PSTIE to tailor the personalized interests of users with
fine-grained time information to improve ranking performance.

4.7.2 Repeated queries and New queries. Users usually issue simi-
lar queries in their search history, showing re-finding behavior for
personalized models to learn and improve the ranking results. Thus,
we divide the queries of users in the test set into two groups: re-
peated queries and new queries. We experiment with our model on
the two groups of queries and summarize the result in Figure 4(b).

According to Figure 4(b), all experimented personalized methods
can improve the ranking results significantly on repeated queries.
Our PSTIE model can outperform all baseline models, proving the
effectiveness of our methods to exploit the re-finding behavior of
users in their search history. Besides, our PSTIE-L methods with
only long-term re-finding interest outperform PSGAN and PSTIE-S
significantly, while PSTIE-S only shows comparable results with
PSGAN. This observation indicates that the long-term interest in
PSTIE can indeed capture the time-sensitive re-finding behavior
of users. PSTIE-ITE also shows significant improvement in non-
repeated queries compared to baseline models, proving the effec-
tiveness of the interactive matching component to extract matching
features of new queries and documents to measure user preference.

4.8 Interpretability and Case Study
Users tend to re-find some topics or documents at the end of the
lifetime of information. To leverage re-finding behavior, we design
a query-specific Gaussian mixture distribution to measure the re-
finding interest tendency of users in Section 3.4. In Equation (10),
the mean µi can be seen as the expected lifetime of one query, while
the coefficient πi can be the importance of this re-finding effect.
Thus, the model we propose provides strong interpretability.
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To further analyze the influence of the long-term interest we
build, we present an example by sampling one user with a rela-
tively long history in the AOL dataset and visualize the re-finding
tendency αi calculated by Equation (10) of each query. We remove
the queries that have weights less than 0.01 to highlight important
ones. We choose four issued times as the current time. As shown
in Figure 5, the results approximate real contributions and our ex-
pectations. Specifically, the query “google” is a frequently issued
query, which should be estimated at a smaller µ as its lifetime and
larger importance π . In the meanwhile, “Runtime Error” should
have a longer life as a non-daily query with smaller importance.
We can find that at “03-11”, the query “google” at “03-10” has the
most significant weight while the influence of other queries is small.
However, at “03-13”, the historical query “runtime error” at “03-
07” shows comparable weight as the query “google”. We further
demonstrate the Gaussian mixture distribution of query “google”
and “runtime error” in Figure 6. We can find that the query “runtime
error” tends to have a lifetime around one week since that of google
is less than one day, while the latter has a larger coefficient than
the former one, which corresponds to the expectations.

The visualization indicates that our model can capture the re-
finding behavior of users effectively and utilize it to enhance per-
sonalized performance. Besides, it shows strong interpretability to
explain re-finding tendency drifting with time.

5 CONCLUSION
In this paper, we propose PSTIE to leverage the fine-grained time
information to construct more accurate interest representations of
users for personalized search. We design two time-aware LSTM
architectures to model the time-decaying evolution of query intent
and document interest, then build short-term interest to represent
the local preference of the user. We further model the lifetime re-
finding interest of the user with query-specific Gaussian mixture
distribution drifting with time, then build the long-term user inter-
est. Besides, we propose two methods to fuse long- and short-term
user interest to re-rank the document list, i.e., representation-based
method by using the cosine similarity, or interactive-based method
by initializing the Bi-directional LSTM with user interest in query
and document matching. Extensive experiments on two real-world
datasets show our approach can effectively improve the perfor-
mance of personalized ranking. In the future, we plan to exploit
the clicked time information and dwell time of each document to
model more fine-grained time-sensitive behavior of users.
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