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ABSTRACT
Personalized search improves generic ranking models by taking
user interests into consideration and returningmore accurate search
results to individual users. In recent years, machine learning and
deep learning techniques have been successfully applied in person-
alized search. Most existing personalization models simply regard
the search history as a static set of user behaviours and learn fixed
ranking strategies based on the recorded data. Though improve-
ments have been observed, it is obvious that these methods ignore
the dynamic nature of the search process: search is a sequence of
interactions between the search engine and the user. During the
search process, the user interests may dynamically change. It would
bemore helpful if a personalized searchmodel could track thewhole
interaction process and update its ranking strategy continuously. In
this paper, we propose a reinforcement learning based personaliza-
tion model, referred to as RLPer, to track the sequential interactions
between the users and search engine with a hierarchical Markov
Decision Process (MDP). In RLPer, the search engine interacts with
the user to update the underlying ranking model continuously with
real-time feedback. And we design a feedback-aware personalized
ranking component to catch the user’s feedback which has impacts
on the user interest profile for the next query. Experimental results
on the publicly available AOL search log verify that our proposed
model can significantly outperform state-of-the-art personalized
search models.
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1 INTRODUCTION
Search is one of the major approaches for us to obtain information
in our daily life. When users enter a query in search engines, they
usually have a specific query intent. However, studies have shown
that the intent cannot be expressed accurately by the issued key-
word query which is usually short and ambiguous [12, 29]. Let us
take the query ‘MAC’ as an example. A makeup artist may use this
query to search for information about the cosmetic brand ‘MAC’,
while an IT engineer is likely to seek information about the ‘MAC’
computer using the same query. In a current search engine, both
users may find unwanted documents which are about ‘MAC’ but
are irrelevant to their real information need. Personalized search is
a way to solve this problem by taking user interests into account
and returning different results to individual users. So far, there
have been many research achievements on this task, including the
traditional personalization models [4, 8, 9, 12, 15, 26, 33, 37] and
learning based models [13, 27, 32, 34] proposed in recent years.

Typically, a user’s personal search process can be regarded as
a series of interactions between the user and the search engine:
the user inputs a query and the search engine ranks the candidate
documents with the ranking model. Then, the user clicks or skips
documents and implicates her current interests. During the sequen-
tial interactions, the user’s interests may dynamically change, and
the search engine is expected to generate document lists fitting
the user’s current interests best. Most existing personalized search
models simply regard the search process as a static set of user issued
queries as well as the retrieved and clicked documents, and learn
fixed ranking strategies with all recorded data. Then, they apply the
fixed ranking strategies on new queries without continuous update.
They ignore the fact that the user’s interests are dynamically chang-
ing during the interactions. Though some studies [13, 18] have
considered user interests are dynamic, they don’t pay attention
to the change process and ignore that ranking strategies should
also change accordingly. In this paper, we argue that it would be
more helpful for personalization if we model user interests
dynamically and update the ranking strategy continuously.

To tackle this problem,we propose a novelReinforcementLearning
based Personalized search model RLPer in this paper. Within
RLPer, we utilize a Markov Decision Process (MDP) [28] to track
the interactions between the user and the search engine, and up-
date the personalized ranking model continuously. RLPer provides
several advantages for search results personalization. Firstly, it is
able to learn the user’s dynamic interests better by tracking the
search process which contains the variations of user interests. Sec-
ondly, RLPer has the ability to dynamically adjust to the user’s
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current interests as the personalized ranking strategy is updated
continuously with the user’s feedback in the reinforcement learn-
ing framework. Thirdly, compared with existing learning based
personalized search models, RLPer can be trained with more train-
ing samples (annotated with rewards) through the trial-and-error
strategy in reinforcement learning. This is supposed to relieve the
problem of limited training samples in personalized search.

Efforts have been made on applying reinforcement learning for
information retrieval (IR) [36, 39] and recommendation [42–44],
but those models are not suitable for personalized search. In this
paper, we design our model RLPer fully based on the characteristics
of personalized search to better track the interaction process and
train the personalized model. We set the search engine as the agent,
the user as the environment and a session as an episode to track the
dynamic user interests. During a session episode, the search engine
interacts with the user in units of query and document list. The
user inputs a query and the search engine returns a personalized
document list, then the user provides real-time clicks as rewards to
the search engine to train the ranking model and the user’s interest
profile is updated with these new click behaviors. But it would be
better to train our personalized ranking model with the document
pairs indicating user preferences, because studies [16] have shown
the user’s click actions are biased and cannot be used as absolute
relevant judgement. To interact with document lists but train the
model with document pairs, we formulate the user’s search process
as a hierarchical Markov Decision Process (MDP). The high level
MDP tracks the interaction process by queries and document lists,
while all document pairs under each query are sampled as training
data to update the ranking model in the low level MDP. In addition,
we also design a feedback-aware underlying personalized rank-
ing component which can catch the user’s click feedback. Policy
gradient algorithm REINFORCE is applied to train RLPer. We ex-
periment with the public AOL search log to compare our proposed
model with state-of-the-art personalized search models. The results
show that our model can significantly improve the effectiveness of
personalized search over existing models.

In summary, our main contributions are three-fold: (1) To the
best of our knowledge, it is the first time that reinforcement learn-
ing being applied to personalized search. (2) We carefully adapt
reinforcement learning to personalized search and implement a hi-
erarchical MDP model with feedback-aware personalized ranking
component, which fits the personalized search scenario better than
existing reinforcement learning models for IR. (3) Experimental
results on the public AOL logs verified that the proposed RLPer
model significantly improves the quality of personalized search
over state-of-the-art models.

The rest of the paper is organized as follows. Related works are
reviewed in Section 2. We introduce our model RLPer in Section 3.
In Section 4 and Section 5, we discuss the experimental setups and
analyze the results. Finally, we conclude the work in Section 6.

2 RELATEDWORK
The relatedworks of this paper concern two fields: (1) Search Results
Personalization and (2) The Application of Reinforcement Learning.

Search Results Personalization. Personalized search is used to
make the search results of ambiguous/broad queries more accurate

for each user. Numerous models have been proposed to solve this
problem and their basic idea is: First, build user interest profiles
by analyzing their query logs. Second, re-rank the candidate doc-
uments according to the user profile and the query. Based on the
approaches of building user profiles, we divide existing studies into
traditional personalized search models and learning based models.

Traditional personalized search models usually define some
heuristic rules to analyze the search history and obtain user in-
terests. Focusing on users’ re-finding behaviors [30] in search, Dou
et al. [12] proposed an effective method P-Click, which thinks the
documents clicked under the same query in the history to be more
relevant. Many personalized models [4, 9, 15, 19, 26, 33] adopt a
topic model to extract topics from the clicked documents and build
user profiles in the topic space. In addition, SLTB [5] manually ex-
tracts a lot of features from the query logs to realize search results
personalization, including click-based features, query entropy and
so on. The user’s location and reading level [3, 11] were also applied
to achieve personalization. These traditional methods manually ex-
tract information from the query logs to build user interest profiles,
achieving certain improvements. However, there still exist some
drawbacks that they are only able to get user interests covered in
these limited features but miss other important information.

As machine learning and deep learning become popular, these
drawbacks have been gradually relieved. The learning based models
usually learn a representation of the user interest profile [32] or
train a personalized search model [27]. Song et al. [27] and Wang
et al. [34] proposed frameworks for adaptation, which adapt the
general ranking model to an individual personalized model with a
small amount of queries from that user. A hierarchical RNN model
(HRNN) [13] was proposed to capture the sequential information
in the historical query logs and generate long-term and short-term
user profiles related to the current query. PSGAN [18] enhanced
the data for personalized model training.

All the aforementioned approaches consider the search process
as a static set of user query behaviors and learn fixed ranking
strategies from the recorded query logs, without continuous change.
Differently, we track the user’s entire search process and update
the personalized ranking strategy continuously, obtaining a model
fitting the dynamically changing interests best.

The Application of Reinforcement Learning. Reinforcement learn-
ing is usually used to solve problems which can be regarded as a
process of sequential decisions or interactions [28]. And it has been
widely applied on information retrieval (IR) [22, 36, 39–41] and
recommendation [24, 25, 35, 43, 44]. As for the ad-hoc search, Zeng
et al. [36] initially proposed a learning to rank (LTR) model based
on MDP [28], called MDPRank. This model samples a document
to rank at the current position in each step until constructing a
ranking list. MDP [39] and multi-armed bandits [22] were utilized
to solve the problem of search results diversification respectively. In
addition, Zeng et al. [41] modeled the multi-page search process as
a MDP and took the user’s feedback in the former pages to optimize
the document list of the next page. However, all these RL based
ranking models proposed for ad-hoc search have not taken the
user interests, historical and future search behaviors into account.
And their datasets always have precise annotations for document
relevance, different from the noisy data in personalized search.



RLPer: A Reinforcement Learning Model for Personalized Search WWW ’20, April 20–24, 2020, Taipei, Taiwan

In recommendation, the process can be naturally regarded as a
sequential interactions between the user and the recommend agent.
Thus, many studies model the recommendation problem as a MDP
and train models in reinforcement learning framework. A MDP-
based recommendation system [25] was proposed at an early time
to consider the long-term effect of the current recommended item.
Recently, several deep reinforcement learning models [42–44] were
proposed to track the sequential interactions during the recommen-
dation process, trained with the DQN algorithm [28]. Furthermore,
a reinforcement learning based interaction interface [14] was de-
signed to facilitate the users to indicate their interests. These tasks
share some commonalities with personalized search that all of them
are supposed to consider the user interests and history. But the
recommend agent provides a single item at a time, different from
the search engine which needs to sort a document list. And there is
no need to think of the relevance with queries in recommendation.
In this paper, we fully consider the characteristics of personalized
search to design our reinforcement learning model.

3 RLPER - A REINFORCEMENT LEARNING
MODEL FOR PERSONALIZED SEARCH

In this paper, we focus on the essence that personal search history
is an interaction process between the user and search engine. Dur-
ing this process, the user interests dynamically change. To learn
an optimal personalized ranking strategy fitting the dynamically
changing user interests best, we propose a reinforcement learning
based model RLPer to track the user’s entire search process and
update the personalized ranking strategy continuously.

In this section, we firstly formulate the problem of personalized
search as a reinforcement learning process. Then, we introduce
our personalization model RLPer and its policy gradient training
algorithm in detail. Finally, we describe the online test algorithms.

3.1 Problem Statement
To start with, let us formulate the problem of personalized search
as a reinforcement learning process with notations. We use the
personalized search engine as the agent and treat the user as the
environment. At each time T , the user u which has search history
HT , inputs a query qT . And the underlying non-personalized search
engine returns a candidate document list DT . Facing the current
environment composed of {HT ,qT ,DT }, the personalized search
engine takes an actionaT . It utilizes its current personalized ranking
modelMT to generate a personalized document list D′T with candi-
date documents in DT , according to the issued query qT and the
user profile built on the search history HT . Then, the user browses
the document listD′T to click or skip documents, providing a reward
rT to indicate the quality of the ranking result. The agent then up-
dates the current ranking modelMT toMT+1 based on the received
reward rT . And the environment turns into a new state when the
user issues a new query qT+1. The new search history includes the
last query qT and search result D′T , i.e,HT+1 = HT + {qT ,D

′

T }. The
user interest profile will also be updated based on the new search
history. During this reinforcement learning process, the personal-
ized ranking model is updated based on the user’s click feedback
continuously until converging to the optimal model.

3.2 RLPer - The proposed Model
The search process described above can be regarded as a sequen-
tial decision process during which the personalized search engine
decides the order of the documents in the returned document list.
Therefore, we mathematically formalize the search process as a
MDP, which is always represented as a tuple ⟨S,A,T ,R, π ⟩ includ-
ing the state, action, transition, reward and policy. We design each
component of the MDP tuple fully based on the characteristics of
personalized search.

(1) In personalized search, we are committed to capturing the
user interests throughout the whole search process. Existing rein-
forcement learning models designed for ad-hoc retrieval [36, 41],
which only aim to maximize the immediate return of a single query,
are not suitable for this problem. Considering that search sessions
are viewed as search activities with independent user intents, we
use a session as a MDP episode. We aim to maximize the long-term
return of a whole session.

(2) Studies have shown that users’ click behaviours are noisy and
biased, and clicks cannot be used as absolute relevant judgment [16].
Because of this, the existing pointwise RL approaches [36, 41] may
not work well in the personalized search. Instead, we exploit click
preferences and adopt pairwise learning to rank algorithm to train
the personalized ranking model in RLPer. The agent needs to judge
the relative order of a document pair in each step in RL framework.

(3) In the actual interaction process, the search model is expected
to return a document list to the user at each time. But it needs to
sample all the document pairs under a query as the training data.
Therefore, we need to take both the list and document pair levels
into consideration in a session episode. To implement interacting
with document lists but training the model with document pairs
under each query, we design a hierarchical MDP. In the hierar-
chical MDP, we use the high level MDP to track the interaction
process in units of queries and document lists, while the low level
MDP processes all document pairs under each query. We useT and
t as the serial number for the two levels respectively.

In addition, we also design a feedback-aware personalized rank-
ing component calledPHRNN to capture the user’s feedbackwhich
will be introduced in Section 3.2.2. The architecture of our proposed
RLPer model including the hierarchical MDP structure and the un-
derlying personalized ranking component is shown in Figure 1. The
details of each component are introduced as follows.

State S is a set of states describing the environment. As for the
high level MDP of interactions, the user inputs a query qT at each
time step T . The search engine (agent) is expected to re-rank the
documents based on both the inputted query and the user interests
reflected in the search history. Therefore we define the state at
the step T as sT = {HT ,qT ,DT }. Consistent with the problem
statement in Section 3.1, HT is the user’s search history before the
query qT , andDT is the list of candidate documents for qT returned
by the original non-personalized search engine. In the low level, the
search engine needs to train the ranking model with all document
pairs under the current query qT . We use PT = {p

T
1 ,p

T
2 , . . .} to

represent the set of document pairs comprised of all documents
in DT , and the model needs to determine the relative order of a
document pair in each step t . So we have sTt = {HT ,qT ,DT ,pTt }.
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Figure 1: Illustration of the RLPer model. The hierarchical MDP is on the top whose high level tracks the sequential interac-
tions in units of query and document list, and low level trains the ranking model with document pairs under each query. The
proposed ranking component PHRNN used to compute the personalized scores for documents is at the bottom. Each query in
the search history is represented by a series of document pairs.

ActionA is a set of actions for the agent to select, which depends
on the current state st and is also denoted asA(st ). In the high level,
the search engine is required to return a personalized document list
D
′

T to the user at each stepT , according to the personalized score of
the documents calculated by the current ranking componentMT . In
each step t of the low level MDP, we consider the agent to compare
the relevance of the two documents in the document pair pTt =
(di ,dj ). Thus, the action set A(sTt ) can be defined as all possible
relationships of the two documents {(di > dj ), (di = dj ), (di < dj )},
and the search engine samples an action aTt to determine their
relative relationship.

Transition T(S,A) is a function T : S ×A→ S which maps the
current state to the next state after taking an action. As for the high
level MDP of the interaction, the search engine takes an action to
return a personalized document list D′T to the user, and the user
browses the ranking list and clicks to provide real-time feedback.
Then, this query and document list with real-time clicks are added
to the user’s search history for building new user profile. With the
clicked document list, we create a set of document pairs PT , and
the agent takes action aTt to judge the relative relationship of the
two documents in the pair pTt step by step in the low level MDP.
All the document pairs in PT , the actions and the corresponding
rewards are collected to update the personalized ranking model
from MT to MT+1. When the user inputs a new query qT+1, the
high level MDP turns into the next state with new historical data.
Consequently, the transition function T for the hierarchical MDP

works as the following equations:

sTt+1 = T(s
T
t ,a

T
t ) = {hT ,qT ,DT ,p

T
t+1}, (1)

sT+1 = T(sT ,aT ) = {hT + {qT ,D
′

T },qT+1,DT+1}. (2)

RewardR(S,A) provides supervision signals for the model train-
ing in reinforcement learning, used to measure the influence of
actions. Due to we focus on using document pairs as the train-
ing data, we refer to the state-of-the-art pairwise LTR algorithm
LambdaRank [6] to design our rewards. In LambdaRank, there is a
matrix △ where each element λi , j means the difference between
the metric values before and after exchanging the documents di
and dj in the ranking list. This matrix reflects the relative relation-
ship of the documents. Different from those supervised learn-
ing models which calculate the matrix △ on the document
list recorded in the query log, we calculate it based on the
currently returned personalized document list D

′

T in the in-
teraction. Such real-time feedback reflects the user’s current
interests which can help RLPer train the personalized rank-
ing model better.We give a positive λ to the document pairs that
are judged correctly by the model and a negative λ to wrong pairs.

Policy π (a |s) : A× S → [0, 1] is a probabilistic distribution over
the action set calculated with the current state, used as the policy
to direct behaviors. Actions of the high level MDP directly depends
on the personalized scores. We only need to compute the policy for
actions in the low level MDP. From the descriptions above, we know
that any action a ∈ A(sTt ) corresponds to a possible relative order
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of the document pair. Referring to the pairwise loss, we calculate
the probability of any action as follows:

π (aTt |s
T
t ) =

exp
(
f
′
(
aTt

))
∑
a∈A(sTt )

exp
(
f
′
(a)

) , (3)

f
′

(a) =


f (di |s

T
t ) − f (dj |s

T
t ) a = (di > dj )

0 a = (di = dj )

f (dj |s
T
t ) − f (di |s

T
t ) a = (di < dj )

, (4)

where f (di |s
T
t ) and f (dj |s

T
t ) are the personalized scores for doc-

uments di and dj calculated by the current personalized ranking
modelMT . We specially design a feedback-aware personalized
ranking component to adapt to our reinforcement learning based
RLPer model, which will be introduced in Section 3.2.2.

Through formulating the problem as a RL process and designing
the MDP components above, our RLPer shows several advantages:

(1) RLPer tracks the interaction process, captures the user’s inter-
est feedback and variations during a session to learn the dynamic
user interests better.

(2) Along with the interaction process, the RLPer model can
continuously update the ranking strategy with the newly received
queries and the user’s feedback to obtain a model fitting the current
user interests best.

3.2.1 TheMixture Policy. In offline training process, wemake a few
adjustments to the behavior policy based on imitation learning [24].
Because the initialized model in reinforcement learning is random
and unstable, we create an expert policy to teach the search engine
how to interact with the user at the early stage, speeding up the
learning process. The expert policy is a deterministic policy which
only gives probability to the actions resulting in the largest reward,
denoted as π̃ . We define π̃ as:

π̃ (aTt |s
T
t ) =

{
1, i f aTt = argmaxaTt ∈A(sTt ) R(a

T
t , s

T
t )

0, otherwise
. (5)

We build the final behavior policy as a linear combination of the
expert policy π̃ (aTt |s

T
t ) and the MDP calculated policy π (aTt |s

T
t ):

π̂ (aTt |s
T
t ) = ϵ ∗ π̃ (aTt |s

T
t ) + (1 − ϵ) ∗ π (aTt |sTt ), (6)

where ϵ is a hyper-parameter used for balancing the two parts.
Following [24], we set ϵ to decay exponentially at the rate of p, i.e:

ϵ ← ϵ ∗ p, 0 ≤ p ≤ 1. (7)

Thus, the expert policy guides the behaviors at the initial stage to
help the model learn much faster. Then the MDP calculated policy
becomes more and more important for directing behaviors, playing
advantages of reinforcement learning.

3.2.2 Feedback-aware Personalized Ranking Component. In our
RLPer model, we need a personalized ranking component to build
user interest profiles and calculate personalized scores for docu-
ments used to generate ranking list and compute the action prob-
ability in Eq. (3). It can be any deep personalized model. In this
paper, we follow the personalized model HRNN [13] and make
some improvements on it to adapt to our RLPer. In HRNN, each
query in the search history is represented by the concatenation of
the query vector and the average vector of all clicked documents,

but those irrelevant documents are totally ignored. Actually, users’
click behaviours are noisy and cannot be used as absolute relevant
judgment [16]. And we apply pairwise LTR algorithm to train our
personalized ranking model in this paper. It can be more beneficial
for personalization if information about the user’s preferences can
be learned from the historical data. Therefore, we propose a model
to improve HRNN by taking all document pairs under each query
into account instead of merely clicked documents, called PHRNN.
We represent each query as a batch of document pairs, each pair
corresponding to a concatenated vector (q,d+,d−, λ). q is the query
vector, d+ and d− are vectors of the clicked and unclicked docu-
ments respectively. Considering RLPer is a model with real-time in-
teractions and user feedback, we add a weight λ for each document
pair like LambdaRank [6] to catch the feedback, getting a feedback-
aware ranking model. Noting that the weights are calculated
based on the currently returned document list and the user’s
clicks in the interaction. The feedback is added to the user’s
history which will have influences on the user interest pro-
file for the next query. Our personalized ranking component
PHRNN calculates the personalized score as follows.

Recall that sTt = {HT ,qT ,DT ,pTt } in RLPer. PHRNN splits the
whole search history HT into the long-term and short-term history,
i.e., HT = {LTu , STM }. The short-term history includes past queries
in the current session, reflecting the current query intent, while
the other queries constitute the long-term history. Then, the model
calculates the personalized score for documents with relevance
from three aspects: the relevance with the query, the relevance
with the short-term user interests and that with the long-term user
interests. Specifically, the personalized ranking score f (d |sTt ) of the
document d is calculated by:

f (d |sTt ) = f (d |{HT ,qT ,DT ,p
T
t }) (8)

= F (score(d |qT ), score(d |STM ), score(d |L
T
u )),

where f is the score function and F is a dense layer to combine the
three parts. score(d |qT ), score(d |STM ) and score(d |L

T
u ) represent the

relevance with the query, short-term and long-term user interests
respectively. The structure of PHRNN is shown at the bottom of
Figure 1. We briefly introduce the key components of the model
next and more details about calculation can be found in [13].

(1) For score(d |qT ), we extract some relevance and click features
as those in SLTB [5] as well as several additional features about
irrelevant documents following our previous idea, represented as
vqT ,d , then we use a dense layer to aggregate these features:

score(d |qT ) = tanh(F (vqT ,d )). (9)

(2) For score(d |STM ), we use the low-level RNN l to build the
short-term interest profile in a session. Here, we represent the
ith query as a matrix DPM ,i composed of all document pair vec-
tors. Then, a self-attention layer [31] and a dense layer are applied
to encode the matrix into a query embedding qM ,i , i.e: qM ,i =

F (atten(DPM ,i ,DPM ,i ,DPM ,i )), where atten() is the attention func-
tion. All query embeddings in a session are fed into the RNN l and
we take the last-step output hlM as the short-term user profile. The
short-term interests relevance score is calculated as:

score(d |STM ) = sim(hlM ,d). (10)
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(3) For score(d |LTu ), we use the high-level RNNh and a query-
aware attention mechanism to build the long-term user profile,
taking the short-term interest profile vectors of the past sessions
{hl1, . . . ,h

l
M−1} as the input. First, h

h
m = RNNh (hhm−1,h

l
m ). Then,

the weights for all the historical sessions are calculated through
a dense layer wti = σ (F (qT ,h

h
i )), and normalized to αi with a

softmax function. Finally, the long-term user profile is obtained by
h
h,qT

M−1 =
∑M−1
i=1 αih

h
i , and the relevance score is computed as:

score(d |LTu ) = sim(hh,q
T

M−1 ,d). (11)

3.3 Training with Policy Gradient
In this paper, we adopt the widely used policy gradient algorithm
REINFORCE [28, 38] to train our model. The parameters to learn in
our model are denoted asw , including the parameters for building
user interest profiles and computing personalized scores.

At first, we need to sample episodes as the training data of
the REINFORCE algorithm. In the hierarchical MDP of RLPer, we
consider a search session Sm as a sampling episode. For each query
qT of the high level MDP issued at time step T in the session, the
personalized ranking model need to judge all document pairs in
the returned document list in the low level MDP. At each step t ,
we compute the mixture policy π̂ (a |sTt ) on the action set A(sTt ) and
sample aTt to determine the relative order of the document pairpt . A
reward rTt+1 is obtained according to the λ calculated with the user’s
click feedback rT . After all the document pairs of this query qT are
judged, it converts to the next query qT+1. Until the end of this
session, we get an episode E = (s11,a

1
1, r

1
2 , s

1
2, . . . , s

nm
n ,a

nm
n , r

nm
n+1),

where n is the number of the document pairs under each query, and
nm is the total number of queries in this session Sm . We use the
document pairs sampled in the whole episode to update the model.
In order to facilitate the description of the policy gradient training
algorithm below, we simplify the representation of the episode as
E = (s1,a1, r2, s2, . . . , sN ,aN , rN+1), where N represents the length
of the whole episode.

With episodes sampled, we can calculate the discounted cumula-
tive reward starting from each step t as Gt :

Gt =

N−t+1∑
k=1

γk−1rt+k , (12)

where γ is the discounted factor. Then we can split every episode
into many transitions (st ,at ,Gt ) as training samples to train the
model. In order to make more effective use of these sampled data,
we follow another reinforcement learning algorithm DQN [28] to
apply memory replay technology. This method stores all transitions
in the memory and samples a mini-batch of transitions for model
training every time.

In the policy gradient algorithm, we use the discounted cumu-
lative long-term return of the start state s1 to evaluate the model.
Therefore, the optimization target of our model, denoted as J (w)
wherew is parameters in the RLPer model, can be defined as the
expectation of the long-term value starting from the first step:

J (w) = Eπ̂ ([G1]). (13)

Deduced from the above two formulas, the gradient ▽w J (w) in
the REINFORCE algorithm can be calculated as:

▽w (J (w)) = Gt ▽w log π̂(at |st ;w), (14)
where at is the action sampled under the state st and the mixture
behavior policy π̂(a |st ,w).

In this paper, we train the personalized ranking model in RLPer,
i.e, the model described in Section 3.2.2, with a mini-batch of sam-
ples every time and update the parameters according to the gradi-
ents calculated in Eq.( 14). The complete procedure is formulated
in algorithm 1.

As for the training process, we know the model trained with the
reinforcement learning method converges more slowly than those
supervised models, but we have introduced the mixture policy in
this paper which combines a deterministic expert policy to stimulate
the training process. With the well-trained RLPer, it costs about the
same time as HRNN to build the user interest profile and re-rank
the documents. Thus, compared with existing personalized models,
our RLPer doesn’t obviously decrease the efficiency.

Algorithm 1 Training with REINFORCE
Input: training set D, learning rate η, discount factor γ , reward
function R, batchsize B

Output: well trained parametersw
initializew randomly, a replay memory RM = []
repeat

for all Sm ∈ D do
sample an episode E = (s1,a1, r2, s2, . . . , sN ,aN , rN+1)
compute and store the N transitions (st ,at ,Gt ) into RM
sample B transitions (st ,at ,Gt ) from RM

compute gradient △w ← 1
B (

∑B
i=1Gt ▽w logπ (at |st ;w))

update the parametersw ← w + η △w
end for

until converge
return w

3.4 Testing Online
The RLPer model in this paper is expected to track the user’s entire
search process, and continuously update the personalized ranking
strategy with real-time feedback during the sequential interactions.
It can be directly applied in the actual search situation. Here, we
analyze the online test algorithm about our trained model.

In each interaction at the time step T in a session, the user
inputs a query qT , and the personalized search engine gets the state
sT = {HT ,qT ,DT }. Based on the state, the search engine returns a
personalized document list to the user. And the user clicks or skips
the documents to give feedback. Then, the search engine takes a
series of actions aTt to determine the relative order of all document
pairs in PT and gets rewards calculated with the user’s feedback.
When the user issues the next queryqT+1, the information about the
last query is added to user’s search history to build the new interest
profile. Until the end of the session, we update the personalized
ranking model with document pairs generated in the whole episode.
Following the same process but a little different settings, we propose
two approaches for the online test:
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(1) We train a shared personalized search model based on all
users’ query logs offline, and then apply the same model for all
users online. Different from the offline test during which the trained
model does not change when a test query is received, the online
model changes continuously – it is updated each time when a new
test query is received.

(2) Ideally, each user can have its own personalized ranking
model. Due to the limited amount of personal query log data, it is
impractical to train a separate ranking model from start for each
individual user. Alternatively, we first obtain a sharedmodel with all
training query logs. Then, we create a separate model cloned from
the shared model for each individual user. Each cloned individual
model is updated when the corresponding user issues a new query.

We experiment with the two online testing strategies in Section 5.

4 EXPERIMENTAL SETTINGS
4.1 Dataset and Evaluation
Dataset We evaluate our model on the public AOL search log [20]
collected from 1st March 2006 to 31th May 2006. Following [36, 43],
we use the click information in the query logs to simulate the
real-time clicks in the interaction. There are totally 657,426 users
and 16,946,938 queries in this log. And each record contains an
anonymous user id, a query string, query issued time, a clicked url
and its original ranking position. We filter all non-alphanumeric
characters in the queries, apply word segmentation and lowercasing.
We follow [2, 17] to segment the query sequences into sessions
based on the similarity between two consecutive queries. In this
paper, a query is represented by averaging the embeddings of all
its keywords, while a document representation is the weighted
average of each word embedding multiplied by its TF-IDF weight.

We need to analyze the user interests from their search history
for personalization. To ensure that all users have enough personal
search history, we divide the query logs before 3rd April 2006 as
the history data which is only for mining the user interests, and
the remaining as the experimental data. We filter out those users
whose history is less than three sessions. As for the experimental
data, we set the first six weeks as the training set and the others
are equally divided into validation and testing sets.

The AOL search log records only clicked documents without
unclicked documents, both of which are required to train our model
in a pairwise way, so we follow [1, 2] to construct the candidate
document lists. For a given query, Ahmad et al. [1] aggregated a
candidate list with the top documents ranked by BM25 [23], ap-
pending the recorded clicked documents. But they [2] observed that
many recorded clicked urls’ content crawled in 2017 has no lexical
overlap with the issued queries, may be because that the content
of some urls has been updated since 2006 when the AOL log was
sampled. To avoid the influence of such biases on model training,
Ahmad et al [2] first collected the top 1000 retrieved documents for
each query and filtered out those queries whose recorded clicked
documents were not ranked in the top 1000. Then, they found the
positions where BM25 ranks the recorded clicks and sampled a
fixed number of candidate documents centered at these positions.
Finally, 50 candidate documents are selected for each testing query,
and 5 candidates per query for the training and validation sets. The
statistics of the constructed dataset are shown in Table 1.

Table 1: Statistics of the constructed dataset.

Items Traininig Validation Testing
#session 187,615 26,386 23,040
#query 814,129 65,654 59,082
average session length 3.945 3.298 2.602
average query length 2.845 2.832 2.895
average query #click 1.249 1.118 1.115

Evaluation Consistent with existing works [13, 18], we utilize
the widely used IR metrics MAP, MRR and P@1 to evaluate our
model. And we also use the average ranking position of the clicked
documents [13], denoted as Avg.Click. A lower value of this metric
indicates a better model.

4.2 Baselines
We rank candidate documents with BM25 algorithm to generate the
original ranking. Andwe select several state-of-the-art personalized
search models and a RL based LTR model as the experimental
baselines. All the details are listed as follows:

(1) P-Click: Dou et al. [12] proposed the algorithm P-Click,
which re-ranks the documents based on the number of clicks the
user made under the same query, benefiting repeated queries.

(2) SLTB: Bennett et al. [5] analyzed user interests by extracting
diverse features from the short-term and long-term search history,
102 features in total. All the features are inputted to the Lamb-
daMart [7] to generate the final personalized ranking list. SLTB
was regarded as the best before applying deep learning models.

(3) HRNN: It [13] uses a hierarchical RNN with query-aware
attention to dynamically build the short-term and long-term user
profiles according to the current query. Then, documents are re-
ranked based on the user profiles and some relevance features.

(4) PSGAN: PSGAN [18] is a generative adversarial network
(GAN) framework for personalized search enhanced from HRNN.
It generates queries that match the users’ query intents better and
applies the model composed of a discriminator and a generator
to select document pairs more valuable for model training. We
reproduce the variant PSGAN-D.

(5) MDPRank: MDPRank [36] is a RL based pointwise LTR
model. It formalizes the construction process of a document list
as a MDP, samples a document from the candidate set to rank at
the current position in each step, and defines the promotion of
DCG [10] as the reward. We adapt this ad-hoc search model to
personalized search by adding the relevance between the document
and user interests when computing the relevance score.

4.3 Model Settings
We follow [13] to select hyper-parameters for our personalized
ranking component PHRNN. First, we train a 50-dimension glove
model [21] on the whole query log to obtain representations of all
queries and documents. Dimensions of the short-term and long-
term interest vectors are set as 300 and 600 respectively, and di-
mensions of the hidden state in both the two RNNs are 300. The
number of hidden units in the attention layer is 300, and that of the
MLP is 512. More setting details are described in HRNN [13].
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Table 2: Overall performances of the models. RLPer model significantly outperforms all the personalized search baselines
with paired test at p < 0.01 level. ∗ is used to indicate the significant improvements and the best results are in bold. RLPer(off)
means testing the model offline without update, the same as other baselines.

Model MAP MRR P@1 Avg.Clk
Ramdom Rank .0924 -82.96% .09611 -82.67% .0233 -95.41% 25.53 141.9%
BM25 .2504 -53.83% .2596 -53.18% .1534 -68.4% 17.53 66.08%
P-Click .4224 -22.11% .4298 -22.49% .3788 -21.96% 16.52 56.61%
SLTB .5072 -6.47% .5194 -6.33% .4657 -4.06% 13.92 31.98%
HRNN .5423 - .5545 - .4854 - 10.55 -
PSGAN-D .5480 +1.05% .5600 +0.99% .4892 0.78% 10.26 -2.70%
MDPRank .2728 -49.70% .2826 -49.04% .1727 -64.42% 15.84 50.16%
PHRNN .5509 +1.59% .5638 +1.68% .4911 +1.17% 10.06 -4.65%
RLPer(off) .5981∗ +10.29% .6127∗ +10.50% .5368∗ +10.59% 8.29∗ -21.41%

Parameters of our reinforcement learning based model RLPer are
determined as follows. The learning rate is 1e − 4 and the reward
discount factor is 0.8. We adopt the mixture policy to train the
offline model with ϵ initialized as 1 and the decay rate p as {0, 0.9}.
The parameters are selected under the supervision of the validation
set, and we select the model with the best performance on the
validation set for testing.

5 EXPERIMENTAL RESULTS AND ANALYSIS
To verify and analyze the effectiveness of our proposed model
comprehensively, we take experiments on the processed AOL search
log. The experimental results are reported and discussed as follows.

5.1 Overall Performance
The overall performance is a credible measurement of how effec-
tive a model is. We test all the baselines and our proposed models
PHRNN, RLPer on the whole dataset offline, without any update.
The results are presented in Table 2. After observation, we find:

(1) In terms of all evaluation metrics, our RLPer model
shows significant improvements on all baselineswith paired
test at p<0.01 level. Pay attention to our RLPer (off), it outperforms
state-of-the-art HRNN model greatly, with 10.29% improvement on
the metric MAP, 10.50% on MRR and 21.41% improvement on the
Avg.Click metric. In addition, our RLPer also outperforms PSGAN
a lot. It improves 9.14% on the MAP and 9.73% on the P@1 metric.
PSGAN is a model to enhance the training data for HRNN based on
GAN and achieves certain effects as presented in Table 2. Recall that
our RLPer also has more training samples. Thus, RLPer’s promotion
on PSGAN highlights that not only more training samples play role
in our model, but also tracking the whole interaction process and
the continuous update mechanism.

(2) Focusing on our proposed PHRNN and RLPer, we find that
PHRNNmodel performs a little better than the originalHRNN
model, and RLPer further improves the results on the basis
of PHRNN.We think one reason for PHRNN’s better performance
than HRNN is that taking the user’s preferences reflected in the
document pairs into consideration is more beneficial for learning
the user’s interests compared to merely the clicked documents,
especially for the noisy dataset. In terms of RLPer and PHRNN,
we know RLPer adapts the reinforcement learning framework on

PHRNN, so the great promotion of RLPer confirms the effectiveness
of applying reinforcement learning framework to search results
personalization. We analyze the improvements may because of the
RLPer’s advantages claimed in the former parts: first, it can capture
the dynamic user interests better by tracking the search process
and obtaining the user’s real-time feedback. Second, it updates the
personalized ranking model continuously along with the interac-
tions. And third, it can generate more training samples with the
trial-and-error strategy.

(3) All the personalized search models improve the basic
ad-hoc ranking results a lot, which indicates search results per-
sonalization is helpful for promoting users’ search experience. The
improvement of P-Click [12] model proves that users usually per-
form re-finding behaviors in search. The diverse features about
users, queries and documents designed in SLTB [5] can effectively
analyze users’ interests and query intents. Models based on learn-
ing achieve state-of-the-art results, including HRNN and PSGAN
which both build user interest profiles with a hierarchical RNN,
our improved PHRNN and the reinforcement learning based model
RLPer. The great performance of PSGAN also confirms its validity
of enhancing the training data for personalized models.

However, the reinforcement learning based pointwise LTRmodel
MDPRank doesn’t perform so well on personalized search. The pos-
sible reason may be: it is a model designed for the ad-hoc search,
lacking the ability to consider the long-term history information
and capture the user’s interests. Furthermore, MDPRank performs
well on the datasets with precise annotations for document rele-
vance, while the actual query logs for personalized search is noisy
and biased. Its worse performance also indicates the necessity of
designing a RL based model specially for personalized search.

In conclusion, the overall experimental results verify that our
proposed model RLPer can capture user interests better and
is able to learn better personalized ranking model.

5.2 Ablation Analysis and Discussion
In this paper, we claim that the RLPer model provides several ad-
vantages in improving personalized search. To analyze how our
designed model and which component contributes to personaliza-
tion, we conduct several ablation studies. Results are shown in
Table 3 and we make some discussions as follows.
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Table 3: Results of the ablation experiments. ‘-Session’
means setting a query as an episode and ‘-RL’ means train
RLPer model in a supervised way. Online test1 is the online
test method which maintains a shared updated model, and
online test2 means maintaining a separate model for each
user during the test.

Model Variation MAP P@1 Avg.Click
RLPer(off) .598 - .536 - 8.29 -
-Session .584 -2.3% .5234 -2.5% 8.79 +6.06%
-RL .565 -5.5% .508 -5.3% 9.36 +12.8%
Online test1 .609 +1.86% .543 +2.01% 8.18 -1.4%
Online test2 .613 +2.57% .549 +2.68% 8.08 -2.6%

session v.s. query In our model, we set a session, which is
viewed as search activitywith independent user intent, as an episode
to track the user’s interaction process and capture the interests.
To confirm the effectiveness of this configuration, we conduct an
experiment with a single query as an episode, ignoring the feed-
back from interactions before and after the single query. From the
second line in Table 3, we find the model loses 2.3% in MAP, 2.5% in
P@1 and increases 6.06% in Avg.Click without the session episode.
This results clearly suggest that our RLPer tracking the user’s
interaction process benefits to personalization. We think it
may be because the context interactions can help clarify the user’s
dynamically changing interests and current query intent.

RL v.s. supervise learning We apply the reinforcement learn-
ing framework to deal with the process of interactions in search.
Its trial-and-error strategy produces more training samples than
supervise learning. We do experiment to train the RLPer model in
a supervised way to verify the validity of the reinforcement learn-
ing framework. As presented in Table 3, the model trained with
the ground-truth drops 5.5% in MAP, 5.3% in P@1 and increases
12.8% in Avg.Click. The results prove that reinforcement learn-
ing framework helps train the personalized ranking model
better. It may due to the RL based model catches the interactive
essence of search. In addition to more training samples, one more
possible reason may be that whether and how well the query intent
is satisfied in the later search process helps to update the current
ranking model.

static v.s. continuous update Most of the existing personal-
ized search models are trained offline and tested statically without
update in a short time. Instead, we argue that our RLPer model
can be updated continuously along with interactions when applied
in the actual search situation, and we provide two approaches for
online test. Focusing on the online test results shown in the last
two lines in Table 3, we find both approaches perform greatly and
improve the offline results a lot in terms of all metrics. The sec-
ond approach, which maintains a separate model for each user,
performs the best. This improvement demonstrates that the con-
tinuous update mechanism of the ranking strategy fits the
current user interests better. And the excellent performance of
the second online test approach inspires us that it can be more
effective to keep a unique model for each individual user.

To display the continuous update of our model more intuitively,
we visualize the weights in the attention layer for two same test
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Figure 2: The weights in the attention layer of HRNN (‘H’)
and RLPer (‘R’) for two same queries issued by a user. In the
figure, ‘f’ indicates the former query, and ‘l’means the latter.
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Figure 3: Results on queries with different click entropies.

queries issued at different time. We compare the weights with the
baseline HRNN [13] and show the results in figure 2. In HRNN [13],
the attention weights are calculated based on the current query
and historical queries. We can find the attention weights of the two
queries are different in our RLPer model though the two queries
are the same, while the weights in HRNN are the same. It proves
that our model has been updated between the two test queries to
fit the current user interests better.

5.3 Experiments on Queries with Different
Click Entropies

As stated in [12], click entropy can reflect how ambiguous a query
is. A query with a high click entropy indicates that users have
different query intents when inputting this query, and search results
personalization should be more necessary for such query. Therefore,
we experiment on query collections with different click entropy
to evaluate our model more specifically. We categorize all queries
into two groups with the cutoff of click entropy at 1.0. And we take
the models’ improvement on the MAP compared with the original
random ranking as the evaluation metric. Figure 3 shows the results
on the two query groups respectively.

From the figure, we can find that all personalized search models
improve both the clear and ambiguous queries greatly compared
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Figure 4: Results on repeated/non-repeated queries.

with the ad-hoc ranking algorithm. Consistently, our RLPer model
performs the best among all the personalized model on both query
groups. Compared with the closese baseline HRNN, our model also
presents significant improvement.

5.4 Experiments with Repeated/Non-repeated
Queries

Studies [12, 30] have shown that it is a common fact that users may
issue the same query for the same information in search engines.
Inspired by this phenomenon, Dou et al [12] proposed the algorithm
P-Click. A large number of features in SLTB [5] are also designed
based on the re-finding mechanism, achieving great effects. How-
ever, these models based on click features may fail on queries that
have never been asked by the user. In terms of the learning based
models, we expect they have the ability to predict document rele-
vance for queries even without direct click-based features. With this
consideration, we divide the testing set into repeated/non-repeated
queries and evaluate on the two sets to investigate the effectiveness
of our model. Results are shown in Figure 4.

From Figure 4, we find that all the personalized search models
perform much better on the repeated queries than non-repeated
queries, except for the ad-hoc search method BM25 which is even
worse on the repeated queries. The promotion on the repeated
queries illustrates that most personalized search models have the
ability to take advantage of the click-based features to improve the
ranking results. Our proposed model consistently performs the best
on both the two groups. Though the absolute improvements of our
model on the two query groups are similar, it makes a relatively
greater promotion on non-repeated queries. This further demon-
strates the effectiveness of our model to capture the user interests
from the search history to better cope with queries issued by the
user even at the first time.

5.5 Experiments on Accumulative Reward
In reinforcement learning, the model’s optimization target is to
maximize the expected long-term return of the initial state. In the
hierarchical MDP of RLPer, we view all query behaviors in a ses-
sion as an episode, so that the model is expected to maximize the
discounted sum of rewards in a session. To verify the validity of
our proposed model from this dimension, we design the metric
average accumulative reward to evaluate all the baselines and
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Figure 5: Experimental results about accumulative reward.

RLPer. Recall that we set the λ calculated on the document ranking
list as the rewards for document pairs. Due to the baseline mod-
els are tested offline, we use the personalized document scores to
decide the relative order of the documents in pairs and calculate
the average of the accumulative rewards of all sessions. Finally, we
show all models’ performance in Figure 5.

Compared with all baselines, we observe RLPer achieves the
highest value of average accumulative reward, which meets our
expectation and confirms the correctness of ourmodel. In addition, a
larger accumulative reward in a session indicates that we can satisfy
the user’s query intent in a session better, and our personalized
search model seems more effective in the long run.

6 CONCLUSION
Personal search process can be regarded as sequential interactions
between the user and search engine, during which the user interests
dynamically change. Different from the existing personalized search
models which train a fixed ranking model at one time, in this paper,
we proposed a reinforcement learning based model RLPer to track
the user’s interactive search process and continuously update the
personalized ranking model. Specifically, we set the search engine
as the agent and model the interactions as a hierarchical MDP. Each
time when the user inputs a query and clicks on the result, RLPer
is able to get rewards from the user’s feedback, update the ranking
model and create the user profile with new history. Experiments
on the public AOL search log verified the effectiveness of our pro-
posed model. Search is a complex interactive process between users
and search engines. In this paper, we give a preliminary attempt
to model this process with reinforcement learning. We modeled
and exploited the simplest user behaviour, i.e. clicks for training
adaptive personalized models. In the future, we plan to explore
richer user behaviours and design better interaction models.
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