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ABSTRACT
Search result diversification aims to retrieve diverse results to cover
as many subtopics related to the query as possible. Recent studies
showed that supervised diversification models are able to outper-
form the heuristic approaches, by automatically learning a diversifi-
cation function other than using manually designed score functions.
The main challenge of training a diversification model is the lack
of high-quality training samples. Due to the involvement of depen-
dence between documents in the ranker, it is very hard for training
algorithms to select effective positive and negative ranking lists to
train a reliable ranking model, given a large number of candidate
documents within which different documents are relevant to differ-
ent subtopics. To tackle this problem, we propose a supervised di-
versification framework based on Generative Adversarial Network
(GAN). It consists of a generator and a discriminator interacting
with each other in a minimax game. Specifically, the generator gen-
erates more confusing negative samples for the discriminator, and
the discriminator sends back complementary ranking signals to
the generator. Furthermore, we explicitly exploit subtopics in the
generator, whereas focusing on modeling document similarity in
the discriminator. Through such a minimax game, we are able to
obtain better ranking models by combining ranking signals learned
by the generator and the discriminator. Experimental results on
the TREC Web Track dataset show that the proposed method can
significantly outperform existing diversification methods.
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1 INTRODUCTION
In search engines, the queries issued by users may have different
meanings. For example, when users issue “java”, the meaning of
the query could be the programming language or the Java Island
in Indonesia. The retrieved documents should cover both topics to
satisfy users’ information need as much as possible. Thus, the goal
of search result diversification is to generate a ranked list of docu-
ments that cover different user intents underlying an ambiguous or
a broad query. In recent years, many search result diversification
approaches have been proposed [1, 6, 12, 17, 18, 23–26].

Most previous methods of diversification can be described as
the following procedure. At each iteration, the document with the
highest score graded by the diversification score function is selected
and added to the end of the existing document ranking. The task of
diversification is to design the diversification score function that
combines both relevance to the query and novelty of the documents
using information of the query and the selected documents. Ac-
cording to the score function, approaches of diversification can
be divided into explicit approaches and implicit approaches. The
implicit approaches [1, 23, 24, 26] emphasize the novelty of the doc-
uments, which infers that the selected document should be different
from the previously selected documents. The diversification score
function of implicit approaches can be handcrafted rules such as
MMR [1] or a supervised measure such as R-LTR [26], PAMM [23],
and NTN [24]. The explicit approaches [6, 12, 17, 18, 25] stress the
relevance between the documents and the subtopics of the query,
which infers that the selected document should cover the subtopics
which the previously selected documents do not cover. The diversifi-
cation score function in explicit approaches is usually performed by
subtopic distribution measures and document-subtopic relevance
measures. Similar to implicit approaches, explicit diversification
approaches can also be categorized into heuristic approaches such
as xQuAD [17, 18] and PM2 [5, 6, 9] and supervised approaches
such as DSSA [12].

Studies have shown that supervised approaches [12, 23, 24, 26]
are able to outperform the heuristic approaches [1, 6, 18] by learn-
ing an optimized ranking function. However, the large number of
candidate documents with only few subtopic-relevant documents
in it may cause the problem that the space of training samples is too
large (for example the quantity of ways of sampling 20 documents
from 50 document is about 1014) and the sampled data may only
contain few documents relevant to the subtopic. This may cause
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the model hard to train. So the main challenge in training a super-
vised diversification model is how to sample enough high-quality
training data that contain an appropriate number of relevant doc-
uments from the candidate document set. Some methods such as
R-LTR [26] only use the top documents in the ideal rankings while
other methods such as PAMM [23] sample the training rankings
by judging it through diversification evaluation metrics. However,
none of the existing approaches solve this problem completely. The
quality of training data used by R-LTR [26] is high but its quantity
is too small to train the model which may lead to underfit. The
quantity of the training dataset used by PAMM [23] is large enough
but the quality of it depends on some hyper-parameters such as
the range of 𝛼-nDCG [4] of negative ranking samples, which may
cause the model hard to tune. How to generate training samples
effectively is still a challenge for training diversification models.

To tackle this problem, inspired by IRGAN [19], we introduce
Generative Adversarial Network (GAN) [10] into search result di-
versification. Generator generates negative training samples in-
stead of using handcrafted rules for discriminator to train and
discriminator provides reward for generator for better sampling.
This positive feedback mechanism may improve sampling perfor-
mance. Furthermore, there are two main components in GAN, so it
is natural to use two different approaches in generator and discrim-
inator. This feature of GAN provides a simple way to combine ex-
plicit document-subtopic relevance features and implicit document-
document similarity features to improve the performance of search
result diversification. Specifically, we use explicit approaches in
generator and implicit approaches in discriminator in this paper,
and it is easy to switch to different settings in real applications.
We call this framework DVGAN(search result DiVersification us-
ing Generative Adversarial Network). In our framework, we also
propose two training methods, namely document selection method
DVGAN-doc and ranking selection method DVGAN-rank. Different
from the traditional GAN, generator needs input data (for example,
the selected document ranking) to generate the negative samples.
In our framework, the input data sampling is a part of the data sam-
pling problem. To better generate the input data for better sampling
training data, in these two methods, we added a new component
sampler to the GAN framework and proposed several sampling
algorithms to reduce the high dimension of the sampling space.
Experimental results on TREC Web Track data show our methods
outperform the existing methods significantly.

The main contribution of this paper is threefold: (1) To the best
of our knowledge, this is the first method adapting generative ad-
versarial network to search result diversification;(2) We combine
explicit features and implicit features in GAN to improve diversi-
fication quality;(3) We proposed several sampling algorithms con-
sidering both quality and quantity of the training data to solve the
problem of training data sampling.

The rest of the paper is organized as follows. We introduce
related works in Section 2. Following this we introduce the GAN
framework for search result diversification in Section 3. In Section 4,
we elaborate each component of our proposed model. We describe
experimental settings in Section 5 and analyze experimental results
in Section 6. We conclude the paper in Section 7.

2 RELATEDWORK
2.1 Search Result Diversification
As search result diversification is an effective way to solve the
problem of query ambiguity, many models have been proposed to
solve this problem [1, 6, 12, 17, 18, 23–26]. Depending on whether
the subtopics of query are explicitly modeled and the form of score
function, existing diversification approaches can be categorized
into implicit and explicit approaches. We will introduce these two
approaches respectively in the following part.

Implicit Diversification Approaches. The implicit approaches em-
phasize the document’s relevance to the query and novelty to the
selected documents. In the early years’ research on diversification,
implicit methods are most unsupervised. MMR [1] can be regarded
as the foundation of implicit methods. Its diversification score func-
tion is as follows.

𝑓 (𝑑 |𝑞, 𝑆) = (1 − 𝜆)𝑆rel (𝑑, 𝑞) + 𝜆Λ𝑑 𝑗 ∈𝑆𝑆
div (𝑑, 𝑑 𝑗 ). (1)

The 𝑆rel function reflects the 𝑑’s relevance to the query 𝑞 and the
𝑆div function reflects the 𝑑’s novelty to the list of documents 𝑆 that
are already ranked before the current document𝑑 . TheΛ function is
to aggregate the novelty between document 𝑑 and 𝑆 . Most implicit
methods replace the 𝑆rel and 𝑆div with more complex function
and design loss function to use the machine learning method to
improve the performance. The relational learning-to-rank (R-LTR)
[26] replaces the 𝑆div score by using the relationshipmatrix between
document 𝑑 and selected documents 𝑆 . And the loss function is
inspired by the learning to rank which is aiming to maximize the
probability of optimal rankings. Based on the same score function
of R-LTR, Xia et al. proposed PAMM [23] in which loss function
is designed to directly maximize the score margin of positive and
negative rankings. Furthermore, Neural Tensor Network (NTN)
[24] was introduced into search result diversification to measure
document similarity automatically. In our framework, we use the
score function of the R-LTR in discriminator.

Explicit Diversification Approaches. Different from implicit ap-
proaches which mainly model document novelty based on similari-
ties between documents, explicit approaches regard the query as
several subtopics, and explicitly leverage subtopics to determine
the diversity of results [6, 12, 17, 18]. Most explicit approaches fo-
cus on the subtopic coverage of results, by calculating subtopic
distribution based on ranked documents. The score function for
explicit methods can be described as the following form:

𝑓 (𝑑 |𝑞, 𝑆) = (1 − 𝜆)𝑆rel (𝑑, 𝑞) + 𝜆
∑
𝑖∈𝐼𝑞

𝐴(𝑖 |𝑆) ∗ 𝑆sub (𝑑, 𝑖), (2)

where 𝑖 denotes one subtopic of the query subtopics, 𝐼𝑞 denotes
all the subtopics of query 𝑞. 𝐴(𝑖 |𝑆) denotes the distribution of the
subtopic given the selected documents rankings 𝑆 which contains
the document-subtopic information of previous documents. The
𝑆rel function reflects the 𝑑’s relevance to the query 𝑞 and the 𝑆sub
function reflects the 𝑑’s relevance to the subtopics. xQuAD [18]
is one of the representative methods of unsupervised explicit ap-
proaches. It defines the subtopic distribution by calculating the
probability of the selected documents not covering the subtopics.
PM2 [6] is another unsupervised explicit method calculating the
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distribution by counting the relevant document of the subtopic.
DSSA [12] introduces the machine learning method into explicit
approaches. It calculates the distribution using the RNN and atten-
tion mechanism [16]. In our framework, we mainly use the score
function of the DSSA in our generator.

Discussion. As described above, existing implicit and explicit
approaches considered different information for learning diversifi-
cation functions and had different goals. The implicit approaches
mainly use the dissimilarity between documents and emphasize the
novelty of the documents, whereas the explicit approaches exploit
subtopics and stress the coverage. So it is intuitive that using both
kinds of features may lead to potential performance improvement
compared to the sole use of explicit or implicit approaches. In this
paper, we will have a preliminary study on this.

2.2 Generative Adversarial Network
Generative Adversarial Network(GAN) [10] is initially used in the
area of computer vision to generate pictures that are similar to
realistic. There are two models in the Generative Adversarial Net-
work, which are called generator and discriminator. These two
models are trained in an adversarial minimax game. This process
aims at erasing the unnecessary noise in the contiguous dataset,
which is a semi-supervised model. In recent years, after overcom-
ing the problem of passing gradients from the discriminator to the
generator, GAN has just been introduced into a discrete area. For
example, SeqGAN [13] introduces the GAN to the text sequence
generation area combined with Monte Carlo search. It is also used
in the traditional information retrieval area, Wang proposed IR-
GAN [19] which consists of two information retrieval models in
it. Comparing to other information retrieval models, IRGAN’s gen-
erator can provide negative training samples with higher quality.
In the personalized search area, Lu proposed PSGAN [15] inspired
by IRGAN. Our framework is inspired by the former two models.
However, we combine the idea of minimax game with the method
in diversification search. In this paper we will discuss how to apply
GAN in our framework to generate more relative and well-covered
document ranking answering the query. We also apply GAN to
combine explicit and implicit approaches.

3 DVGAN-A GAN FRAMEWORK FOR
SEARCH RESULT DIVERSIFICATION

3.1 Problem Formulation and Framework
As we introduced in Section 1, we want to combine both explicit
approach and implicit approach to improve the search result diver-
sification performance via generative adversarial network. We will
use explicit approach’s score function in generator because its form
is close to the diversification evaluation metrics. We use implicit
approach’s score function in discriminator as its form is strong to
distinguish the positive samples and negative samples which are
closed by directly comparing documents. Through the minimax
game training process, we expect that discriminator can provide
rewards including the information reflecting implicit features for
generator for optimizing the calculation of subtopic distribution
in it, and generator can generate high-quality negative samples to
discriminator to produce more useful feedback. In this way, the

Table 1: Notations in our framework

Name Description
𝑄,𝑞 the query set, a query in the set, 𝑞 ∈ 𝑄
𝑆 a list of documents that are already ranked
S𝑞 a set of document list 𝑆 for query 𝑞, 𝑆 ∈ S𝑞
𝐶 a set of candidate documents
C𝑞 a collection of document sets, 𝐶 ∈ C𝑞
Γ data given to the generator
Ξ′, 𝜉 set of generated samples, 𝜉 is a sample
𝑝true (𝜉 |𝑞, Γ) true distribution of samples
𝑝𝜃 (𝜉 |𝑞, Γ) distribution of generated samples
𝐷 ′, 𝑑 set of generated documents, 𝑑 is a document
𝐿′, 𝑙 set of generated ranking lists, 𝑙 is a ranking list
G,D generator, discriminator
𝜙, 𝜃 parameters in G and D
𝑓𝜃 , 𝑓𝜙 diversification function in G𝑎𝑛𝑑 D
G𝜃 (𝜉),D𝜙 (𝜉) score function of sample 𝜉 in G and D

generator can produce a high-quality document ranking as diversi-
fication search results.

The notations used in this paper are listed in Table 1. We propose
two different training methods, namely DVGAN-doc and DVGAN-
rank. Theymainly differ inwhat 𝜉 the generator generates and input
data Γ are given to the generator. The item 𝜉 generated by the gener-
ator could be a document 𝑑 or a ranking 𝑙 = {𝑑𝑙1 , · · · , 𝑑𝑙𝑖 , · · · , 𝑑𝑙 |𝑙 | }
(i.e., 𝜉 is𝑑 or 𝑙 ). Γ could be selected document ranking 𝑆 or candidate
document set𝐶 (i.e., Γ is 𝑆 or𝐶). In DVGAN-doc method, generator
generates negative document set 𝐷 ′ given the query 𝑞 and selected
document ranking 𝑆 . In DVGAN-rank method, generator generates
complete negative document ranking set 𝐿′ given the query 𝑞 and
candidate document set𝐶 . In both methods, there are three compo-
nents in the adversarial framework: a generator, a discriminator,
and a sampler.

Suppose 𝑓𝜃 (𝑑 |𝑞, 𝑆) and 𝑓𝜙 (𝑑 |𝑞, 𝑆) are the diversification score
functions of a document𝑑 in generator and discriminator. In DVGAN-
doc method, the score function of 𝜉 (particular 𝑑) is the same as the
diversification score function 𝑓𝜃 (𝑑 |𝑞, 𝑆). In DVGAN-rank method,
we calculate the score function of 𝜉 (particular 𝑙 ), i.e.,D𝜃 (𝑙 |𝑞,𝐶) and
G𝜙 (𝑙 |𝑞,𝐶), using Plackett-Luce model [7]. Specifically, we have:

DVGAN-doc
{D𝜙 (𝑑 |𝑞, 𝑆) = 𝑓𝜙 (𝑑 |𝑞, 𝑆)
G𝜃 (𝑑 |𝑞, 𝑆) = 𝑓𝜃 (𝑑 |𝑞, 𝑆),

DVGAN-rank


D𝜙 (𝑙 |𝑞,𝐶) =

|𝑙 |∏
𝑖=1

𝑓𝜙 (𝑑𝑙𝑖 |𝑞, {𝑑𝑙1 , ..., 𝑑𝑙𝑖−1 })∑ |𝑙 |
𝑗=𝑖

𝑓𝜙 (𝑑𝑙 𝑗 |𝑞, {𝑑𝑙1 , ..., 𝑑𝑙𝑖−1 })

G𝜃 (𝑙 |𝑞,𝐶) =
|𝑙 |∏
𝑖=1

𝑓𝜃 (𝑑𝑙𝑖 |𝑞, {𝑑𝑙1 , ..., 𝑑𝑙𝑖−1 })∑ |𝑙 |
𝑗=𝑖

𝑓𝜃 (𝑑𝑙 𝑗 |𝑞, {𝑑𝑙1 , ..., 𝑑𝑙𝑖−1 })
(3)

Suppose 𝑝true (𝜉 |𝑞, Γ) is the true distribution of samples which
generator tries to fit and 𝑝𝜃 (𝜉 |𝑞, Γ) is the distribution of generated
samples. 𝑝true (𝜉 |𝑞, Γ) = 𝑝true (𝑑 |𝑞, 𝑆) is the true distribution of doc-
uments in DVGAN-doc (i.e., Γ = 𝑆), and 𝑝true (𝜉 |𝑞, Γ) = 𝑝true (𝑙 |𝑞,𝐶)
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is the true distribution of rankings in DVGAN-rank (i.e., Γ = 𝐶). The
form of 𝑝𝜃 (𝜉 |𝑞, Γ) for both methods is the same, and it is calculated
by the softmax function:

𝑝𝜃 (𝜉 |𝑞, Γ) =
exp(G𝜃 (𝜉 |𝑞, Γ))∑
𝜉 exp(G𝜃 (𝜉 |𝑞, Γ))

=
exp(G𝜃 (𝜉 |𝑞, Γ))∑

𝜉 ∈Ξ′ exp(G𝜃 (𝜉 |𝑞, Γ)) + exp(G𝜃 (𝜉true |𝑞, Γ))
,

(4)

where 𝜉true denotes the positive sample in discriminator. In differ-
ent methods, we can simply replace the 𝜉 ,Ξ′ by the document 𝑑 ,
document set 𝐷 ′ or ranking 𝑙 , ranking set 𝐿′.

The discriminator aims to learn a score distribution D𝜙 (𝜉 |𝑞, Γ),
which is to distinguish the samples which satisfy the demand of
diversification (positive sample) from the generated samples (nega-
tive samples). The documents or document rankings with the high
metric score are treated as positive samples and what the generator
generates are treated as negative samples. According to the Eq. (3),
we can infer that two forms ofD𝜙 are both related to 𝑓𝜙 (𝑑 |𝑞, 𝑆). So
the problem is simplified to learn the 𝑓𝜙 (𝑑 |𝑞, 𝑆) diversification score
function. In our method, 𝑓𝜙 (𝑑 |𝑞, 𝑆) is implemented as the implicit
diversification score function in order to better distinguish positive
and negative samples as the implicit approaches directly model the
dissimilarity between documents.

The generator aims to learn a distribution 𝑝𝜃 (𝜉 |𝑞, Γ) to fit the
real distribution 𝑝true (𝜉 |𝑞, Γ) through the score function G𝜃 (𝜉 |𝑞, Γ).
The generator also generates negative samples according to the 𝑝𝜃
to confuse the discriminator. According to the Eq. (3), we can infer
that two forms of G𝜙 are both related to 𝑓𝜃 (𝑑 |𝑞, 𝑆). So the problem
is simplified to learn the 𝑓𝜃 (𝑑 |𝑞, 𝑆) diversification score function. In
our method, 𝑓𝜃 (𝑑 |𝑞, 𝑆) is implemented as the explicit diversification
score function in order to generate more confusing samples as the
explicit approaches directly model the coverage of subtopics.

The sampler aims to generate the input data Γ to generator. In
DVGAN-doc, it is a list of documents which are already ranked,
i.e., 𝑆 . In DVGAN-rank, it is a set of candidate documents 𝐶 . The
generator will generate a corresponding object 𝜉 (a document for
DVGAN-doc or a ranking list for DVGAN-rank) based on Γ, hence
the sampler is also a critical component that helps reduce the sam-
pling space.

The minimax game in DVGAN framework can be described as
follows: given a query 𝑞, its subtopics, and the input data Γ given
by the sampler, the generator tries to generate the best samples set
Ξ′ (set of documents 𝐷 ′ in DVGAN-doc and set of ranking lists
𝐿′in DVGAN-rank) that satisfies the diversification demand with
high relevance to the query and coverage of the subtopics. The
discriminator tries to distinguish the true document or rankings
𝜉true from the negative samples 𝜉𝜃 generated by the generator.
Formally, given query set 𝑄 and document, we have:

𝐽 G∗,D∗ = min
𝜃

max
𝜙
ℑ(𝑝true, 𝑝𝜃 ), (5)

We will introduce the specific form of ℑ in DVGAN-doc and
DVGAN-rank respectively in the following part.

3.2 DVGAN-doc: Document Selection Method
DVGAN-doc is a natural extension of IRGAN considering diversifi-
cation features. Generator tries to select documents that resemble

the positive documents from the candidate document set to fool
the discriminator, whereas discriminator tries to distinguish the
positive and negative documents. The ℑ in Eq. (5) in DVGAN-doc
is as follows:

ℑ (𝑝true, 𝑝𝜃 ) =
∑

𝑞∈𝑄,𝑆 ∈S𝑞

(
E𝑑∼𝑝true (𝑑 |𝑞,𝑆) log𝐷𝜙 (𝑑 |𝑞, 𝑆)

+ E𝑑∼𝑝𝜃 (𝑑 |𝑞,𝑆) log
(
1 − 𝐷𝜙 (𝑑 |𝑞, 𝑆)

) )
,

(6)

where generator𝐺 is written as 𝑝𝜃 (𝑑 |𝑞, 𝑆). Eq. (4) and the discrimi-
nator 𝐷 is the estimated probability calculated by:

𝐷𝜙 (𝑑 |𝑞, 𝑆) = 𝜎

(
𝑓𝜙 (𝑑 |𝑞, 𝑆)

)
=

exp(𝑓𝜙 (𝑑 |𝑞, 𝑆))
1 + exp(𝑓𝜙 (𝑑 |𝑞, 𝑆))

. (7)

Please note that different from IRGAN [19], DVGAN-doc has an
additional component 𝑆 to represent the former selected documents.
As 𝑆 contain order information, it is required to be ranked.

3.2.1 Optimizing Discriminator. According to the Eq. (6) optimiz-
ing the discriminator is to optimize 𝜙 to maximize the whole result
given the true documents and generated documents, i.e.,

𝜙∗ = argmax
𝜙

∑
𝑞∈𝑄,𝑆 ∈𝑆𝑞

(E𝑑∼𝑝true (𝑑 |𝑞,𝑆) log𝐷𝜙 (𝑑 |𝑞, 𝑆)+

E𝑑∼𝑝𝜃 (𝑑 |𝑞,𝑆) log(1 − 𝐷𝜙 (𝑑 |𝑞, 𝑆))) .
(8)

3.2.2 Optimizing Generator. As GAN is put into practice in the
contiguous area firstly, it is difficult to calculate the generator gradi-
ent due to its discrete nature. Inspired by IRGAN [19], we generate
negative document set 𝐷 ′ by selecting the documents from the can-
didate document set with the highest scores. Formally, the gradient
of the generator is:

∇𝜃 𝐽 G (𝑞, 𝑆) ≃
1
|𝐷 ′ |

∑
𝑑∈𝐷′

∇𝜃 log𝑝𝜃 (𝑑 |𝑞, 𝑆) log(1 + exp(𝑓𝜙 (𝑑 |𝑞, 𝑆))).

(9)
Note that the feedback from the discriminator log(1+exp(𝑓𝜙 (𝑑 |𝑞, 𝑆)))
can be regarded as the reward to the generator according to the
reinforcement learning which contains the implicit information
calculated in discriminator.

3.2.3 Sampler. In the DVGAN-doc method, the sampler sample
a list of selected documents 𝑆 which is sent to the generator. As
we mentioned in Section 1, training dataset sampling is the main
challenge in search result diversification. In this method, we design
two methods for sampling. Firstly, it is necessary to sample the
ideal ranking but it is not enough. Recall that our method is not an
ideal method, so it may produce some documents which may not
be as good as the ideal ones. Hence we also sample in the second
way: we randomly select some documents from the document set to
form the selected document ranking 𝑆 . However, recall that in the
DVGAN-doc method, we require that 𝑆 is ranked. So the sampler
also needs to re-rank 𝑆 by the diversification metric like 𝛼-nDCG
[4]. In practice, half of the selected document ranking 𝑆 is sampled
from the ideal ranking, and the other half of the 𝑆 is sampled in
the second random way. In both ways, the positive document is
the best next document maximizing 𝛼-nDCG given 𝑆 .The sampling
method is described in Algorithm 1.
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Algorithm 1 Sampling algorithm used by DVGAN-doc Sampler
1: input: query set𝑄 , document set 𝐷𝑞 and ideal document rank-

ing 𝑟𝑞 for each query 𝑞, number of random sample 𝑛𝑠 , number
of selected documents in random sample 𝑑𝑠 .

2: output: set of selected ranking lists S𝑞 for each query 𝑞.
3: for query 𝑞 ∈ 𝑄 do
4: S𝑞 ← ∅ //the first method, sampling from ideal ranking
5: 𝑙 ← len(𝑟𝑞 )
6: for 𝑖 = 1 to 𝑙 do
7: S𝑞 ← S𝑞 ∪ 𝑟𝑞 [: 𝑖]
8: end for
9: //the second method, random sampling
10: for 𝑖 = 1 to 𝑛𝑠 do
11: 𝑆 ← ∅
12: for 𝑗 = 1 to 𝑑𝑠 do
13: 𝑆 ← 𝑆 ∪ random_in(𝐷𝑞)
14: end for
15: 𝑆 ← re − rank(S)
16: S𝑞 ←S𝑞 ∪ 𝑆
17: end for
18: end for
19: return S𝑞

3.3 DVGAN-rank: Ranking Selection Method
In the former DVGAN-doc method, the difference between the
positive samples and negative samples is only one document which
may not be enough for discriminator to learn. Thus, we put forward
theDVGAN-rankmethod to differ the positive and negative samples
at ranking level.

The ℑ in the Eq. (5) in DVGAN-rank method is:

ℑ (𝑝true, 𝑝𝜃 ) =
∑

𝑞∈𝑄,𝐶∈C𝑞

(
E𝑙+∼𝑝true (𝑙 |𝑞,𝐶),𝑙−∼𝑝𝜃 (𝑙 |𝑞,𝐶)

[D𝜙 (𝑙+ |𝑞,𝐶) − D𝜙 (𝑙− |𝑞,𝐶)) ≤ 𝐸 (𝑙+ |𝑞,𝐶) − 𝐸 (𝑙− |𝑞,𝐶)]
)
,

(10)

where the generator G is written as 𝑝𝜃 (𝑙 |𝑞,𝐶) and D𝜙 is the di-
versification score for a whole document ranking in discriminator
calculated by Eq. (4) using Plackett-Luce model and the 𝐸 is the
diversification metrics such as 𝛼-NDCG and ERR-IA [2]. The form
of ℑ is inspired by PAMM [23] method which aims to maximize the
margin between positive and negative rankings instead of directly
judging the rankings respectively.

3.3.1 Optimizing Discriminator. According to the Eq. (10), optimiz-
ing the discriminator is to optimize 𝜙 to maximize the whole result
given the true rankings and generated rankings, i.e.,

𝜙∗ = argmax
𝜙

∑
𝑞∈𝑄,𝐶∈C𝑞

(
E𝑙+∼𝑝true (𝑙+ |𝑞,𝐶),𝑙−∼𝑝𝜃 (𝑙− |𝑞,𝐶)

[D𝜙 (𝑙+ |𝑞,𝐶) − D𝜙 (𝑙− |𝑞,𝐶)) ≤ 𝐸 (𝑙+ |𝑞,𝐶) − 𝐸 (𝑙− |𝑞,𝐶)]
)
.

(11)

The loss function of the discriminator is inspired by PAMM [23]
method which is aiming to maximize the margin between the posi-
tive and negative rankings.

3.3.2 Optimizing Generator. Similar to the DVGAN-doc method,
the gradient of generator is also calculated by sampling technique.
We select the rankings with the highest scores to form the negative
ranking set 𝐿′. Formally, the gradient is:

∇𝜃 𝐽 G (𝑞,𝐶) ≃
1
|𝐿′ |

∑
𝑙 ∈𝐿′
∇𝜃 log𝑝𝜃 (𝑙 |𝑞,𝐶) log

(
1 + exp(D𝜙 (𝑙 |𝑞,𝐶))

)
.

(12)
The feedback from the discriminator log(1 + exp(𝑑𝜙 (𝑙 |𝑞,𝐶))) can
be described as the reward to the generator according to the re-
inforcement learning. And the generator is written as 𝑝𝜃 (𝑙 |𝑞,𝐶)
and is calculated by Eq. (3). As G𝜃 , D𝜙 is a multiply function, the
score may be extremely small, so we use normalization and clipping
technique in practice.

3.3.3 Sampler. Similar to the sampler in the DVGAN-doc method,
the sampler in DVGAN-rank method also needs to generate the
candidate document set 𝐶 . The procedure is simple: we randomly
select documents from the document set and then put it together
to form the candidate document set 𝐶 for generator to rank it. But
there is another problem with our DVGAN-rank method. From the
Eq. (12), we notice that the generator needs to generate several
rankings 𝑙 . However, the way diversification method generates a
ranking is as follows:

1. Initially we make the selected ranking 𝑆 as an empty set Ø.
2. Select the document 𝑑 with the highest score given 𝑆 and 𝑞.
3. Add the document 𝑑 to the end 𝑆 and back to step 2 or stop

and output 𝑆 as the search result if the length of 𝑆 is enough.
In this process, generator can generate only one ranking. In

optimizing generator as Eq. (12), it needs to generate several 𝑙 to
form the negative rankings set 𝐿′ to calculate the gradient, which
is difficult to implement in programming. To solve this problem,
we make the sampler do the work of generating negative ranking
list as we mentioned before.

DVGAN-rank sampler receives the selected document set𝐶 from
the sampler and re-ranks it by diversification metrics to get the
positive list 𝑙+. To generate the negative samples 𝑙−, we shuffle the
positive list by swapping the former and latter document randomly
in a hyper-parameter 𝑘 times. Due to the fact that the quality of the
positive rankings 𝑙+ and negative rankings 𝑙− has great effect on
the performance as it does in the PAMM method, the performance
of DVGAN-rank highly depends on how the selected document set
𝐶 is sampled and how the negative rankings are shuffled. Therefore,
the training dataset sampling still remains a problem in DVGAN-
rank which we will try to solve in future work.

The sampling method is described as Algorithm 2. Since we
introduced the DVGAN-rank sampler, we can review the former
DVGAN-rankmethod. It is easy to find that in fact the discriminator
is just the PAMM method and what the generator does is to score
the document rankings DVGAN-rank sampler sampled. Thus it
also makes a great challenge for DVGAN-rank sampler to sample
the proper document rankings which can imitate the generator. As
a result, DVGAN-rank method is hard to tune.

So far we have introduced two different DVGAN methods. In
the next section, we will introduce specific forms of the two diver-
sification score function 𝑓𝜙 (𝑑 |𝑞, 𝑆) and 𝑓𝜃 (𝑑 |𝑞, 𝑆).
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Algorithm 2 Sampling algorithm used by DVGAN-rank
1: input: query set𝑄 , document set 𝐷𝑞 for each query 𝑞, number

of sample 𝑛𝑠 , number of candidate documents in a sample 𝑑𝑐
and number of negative ranking of a sample 𝑛𝑙

2: output: the candidate document ranking set C𝑞 for each query
𝑞 and positive and negative ranking set 𝑙+𝑐 and 𝑙−𝑐 for each
sample document set 𝐶

3: for query 𝑞 ∈ 𝑄 do
4: C𝑞 ← ∅
5: for 𝑖 = 1 to 𝑛𝑠 do
6: 𝐶 ← ∅
7: for 𝑗 = 1 to 𝑑𝑐 do
8: 𝐶 ← 𝐶 ∪ random_in(Dq)
9: end for
10: C𝑞 ← C𝑞 ∪𝐶
11: end for
12: for sample 𝐶 ∈ C𝑞 do
13: 𝑙+𝑐 ← re − rank(C)
14: for 𝑖 = 1 to 𝑛𝑙 do
15: 𝑙−𝑐 ← shuffle(𝑙+𝑐 )
16: end for
17: end for
18: end for
19: return C𝑞 , 𝑙+𝑐 , 𝑙−𝑐

4 DIVERSIFICATION USING DVGAN
In this section, we instantiate DVGAN-doc and DVGAN-rank to
a concrete form and articulate the training algorithms. The main
idea of DVGAN is to introduce GAN into diversification to improve
the quality of the training dataset. Furthermore, to use more in-
formation, we use explicit approach’s score function in generator
and implicit approach’s score function in discriminator. We will
introduce the diversification score functions in discriminator and
generator in this section.

4.1 The Discriminator
As we mentioned in Section 3, the discriminator tries to distinguish
the positive document or document rankings from the negative
ones. Thus, the discriminator needs a score function to calculate
score for document 𝑑 given the query 𝑞 and selected document
ranking 𝑆 . In our method, we adapt the R-LTR [26] score function
for discriminator. We introduce the score function 𝑓𝜙 (𝑑𝑖 |𝑞, 𝑆) in the
form of Eq. (1):

𝑓𝜙 (𝑑𝑖 |𝑞, 𝑆) = 𝑆rel (𝑑𝑖 , 𝑞) + Λ𝑑 𝑗 ∈𝑆𝑆
div (𝑑𝑖 , 𝑑 𝑗 ),

𝑆rel (𝑑𝑖 , 𝑞) = 𝑤𝑇𝑟 (𝑑)𝑥𝑑𝑖 ,𝑞,

𝑆div (𝑑𝑖 , 𝑑 𝑗 ) = 𝑅𝑖 𝑗 ,

Λ = 𝑤𝑇
𝑑
(𝑑)ℎ(𝑅𝑖 , 𝑆),

(13)

where 𝑥𝑑𝑖 ,𝑞 denotes the relevance feature vector of the document
𝑑𝑖 and query 𝑞. 𝑅𝑖 denotes the relationship matrix between the
document 𝑑𝑖 and document 𝑑 𝑗 in the selected document list 𝑆 . 𝑅𝑖 𝑗
denotes the relationship vector between 𝑑𝑖 and 𝑑 𝑗 . ℎ denotes the
relational function. 𝑤𝑟 (𝑑) and 𝑤𝑑 (𝑑) denotes the parameters in
discriminator. The vector 𝑅𝑖 𝑗 usually captures different diversity

Table 2: Diversity features for R-LTR

Name Description
subtopic diversity euclidean distance based on SVD model
text diversity cosine-based distance on term vector
title diversity text diversity on title
anchor text diversity text diversity on anchor

features which store the implicit information. Here we notice that
in discriminator, the model judges the document’s diversity by
calculating its diversity features with the selected ones and these
features are helpful for distinguishing positive and negative samples.
The relational functionℎ(𝑅𝑖 , 𝑆) is to aggregate the diversity features
between the current document 𝑑𝑖 and selected documents, which
is usually defined in three ways: max, min, and average. In our
method, the max way gets the best performance, i.e.,

ℎ(𝑅𝑖 , 𝑆) = (max
𝑑 𝑗 ∈𝑆

𝑅𝑖 𝑗1, ...,max
𝑑 𝑗 ∈𝑆

𝑅𝑖 𝑗𝑘 ).

As relevance features 𝑥𝑑𝑖 ,𝑞 are necessary in information retrieval
to model the relevance between document and query, the definition
of the relationship vector 𝑅𝑖, 𝑗 is crucial to the performance for
the R-LTR. Imagine when we compare two documents, we usually
compare their titles, texts , etc., which means that we capture their
features using several different components. In our method, we use
four different diversity features to construct the relationship vector
as we show in Table 2.

Subtopic Diversity: Here the subtopic is different from the
subtopic in explicit method, we construct the subtopic information
from the documents instead of the queries. We use SVD to capture
the implicit subtopics of the documents and euclidean distance
based on it to calculate the dissimilarity between two documents.
We define the subtopic diversity feature as follows:

𝑅𝑖 𝑗1 =

√√√ 𝑚∑
𝑘=1
(𝑝 (𝑧𝑘 |𝑑𝑖 ) − 𝑝 (𝑧𝑘 |𝑑 𝑗 ))2 .

Text Diversity: The dissimilarity of text is also useful for diver-
sification. Here we use the traditional 𝑡 𝑓 ∗ 𝑖𝑑 𝑓 vector to calculate
the cosine distance to represent text diversity, i.e.,

𝑅𝑖 𝑗2 = 1 −
𝑡𝑖 · 𝑡 𝑗

| |𝑡𝑖 | | · | |𝑡 𝑗 | |
,

where 𝑡𝑖 , 𝑡 𝑗 denotes the weighted document vectors based on the
traditional TF-IDF model.

Title Diversity Title is the precise and brief abstract of the doc-
ument which contains lots of information. The way of computing
title diversity is similar to the text diversity.

Anchor Diversity Anchor can precisely describe the content
of a document. The way of computing title diversity is similar to
that of the text diversity using the text in anchor.

4.2 The Generator
As we mentioned in Section 3, the generator tries to select high-
quality documents from the available documents based on the query
𝑞 and the selected document ranking 𝑆 or the candidate document
𝐶 to fool the discriminator. So it also needs a score function. In our
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method we adapt the DSSA [12] score function for the generator.
We introduce the score function in the form of Eq. (2):

𝑓𝜃 (𝑑𝑡 |𝑞, 𝑆) = (1 − 𝜆)𝑆rel (𝑑𝑡 , 𝑞) + 𝜆
∑
𝑖∈𝐼𝑞

𝐴(𝑖 |𝑆) ∗ 𝑆sub (𝑑𝑡 , 𝑖),

𝑆rel (𝑑𝑡 , 𝑞) = S(𝑒𝑑𝑡 , 𝑒𝑞) +𝑤
𝑇
𝑟 (𝑔) ∗ 𝑥𝑑𝑡 ,𝑞,

𝑆sub (𝑑𝑡 , 𝑖𝑘 ) = S(𝑒𝑑𝑡 , 𝑒𝑖𝑘 ) +𝑤
𝑇
𝑟 (𝑔) ∗ 𝑥𝑑𝑡 ,𝑖𝑘 ,

(14)

where 𝑥𝑑𝑡 ,𝑞, 𝑥𝑑𝑡 ,𝑖𝑙 denotes the relevance feature vectors between
document 𝑑𝑡 and query 𝑞 or subtopic 𝑖𝑘 . 𝑒𝑑𝑡 , 𝑒𝑞 , and 𝑒𝑖𝑘 denotes
the embedding vectors for document 𝑑𝑡 ,query 𝑞 and subtopic 𝑖𝑘 .
𝑤𝑟 (𝑔) denotes parameters in generator. 𝑆rel and 𝑆sub both use the
S function to calculate the similarity between document and query
or subtopic based on the embedding vector:

S(𝑒𝑑 , 𝑒𝑞) = 𝑒𝑇
𝑑
∗𝑤𝑠 (𝑔) ∗ 𝑒𝑞, (15)

where 𝑤𝑠 (𝑔) denotes parameters in generator. Noticed that the
subtopic distribution is actually the most important component in
explicit approach. The part of calculating the relevance between
documents and queries or subtopics is easy to understand. As DSSA,
we will introduce the distribution of subtopic 𝐴(𝑖 |𝑆). DSSA uses
both RNN and attention [16] mechanism to calculate it.

Noticed that the selected document ranking 𝑆 contains order in-
formation, it is natural to use RNN to encode the previous document
information. We denote that the documents in 𝑆 is 𝑑1, · · · , 𝑑𝑡−1 in
convenience of representation. In spite of the kinds of RNN(in our
model, we use LSTM [8]), we use 𝐻 to denote the RNN cell and ℎ𝑡
to denote the hidden state of RNN, which stores the information of
previous 𝑡 documents. Thus the previous document information at
𝑡-th position can be derived from the 𝑡−1-th position and document
embedding vector 𝑒𝑑𝑡 using RNN method, i.e.,

ℎ𝑡 = 𝐻 (ℎ𝑡−1, 𝑒𝑑𝑡 ) .

Thus we get the document information ℎ𝑡−1 given selected docu-
ment ranking 𝑆 . Similar to theS function, we calculate the similarity
between the document information and subtopic:

𝐴′(ℎ𝑡−1, 𝑒𝑖𝑘 ) = ℎ𝑇𝑡−1𝑤𝑎 (𝑔)𝑒𝑖𝑘 , (16)

where𝑤𝑎 (𝑔) denotes parameters in generator.
In the way above, we mainly use the distributed embedding

representation, which may not be effective and accurate, especially
under limited data. So we further use relevance feature vector
to improve the subtopic distribution calculation. The following
equation can be regarded as the max-pooling:

𝐴′′(𝑥𝑑1,𝑖𝑘 , · · · , 𝑥𝑑𝑡−1,𝑖𝑘 ) =

max
(
[𝑤𝑇𝑝 (𝑔)𝑥𝑑1,𝑖𝑘 , · · · ,𝑤

𝑇
𝑝 (𝑔)𝑥𝑑𝑡−1,𝑖𝑘 ]

)
,

where𝑤𝑝 (𝑔) denotes parameters in generator.
We directly adapt an addictive way to aggregate the two subtopic

distribution and then use softmax function to normalize to get the
final distribution:

𝑎𝑖 𝑗 |𝑆 = 𝐴′(ℎ𝑡−1, 𝑒𝑖 𝑗 ) +𝐴′′(𝑥𝑑1,𝑖 𝑗 , · · · , 𝑥𝑑𝑡−1,𝑖𝑘 ),

𝐴(𝑖 𝑗 |𝑆) =
exp(𝑎𝑖 𝑗 )∑𝐾
𝑘=1 exp(𝑎𝑖𝑘 )

,

where K denotes the number of subtopics of query 𝑞.

4.3 Feature Vector
In this part, we will briefly introduce some feature vectors we used.

𝑒𝑑 : Embedding vector for document 𝑑 , which is the distributed
representation of document. It can be constructed in different ways,
In this paper, we use doc2vec [14] to get document embeddings.

𝑥𝑑,𝑞 and 𝑥𝑑,𝑖 : Relevance feature vectors between the document
𝑑 and query 𝑞 and subtopic 𝑖 . We adapt some traditional IR features
such as 𝑡 𝑓 ∗ 𝑖𝑑 𝑓 and 𝐵𝑀25 to construct the relevance features.

𝑒𝑞 and 𝑒𝑖 : Embedding vectors for query 𝑞 and subtopic 𝑖 . It is
obvious that the text of query or subtopic is too short to calculate
distributed representation in doc2vecmethod. To solve this problem,
we firstly retrieve𝑊 documents using the text of subtopic or query
by basic retrieval model (such as BM25). Then we concatenated
them to form a pseudo document to calculate the corresponding
embedding vector via the doc2vec method.

4.4 Training
It is easy to use DVGAN to generate the diversified search result as
we show in the former section. We use the generator as the model
to generate the final document ranking result.

In the training process, we first train R-LTR [26] and DSSA
[12] respectively using MLE loss in both ways. It is because our
framework needs a warm start to avoid the deviation in the training
process. Then we train them by DVGAN-doc or DVGAN-rank
respectively to get the corresponding model.

In implementation of the models, as the list score G𝜃 (𝑙 |𝑞,𝐶)
and D𝜙 (𝑙 |𝑞,𝐶) and contains a successive multiplication as shown
in Eq. (3), it may be extremely small and its gradient after a log
function may be extremely huge. So we use clipping technique to
control the training process of both positive and negative rankings.

4.5 Review of Our Models
Our model attempts to solve the lack of high-quality sampled train-
ing data problems in search result diversification by introducing
the generative adversarial network. In order to combine explicit
and implicit information to improve the performance, the generator
and discriminator in the DVGAN framework use the explicit and
implicit features respectively. In the training process, the generator
can receive implicit information which it cannot obtain from the dis-
criminator via the reward and the discriminator can receive samples
in high-quality from the generator. Inspired by IRGAN, we convert
the document generation into document selection. The DVGAN-
doc is a natural extension of IRGAN, which adds the selected docu-
ment ranking 𝑆 into the score function. The DVGAN-rank method
combines loss function of the GAN loss and the PAMM method’s
loss, which converts maximizing the likelihood estimation into the
margin between positive and negative rankings.

5 EXPERIMENTAL SETTINGS
5.1 Data Collection
We experiment with the Web Track dataset [11] from 2009 to 2012.
There are 198 queries (2 queries are dropped because they have no
subtopic judgment) in this dataset. There are 3 to 8 subtopics for
each query. The relevance rating is given at subtopic level. We use
google query suggestions as subtopics, which are released by Hu
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et al. [9] on their website1. we only use the first level subtopics and
will adapt the hierarchical structure in future work. The weights of
these subtopics are assumed to be uniform.

5.2 Evaluation Metrics
Among all the evaluation metrics [2–4, 20, 21], we use ERR-IA [2],
𝛼-NDCG [4], and NRBP [3] as our diversity evaluation metrics.
They measure the document ranking by calculating the coverage
of each subtopic of the query. Consistent with existing work and
TREC Web Track, all these metrics are computed on top 20 results
of a ranking. We use two-tailed paired t-test to conduct significance
testing with p-value < 0.05.

5.3 Baseline Models
We compare DVGAN with several existing diversification methods.
We use Lemur as our non-diversified baseline method. We use
xQuAD, TxQuAD, HxQuAD [18], PM2 [6], TPM2 [5], and HPM2
[9] as our unsupervised baseline methods. We use ListMLE [22],
R-LTR [26], PAMM [6], R-LTR-NTN, PAMM-NTN [24], and DSSA
[12] as supervised baseline methods. Top 20 results of Lemur are
used to train the supervised methods. Top 50(𝑍 ) results of Lemur
are used for diversity re-ranking. To generate enough data for the
sampler to sample the selected document ranking 𝑆 or candidate
document set 𝐶 , we use top 100 results returned by Lemur as the
sampler input. In order to prove that the combination of explicit and
implicit information is effective, we design a simple method using
explicit and implicit features called DSSA+R-LTR, which also uses
the whole results of Lemur to train. We use 5-fold cross validation
to tune the parameters in all experiments based on 𝛼-nDCG@20
[4]. A brief introduction to these baselines is as follows.

Lemur.We use the non-diversified results as our baseline. They
are produced by the Indri engine based on the Lemur2.

ListMLE. ListMLE is a learning-to-rankmethod, which is similar
to the R-LTR method without considering diversity.

xQuAD,TxQuAD,HxQuAD, PM2, TPM2, andHPM2.These
methods are the representative unsupervised explicit methodswhose
diversification score functions are similar to that of the Eq. (1).
HxQuAD and HPM2 use the hierarchical structure by adding new
parameters. These methods require prior relevance rankings to
fulfill the re-ranking. In our experiment, we use ListMLE.

R-LTR,PAMM, and NTN. These methods are the representa-
tive supervised implicit methods. For the diversity feature, we use
the same four features in Table 2 with two more features: link-
based diversity and URL-based diversity in [26], for PAMM, we
use 𝛼-nDCG@20 as the optimization metrics and tune the number
of positive rankings 𝑙+ and negative rankings 𝑙− per query. We
tune the function ℎ𝑆 (𝑅) from minimal, maximal, and average for
the best performance. The feature vector is the same as DVGAN.
We optimize NTN based on both R-LTR and PAMM, denoted as
R-LTR-NTN and PAMM-NTN respectively. For these two methods,
the number of tensor slices is tuned from 1 to 10.

DSSA. DSSA is the supervised explicit method. We use LSTM
[8] as the RNN cell for comparison. In our experiments, we conduct
the list-pairwise loss [12] to train DSSA method. The feature vector

1http://playbigdata.ruc.edu.cn/dou/hdiv/
2Lemur service: http://boston.lti.cs.cmu.edu/Services/clueweb09 batch/

Table 3: Relevance features for both R-LTR and DSSA

Name Description #Features
TF-IDF the TF-IDF model 5
BM25 BM25 with default parameters 5
LMIR LMIR with Dirichlet smoothing 5
PageRank PageRank score 1
#inlinks number of inlinks 1
#outlinks number of outlinks 1

is the same as DVGAN. The result of DSSA(pre-train) in Table 4 is
the result of the DSSA model after the pre-train process.

DSSA + R-LTR. This method is a linear combination of explicit
and implicit approach. The diversification score function of this
method is:

𝑓 (𝑑 |𝑞, 𝑆) = (1 − 𝜆 − 𝜇)𝑆rel (𝑑, 𝑞)

+ 𝜆Λ𝑑 𝑗 ∈𝑆𝑆
div (𝑑𝑖 , 𝑑) + 𝜇

∑
𝑖∈𝐼𝑞

𝐴(𝑖 |𝑆) ∗ 𝑆sub (𝑑, 𝑖) . (17)

The function 𝑆rel, 𝑆div, and Λ are the same as R-LTR, 𝑆sub is the
same as DSSA, the subtopic distribution 𝐴(𝑖) is the same as DSSA.

DVGAN. We train DVGAN in two methods respectively to get
DVGAN-doc and DVGAN-rank. We use generator as the model to
diversify search results. For the feature vector, the 18-dimension
relevance feature vector 𝑥𝑑,𝑞 is listed in Table 3. 𝑒𝑑 is the embedding
vector via doc2vec method. The query and subtopic embedding vec-
tors 𝑒𝑞, 𝑒𝑖 are constructed by the top 20 (𝑊 ) documents’ distribution
representation. For the DVGAN-doc method, we sampled about 40
samples of 20-document-length using the random sampling way
for each query. For the DVGAN-rank, we sampled about 10 sam-
ples of 10 negative rankings of 20-document-length for each query.
Besides, we also show the results using top 100(𝑍 ) results of Lemur
for diversity re-ranking. The results using top 50 documents are
shown as DVGAN-doc(50). The results using top 100 documents
are shown as DVGAN-doc(100).

For all of the supervised methods, we tune the learning rate 𝑟
from 10−7 to 10−1.

6 EXPERIMENTAL RESULTS
6.1 Overall Results
The overall results are shown in Table 4. We find both DVGAN-doc
methods outperform all explicit and implicit baselines including
the naive method DSSA + R-LTR and DVGAN-rank methods out-
performs all except DSSA. We find that:

(1) The relative improvement over DSSA, the best explicit method,
is up to 2.0% in terms of 𝛼-nDCG for 𝑍 = 50 and up to 3.5% for
𝑍 = 100. The relative improvement over PAMM-NTN, the best
implicit method, is up to 11.5% in terms of 𝛼-nDCG and up to 13.2%
for 𝑍 = 100. These results show the advantage of combining the
explicit and implicit approaches using DVGAN instead of using
only one kind of features.

(2) The relative improvement over DSSA + R-LTR method is up
to 8.1% in terms of 𝛼-nDCG for 𝑍 = 50 and up to 9.8% for 𝑍 = 100.
This comparison shows that the naive way of combining explicit
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Table 4: Performance comparison of all methods. The best
result is in bold. † indicates significant improvement over
the pre-train model and all baselines except DSSA with p-
value<0.05. ★ indicates significant improvement over the
pre-train model and all baselines with p-value<0.05.

Methods ERR-IA 𝛼-nDCG NRBP
Lemur .271 .369 .232
ListMLE .287 .387 .249
xQuAD .317 .413 .284
TxQuAD .308 .410 .272
HxQuAD .326 .421 .294
PM2 .306 .411 .267
TPM2 .291 .399 .250
HPM2 .317 .420 .279
R-LTR .303 .403 .267
PAMM .309 .411 .271
R-LTR-NTN .312 .415 .275
PAMM-NTN .311 .417 .272
DSSA+R-LTR .328 .430 .302
DSSA .356 .456 .326
DSSA(pre-train)(50) .339 .441 .304
DVGAN-rank(50) .340 .442 .303
DVGAN-doc(50) .367† .465† .334†
DSSA(pre-train)(100) .342 .446 .306
DVGAN-rank(100) .343 .448 .305
DVGAN-doc(100) .369† .472★ .334†

Table 5: Performance for DVGAN-doc with different score
function in generators anddiscriminators. (50/100) indicates
the number of documents used for re-ranking(𝑍 )

Gen, Dis ERR-IA 𝛼-nDCG NRBP
(50/100) (50/100) (50/100)

DSSA, R-LTR .367/.369 .465/.472 .334/.334
DSSA, DSSA .355/.363 .455/.465 .332/.330
R-LTR, R-LTR .341/.353 .441/.454 .305/.318
R-LTR, DSSA .336/.349 .437/.452 .298/.313

"Gen, Dis" infers "Generator, Discriminator"

and implicit approaches is not effective. One possible reason for
the bad performance of the naive method is that the diversification
score functions of two different methods DSSA and R-LTR are not
on the same scale, which may cause the learning process slow and
easy to trap into local minimal.

(3) The relative improvement over the pre-train model(DSSA(pre-
train)) is up to 5.4% in terms of𝛼-nDCG for𝑍 = 50 and up to 5.8% for
𝑍 = 100. This comparison shows the great advantage of using loss
function of generative adversarial network instead of traditional
loss function such as MLE, PAMM and list-pairwise loss in DSSA.

Table 6: Different sampling strategies in DVGAN-doc.
(50/100) indicates the number of documents used for re-
ranking(𝑍 )

Sampling Strategy ERR-IA 𝛼-nDCG NRBP
(50/100) (50/100) (50/100)

Ideal sampling .355/.360 .457/.468 .321/.326
Random sampling .353/.352 .454/.458 .319/.316
Both .367/.369 .465/.472 .334/.334

6.2 Effects of Different Generators and
Discriminators

In this part, we compare the different configuraions of generator
and discriminator and the result is shown in Table 5. Firstly we
can infer that using DSSA’s score function in generator and R-
LTR’s score function in discriminator is the best configuration to
introduce generative adversarial network into search result diver-
sification as we expected. Only considering the generator, we can
infer that using DSSA’s score function outperforms using R-LTR’s.
The reason is that as we use generator to diversify search results,
DSSA’s score function considering subtopic coverage is close to di-
versification evaluation metrics such as 𝛼-nDCG. Only considering
the discriminator, we can infer that using R-LTR’s score function
outperforms using DSSA’s, The reason is that R-LTR’s score func-
tion directly modeling dissimilarity between documents is useful in
distinguishing negative and positive samples that are closed. Thus,
discriminator can provide better rewards for generators to improve
the performance of diversification. We also do the same study on
𝑍 = 100, the result is the same.

6.3 Sampling Study in DVGAN
In this part, we compare different strategies of sampling in our
DVGAN-doc method and the result is shown in Table 6. The first
way is only sampled by the ideal sampling algorithm which is to
select the first 𝑘 documents in the ideal ranking as our selected
document list. The secondway is random sampling algorithmwhich
is described in Algorithm 1. The result shows that combining both
sampling algorithms is better than using only one. The reason is
that (1). ideal sampling is helpful for discriminator to distinguish
the positive and negative rankings but makes it hard for generator
to imitate the real distribution of data because it is too ideal (2).
random sampling makes it easy to imitate for generator but can be
confusing for discriminator to distinguish the positive and negative
rankings and may provide wrong rewards for generator. The reason
why the ideal sampling outperforms the random sampling is that
the quality of randomly sampled data is under no guarantee and
only using it may cause deviation in training. We also do the same
study on 𝑍 = 100, the result is the same.

7 CONCLUSIONS
In this paper, we proposed DVGAN - a framework for search result
diversification adversarial training combining both explicit and im-
plicit information to improve the diversification performance and
to solve the problem that high-quality dataset is hard to capture. We
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proposed two methods in this framework, DVGAN-doc method and
DVGAN-rank method. The DVGAN-doc method is a natural and
effective extension of IRGAN. The DVGAN-rank is a combination
of PAMM loss function and generative adversarial network. We
also proposed several sampling algorithms for the input data to
generator to better solve the problem of the lack of high-quality
training data. During the the training process, discriminator can
provide the implicit information which cannot be obtained in gen-
erator via the reward for generator and generator can provide more
useful negative samples for discriminator. Experimental results con-
firm the effectiveness of the proposed methods. The adaption of
generative adversarial network also solves the problem of the lack
of high-quality data in training process. In future work, we plan to
improve the DVGAN-rank and to adapt the hierarchical structure
to our method.
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