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ABSTRACT
Personalized search is a task to tailor the general document ranking
list based on user interests to better satisfy the user’s informa-
tion need. Many personalized search models have been proposed
and demonstrated their capability to improve search quality. The
general idea of most approaches is to build a user interest profile
according to the user’s search history, and then re-rank the doc-
uments based on the matching scores between the created user
profile and candidate documents. In this paper, we propose to solve
the problem of personalized search in an alternative way. We know
that there are many ambiguous words in natural language such
as ‘Apple’, and people with different knowledge backgrounds and
interests have personalized understandings of these words. There-
fore, for different users, such a word should own different semantic
representations. Motivated by this idea, we design a personalized
search model based on personal word embeddings, referred to as
PEPS. Specifically, we train personal word embeddings for each
user in which the representation of each word is mainly decided
by the user’s personal data. Then, we obtain the personalized word
and contextual representations of the query and documents with
an attention function. Finally, we use a matching model to calculate
the matching score between the personalized query and document
representations. Experiments on two datasets verify that our model
can significantly improve state-of-the-art personalization models.
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1 INTRODUCTION
The search engine is one of the major approaches for us to obtain
information from the Web in our daily life. Given a query, it returns
a ranked document list in which documents are ordered by their
relevance to the query. Obviously, it is not an optimal solution to
return the same search results to various users for the same query,
because there are many ambiguous words in natural language and
different users may have different query intents when they enter
these keywords. Let us take the query ‘Apple’ as an example. An
IT engineer may use this query to search for information about
the ‘Apple’ company or products, while a fruit farmer tends to
seek information related to the ‘Apple’ fruit using the same query.
From this example, we can find that the IT engineer and the fruit
farmer have different understandings of the word ‘Apple’ due to
their knowledge background and interests. Returning more specific
ranking results to each user based on the user’s interests can im-
prove result quality and user satisfaction, and this is the target of
personalized search.

Many models have been proposed for search results personal-
ization. Traditional personalized search models [5, 6, 10, 11, 13, 16,
19, 36–38] mainly depend on click-based and topic-based features
extracted from the search history to analyze user interests. With the
emergence of deep learning, new personalized models [17, 24] have
achieved better personalization by learning user interest profiles
based on neural networks. The common idea of most existing per-
sonalized search methods is building a user interest profile with the
search history at first and then tailoring the general document list
on account of the matching scores between the created user profile
and candidate documents. In this paper, we attempt to solve the
problem of search results personalization from an alterna-
tive perspective of clarifying the ambiguous keywords with
personal word embeddings.

As shown in the previous example, there are lots of ambiguous
words in queries and different users have personalized understand-
ings of such words’ meanings due to their knowledge background
and interests. To clarify the specific meaning of such ambiguous
words that each user wants to express, we claim that the same
word for different users should be viewed as different words and
own different semantic representations. Therefore, we propose a
personalized model that sets personal word embeddings for each
user enhanced from the global word embeddings with her indi-
vidual search history as the training data. This model has several
advantages in solving the problem of personalized search. First,
the embedding of each word trained on the user’s search log is
personalized which mainly contains the meaning that the user is
interested in. Secondly, the user’s personalized query intent can be
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clarified by the contextual vector of the query represented with the
personal word embeddings. Thus, the documents which meet the
user’s query intent can be better matched. Thirdly, we can directly
re-rank the documents based on the relevance scores between the
personalized representations of the query and documents. The user
interests reflected in the search history have been contained in the
personal word embeddings after training the model on the user’s
search log. Hence it is not necessary for us to analyze the user’s
search history and build the user interest profile every time we
re-rank the documents for a new query issued by the user, saving a
large amount of time for maintaining the user profile.

Specifically, we design a personalized searchmodel PEPS (Personal
Embedding based Personalized Search model), which consists of
four modules. To begin with, we construct a personalized word
embedding layer, including embedding matrices for each user, to
get personalized representations at the word level. Then, person-
alized contextual representations of the query and document are
calculated through a multi-head self-attention layer to fuse the
contextual information. With personalized word and contextual
representations ready, we compute the matching score for docu-
ment ranking with the KNRM component. Finally, we utilize two
tasks, personalized document ranking and query reformulation, to
jointly train the personal word embeddings and ranking model in
an end-to-end way. Before model training, we initialize the per-
sonal word embeddings with personalized word2vec [25] trained
on the logs of similar users or the global word2vec model. And we
devise online update approaches to capture the user’s new interests
along with the search process. To compare our PEPS model with
state-of-the-art baselines, we conduct experiments on the public
AOL dataset and a query log from a commercial search engine.
Experimental results show that our method can yield significant
improvements in ranking results over existing models.

To conclude, our main contributions are three-fold: (1) We at-
tempt to solve the problem of search results personalization from an
alternative perspective of clarifying the ambiguous keywords with
personalized word representations, without building user interest
profiles. (2) Based on this idea, we propose a personalization model
to train separate personal word embeddings for each user, and com-
pute ranking scores by matching the personalized representations
of the query and documents. (3) We design three approaches to
update the personal word embeddings to capture the changes of
user interests reflected in the newly issued queries.

The rest of the paper is organized as follows. Related works are
introduced in Section 2. In Section 3, we elaborate each component
of our proposed model. We describe the experimental settings in
Section 4, then present and analyze the experimental results in
Section 5. Finally, the whole paper is concluded in Section 6.

2 RELATEDWORK
Personalized search has been proved to effectively improve the
search results [16, 17, 33], and there are many related studies.

Traditional Personalized Search Model. Traditional personalized
models rely on some heuristic rules to analyze user interests. Moti-
vated by the user’s refinding behaviors, Dou et al. [16] proposed
the P-Click model which evaluates the relevance by counting how
many times the documents have been clicked by the same user

under the same query. Many models [11, 19, 29, 36, 37, 40] applied
a topic model such as Latent Dirichlet Allocation (LDA) [7, 40]
to extract topic-based features from the clicked documents and
issued queries, then built user interest profiles in the topic space.
Some other studies [6, 35, 38] realized personalization through fea-
ture engineering. They extracted many features from the current
query and the user’s search history, including the original rank
position, click-based features and so on. Then, learning to rank
algorithm [8, 9] is used to combine these features to train a rank-
ing model. In addition to the features related to queries and clicks,
location information and the user’s reading level [5, 13] were also
considered. Traditional personalized models have achieved great
progress, but most of them only focus on using some specific fea-
tures to describe user interests, thus ignoring other information
that is the same valuable.

Deep Learning based Personalized Search. As deep learning be-
comes popular, many personalized search models based on learning
have been studied, and the problem that the representation ability
of traditional manual-designed features is limited has been gradu-
ally relieved. These learning-based models mainly follow two kinds
of approaches. One is the adaptation framework [30], which adapts
the general ranking model to a personalized model by training with
a few queries from that user. The other more common method is to
learn an explicit representation of the user interest profile from the
search history. Ge et al. [17] designed a hierarchical RNN model
(HRNN) to learn both the user’s long-term interests and short-term
interests, obtaining a comprehensive user profile. And Lu et al. [24]
devised PSGAN which applied the generative adversarial network
(GAN) [18] to enhance the training data and promote the learn-
ing of user profiles. These models tailor the original document list
based on user interest profiles and achieve state-of-the-art perfor-
mance. In this paper, we propose a novel personalized model from
a different perspective, without building user interest profiles.

Word Embedding for Personalization. Recent years, there are a
few models [3, 20, 23, 26, 28] attempting to apply word embed-
dings for personalization. Typically, Samarawickrama et al. [28]
first trained personalized neural language model on the user’s his-
tory to create a synonym table for the user, and then re-rank the
documents based on the cosine similarity between the query’s syn-
onyms and documents. Amer et al. [3] applied word embeddings
to find similar words to expand the query, and computed relevance
scores between the expanded query and documents. These search
models used word embeddings to find some synonyms to indicate
user interests and help document re-ranking, while our model is
different which directly trains personal word embeddings contain-
ing user interests and computes relevance score by matching the
personalized query and document representations. Furthermore,
these existing models trained word vectors by merely unsupervised
language model, without the user’s click labels, which are the most
credible indication of user preferences.

Our PEPS is a novel end-to-end personalization model, which
trains personal word vectors with the user’s click information in a
supervised way to embed the user interests into the personal word
embeddings, solving the problems faced by the models above.
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3 PEPS - A PERSONALWORD EMBEDDING
BASED PERSONALIZED SEARCH MODEL

As we stated in Section 1, most existing personalized search mod-
els either extract features related to the user interests or learn a
user interest profile from the search history to achieve personal-
ization. Differently, we propose a personalized search model from
the perspective of personalized word representations to tackle this
problem in an alternative way. Through training personal word
embeddings for each individual user, we obtain word representa-
tions that mainly contain the meanings the user already knows
or she is interested in. Using such personal word embeddings to
represent the query, the user’s real query intent can be clarified
and personalized search results can be improved.

To beginwith, we formulate the problemwith notations. Suppose
that there are a lot of individual users, represented as u1,u2, . . .,
and each user ui has her own search history HT

i at the current
time T . The search history HT

i includes a sequence of queries
{qi ,1,qi ,2, . . . ,qi ,NT

i
} issued by the user ui , the clicked document

set D+i , j and unclicked document set D−
i , j under each query qi , j .

NT
i is the total number of queries in HT

i . Currently, the user ui en-
ters a query q, and the underlying non-personalized search engine
returns a candidate document list D = {d1,d2, . . .}. Personalized
search models are required to tailor the candidate document list
taking user interests into account, and give higher priority to the
documents that match the user’s query intent and interests.

Our proposed personalized search model PEPS mainly includes
three stages: the pre-training stage of the personal word embed-
dings, the supervised training stage of the model, and the online
update stage. Next, we first describe the pre-training stage, and
then introduce each component of our personalization model. In the
final, we present three approaches for online update in real-world
situations and make some discussions about our model.

3.1 Pre-training
According to existing works [6, 16, 17], user interests are mainly re-
flected in the historical issued queries and clicked documents under
each query. Therefore, the most direct approach to obtain personal-
ized word representations containing user interests is to train word
embeddings on the personal corpus which consists of the issued
queries and clicked documents [3, 28]. We implement this approach
as one of our baselines, introduced as PPWE in Section 4.2. But we
know that training reliable word vectors from scratch usually relies
on a large corpus, and the individual query log is not enough. Here,
to initialize the personal word embeddings in our personalization
model, we propose two methods taking both user interests and the
amount of training data into consideration.

(1) We train a global word2vec model [25] on the whole query
log, and initialize the global and personal word embeddings for
each user with this global model.

(2) Considering the user interests, we adapt the global word2vec
model to a personalized model with the query logs of that user and
other top k users with similar interests. Then, the personal word
embeddings are initialized with the adapted word2vec model and
the global word embeddings are initializedwith the global word2vec.
We refer to the user-based collaborative filtering algorithm [39]

to find users with similar interests. We create a user similarity
matrixW and the interest similarity between two users ui and uj
represented asWi j is calculated as:

Wi j =

∑
d ∈N (ui )∩N (uj )

1
log(1+ |N (d ) |)√

|N (ui )| |N (uj )|
. (1)

N (ui ) and N (uj ) represent the clicked document sets of user ui and
uj , and N (d) is the set of users who clicked the document d .

3.2 Personalization Model
After the pre-training stage, we obtain rough but not exactly accu-
rate personal word embeddings for each user. Becauseword2vec [25]
is an unsupervised model, it can capture the co-occurrence or se-
mantic relationships between words but is hard to learn user inter-
ests reflected in the user’s click behaviors. Therefore, we further
design a supervised personalization model to finetune the personal
word embeddings with the user’s click information, obtaining per-
sonal word vectors which really contain user interests.

The whole architecture of our ranking model is illustrated in
Figure 1, and we divide it into four parts. In the first part, we set
a personalized word embedding layer with a global word embed-
ding matrix and personal word embeddings for each user. In the
second part, we get representations of the query and document
from different granularities and perspectives. Thirdly, we use the
neural matching component KNRM [41] to compute the match
score between the query and document, and apply the pairwise
LambdaRank [8] to train the ranking model. Finally, we add a query
reformulation module to promote the learning of personal word
embeddings. In the following, we will describe the details.
3.2.1 Personalized Word Embedding Layer. To obtain personalized
word representations, we design a specific word embedding layer
in our model, in which we keep a personal word embedding ma-
trix for each user and a global embedding matrix, shown as the
left module in Figure 1. We use two signs to identify a word, i.e.
the word and the corresponding user id, so that the same word of
different users are identified as different words. For example, the
word ‘Apple’ in the word embedding matrix of the user ui should
be represented as ‘Apple + ui ’, while ‘Apple + uj ’ is for the user
uj . We fine-tune the personal word embeddings with only the cor-
responding user’s click data. Thus, the well-trained embedding
of a specific word is not a general representation of various
meanings of this word in the overall logs, but mainly the
personalized meaning that the user is interested in.

We also have to decide the personal vocabulary for each user.
There is a global vocabulary over the whole search log, but copying
the global vocabulary for each user as the personal vocabulary
yields several drawbacks: (1) Most words in the global vocabulary
don’t appear frequently in a user’s query log, so it is unnecessary
to maintain a complete global vocabulary for each user, which will
take up a large amount of memory space. And (2) some words
are not obviously ambiguous, thus we argue that it is better to
train the embedding of these words on the whole log. Based on
these considerations, we keep a shared global word embedding
matrix and train it with the whole query log. As for the personal
vocabulary, we filter the words according to several rules:

• words that are not stop words
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Figure 1: Structure of the PEPS. In the embedding layer, each userui owns personalword embeddings pre-trained by aword2vec
on the user’s data, and each word is identified by the word and user id such as ‘Apple + ui ’. Given a query issued by ui and a
candidate document, the embedding layer maps the words to global and personal word representations, which are fed into the
multi-head self-attention layer to obtain contextual representations. A GRU encodes the word representations to get query
intent vectors used for query reformulation based on Seq2Seqmodel. Finally, wematch representation vectors to compute the
document relevance score with neural matching component KNRM and train the model through joint learning.

• words that occur in the user’s query log more than c times
• words with word entropy no less than a threshold ent

In this paper, we define word entropy of a wordw as the average
click entropy [16] of all queries containing the word, computed as:

WordEntropy(w) =

∑
q∈Q (w ) ClickEntropy(q)

|Q(w)|
, (2)

ClickEntropy(q) =
∑

d ∈D(q)

−P(d |q) log2 P(d |q). (3)

Here, Q(w) represents the set of queries that contain the wordw ,
and D(q) is the collection of documents clicked under the query
q. P(d |q) is the probability of the clicks on document d among all
clicks of the query q, calculated as P(d |q) = |Clicks(q,d ) |

|Clicks(q, ·) | .
With the selection of personal vocabulary, we can effectively

control the space of storage used by personal word embeddings
and the computation cost of updating the embeddings.

3.2.2 Query and Document Representation. With the well-designed
personalized word embedding layer, we are able to map the query
q = {w

q
1 ,w

q
2 , . . .} and document d = {wd

1 ,w
d
2 , . . .} into a high-

dimensional vector space and obtain their text representations. In
our model, the text representations are composed of four parts.

(1) Personalized word representation: We obtain this part of
representation by passing the query and document through the
corresponding user’s personal word embedding matrix, getting
Pq ∈ Rdim×|q | for the query and Pd ∈ Rdim×|d | for the document.
The word vector mainly contains the meanings that the user knows
or is interested in, achieving personalization at the word level.

(2) Personalized contextual representation: To model the in-
teractions between contexts and obtain personalized representation

at the query level to further clarify the personalized query intent,
we use a multi-head self-attention layer [34] on the top of the per-
sonalized word representations outputted by the embedding layer,
obtaining two matrices CPq ∈ Rdim×|q | and CPd ∈ Rdim×|d | . As
for the calculation of the personalized query contextual representa-
tionCPq , the input is the query word vectors Pq . We first process it
with different linear functions to dq , dk and dv dimensions, where
q,k,v are notations of the query, key and value in the attention
mechanism respectively. Then, we conduct attention function on
the processed results of different heads in parallel, yielding sev-
eral dv dimensional output values. These outputs are concatenated
together and processed again with a dense layer to get the final
attended result CPq . The concrete computation formulas are:

CPq = Concat(head1, head2, . . . , headh )W A, (4)

headi = softmax(
PqW

Q
i (PqW K

i )T√
dk

)(PqWV
i ), (5)

whereWQ
i ,W

K
i ,W

V
i andW A are parameters of linear functions.

In the same way, we can obtain the personalized contextual repre-
sentation CPd for the document. CPq and CPd fuse the contextual
information to further clarify the ambiguous words.

(3) Global word representation: In actual situations, every
user’s interests are variable and knowledge is growing. Like the
IT engineer in our previous example, in most cases, he issues the
query ‘Apple’ to seek for the Apple company or products. However,
it is also inevitable that he would use other meanings of ‘Apple’
to search for information that has never been searched before,
such as the apple fruit. Therefore, in addition to the personalized
representations, we also pay attention to the representations in
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the global vector space. We get global word representations Gq ∈

Rdim×|q | for the query and Gd ∈ Rdim×|d | for the document from
the global word embedding matrix.

(4)Global contextual representation: Similar to the personal-
ized contextual representation, we obtain global contextual vectors
CGq and CGd by conducting a multi-head self-attention layer on
the global word representations.

With the four parts, we obtain comprehensive query and docu-
ment representations of different granularity and aspects. They are
helpful for matching the query and document more accurately.

3.2.3 Query-Document Matching and Ranking. With the personal-
ized and global representations of the query and documents, we are
able to compute the personalized matching scores to re-rank the
original document list. In this paper, we adopt the neural matching
model KNRM [41]. For the personalized word representations, we
first construct a similarity matrix SP where SPi j is the embedding
similarity between the query wordwq

i and the document wordwd
j

calculated by cosine similarity. Then, many RBF kernels are used on
the similarity matrix SP to extract multi-level soft-match features
ϕ(SP ) between the query and document.

ϕ(SP ) =

|q |∑
i=1

log( ®K(SPi )), (6)

®K(SPi ) = {K1(S
P
i ), . . . ,KK (S

P
i )}, (7)

Kk (S
P
i ) =

∑
j
exp(−

(SPi j − µk )
2

2σ 2
k

). (8)

Here, |q | is the query length, and K is the number of RBF kernels.
µk and σk are the center and variance of the kth kernel.

After obtaining a series of query-document ranking features
ϕ(SP ), we use a multi-layer perceptron (MLP) with the tanh(·) ac-
tivation function to combine all these features and compute the
matching score f P (q,d) between the personalized word represen-
tations of the query and document, i.e.:

f P (q,d) = tanh(WT
P ϕ(SP ) + bP ) (9)

Same as the calculation process above, we use three KNRM
components with different parameters to compute the matching
scores for other query and document representations in the last
section, getting three scores f CP (q,d), f G (q,d) and f CG (q,d).

In addition to the interactive match scores between the query and
document, we also calculate a match score f QR (q,d) of the query
hidden state in the query reformulation module and the document
by cosine similarity. And we follow [17, 24] to incorporate some
click-based features and relevance features to help ranking, which
are proved to be effective in [6]. We input these features into an
MLP with the tanh(·) activation function to calculate a relevance
score. Finally, all these six scores are combined with an MLP to get
the personalized score for the document.

We apply a pairwise LTR algorithm LambdaRank [8] to train
our ranking model. First, we create training document pairs on the
whole log, with the clicked documents as positive samples and the
skipped documents as negative ones. λ for each document pair is
the change value of the metric MAP when swapping the positions
of the two documents. And the final loss function is the dot product

of the λ and cross entropy between the real probability distribution
of the relative relationship and the predicted probability. We have:

loss = (−p̂(i>j) log(p(i>j)) − p̂(i<j) log(p(i<j)))|λi j |. (10)

p̂(i>j) is the true probability that di is more relevant than dj , and
p(i>j) is the predicted probability computed as the score difference
(score(di ) − score(dj )) normalized by a logistic function.

3.2.4 Query Reformulation. In most situations, it is difficult for
users to express their query intents with accurate queries. In our
model, we have the personalized query representation so that we
are able to infer the user’s real query intent and reformulate the
query to promote the ranking, which can also help the learning
of personal word embeddings in return. Based on this motivation,
we design a query reformulation module and construct a multi-
task framework to jointly train it with the personalized ranking
model. Due to lacking manually labeled reformulated queries which
express the user’s true query intents, we follow [21, 31] to use the
next query in the same session as the learning target of this task,
which is thought to express the user intent more accurately than the
current query. Referring to existing query generation models [21,
31], we implement the query reformulation task with the sequence
to sequence structure [32]. The input is the personalized word
representations of the query Pq and a GRU is used as the encoder to
compute the hidden state of each step ht = GRU (P

q
t ,ht−1). The last

hidden state h |q | of the encoder is regarded as the representation
of the user’s real query intent, and is used to calculate a matching
score f QR (q,d) with the document by cosine similarity as a part
of the final relevance score for ranking. In the decoder, a GRU [12]
with the attention mechanism [4] is applied, and each token ot in
the target sequence is predicted based on the current hidden state st ,
the previous decoded tokens {o1, . . . ,ot−1} and the context vector
ct computed by attention function, i.e:

p(ot |{o1, . . . ,ot−1},h |q |) = softmax(W [st , ct ] + b), (11)

where st = GRU (st−1,ot−1, ct ), ct =
∑ |q |
j=1 αt jhj and the weight

αt j =
exp(a(st−1,hj ))∑|q |

k=1 exp(a(st−1,hk ))
. The function a can be a simple dot prod-

uct or a trainable MLP. Then, the probability of the target sequence
p(o) is defined as the joint probability of all the tokens.

p(o) =
T∏
t=1

p(ot |{o1, . . . ,ot−1},h |q |). (12)

We train the query reformulation module by minimizing the nega-
tive log likelihood of the target sequence. And the whole multi-task
framework is optimized by minimizing the sum of the negative log
likelihood and the pairwise loss.

3.3 Online Update
The PEPS model trained offline on the query logs has contained
the user interests reflected in the search history. In real-world ap-
plication scenarios, users will continuously issue new queries that
may show new user interests. To ensure that our personal word
embeddings contain the latest user interests, we should finetune the
personal word embeddings according to the newly issued queries
along with the search process, keeping the ranking model fixed. In
this paper, we design three different approaches to adjustment.
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Table 1: Statistics of the datasets.

Dataset AOL Dataset Commercial Dataset
Train Valid Test Train Valid Test

#session 187,615 26,386 23,040 71,731 13,919 12,208
#query 814,129 65,654 59,082 188,267 37,951 41,261
avg query len 2.845 2.832 2.895 3.208 3.263 3.281
avg #click 1.249 1.118 1.115 1.194 1.182 1.202

Update by stage: In the first step, we train a model offline with
all users’ search history before the current moment. In the second
step, we set a fixed duration of a stage. During this stage, we col-
lect all the click behaviors but don’t change the word embeddings.
Thirdly, at the end of the stage, we finetune the personal word
embeddings with the collected data, keeping other parameters of
the model static. Lastly, we repeat the second and third steps to
track the newest user interests in the search process.

Update by session: Sessions are usually regarded as search
activities with independent query intents, which contain complete
user interests. Therefore, based on the update process above, we
propose to adjust the word embeddings at a session interval.

Update by query: Many personalized models [6, 17] divide
the user interests into long-term and short-term user interests,
where the short-term interests are defined as interests in a session.
The method to update the word embeddings by sessions can’t cap-
ture the impact of the short-term user interests on the subsequent
queries in the same session. Thus, we also design an approach to
update the word embeddings in units of queries to capture more
fine-grained interests.

All the three methods are applied to finetune the personal word
embeddingswith the latest queries issued online based on the offline
well-trained model. But it may be difficult for the model to achieve
the global optimal state by such methods of incremental finetuning,
and a long-term adjustment may make the model perform worse.
With this consideration, we suggest fine-tuning the model in a short
time, and then a large batch of new training samples can be added
to the original dataset to retrain an optimal model offline, achieving
a balance between the effectiveness and efficiency.

3.4 Discussion about PEPS
Here, we discuss the performance and feasibility of PEPS. Although
we set a personal word embedding matrix for each user in the
model, we have stated in Section 3.2.1 that we filter the words in
personal vocabulary strictly and merely some necessary ambiguous
words should be maintained, which will not take up too much space
and computing resources. If there are numerous users, we can set
a max number of users on a single model, and distribute all users
on multiple models. In addition, through embedding user interests
into personal word representations, our model is not required to
keep the search history in memory and process the history to build
the user interest profile. PEPS only needs to compute the query and
document representations and their matching score with a shallow
matching model, which takes little time compared to processing
the history with RNN [17], improving the performance and saving
memory space. Thus, we can conclude that our model provides
several advantages for personalization: Firstly, the personal word

embeddings contain user interests, so that the ambiguous keywords
and personalized query intent can be clarified by representing the
query with the personal embeddings. Secondly, the PEPS model
improves the efficiency of personalized search significantly, without
obviously increasing pressure on the space occupation.

4 EXPERIMENTAL SETTINGS
4.1 Dataset and Evaluation Metrics
We evaluate our model on two non-personalized search logs. The
statistics of the processed datasets are listed in Table 1

AOL Dataset: This is a publicly available query log dataset
collected from 1st March 2006 to 31st May 2006. Each piece of
data contains a user anonymous id, a query text, the time when the
query was issued, a clicked URL, and the rank position of the URL.
Following [1, 2], we segment the user query sequences into sessions
with boundaries decided by the similarity between two consecutive
queries. To ensure that every user has enough search history for
building a user profile, we set the first five weeks log as the history,
and the remaining data are used for model training, validation and
testing with the proportion 6:1:1. AOL dataset only records clicked
documents that are regarded as relevant documents under each
query, without unclicked documents, so we refer to [1, 2] to find
irrelevant documents and construct original result list with the
BM25 algorithm [27]. Following [1, 2], we construct 5 candidate
documents for each query in the training and validation set, while
50 candidates for each testing query. Each document corresponds
to a title. After the process, the dataset includes 110,869 users. We
count the number of queries issued by each user and find that most
users only have a small amount of search data. Considering that
we need enough individual query log to train the corresponding
personal word embeddings, we sample about 30,000 users with the
most training data and set personal word embeddings for each of
them, global word embeddings for the other users.

Commercial Dataset: This is a large-scale query log collected
from a non-personalized commercial search engine between 1st
Jan. 2013 and 28th Feb. 2013. Each query record contains a user id,
a query string, query issued time, the top 20 retrieved URLs, click
labels and their dwelling time. Each URL corresponds to a document
with the text body. Following [17], we view clicked documents with
longer than 30 seconds of dwelling time as relevant documents.
With 30 minutes of user inactivity as the boundary [6], we segment
the search process into sessions. Then, we divide the logs in the
first six weeks as the historical data and the last two weeks as
the experimental data which is further split into the training set,
validation set and testing set by sessions with 4:1:1 ratio. There are
a total of 5,998 users in the dataset and we select 4,000 users with
the most training data to build personal word embeddings.

Evaluation metrics We apply the most widely used ranking
metrics MAP, MRR and P@1 to evaluate our model. Considering the
fact that users’ recorded click actions are inevitably influenced by
the original order and some documents are not clicked may not due
to their irrelevance but their low rankings, we use a more credible
metric P-Improve [24] based on reliable relevance preferences in
this paper. Following [14, 22, 24], we construct inverse document
pairs viewing only the documents skipped above the clicks and the
non-clicked next document as irrelevant, and compute P-Improve
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Table 2: Overall performances of models. Relative performances compared with PSGAN are in percentages."†" indicates sig-
nificant improvements over all baselines with paired t-test at p < 0.05 level, and ‡ for t-test at p < 0.01 level. The best results
are shown in bold. PEPS(fix) means the personalized word embedding layer is fixed during training.

Model AOL Dataset Commercial Dataset
MAP MRR P@1 MAP MRR P@1 P-Imp.

Adhoc search model
Ori. .2504 -54.3% .2596 -53.6% .1534 -68.6% .7399 -9.1% .7506 -8.8% .6162 -14.1% - -
KNRM .4291 -21.7% .4391 -21.6% .2704 -44.7% .4916 -39.6% .5001 -39.3% .2849 -60.3% .0655 -73.7%
ConvK .4738 -13.5% .4849 -13.4% .3266 -33.2% .5872 -27.8% .5977 -27.4% .4188 -41.6% .1422 -42.9%
User profile based personalized search model
PClick .4224 -22.9% .4298 -23.3% .3788 -22.6% .7509 -7.7% .7634 -7.3% .6260 -12.7% .0611 -75.5%
SLTB .5072 -7.5% .5194 -7.3% .4657 -4.8% .7921 -2.6% .7998 -2.9% .6901 -3.8% .1177 -52.7%
HRNN .5423 -1.0% .5545 -1.0% .4854 -0.8% .8065 -0.9% .8191 -0.5% .7127 -0.7 % .2404 -3.4%
PSGAN .5480 – .5601 – .4892 – .8135 – .8234 – .7174 – .2489 –
Embedding based personalized search model
PWEBA .4284 -21.8% .4368 -22.0% .2687 -45.1% .7415 -8.9% .7529 -8.6% .6201 -13.6% .0433 -82.6%
PPWE .6542‡ 19.4% .6668‡ 19.1% .5613‡ 14.7% .8138 0.1% .8249 0.2% .7187 0.2% .2338 -6.1%
PEPS(fix) .6971‡ 27.2% .7107‡ 26.9% .6153‡ 25.8% .8209† 0.9% .8310† 0.9% .7232† 0.8% 0.2516 1.1%
PEPS .7127‡ 30.1% .7258‡ 29.6% .6279‡ 28.4% .8221† 1.1% .8321† 1.1% .7251† 1.1% .2545† 2.3%

as the ratio of the correctly ranked inverse pairs. We only use
the P-Improve metric on the commercial dataset whose recorded
document lists were actually presented to users. The candidate lists
of the AOL dataset are constructed by us with the BM25 algorithm
which are not the lists shown to users, hence the P-Improve value
calculated on the AOL dataset is unreliable. Because of this, we do
not use the P-Improve metric for the AOL dataset.

4.2 Baselines
In addition to the original ranking (on the AOL dataset, it is gen-
erated by BM25. On the commercial dataset, it is returned by the
search engine), we select several state-of-the-art ad-hoc ranking
models and personalization models as baselines, listed as follows:

(1) KNRM & Conv-KNRM: KNRM [41] is a kernel-based neu-
ral ranking model for ad-hoc search. It conducts a kernel-pooling
technique on the word similarity matrix to extract multi-level soft
match features, which are combined with a pairwise LTR algorithm
to get the ranking score. Conv-KNRM [15] was proposed on the
basis of KNRM to model n-gram soft matches with CNN.

(2) P-Click: Dou et al. [16] proposed P-Click to re-rank docu-
ments based on the number of clicks made by the same user under
the same query in history, satisfying the user’s refinding behaviors.

(3) SLTB: It [6] extracts 102 features from the user’s search
history, including click-based features, topic-based features and so
on. Then, all the features are combined with the LTR algorithm
LambdaMart [9] to generate the personalized ranking list.

(4) HRNN: This model [17] dynamically builds short and long-
term user interest profiles with a hierarchical RNN and query-
aware attention mechanism. Documents are re-ranked based on the
similarities with the user profile and the additional SLTB features.

(5) PSGAN: It [24] is a personalized framework that applies GAN
to generate queries that match the user’s query intent better and
select document pairs more valuable for learning user interests. In
this paper, we take the variant PSGAN-D as our baseline.

(6)PPWE: This is a pipeline personalized word embedding based
model we implement as a baseline. To re-rank the documents for
the current query, we first train personalized word embeddings on
the user’s search data before this query by word2vec model [25] to
obtain the query and document representations, and then compute
the relevance scores using the KNRM model with SLTB features.

(7)PWEBA: This is a personalizationmodel for Twitter search [28].
It first trains personal word embeddings on the user’s history and
creates a word-synonym table based on word vector similarity.
Then, it re-ranks the generic list with cosine similarities between
the query’s synonyms and documents.

4.3 Model Settings
In our model, we initialize the personal word embeddings with a
100-dimensional word2vec model trained on all users’ historical
and training data for both datasets. For the AOL set, the words
with less than 5 occurrences and entropy less than 0.7 are filtered
from the personal vocabulary. The min occurrence is set as 8 and
the word entropy is 0.65 for the commercial dataset. We set the
max length of a query as 20 for both datasets, the max length of
document titles is 50 for the AOL dataset, and the max document
length is set as 300 for the commercial dataset. As for the multi-
head self-attention mechanism, we use 8 heads and the dimension
of each head is 50. The KNRM component has 11 kernels with
µ ∈ {−0.9,−0.7, . . . , 0.9, 1} and σ is set as {0.1, 0.001} [41]. The
size of hidden states in GRU is 100. Model optimization uses the
Adam optimizer, with batch size as 200, learning rate as 1e-3 and
ϵ = 1e − 5. We train the model for 5-10 epochs and store the one
performing best on the validation set.

5 EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Overall Performance
To begin with, we compare the overall performances of all baselines
and PEPS. We train all models on the training set, and then evaluate
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Table 3: Results of ablation experiments. Relative performances compared with complete PEPS are in percentages. PWE/GWE
means personal/global word embeddings.

PEPS Variant AOL Dataset Commercial Dataset
MAP MRR P@1 MAP MRR P@1 P-Imp.

PEPS .7127 - .7258 - .6279 - .8221 - .8321 - .7251 - .2545 -
w/o Attn. .6869 -3.62% .7008 -3.44% .6021 -4.11% .8145 -0.84% .8254 -0.83% .7196 -1.18% .2446 -4.08%
w/o Attn, PWE .6693 -6.09% .6823 -5.99% .5771 -8.09% .8126 -1.07% .8242 -0.97% .7181 -1.39% .2388 -6.35%
w/o Attn, GWE .6686 -6.19% .6822 -6.01% .5796 -7.69% .8139 -0.91% .8249 -0.89% .7191 -1.25% .2418 -5.18%
Ablation on query reformulation
w/o Multi-task .7113 -0.20% .7246 -0.17% .6266 -0.21% .8186 -0.34% .8295 -0.34% .7256 -0.36% .2513 -1.45%
w/o Query Ref .7101 -0.36% .7232 -0.36% .6247 -0.51% .8202 -0.15% .8306 -0.20% .7253 -0.40% .2392 -6.20%

them on the testing set without any update. The reason for using
P-Imp only on the commercial dataset has been stated in Section 4.1.
Results are shown in Table 2. We find:

(1)Compared to all the baselines, our PEPSmodel achieves
significant improvements in terms of all the evaluationmet-
rics, with paired t-test at p<0.01 level on the AOL query log
and paired t-test at p<0.05 level on the commercial dataset.
Especially for the two state-of-the-art personalized search models
HRNN and PSGAN, our model outperforms them greatly. On the
AOL set, our model improves PSGAN by 30.1% in MAP and 29.6% in
the MRR metric. In addition, it promotes 1.1% in MAP and 2.3% in
P-Imp which evaluates models from a more credible perspective on
the commercial set. Both HRNN and PSGAN models tailor the orig-
inal document list by building user interest profiles. These results
prove that the PEPS model proposed in an alternative way is also
effective for personalization and achieves the best performance.

(2) Comparing with the closer baseline PPWE, our PEPS
model still performsmuchbetterwhether tofix the personal
word embeddings or not. PPWE is our proposed pipeline person-
alized model which trains static personal word vectors with the
word2vec for ranking, without supervised fine-tuning. Compared
to PPWE, the end-to-end PEPS introduces the idea of fine-tuning
the pre-trained personal word embeddings with the click labels,
and it uses the multi-head self-attention mechanism to capture the
interactions between contexts to clarify the personalized meaning
of a specific word. The obvious promotion on the PPWE model
confirms that it is not only the static personal search data but also
supervised training with the click labels that produce personal word
embeddings containing accurate user interests. Furthermore, the
contextual information is also important.

(3) Generally, all personalized search models improve the
original ranking results greatly, indicating that personaliza-
tion is helpful for promoting users’ search experience. The
increase of P-Click model validates the effectiveness of refinding be-
haviors. SLTB model realizes personalization by extracting various
interests-related features from the search history. HRNN and PS-
GANwhich both build user interest profiles with a hierarchical RNN
achieve great results, and the great performance of PSGAN confirms
the importance of high-quality data for the training of personalized
models. The word embedding based models PWEBA, PPWE and
PEPS also show great improvements. However, we find the PClick
and PWEBA perform worse than the neural adhoc-ranking models
KNRM and Conv-KNRM. We analyze it may because the ability of

deep learning based models is stronger than traditional models, and
the word embedding in PWEBA trained on a single user’s history
is unreliable.

In a word, the overall performances strongly verify that our
PEPS can obtain personal word embeddings that contain ac-
curate user interests and clarify personalized query intents
of ambiguous queries to improve personalization.

5.2 Ablation Experiments
The PEPS model includes several main components: the personal
word embedding layer, text representations and the query reformu-
lation module. To figure out the role of each part for personalization,
we perform several ablation experiments. We illustrate the experi-
mental results in Table 3 and make some discussions.

Personal & global word embeddings In order to confirm the
respective effects of the global and personal word embeddings, we
alternatively strip off the two parts to conduct experiments. We also
turn off the attention mechanism to make the comparison results
more clear. The results are presented at the 3rd , 4th row in Table 3.
We find the model loses 6.09% inMAP and 8.09% in P@1without the
personal word vectors on the AOL dataset. As for the commercial
set, the performance of PEPS drops 1.07% and 6.35% in the MAP and
P-Imp. After removing the global word embeddings, the impacts
on the model are similar. This indicates that the personal word
embeddings containing user interests is critical for personalization.
But every user has changing interests and growing knowledge, and
they are likely to use new meanings of a word that have never been
involved in their history. In such cases, the global embedding can
be helpful to provide general great results.

Contextual representation On the word representations, we
apply a multi-head self-attention layer to obtain the contextual rep-
resentations taking the word interactions into account. We disable
the attention layer to analyze the contribution of the context, and
report the results in Table 3. Without the attention layer, the MAP,
MRR, P@1 metrics drop 3.62%, 3.44%, 4.11% on the AOL dataset
and 0.84%, 0.83%, 1.18% on the commercial dataset respectively.
This demonstrates that the specific meaning of a word not only
depends on itself but also the context, thus the multi-head attention
contributes to clarifying the meaning of a word.

Query reformulation We add a query reformulation task to
help figure out the user’s real query intent through joint learning.
To analyze the impacts carefully, we remove the whole query refor-
mulation module or only turn off the joint learning (i.e. the decoder)
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Figure 2: Experimental results on different query sets. (a)
and (b) are results about queries with different entropies, (c)
and (d) are results on repeated/non-repeated queries.
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Figure 3: Performance of different online update methods.

and report their performance in Table 3. On the AOL log, when only
the decoder is removed, there is a slight impact on the results, but
the performance drops obviously without the whole module. As for
the commercial set, the results of the P@1 and P-Imp metrics also
follow this changing trend. These illustrate that the personalized
query intent representation is helpful but the contribution of the
joint learning is limited. We conjecture it is because the training of
the ranking model relies more on the click information.

5.3 Experiments on Different Query Sets
To better analyze how our model improves the personalized search,
we divide all queries into different sets, and compare the improve-
ment of MAP based on the original ranking result of our PEPS and
several baselines. The whole results are illustrated in Figure 2.

Informational & Navigational Queries Click entropy is an
effective measure of whether a query is ambiguous. Studies [16, 33]
have shown that it is more necessary to personalize the search
results for queries with higher click entropy. Thus, we divide all
queries into informational queries with click entropy >= 1 and

navigational queries with entropy < 1. Figure 2 (a) and (b) show
the performance of our model and baselines on the two datasets.

First, although the relative performance on the two query sets of
all models is opposite on the two datasets, which we think may due
to the data distribution, we find our model consistently outperforms
all baselines on both query groups of the two datasets. Specifically,
compared to the best baseline PSGAN, our model also has obvious
improvements no matter the query is clear or ambiguous, especially
on the informational query set. It confirms the ability of PEPS to
perform well on queries that more require personalization.

Repeated & Non-repeated Queries In personalized search,
the user’s behaviors on the relevant queries in the search history
are critical to analyze the user’s interests for the current query.
Some studies [6, 16] even directly use the click features to promote
document ranking, but such methods lack the ability of generaliza-
tion. To further explore the generalization and learning abilities of
our model, we categorize all testing queries into repeated or new
queries according to whether they have appeared in the search
history. The comparison results are shown in Figure 2 (c) and (d).

Consistently, we find all personalized search models achieve
greater improvements on the repeated query set for the two datasets.
This demonstrates that most personalized models can satisfy the
user’s re-finding needs well, but some may fail on the non-repeated
queries, especially the traditional feature-based SLTB model. Our
PEPS shows the best results on both query sets and the proportion
of improvement on the non-repeated queries is greater, which veri-
fies that our model can not only apply the click-based features to
support the user’s re-findings but also can learn the user’s real in-
terests to improve the personalized results of newly issued queries.

5.4 Experiments with Online Update Methods
We design three approaches to finetune the word embeddings along
with the user’s search process to capture the user interests reflected
in the newly issued queries. To explore the effects, we perform
simulation experiments on the last 8-day testing data. We set a day
as a stage and adjust the word embeddings with two approaches.We
calculate MAP on the data of each day, obtaining the performance
curves and MAP improvements on HRNN shown in Figure 3.

Focusing on the left graphs in Figure 3, we can find that all the
performance curves show similar change trends, which should be
determined by the distribution of the testing data. And the curves
of our model lie above that of HRNN. Comparing the two different
adjustment approaches, the method of updating by query outper-
forms the other on both datasets. It indicates that the short-term
user interests in the same session are very effective for improving
the results of the subsequent queries. In general, both the update
methods improve the MAP compared to the static test in the first
several days, but only the update by query method performs better
than the static test in the latter days on the AOL set, and the other
method is worse. We analyze the possible reason is the incremen-
tal finetune approach is unstable and difficult to make the model
achieve the global optimal state, and a long-term finetunemaymake
the model perform worse. As for this problem, we also propose a
solution that we continuously update the word embeddings in a
short time, and then a batch of new samples are added to train a
global optimal model after a long time.
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6 CONCLUSION
In this paper, we implemented search results personalization in
an alternative way. Different from existing personalized search ap-
proaches that mainly create user profiles and personalize results
based on the created profiles, we explore the idea that different users
have personalized understandings of the same word. We proposed
PEPS - a model in which we set personal word embeddings for each
individual user. Furthermore, we applied a self-attention mecha-
nism to obtain the personalized contextual query representations
to clarify query intent. Then, we designed a multi-task framework
including personalized ranking and query reformulation to jointly
train the personal word embeddings and ranking model. We also
worked out three approaches for online update to track the new
user interests. Experimental results on two large-scale query logs
verified the effectiveness of our model. In the future, we will explore
better user interest learning algorithms.

ACKNOWLEDGEMENTS
Zhicheng Dou is the corresponding author. This work was sup-
ported byNational Natural Science Foundation of ChinaNo. 61872370
andNo. 61832017, and Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098.

REFERENCES
[1] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Multi-Task

Learning for Document Ranking and Query Suggestion. In 6th International
Conference on Learning Representations, ICLR 2018,.

[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context Atten-
tive Document Ranking and Query Suggestion. In Proceedings of SIGIR 2019.

[3] Nawal Ould Amer, Philippe Mulhem, and Mathias Géry. 2016. Toward Word
Embedding for Personalized Information Retrieval. CoRR abs/1606.06991 (2016).

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

[5] Paul N. Bennett, Filip Radlinski, RyenW.White, and Emine Yilmaz. 2011. Inferring
and using location metadata to personalize web search. In Proceeding of the 34th
International ACM SIGIR 2011. 135–144.

[6] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the impact of short- and long-term
behavior on search personalization. In ACM SIGIR ’12. 185–194.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2001. Latent Dirichlet
Allocation. In Advances in Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Synthetic, NIPS 2001. 601–608.

[8] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In (ICML 2005). 89–96.

[9] Chris J. C. Burges, Krysta M. Svore, Qiang Wu, and Jianfeng Gao. 2008. Ranking,
Boosting, and Model Adaptation. Technical Report MSR-TR-2008-109. 18 pages.

[10] Fei Cai, Shangsong Liang, and Maarten de Rijke. 2014. Personalized document
re-ranking based on Bayesian probabilistic matrix factorization. In The 37th
International ACM SIGIR ’14. 835–838.

[11] Mark James Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. 2010.
Towards query log based personalization using topic models. In Proceedings of
the 19th ACM CIKM 2010. 1849–1852.

[12] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of EMNLP 2014. 1724–1734.

[13] Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la Chica,
and David Sontag. 2011. Personalizing web search results by reading level. In
Proceedings of the 20th ACM CIKM 2011. 403–412.

[14] Nick Craswell, Onno Zoeter, Michael J. Taylor, and Bill Ramsey. 2008. An experi-
mental comparison of click position-bias models. In Proceedings of the WSDM
2008. 87–94.

[15] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
Neural Networks for Soft-Matching N-Grams in Ad-hoc Search. In Proceedings of
WSDM 2018. 126–134.

[16] Zhicheng Dou, Ruihua Song, and Ji-RongWen. 2007. A large-scale evaluation and
analysis of personalized search strategies. In Proceedings of the 16th International
Conference on World Wide Web, WWW 2007.

[17] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
2018. Personalizing Search Results Using Hierarchical RNN with Query-aware
Attention. In Proceedings of the CIKM 2018.

[18] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. CoRR abs/1406.2661 (2014).

[19] Morgan Harvey, Fabio Crestani, and Mark James Carman. 2013. Building user
profiles from topic models for personalised search. In 22nd ACM CIKM’13. 2309–
2314.

[20] GuangnengHu. 2019. Personalized Neural Embeddings for Collaborative Filtering
with Text. In Proceedings of the NAACL-HLT 2019. 2082–2088.

[21] Jyun-Yu Jiang and Wei Wang. 2018. RIN: Reformulation Inference Network for
Context-Aware Query Suggestion. In Proceedings of the CIKM 2018. 197–206.

[22] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, and Geri
Gay. 2005. Accurately interpreting clickthrough data as implicit feedback. In
SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR. 154–161.

[23] Cheng Li, Mingyang Zhang, Michael Bendersky, Hongbo Deng, Donald Metzler,
andMarc Najork. 2019. Multi-view Embedding-based Synonyms for Email Search.
In Proceedings of SIGIR 2019. 575–584.

[24] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. 2019. PSGAN:
A Minimax Game for Personalized Search with Limited and Noisy Click Data. In
Proceedings of SIGIR 2019. 555–564.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In ICLR 2013, Proceedings.

[26] Daisuke Oba, Naoki Yoshinaga, Shoetsu Sato, Satoshi Akasaki, and Masashi Toy-
oda. 2019. Modeling Personal Biases in Language Use by Inducing Personalized
Word Embeddings. In Proceedings of the NAACL-HLT 2019. 2102–2108.

[27] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval
3, 4 (2009), 333–389.

[28] Sameendra Samarawickrama, Shanika Karunasekera, Aaron Harwood, and Ra-
mamohanarao Kotagiri. 2017. Search Result Personalization in Twitter Using
Neural Word Embeddings. In Big Data Analytics and Knowledge Discovery - 19th
International Conference, DaWaK 2017. 244–258.

[29] Ahu Sieg, Bamshad Mobasher, and Robin D. Burke. 2007. Web search personal-
ization with ontological user profiles. In Proceedings of the CIKM 2007.

[30] Yang Song, Hongning Wang, and Xiaodong He. 2014. Adapting deep RankNet
for personalized search. InWSDM 2014. 83–92.

[31] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue
Simonsen, and Jian-Yun Nie. 2015. A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion. In Proceedings of CIKM 2015.
553–562.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. 3104–3112.

[33] Jaime Teevan, Susan T. Dumais, and Daniel J. Liebling. 2008. To personalize or
not to personalize: modeling queries with variation in user intent. In Proceedings
of SIGIR 2008, Singapore, July 20-24, 2008. 163–170.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30.

[35] Maksims Volkovs. 2015. Context Models For Web Search Personalization. CoRR
abs/1502.00527 (2015).

[36] Thanh Vu, Dat Quoc Nguyen, Mark Johnson, Dawei Song, and Alistair Willis.
2017. Search Personalization with Embeddings. In Advances in Information
Retrieval - 39th European Conference on IR Research, ECIR 2017.

[37] Thanh Tien Vu, Alistair Willis, Son Ngoc Tran, and Dawei Song. 2015. Temporal
Latent Topic User Profiles for Search Personalisation. In Advances in Information
Retrieval - 37th European Conference on IR Research, ECIR 2015. 605–616.

[38] Hongning Wang, Xiaodong He, Ming-Wei Chang, Yang Song, Ryen W. White,
and Wei Chu. 2013. Personalized ranking model adaptation for web search.
In The 36th International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR ’13, 2013.

[39] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. A User-Item Rele-
vance Model for Log-Based Collaborative Filtering. In Advances in Information
Retrieval, 28th European Conference on IR Research, ECIR 2006. 37–48.

[40] Ryen W. White, Wei Chu, Ahmed Hassan Awadallah, Xiaodong He, Yang Song,
and Hongning Wang. 2013. Enhancing personalized search by mining and
modeling task behavior. In 22nd International World Wide Web Conference, WWW
’13. 1411–1420.

[41] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proceedings of SIGIR
2017. 55–64.

Session 8A: Domain Specific Retrieval Tasks  SIGIR ’20, July 25–30, 2020, Virtual Event, China

1368


	Abstract
	1 Introduction
	2 Related Work
	3 PEPS - A Personal Word Embedding based Personalized Search Model
	3.1 Pre-training
	3.2 Personalization Model
	3.3 Online Update
	3.4 Discussion about PEPS

	4 Experimental Settings
	4.1 Dataset and Evaluation Metrics
	4.2 Baselines
	4.3 Model Settings

	5 Experimental Results and Analysis
	5.1 Overall Performance
	5.2 Ablation Experiments
	5.3 Experiments on Different Query Sets
	5.4 Experiments with Online Update Methods

	6 Conclusion
	References



