
Enhancing Re-finding Behavior with External Memories for
Personalized Search

Yujia Zhou2, Zhicheng Dou1,2, and Ji-Rong Wen3,4
1Gaoling School of Artificial Intelligence, Renmin University of China

2School of Information, Renmin University of China
3Beijing Key Laboratory of Big Data Management and Analysis Methods
4Key Laboratory of Data Engineering and Knowledge Engineering, MOE

zhouyujia@ruc.edu.cn,dou@ruc.edu.cn,jirong.wen@gmail.com

ABSTRACT
The goal of personalized search is to tailor the document rank-
ing list to meet user’s individual needs. Previous studies showed
users usually look for the information that has been searched be-
fore. This is called re-finding behavior which is widely explored
in existing personalized search approaches. However, most exist-
ing methods for identifying re-finding behavior focus on simple
lexical similarities between queries. In this paper, we propose to
construct memory networks (MN) to support the identification
of more complex re-finding behavior. Specifically, incorporating
semantic information, we devise two external memories to make
an expansion of re-finding based on the query and the document
respectively. We further design an intent memory to recognize
session-based re-finding behavior. Endowed with these memory
networks, we can build a fine-grained usermodel dynamically based
on the current query and documents, and use the model to re-rank
the results. Experimental results show the significant improvement
of our model compared with traditional methods.

CCS CONCEPTS
• Information systems→ Personalization;

KEYWORDS
Personalized search, Re-finding, Memory networks

ACM Reference Format:
Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2020. Enhancing Re-finding
Behaviorwith ExternalMemories for Personalized Search. In The Thirteenth
ACM International Conference on Web Search and Data Mining (WSDM
’20), February 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9
pages. https://doi.org/10.1145/3336191.3371794

1 INTRODUCTION
Users usually get information from the internet by issuing a query
to the search engine. Under the same query, most common search
engines return the same result without distinction for all users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371794

However, even for the same query, the real intentions of different
users are often different, especially for ambiguous queries [8, 25].
Personalized search is a possible way to solve this problem. It tailors
the original ranking of results to meet user’s individual needs.

The key to personalized search is how to build user models
accurately. Previous studies have shown that the user’s query log
contains plenty of personalized information that can help learn user
profiles [3, 5, 12, 23, 26, 31, 32]. They extracted features from a large-
scale click data tomodel the user. However, thesemanually designed
features may not fully cover every aspect. With the emergence of
deep learning, new personalization approaches were proposed to
learn the semantic representation and extract features hidden in the
search history automatically [10, 17, 18, 23]. They have successfully
improved the quality of personalized search.

Although the strategies of personalization are different, most
of them pointed out that users often seek information they have
encountered before. This phenomenon is called re-finding behavior,
which can be used to build user models in personalized search in
a reliable way. Previous studies on modeling re-finding behavior
attempted to examine the features from multiple angles to predict
the clicks on viewed documents [24, 28], such as query change
features (e.g. "WordOrder", "StopWords", "TermAdded"), session fea-
tures (e.g. "the position in a session"), rank features (e.g. "rank for
URL associated with the first finding query instance") and so on.
However, these studies mainly identify the re-finding behaviour
based on lexical similarity, which cannot cover semantically similar
situations. In fact, some queries look different, but express the same
intent, like "new Apple computer profile" and "new macbook intro-
duction". The actual re-finding behavior in search engines is much
more complicated than this. In this paper, our goal is to enhance
the potential re-finding behavior that is difficult to identify. Due to
the powerful ability of deep learning to learn representation auto-
matically, we intend to apply it on capturing re-finding behavior in
semantic and model the sequential information hidden in them.

Previous personalized search approaches with deep learning
tried to build sequential user profiles over queries or sessions using
the recurrent neural network (RNN) [10, 18]. These methods have
been shown effective to model user interests over time by encoding
historical interaction into a hidden state vector. However, limited
by the storage capacity of a hidden vector, it is weak in capturing
fine-grained user preference. And this highly abstract encoding
approach is not conducive to identifying re-finding behavior. Mem-
ory network has made progress on many sequential-based tasks
(e.g. reading comprehension, sequential recommendation) due to
the ability of extracting information from large-scale data and its

https://doi.org/10.1145/3336191.3371794


great interpretability [14, 21, 33]. Its advantages perfectly fit our
needs for building a fine-grained user model based on re-finding.
Motivated by the powerful storage capacity of MN, we propose to
enhance the quality of user models on re-finding based on it.

According to the user’s information needs, we classify the re-
finding behavior into two categories: tracking information about a
certain topic or just for finding one document [9]. In the first case,
users typically issue similar queries to get information. We can
predict the user’s next click behavior by analyzing his historical
click data under these queries. In the second case, we are able to
summarize the user’s query habits for finding the document, and
identify the re-finding by comparing the current query with his
habits. To cover both cases, we design two separate memories, a
query memory and a document memory, for storing user historical
interactions from two different angels. In fact, users often issue a
series of queries in a session for a single information need. They
might show the same query intent over sessions. To identify this
situation called session-based re-finding, we design an intent mem-
ory to store user past query intent and corresponding interested
document of each session.

Specifically, we design a model RPMN for personalized search,
which focuses on the re-finding behavior with external memories
we stated above. Different historical behaviors have unequal con-
tributions to the re-finding. Thus, we attempt to highlight relevant
historical behaviors stored in the query memory and the document
memory based on their relevance to the current needs. And then we
further model the session-based re-finding with the help of intent
memory to build a more accurate user model. Finally, by matching
the user model and the current needs, we compute the probability
of the document being clicked under two types of re-finding and
predict the personalized search results.

Our main contributions are summarized as follows: (1) We make
use of external memories to enhance user re-finding behavior for
personalized search in an interpretable way. (2) In order to cover
more complex re-finding, we analyze user re-finding behavior from
query and document respectively, and further consider session-
based re-finding. (3) Based on the characteristic of re-finding that a
document is more likely to be irrelevant if it has been ignored in
history, we consider the negative impact of unclicked documents
to model the user interests.

In the rest of the paper, related works are summarized in Section
2. Our personalized model is introduced in Section 3. We demon-
strate the experimental settings and results in Section 4, and draw
the conclusion in Section 5.

2 RELATEDWORK
2.1 Personalized Search
Search results personalization has been shown to effectively im-
prove the quality of search engines [5]. The main goal of personal-
ized search is to re-rank the results to meet the individual needs of
different users, depending on the user’s interests. In different per-
sonalization algorithms, the representation and modeling methods
of user interests are also different. However, the main idea of them
is to model user preferences based on user history search behavior.

In traditional methods of personalized search, the main per-
sonalized features extracted from historical search data focus on

click number and topic similarity [2, 6, 12, 19, 22, 30]. The former
is widely used due to its availability and reliability. Dou et al. [8]
counted the number of clicks on the documents in history to re-rank
the original document list. Teevan et al. [26] followed this approach
to identify personal navigation with individual behavior for search
results personalization. Studies have shown that not all queries are
suitable for personalization [8, 25]. Sometimes blindly personaliz-
ing search results for navigational queries (like "google.com") may
reduce the quality of the results. The click entropy is a valid indica-
tor to measure the potential of personalization of the query. The
topic-based features have gone through a transition from manual
design to automated learning [2, 22, 34]. Due to the incomplete
category of manual design, such as Open Directory Project (ODP),
some studies proposed to learn a latent topic of the document au-
tomatically with Latent Dirichlet Allocation (LDA) [6, 12, 30, 32].
With the emergence of learning to rank methods, recent studies
[3, 29, 34] combined these two types of features to train a ranking
model by the LambdaMART algorithm [36], which is an extension
of LambdaRank [4]. Although the above methods have made great
progress, the incomplete user features are still a problem due to the
limitations of manual design. Deep learning has become a possible
solution to this problem.

The main advantage of deep learning is the word embedding
can be learned automatically, which means more potential user
preferences in the deep semantic space can be explored. In the field
of personalized search, Song et al. [23] proposed a general ranking
model based on user individual adaptation. Li et al. [17] made use
of semantic features powered by deep learning to improve the in-
session contextual results. Ge et al. [10] used hierarchical recurrent
neural networks to model user short- and long-term interests and
highlighted the relevant interests by query-aware attention. Lu et al.
[18] proposed a generative adversarial network framework to train
the network with noisy click data. These methods make use of deep
learning for semantic modeling and achieve better results. Different
from previous studies, we attempt to combine deep learning with
memory networks to enhance user re-finding behavior.

2.2 Re-finding Identification
Re-finding behavior is a common phenomenon in information re-
trieval. Users often use the same or similar queries to retrieve pre-
viously viewed documents. Previous studies on re-finding behavior
mainly focused on re-finding identification. Teevan et al. [24] an-
alyzed the query log to predict whether the user will click on the
same document when the user submitted a query that has ever is-
sued. Tyler et al. [27] observed different types of re-finding behavior
in inter-session and intra-session and measured the likelihood that
re-finding behavior occurs at different positions in a session. Later,
Tyler et al. [28] utilized re-finding for search results personaliza-
tion. The results showed the reliability of re-finding prediction for
personalized search. Elsweiler and Ruthven [9] performed a diary
study that classified the re-finding tasks according to user’s infor-
mation needs. To more accurately identify the re-finding behavior,
more kinds of features are used to model the query log. Kotov et
al. [16] examined the features from three aspects: session-based
features, history-based features, and pairwise features. However,
the above methods still have the limitations of manually designed



Table 1: Notations in the paper.

N. Definition N. Definition
u a user U u’s historical log
Q a set of queries D a set of documents
q a query d a document
qs(v) the q‘s string (vector) ds(v) the d’s URL (vector)
q′ a refined query d ′ a refined document
M an external memory m a slot ofM
d+ a satisfied document d− a skipped document
dq average document of q qd average query of d

features, and most of them only consider lexical features, while
ignoring the re-finding behavior based on semantic similarity. For
modeling complex user re-finding behavior in various scenarios, we
intend to combine the lexical and semantic features, and alleviate
the problem of incomplete features with deep learning.

3 RPMN - A MEMORY NETWORK
ENHANCED RE-FINDING MODEL FOR
PERSONALIZED SEARCH

Tailoring the ranking of search results according to individual inter-
est can improve the quality of the retrieval model. As we stated in
Section 1, existing personalized search methods are weak in model-
ing potential re-finding behavior. Inspired by the ability of memory
networks to capture fine-grained user preferences, we present a
personalized search model with memory networks focusing on the
re-finding behavior. With the help of external memories, we expect
to screen out historical behaviors that are related to current needs
and identify the re-finding behavior in semantic.

We define the notations used throughout the paper in Table 1.
Suppose that for user u, his historical log U includes a series of
issued queries and click information on the documents retrieved by
search engine, i.e.U = {{q1,D1}, ..., {qi ,Di }, ..., {qn ,Dn }}, where
qi is the ith query in the query log and Di is the document list
retrieved for qi . Given a new query q and its original search results
D = {d1,d2, ...}, we predict the probability of each document being
clicked according to personalized dataU , and re-rank the document
list D combining the relevance to the query q. The final probability
of the document d being clicked is denoted as p(d |q,U ).

As we have introduced in Section 1, the re-finding behavior can
be roughly summarized into two categories: using similar queries
to find unspecified documents or just for finding a viewed doc-
ument. For simplicity, we call these two categories query-based
re-finding and document-based re-finding. The former focuses on
the similarity between the candidate document and the user inter-
ested documents under similar queries, while the latter pays more
attention to the historical queries containing the similar documents.
We use p(d |U q ) and p(q |U d ) to represent the probability of the
document being clicked under these two types of re-finding. The
final probability consists of three parts:

p(d |q,U ) = ϕ
(
p

(
d |U q ) ,p(q |U d ),p (d |q)

)
(1)

where p(d |q) represents the adhoc relevance between each candi-
date document and the query, and ϕ(·) is a Multilayer Perceptron

(MLP) with tanh(·) as activation function in our model, which is
used to combine the three parts with different weights.

The structure of our model is shown in Figure 1. At first, in order
to handle the query-based re-finding and the document-based re-
finding, we devise two external memories to highlight the historical
behaviors from query and document respectively. And then, with
the help of RNN, we generate the refined vectors and construct the
intent memory to model the re-finding over sessions. Finally, we
get the probability by matching the user profiles with the current
needs to re-rank the results. In the remaining parts of the section
we will introduce the details.

3.1 Highlighting Relevant Historical Behaviors
Dynamically

Although there is a large amount of personalized information in the
query log, the same information contributes differently in different
situations. So we expect to dynamically enhance the influence of
relevant historical behaviors based on the current need, especially
those with re-finding value. To utilize each query and document
more comprehensively, we get their vector representation from
two aspects. (1) Based on word embedding, which is good at cap-
turing the relation at the semantic level. Their representation are
computed by weighting the words together with TF-IDF weights.
(2) Based on graph embedding, which measures the distance ac-
cording to co-occurrence probability. This method constructs the
historical interactions into a graph and learns the representation of
each node. Finally, the representation of each item is generated by
concatenating the vectors of two methods.

As we discussed above, to deal with the re-finding behavior in
personalized search, we use external memories which can store
the query logs in detail to identify the re-finding behavior in an
interpretable way. For covering two types of re-finding, we set up
a query memoryMQ and a document memoryMD to record user
historical behaviors. Note that our model builds memories for each
user independently to store his personal behavior.

3.1.1 Query Memory. We construct this memory for handling the
query-based re-finding. Since that user behavior under similar
queries are valuable to make a prediction, the main function of
the query memory MQ is to find out the historical queries that
are related to the current query. Specifically, in addition to build
user profiles using satisfied documents, we leverage the skipped
documents to model user interests in reverse. The basic idea is if a
user skipped a document before, it is more likely to skip it again
when encountering the same document. A satisfied click usually
refers to a click with more than 30s dwelling time or the last click
in a session [3, 10, 32]. And a skipped document is defined as the
unclicked document above a satisfied click.

Assume that there are nQ memory slots in MQ , i.e. MQ =

{m
Q
1 , ...,m

Q
nQ }. Each slot stores a query string, a query vector

and two average document vectors (satisfied and skipped), i.e.
m
Q
i = {q

s
i ,q

v
i ,d
+
qi ,d

−
qi }. Notice that the query stored in each slot

is different. TheWRITE operation of query memory is defined as:
there is a new interaction {q,D} from u. We put the average vector
d+q of satisfied clicked documents and d−q of skipped documents
into the memory. If query q has been issued before, we only modify



𝑞

𝑞1
𝑣

𝑞2
𝑣

𝑞𝑛𝑄
𝑣

𝑚1
𝑄

𝑚2
𝑄

𝑚𝑛𝑄
𝑄

···

···

···

···

···

··· 𝑞′

𝐷𝑞

𝑞𝑑1
𝑑1
𝑣

𝑑2
𝑣

𝑑𝑛𝐷
𝑣

𝑚1
𝐷

𝑚2
𝐷

𝑚𝑛𝐷
𝐷

···

···

···

···

···

···
···

𝑑′

𝑑

𝑄𝑑

𝑞𝑑2

𝑞𝑑𝑛𝐷

𝑑𝑞1
𝑑𝑞2

𝑑𝑞𝑛𝑄

···

··· ··· ··· ··· ··· ··· ··· ···

𝑣1
𝐼

𝑘1
𝐼

𝑆1

···

𝑘2
𝐼

𝑆2
···

𝑘𝑛𝐼
𝐼

𝑆𝑛𝐼

······

𝑆1

···

𝑣2
𝐼

𝑆2

···

𝑣𝑛𝐼
𝐼

𝑆𝑛𝐼

······

𝐾𝑑

𝑉𝑞

Interested Document

Query Intent

K-kernel

K-kernel

𝑑 𝑑′

𝑞 𝑞′

𝑀𝑄

𝑀𝐷

𝑀𝐼

Relevance features

𝑝(𝑞|𝑈𝑑)

𝑝(𝑑|𝑈𝑞)

𝑝(𝑑|𝑞)
𝑝(𝑑|𝑞, 𝑈)

𝑑1,1

𝑞1,1

Document-based re-finding

Query-based re-finding

𝛼𝑠 𝛼𝑣

𝑞1,2

𝑑1,2

Figure 1: The architecture of RPMN. Given a new query and a candidate document, relevant historical behaviors are high-
lighted by two external memories from query and document. After extracting session-based re-finding behavior using intent
memory based on the current needs, personalized information for query-based re-finding (blue lines) and document-based
re-finding (orange lines) are collected. Combining relevance features, we get the final probability for personalization.

the two average document vectors of corresponding slot:

d+qi (new) ← GATE(d+q ,d+qi (old))
d−qi (new) ← GATE(d−q ,d−qi (old))

(2)

where GATE(·) is a gate to control the proportion of new informa-
tion, GATE(a,b) = (1−zi )∗a+zi ∗b, and the gate weight zi is set to
0.5 in our model. Otherwise, we put the query string, the query vec-
tor and two average document vectors together, i.e. {qs ,qv ,d+q ,d−q },
into a new slot (or replace the oldest one if there is no empty slot).
Here we keep the memory in the chronological order to maintain
the sequential information of historical interactions.

The READ operation starts when the user issues a new query q,
which is to learn the weight of each slot inMQ based on the new
query. Specifically, for covering more potential re-finding behavior,
we compute the weight from the string level (lexical similarity)
and the vector level (semantic similarity). Together, they determine
the influence of each slot based on q. Formally, with respect to the
query string qs and the query vector qv , the weight αqi of the ith
slot is defined as the combination of string level weight αq

s

i and
vector level weight αq

v

i :

α
q
i = ϕ(α

qs
i ,α

qv
i ). (3)

For string level weight, we choose ten common ways of query
change following previous work ("wordorder", "stemming", etc.)
[24, 28]. We believe they contribute differently in re-finding. To
learn the influence of each types, we devise a type memory MT

to store the matching types and their vector representation. Each
representation is initialized by zero and will be updated when the
new query comes. Formally, if the relation between the new query
string qs and a historic query string qsi belong to the jth type, the
new representation r j of the type is:

r j (new) ← GATE(f (qv − qvi ), r j (old)), (4)

where f (·) is to ensure that the value is the largest when the two
queries are the same, and gradually decreases as the difference
of them increases, defined as f (x) = e−|x | . Given a new query q,
we take out corresponding vectors according to the relationship
between the historical queries inMQ and the new query. If a query
pair does not match any query change type, the relation vector
is set to zero. We use Rqs to represent the set of relation vectors
based on qs , and the string level weight αq

s

i of slotmQ
i is learned

according to its relation vector rq
s

i :

α
qs
i =

exp(ϕ(rq
s

i ))∑n
j=1 exp(ϕ(r

qs
j ))
, (5)

where the MLP ϕ(·) is to output a weight based on the relation
vector. We use the function softmax(ei ) to represent exp(ei )∑n

j=1 exp(ej )
for

short in the following.
For vector level weight, with respect to the current new query

vector qv , we highlight the relevant slots based on the topic similar-
ity between query vectors. The weight αq

v

i of slotmQ
i is generated



by the attention mechanism [1]:

α
qv
i = softmax(ϕ(qv ,qvi )). (6)

Now we have learned the weight of each slot, which represents
the contribution of each historical query to the current query in
re-finding. Finally, we take the vectors fromMQ according to the
learned weight and get three weighted sets: weighted historical
query vector set Qq = {α

q
1 q

v
1 , ...α

q
nQq

v
nQ }, weighted satisfied doc-

ument vector set D+,q = {αq1 d
+
q1 , ...α

q
nQd

+
qnQ
}, weighted skipped

document vector set D−,q = {αq1 d
−
q1 , ...α

q
nQd

−
qnQ
}. And they act on

calculating the final probability in Section 3.3.

3.1.2 Document Memory. The document memory is used to ana-
lyze the user’s query habits based on each candidate document. For
the document-based re-finding, we expect to focus on the queries
that retrieve the documents which are related to the candidate docu-
ment through the document memoryMD = {mD

1 , ...m
D
i , ...,m

D
nD }.

The method of constructing it is similar to the query-based memory.
Each memory slotmD

i consists of a document URL, a document
vector and an average query vector, i.e.mD

i = {d
s
i ,d

v
i ,qdi }. When

a new interaction {q,D} happens, the WRITE operation forms
document-query pairs with the satisfied documents in D and the
query i.e. {{d+1 ,q}, {d

+
2 ,q}, ...}. And then we put each of them into

the document memoryMD like query memory: modify the qi by
GATE(·) if the document has satisfied before, or use a new (the
oldest) slot to store it.

When evaluating a document d , we learn the weight αdi of each
slot based on d by READ operation. Due to the limited type of
URL change, we only consider two types "the same" and "the same
domain" of document change to learn the string level weight. And
the vector level weight is also generated by attention mechanism:

αd
v

i = softmax
(
ϕ

(
dv ,dvi

) )
. (7)

By combining two parts of weight, we highlight user behaviors on
relevant documents and get two weighted sets: weighted document
vector set Dd = {αd1 d

v
1 , ...,α

d
nDd

v
nD }, weighted average query vec-

tor setQd = {αd1 qd1 , ...,α
d
nDqdnD

}. Theywill contribute to the final
probability along with the sets obtained from the query memory.

3.2 Modeling Session-based Re-finding.
In a large number of search behaviors, sometimes users do not get
satisfied results by only one query. They often issue a query at the
beginning of a session and reformulate it until getting a satisfied
document [10]. We believe that user behaviors in a session reflect
a query intent. Intuitively, the queries and click data in historical
sessions are helpful when the user shows the same query intent
next time. Therefore, we attempt to further analyze user re-finding
behavior from the session-level. Specifically, we divide the query
logs into different sessions,U = {S1, S2, ...}, and construct an intent
memoryM I which containsnI slots to store the historical behaviors
over sessions. Each memory slotmI

i contains a query intent vector
k Ii of a session and an interested document vector v Ii under the
intent, denoted asmI

i = {k
I
i ,v

I
i }. TheWRITE and READ operation

ofM I will be introduced in the following.

3.2.1 Exploiting user historical intent with RNN. Assume that a
user issues a series of queries {qi,1,qi,2, ...} in the session Si , and
each query corresponds to an average satisfied document vector
{di,1,di,2, ...}. In general, if the current query cannot meet the
user’s information needs, he will submit the next query until the
information needs are met. So the latter query and the satisfied
document in a session can better reflect the user’s true intent. In-
spired by the great success and widespread application of RNN in
modeling sequential data, we apply it to learn the representation
of the session-based intent and interest. A major shortcoming of
RNN is that when dealing with long sequences, there is a problem
of vanishing gradient. Thus, more complicated structures based on
RNN, such as Gated Recurrent Unit (GRU) [7] and Long Short-Term
Memory (LSTM) [13], were proposed to solve the problem. We
adopt GRU as the basic cell in our work since it is simpler than
LSTM and is easier to train. Two GRU layers are applied to model
user query intent from {qi,1,qi,2, ...} and user interested document
from {di,1,di,2, ...} in each session. TheWRITE operation of intent
memoryM I is defined as: when a new interaction {q,D} happens,
if it belongs to an existed session in the slot mI

i , we update the
memory slot for this session regarding the query vector qv and
average satisfied document vector d+ as the inputs of GRU:

k Ii (new) ← GRU(k Ii (old),q
v ),

v Ii (new) ← GRU(v Ii (old),d
+),

(8)

where GRU(·) is the GRU unit. The new state vector k Ii (new) can be
calculated according to the inputs and previous state vector k Ii (old).
If it belongs to a new session, we put it in a new (the oldest) slot
and the previous state vector is initialized by zero vector.

3.2.2 Extracting session-based information from query and docu-
ment. Now we have recorded the query intent and corresponding
interested document of each session in the intent memory, which
allows us to explore the user’s session-based re-finding behavior.
According to the two types of re-finding behavior we introduced
above, the READ operation of intent memory also includes two
ways. For the query-based re-finding, we regard query intent as
the key and user interested document as the value in M I . Given
a new query q, to more accurately express its intent, such as am-
biguous queries, misspelled queries, etc., we generate a refined
query vector according to the weighted historical query vector set
Qq = {α

q
1 q

v
1 , ...α

q
nQq

v
nQ } obtained in Section 3.1.1. For capturing

the evolution of relevant queries over time in history, we also take
a GRU layer to represent the current state vector hqn . And then we
map it into the same dimension as the query vector by MLP to
represent the refined query q′:

q′ = ϕ(h
q
nQ ) = ϕ(GRU(hqnQ−1,α

q
nQq

v
nQ )). (9)

We learn the attentive weight of each slot based on the query vector
qv and the refined query vector q′. We have:

α
I,q
i = softmax(ϕ(k Ii , [q

v ,q′])). (10)

Finally, we generate a set V q = {α
I,q
1 v I1, ...,α

I,q
nI v

I
nI } by reading

interested documents with query-aware weights to represent a
probability distribution of different interests in history.



For the document-based re-finding, we exchange the roles of
the two parts in M I to evaluate what query intent the candidate
document is likely to belong to, i.e. the key is interested document
and the value is query intent. Since that URL is based on certain
rules and changes less, we simply get the refined document vector
by summing the elements of weighted document vector set Dd :

d ′ =
n∑
i=1

αdi d
v
i . (11)

And the weights on query intents with respect to dv and d ′ is:

α I,di = softmax(ϕ(v Ii , [d
v ,d ′])). (12)

The probability distribution of historical intents based on d is de-
noted as the set Kd = {α I,d1 k I1, ...,α

I,d
nI k

I
nI }. These two sets from

intent memory are essential in calculating the final probability.

3.3 Re-ranking the Results
In this section, we compute the probability of each part in Eq. (1)
using the personalized information we got above.

(1) For p(d |U q ), we make use of the information which is col-
lected for the query-based re-finding behavior. The notation U q

means the user interactions related to q, including (a) the weighted
satisfied and skipped document vector sets D+,q and D−,q obtained
in Section 3.1.1. (b) the estimated session-based interested docu-
mentsV q from the Section 3.2. In order to measure the positive and
negative effects of historical behaviors, we calculate the probability
of the two parts separately and use MLP to combine them, by:

p(d |U q ) = ϕ(p(d |U +,q ),p(d |U −,q )). (13)

They can be measured by the matching the candidate documents
and user personalized information. For a wider range of matches,
we put d and the refined document d ′ together as the target:

p(d |U +,q ) = Fk ([d,d
′], [D+,q ,V q ]),

p(d |U −,q ) = Fk ([d,d
′],D−,q ),

(14)

where Fk is the matching function which follows the idea of the
previous model K-NRM [37]. It devises k kernels to cover different
degrees of matching. And the number of kernel k is set to 11 in
our model. Formally, after projecting all the vectors into the same
semantic space, we form two translation matricesM+i j andM

−
i j by

cosine similarity. The matching function combines the scores of k
kernels with MLP (usingM+i j as an example):

Fk (M
+
i j ) = ϕ(f1(M

+
i j ), ..., fo (M

+
i j ), , ..., fk (M

+
i j )),

fo (M
+
i j ) =

∑
i
loд

©­«
∑
j
exp

(
−
(M+i j − µo )

2

2σ 2
o

)ª®¬ ,
(15)

where µo is evenly distributed between -1 and 1 according to k , and
σo is set to 0.1 in our model. This approach gives us an opportunity
to control the degree of matching by adjusting the kernel.

(2) Forp(q |U d ), which represents the probability of the document-
based re-finding. And the notation U d includes the information
associated with d . (a) the weighted query vector sets Qd in Section
3.1.2. (b) the estimated session-based query intents Kd in Section
3.2. Imitating the matching method of last part, we are able to get

the probability by matching the personalized information with the
new query q and the refined query q′:

p(q |U d ) = Fk ([q,q
′], [Qd ,Kd ]). (16)

(3) For p(q |d), following previous work [3], we extract lots of fea-
tures for every document, including original position, click entropy,
temporal weights and topical features. What’s more, we add several
additional features of the skipped document following our previous
idea. The probability is computed by feeding these features fq,d
into MLP with tanh(·) as the activation function:

p(q |d) = ϕ(fq,d ). (17)
Finally, a personalized ranking list is generated by re-ranking the

original search results according to the final probability p(d |q,U ).
We train our model in a pairwise way based on the LambdaRank al-
gorithm. The document pairs are formed by regarding the satisfied
documents as positive samples and the skipped documents as nega-
tive samples. The distance disi j of the pair di and dj is computed by
|p(di |q,U ) − p(dj |q,U )| with the normalization of logistic function.
We choose weighted cross entropy between the true distance disti j
and the predicted distance dispi j as loss function, and we have:

loss = −|λi j |
(
disti j loд(dis

p
i j ) + (1 − dis

t
i j )loд(1 − dis

p
i j )

)
, (18)

where theweight λi j is the change of ranking quality after swapping
the pair di and dj .

In summary, we propose a method to enhance the re-finding
behavior in personalized search with memory networks. For each
user, we store his historical behaviors into the memories from query,
document, and intent. Given a new query and its candidate docu-
ments, we take the personalized information associated with them
from our memories to predict the probability of each document
being clicked. The personalized ranking is based on it. This new
interaction is recorded to update the memories.

4 EXPERIMENTS
4.1 Dataset and Evaluation Metrics
We experiment with a large-scale query log of a commercial search
engine, which includes two month of non-personalized user click-
through data in 2013. Each piece of data contains user anonymous
ID, query string, query time, top URLs returned by the search engine,
and click dwelling time. To ensure the validity of the data, we
remove the users whose active time is less than 6 sessions (to make
sure we have enough data to build user model) and the documents
that cannot be accessed. To identify a session, we use the common
approach of demarcating session boundaries by 30 minutes of user
inactivity [35]. Finally, the dataset contains 738,731 queries issued
by 5,998 users. These queries belong to 276,047 different sessions.

Since that personalized search is based on user historical in-
teractions, we regard the first three quarters of data as historical
information to build a basic user model, and the last quarter of data
is divided into training set, validation set, and test set in a 4:1:1
ratio. Since the query time distribution of different users is uneven,
the division is based on the number of sessions of each user during
this period, so as to ensure that each part has at least one session
data. For the two types of vector representation as we stated in
Section 3.1, we train a word vector model with word2vec [20] for



the method based on word embedding, and utilize node2vec [11]
to learn the representations of graph embedding.

Based on the assumption that satisfied clicked documents are
relevant and others are irrelevant, we choose three common evalu-
ation metrics to measure the quality of the ranking list, i.e. Mean
Average Precise (MAP), Mean Reciprocal Rank (MRR), and average
click position (A.Clk.). What’s more, due to the influence of the
original ranking position bias, the reason why a document is not
clicked may be that the position is too low [15]. Based on the con-
sideration that a satisfied clicked document is more relevant than
the skipped documents and the next unclicked document, following
[18], we construct the inverse document pairs by them and take
three metrics #Better, #Worse, and P-Imp. to evaluate the results.

4.2 Baselines and Our Models
We regard the original ranking as a basic baseline and consider
the traditional personalized methods based on re-finding and deep
learning methods for performance comparison.

P-Click [8]: This method counts the click number on the same
document under the same query in user’s history, and generates
the personalized results by fusing the original ranking.

URP [28]: It extracts three types of information (Query Change,
Personalized and shared features) to identify the re-finding and
utilizes it to predict the user behavior for personalized search.

SLTB [3]: It summarizes 102 features, including click-based fea-
tures, topic-based features, short and long-term features, time decay
etc., to train a ranking model by the LambdaMART algorithm.

HRNN [10]: This method models user short-term and long-
term interests and highlight relevant interests dynamically using
hierarchical RNN with query-aware attention. It is the first time to
leverage sequential information with a deep learning framework.

PSGAN [18]: This is a personalized framework for dealing with
the noisy click data based on generative adversarial network. We
take the discriminator of the query generation based model as
our baseline model, which is the state-of-the-art one among four
variants of PSGAN.

RPMN (Re-finding Plus by Memory Networks): It is our model
proposed in Section 3. To validate the effectiveness of each compo-
nent in our model, we experiment with different combinations of
the components. Specifically, we experiment with:

RPMN-QM: Query memory is disabled and we assign the same
weight to all historical queries.

RPMN-DM: This method eliminates the document memory and
treats the historical documents equally.

RPMN-IM: We remove the intent memory which is to model
session-based re-finding behavior from the model.

We experiment with multiple sets of parameters, including GRU
hidden state size in {200, 400, 600}, the number of MLP hidden units
in {64, 128, 256, 512}, word embedding size in 300, 1000}, graph em-
bedding size in {300, 1000}, the number of kernel in {5, 7, 9, 11, 13},
learning rates in {10−2, 10−3, 10−4}. Considering the performance
of the model, training time, and memory usage, we choose the
parameters in bold to train the model.

Table 2: Overall performances of models. "†" indicates the
model outperforms all baselines significantly with paired t-
test at p < 0.05 level. The best results are shown in bold.

Model MAP MRR A.Clk. #Better #Worse P-Imp.
Ori. .7399 .7506 2.211 - - -
P-Click .7509 .7634 2.189 3214 28 .0611
URP .7742 .7802 2.070. 4631 50 .0884
SLTB .7921 .7998 1.960 6224 81 .1170
HRNN .8065 .8191 1.902 14608 2067 .2405
PSGAN .8135 .8234 1.815 14675 1694 .2489
RPMN-QM .8184† .8298† 1.772† 13449 614 .2462
RPMN-DM .8196† .8301† 1.765† 13409 588 .2460
RPMN-IM .8215† .8312† 1.759† 14085 718 .2545†
RPMN .8238† .8342† 1.745† 14735 890 .2656†

4.3 Overall Results and Analysis
We evaluate the results of the different methods on the test set. The
overall results are shown in Table 2. We can observe that:

(1) Personalized baselines vs. original ranking. All personalized
strategies outperform the original ranking generated by search
engine. The result of P-Click shows that just using the exact match-
ing based re-finding behavior is effective for personalization. URP
analyzes a wider range of re-findings and gets a better performance.
Their results prove the necessity of our work tomodel the re-finding
behavior in amore holistic way. SLTB integrates all kinds of features
and generates a ranking by the learning to rank method, which is
more effective than traditional re-finding based features. HRNN
and PSGAN prove the effectiveness of deep learning on building
user profiles dynamically for personalization.

(2) Ourmethods vs. baselines. Our proposedmethods outperform
baseline models in all evaluation metrics. Compared with the best
method PSGAN in baseline models, our models have significant
improvements with paired t-test at p < 0.05 level on MAP. Specifi-
cally, the complete model RPMN has increased by 1.27% on MAP
and 6.7% on P-Imp. As can be seen from the reduction of #Worse,
our models have a lower risk of mistakes and their improvements
are mostly reliable. These results show that it is feasible to enhance
user re-finding behavior with external memories.

(3) RPMN vs. other methods we designed. The complete model
outperforms other models that lack a memory. Specifically, remov-
ing the query memory causes a decline of 0.7% on MAP, whose
impact is greater than others. This indicates the query-based re-
finding is common and it is feasible to capture user interested docu-
ments by analyzing the behaviors under similar queries. The model
RPMN-DM reduces most on the metric #Better, showing that more
pairs can be improved based on the user’s query habits for finding
a specific document by the document memory. It can be seen that
eliminating the intent memory has less influence on the model. A
possible reason is that most of the session-based re-finding can be
explored by the other two memories. And the intent memory is
used to discover re-finding behavior that is more implicit.

In summary, the overall results prove that memory networks
are helpful for enhancing the re-finding behavior based on
fine-grained personalized information, and improve the per-
sonalized results credibly. To further analyzewhat kind of queries



0-1 ≥1
Click Entropy

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ΔM
AP

SLTB
HRNN
PSGAN

RPMN-QM
RPMN

Figure 2: The results on queries with different click en-
tropies

our model improves on, we test the performance of our model on
the different query sets in the remaining parts of this section.

4.4 Results on Different Query Sets
To measure the main contribution of our model, we divide all test
queries into different sets according to the type and test the effect
of the model. We tried two ways of dividing in the following.

Informational queries vs. navigational queries. Previous
studies have shown that user queries can be divided into navigation
queries and informational queries according to the intent [8, 10, 25].
The former refers to those queries whose purpose is clear and all
users prefer the same document. The latter are generally those
that are used to get various information or ambiguous queries. We
divide the queries with the cutoff of click entropy at 1.0, which
is an indicator to measure the potential for personalization. We
choose three baseline models STLB, HRNN, PSGAN and two our
models RPMN-QM, RPMN to compare. Finally, we compute their
MAP improvements on two query sets.

As shown in Figure 2, all the personalized methods contribute
more on informational queries (with larger click entropy) than
navigational queries (with lower click entropy). Our models out-
perform the baselines on both query sets. Specifically, compared
to the best baseline model PSGAN, our complete model RPMN has
little improvement on navigational queries, but the performance
on informational queries is much better. This shows RPMN is good
at modeling fine-grained user personalized information to tailor
the ranking. Comparing RPMN with RPMN-QM, we find the query
memory contributes more on informational queries. It confirms the
query-based re-finding usually happens for collecting information
and it could be enhanced by our memory networks.

Repeated queries vs. new queries. In personalized search,
user behaviors under relevant queries in history can provide essen-
tial information for building user models. For proving the effective-
ness of our model on enhancing re-finding behavior, we categorize
the queries into two sets: repeated queries (the queries the cur-
rent user has issued before) and new queries (others), and test the
performance on them with the same model settings as above.

From Figure 3, we find that all personalized models have im-
proved search quality on both query sets, while the improvement

New queries Repeated queries
Query Category

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ΔM
AP

SLTB
HRNN
PSGAN

RPMN-QM
RPMN

Figure 3: The results on repeat queries and new queries

Query Memory

Intent Memory

𝒂𝒓𝒈𝒎𝒂𝒙(𝜶𝒒)

http://www.middleschoolscience.com/class3.htmcalculating speed labs

𝒂𝒓𝒈𝒎𝒂𝒙(𝜶𝑰,𝒒)
Session #20

acceleration middle school

acceleration lab and gravity

heart rate lab middle school

acceleration lab

http://www.doc-txt.com/Heart-Rate-Lab-Middle-School.pdf

http://www.science-class.net/Physics/force_motion.htm

http://printfu.org/acceleration+labs+for+middle+school

Query #153

acceleration lab http://www.middleschoolscience.com/walk.html

𝑞 𝑑

http://www.middleschoolscience.com/walk.html

Figure 4: The case study for interpretability of RPMN

on the repeat queries is much larger than that on the new queries.
Compared to the best baseline model PSGAN, our model RPMN
has a better performance on both parts and the improvement on
new queries is more obvious. Intuitively, improving results on new
queries is a more difficult task because of the lack of useful person-
alized information. Our model not only enhances the traditional
re-finding behavior from repeated queries, but also improves the
potential re-finding in semantic from new queries. In addition, the
results of RPMN-QM indicates removing query memory causes
more decline on repeated queries, which proves the effectiveness
of this memory to highlight the relevant queries.

4.5 Analysis On Interpretability of Our Model
Compared to previous personalization approaches based on deep
learning, our model is more interpretable owing to the ability of
memory networks to store valuable information. Recall that we
highlight relevant queries byαq and documents byαd in Section 3.1,
and measure the influence of session-based historical intent by α I,q
and α I,d . For simplicity, we present an example to analyze the
interpretability of the model from the query. The analysis from the
document can be analogized to this. In order to demonstrate the
ability to explore potential re-finding behavior, we choose a new
query-document pair to predict.

As shown in Figure 4, given a new query "calculating speed labs",
by looking at the content of the slot with the highest weight in



query memory and intent memory, we can get the following expla-
nation: the user interactions under the 153th query "acceleration
lab" is the most informative, and user intent in the 20th session is
highly similar to the current query intent. According to the satis-
fied documents under these queries, the candidate document has
a high probability of being clicked. Similarly, from the angle of
document, we can find out the most valuable historical satisfied
document by document memory and infer the possible intent by
intent memory. This example indicates our model handles the po-
tential re-finding in semantic and external memories can effectively
explain the personalized results.

5 CONCLUSION
In this paper, we made use of external memories to enhance the
re-finding behavior that is difficult to identify based on the fine-
grained user model. We designed the memories for queries and
documents to cover two types of re-finding behavior. In addition,
endowed with the benefit from RNN on modeling sequential data,
we further constructed an intent memory to extend the recognition
of re-finding to session level. Experimental results confirmed the
effectiveness and interpretability of our proposed model. In the
future, we plan to design more ways to read from memory.

ACKNOWLEDGMENTS
We thank the reviewers’ helpful comments. Zhicheng Dou is the
corresponding author. This work was supported by National Natu-
ral Science Foundation of China No. 61872370, Beijing Outstanding
Young Scientist Program NO. BJJWZYJH012019100020098, and the
Fundamental Research Funds for the Central Universities, and the
Research Funds of Renmin University of China No. 2112018391.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Paul N Bennett, Krysta Svore, and Susan T Dumais. 2010. Classification-enhanced
ranking. In Proceedings of the WWW’2010. ACM, 111–120.

[3] Paul N Bennett, Ryen WWhite, Wei Chu, Susan T Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the impact of short-and long-
term behavior on search personalization. In Proceedings of the SIGIR’2012. ACM,
185–194.

[4] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N Hullender. 2005. Learning to rank using gradient
descent. In Proceedings of the 22nd International Conference on Machine learning
(ICML-05). 89–96.

[5] Fei Cai, Shangsong Liang, and Maarten De Rijke. 2014. Personalized document
re-ranking based on bayesian probabilistic matrix factorization. In Proceedings of
the SIGIR’2014. ACM, 835–838.

[6] Mark J. Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. 2010. To-
wards query log based personalization using topic models. In Proceedings of the
CIKM’2010. 1849–1852.

[7] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP’2014. 1724–1734.

[8] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. 2007. A large-scale evaluation
and analysis of personalized search strategies. In WWW’2007. ACM, 581–590.

[9] David Elsweiler and Ian Ruthven. 2007. Towards task-based personal information
management evaluations. In Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval. ACM,
23–30.

[10] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
2018. Personalizing Search Results Using Hierarchical RNN with Query-aware
Attention. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 347–356.
https://doi.org/10.1145/3269206.3271728

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[12] Morgan Harvey, Fabio Crestani, and Mark J Carman. 2013. Building user profiles
from topic models for personalised search. In CIKM’2013. ACM, 2309–2314.

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[14] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. ACM, 505–514.

[15] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately interpreting clickthrough data as implicit feedback. In SI-
GIR’2005. 154–161.

[16] Alexander Kotov, Paul N Bennett, Ryen WWhite, Susan T Dumais, and Jaime
Teevan. 2011. Modeling and analysis of cross-session search tasks. In Proceedings
of the 34th international ACM SIGIR conference on Research and development in
Information Retrieval. ACM, 5–14.

[17] Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. 2014. Deep
learning powered in-session contextual ranking using clickthrough data. In
NIPS’2014.

[18] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. 2019. PSGAN:
A Minimax Game for Personalized Search with Limited and Noisy Click Data.
In Proceedings of the 42Nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’19). ACM, New York, NY, USA, 555–
564. https://doi.org/10.1145/3331184.3331218

[19] Nicolaas Matthijs and Filip Radlinski. 2011. Personalizing web search using long
term browsing history. In Proceedings of the fourth ACM international conference
on Web search and data mining. ACM, 25–34.

[20] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013. Exploiting similarities
among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013).

[21] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value memory networks for directly reading
documents. arXiv preprint arXiv:1606.03126 (2016).

[22] Ahu Sieg, BamshadMobasher, and Robin Burke. 2007. Web search personalization
with ontological user profiles. In CIKM’2007. ACM, 525–534.

[23] Yang Song, Hongning Wang, and Xiaodong He. 2014. Adapting deep ranknet for
personalized search. In WSDM’2014. ACM, 83–92.

[24] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael AS Potts. 2007. Information
re-retrieval: repeat queries in Yahoo’s logs. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 151–158.

[25] Jaime Teevan, Susan T Dumais, and Daniel J Liebling. 2008. To personalize or
not to personalize: modeling queries with variation in user intent. In SIGIR’2008.
ACM, 163–170.

[26] Jaime Teevan, Daniel J Liebling, and Gayathri Ravichandran Geetha. 2011. Un-
derstanding and predicting personal navigation. In WSDM’2011. ACM, 85–94.

[27] Sarah K Tyler and Jaime Teevan. 2010. Large scale query log analysis of re-finding.
In Proceedings of the third ACM international conference on Web search and data
mining. ACM, 191–200.

[28] Sarah K Tyler, JianWang, and Yi Zhang. 2010. Utilizing re-finding for personalized
information retrieval. In Proceedings of the 19th ACM international conference on
Information and knowledge management. ACM, 1469–1472.

[29] Maksims Volkovs. 2015. Context models for web search personalization. arXiv
preprint arXiv:1502.00527 (2015).

[30] Thanh Vu, Dat Quoc Nguyen, Mark Johnson, Dawei Song, and Alistair Willis.
2017. Search personalization with embeddings. In ECIR’2017. Springer, 598–604.

[31] Thanh Vu, Dawei Song, Alistair Willis, Son Ngoc Tran, and Jingfei Li. 2014.
Improving search personalisation with dynamic group formation. In SIGIR’2014.
951–954.

[32] Thanh Vu, Alistair Willis, Son N Tran, and Dawei Song. 2015. Temporal latent
topic user profiles for search personalisation. In ECIR’2015. Springer, 605–616.

[33] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory networks.
arXiv preprint arXiv:1410.3916 (2014).

[34] Ryen W White, Wei Chu, Ahmed Hassan, Xiaodong He, Yang Song, and Hongn-
ing Wang. 2013. Enhancing personalized search by mining and modeling task
behavior. In WWW’2013. ACM, 1411–1420.

[35] Ryen W White and Steven M Drucker. 2007. Investigating behavioral variability
in web search. In Proceedings of the 16th international conference on World Wide
Web. ACM, 21–30.

[36] Qiang Wu, Chris JC Burges, Krysta M Svore, and Jianfeng Gao. 2008. Ranking,
boosting, and model adaptation. Tecnical Report. Technical Report. MSR-TR-2008-
109.

[37] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. ACM, 55–64.

https://doi.org/10.1145/3269206.3271728
https://doi.org/10.1145/3331184.3331218

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Personalized Search
	2.2 Re-finding Identification

	3 RPMN - A Memory Network Enhanced Re-finding Model for Personalized Search
	3.1 Highlighting Relevant Historical Behaviors Dynamically
	3.2 Modeling Session-based Re-finding.
	3.3 Re-ranking the Results

	4 EXPERIMENTS
	4.1 Dataset and Evaluation Metrics
	4.2 Baselines and Our Models
	4.3 Overall Results and Analysis
	4.4 Results on Different Query Sets
	4.5 Analysis On Interpretability of Our Model

	5 Conclusion
	Acknowledgments
	References

