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Abstract—Active learning is an effective approach for tasks with limited labeled data. It samples a small set of data to annotate actively
and is widely applied in various AI tasks. It uses an iterative process, during which we utilize the current trained model to evaluate all
unlabeled samples and annotate the best samples based on a specific query strategy to update the underlying model iteratively. Most
existing active learning approaches rely on only the evaluation results generated by the current model and ignore the results from
previous iterations. In this paper, we propose using more historical evaluation results which can provide additional information to help
better select samples. First, we apply two kinds of heuristic features of the historical evaluation results, the weighted sum of historical
results and the fluctuation of the historical evaluation sequence, to improve the effectiveness of active learning sampling. Next, to
further and more globally use the information contained in the historical results, we design a novel query strategy that learns how to
select samples based on the historical sequences automatically. Our proposed idea is general and can be combined with both basic
and state-of-the-art query strategies to achieve improvements. We test our approaches on two common NLP tasks including text
classification and named entity recognition. Experimental results show that our methods significantly promote existing methods.

Index Terms—active learning, historical evaluation results, named entity recognition, text classification.

F

1 INTRODUCTION

A CTIVE learning is a sub-field of machine learning [1],
which in the statistics literature is called optimal exper-

imental design. It is distinctive for selecting a few training
instances to annotate actively and strategically, instead of
annotating all the unlabeled samples. Benefiting from the
effectiveness of sampling, models can achieve high perfor-
mance with fewer annotated training data. Active learning
can play a crucial role when the labeled data are insufficient
or the annotation cost is extremely high. It has been widely
applied in tasks such as text classification [2], [3], sequence
labeling and generation [4], [5], [6], image classification [7],
[8], and document ranking in information retrieval [9], [10].

The key challenge of active learning is how to evaluate
and select unlabeled samples to annotate for the subsequent
training process. Many methods have been proposed for
this problem [1], [11]. Basically, these methods can be cate-
gorized into three groups: informative approaches(such as
uncertainty-based methods [12], query-by-committee [13],
[14] and expected model change [15]), representative
approaches [16] (such as density-based methods and
cluster-based methods [10], [17]) and diversity-based ap-
proaches [18]. Active learning uses an iterative process. In
general, an active learning approach iteratively selects one
or a batch of unlabeled samples to be annotated based on a
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specific query strategy. It trains and updates the underlying
model after the current batch of samples have been labeled,
then selects the next batch of samples. In each iteration,
the active learning algorithm must evaluate all unlabeled
samples using the score function of a specific query strategy
which calculates a score for each sample based on the
underlying model trained in the previous iteration. Thus, a
large set of historical evaluation scores is generated during
the iterative process. It contains much information about
the behaviors of each sample along with the model updat-
ing process, which is potentially useful for measuring the
usefulness of the samples for training the model, especially
for the informative strategies. Unfortunately, most existing
active learning approaches use only the scores generated
in the current iteration to select samples, ignoring the in-
formation contained in the previous evaluation results. A
few studies have paid attention to the historical evaluation
scores [19], [20]. However, they only regarded the scores
generated in different iterations as discrete, but ignored
that those evaluation results were actually a sequence with
rich variation and information. Thus, none of these existing
approaches took full advantage of the existing information.

In this paper, we conduct detailed analysis of the
historical evaluation results which have been generated in
the past iterations, and propose several query strategies to
make full use of the information contained in the result
sequences to improve the effectiveness of active learning.
We mainly pay attention to the evaluation sequences of in-
formative methods, because informative strategies calculate
scores for unlabeled samples based on the underlying model
so that the evaluation sequences contain the performance
variation. But evaluation scores of the other two kinds of
strategies are fixed which depend on the similarity between
samples. All the evaluation results are collected along with
the active learning process and can reflect the performances
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of samples in different stages of the underlying model.
They should not be regarded as discrete sets of scores but
sequences with a specific variation trend, which could be
increasing, decreasing, relatively stable, or fluctuating. We
believe the usefulness of a sample for training the model
should rely on its performance in both the current and
historical iterations. Therefore, historical evaluation results
and the information contained in the evaluation sequence
can better measure a sample’s value for model training.

Let us use an example to illustrate this intuition:
Consider an entropy query strategy and two sam-
ples xm and xn with historical evaluation sequences
[0.69, 0.68, 0.69, 0.68, 0.69] and [0.33, 0.68, 0.58, 0.52, 0.69]
respectively. We find that xm and xn have the same en-
tropy 0.69 in the current iteration, but they performed far
differently in past iterations during which xm had higher
entropy than xn, In addition, xm performed stably all along
the process, whereas xn was fluctuate with a totally different
trend. Therefore, it is limiting to regard the two samples as
having the same uncertainty based on only the last eval-
uation result. Taking historical evaluation sequences into
account can provide more information to compare the two
samples and make a better choice.

Based on the historical evaluation results, we propose
several general active learning strategies. To begin with, we
design two heuristic methods to apply historical evaluation
results to help select samples. The first method calculates a
weighted sum of the historical evaluation scores to measure
the samples’ informativeness and it gives more importance
to the closer iterations. In the second method, we think
that the fluctuation of the evaluation sequence reflects the
sample’s uncertainty to some extent; samples showing high
fluctuation on the sequence are likely to be less certain.
Therefore, we use the fluctuation to measure sample un-
certainty more globally. These two heuristic approaches set
some rules to use the historical evaluation results, and they
both focus on one specific aspect or feature. To further
explore more effective information contained in the his-
torical evaluation results, we propose an active learning
method that learns how to select samples according to the
historical evaluation sequence automatically by a learning
to rank algorithm. Through this method, fuller use of these
historical evaluations can be made. The proposed strategies
are general and we also combine them with some state-of-
the-art methods to achieve improvements. Note that in ex-
isting active learning algorithms, historical evaluation scores
have been calculated from the past iterations. We simply
reuse these data, and hence there is no significant efficiency
increase between our methods and existing methods.

The main contributions of this paper are as follows:
(1) We focus on analyzing and utilizing the information
contained in historical evaluation results to help better select
samples in active learning. (2) We propose several strategies
for incorporating historical evaluation information in active
learning, especially a learning based approach, and verify
the effectiveness. These methods are not task- or model-
specific. They can be combined with existing active learn-
ing methods and applied to various tasks. (3) We apply
historical evaluation results on several basic and state-of-
the-art query strategies. Experimental results show that the
effectiveness of these approaches is improved after historical

TABLE 1: Notations used in the paper

Notation Description

t an iteration mark
U unlabeled data set
L labeled data set
x a sample in U
xi the i-th sample in U
M the model
φS(·) score function of strategy S
φSt (xi) score of xi calculated by φS(·) in t-th iteration

evaluation results are considered.
The remaining of this paper is organized as follows. We

first clarify our problem in Section 2, and introduce related
works in Section 3. Then we describe our proposed methods
in Section 4. In Section 5, we report the experimental settings
and results. Finally, we conclude our paper in Section 6.

2 PROBLEM DEFINITION

IN this section, we formulate the process of active learning
and the problem in detail. The notations we use are listed

in Table 1. We use the most widely applied pool-based active
learning as the basic framework [1].

In pool-based active learning, there is a small set of
labeled data L and a lot unlabeled data U applicable to
train a model M . The original labeled data is used to train
the model initially. Then the samples in U are selected and
annotated iteratively for later model training. The selection
process is based on the evaluation scores under a given
strategy S . Considering the tth iteration, for a sample x
from U , the learner calculates a score φSt (x) for it, based on a
specific query strategy S . The scores computed in every time
step in the iterative process can be collected as a historical
evaluation sequence HSt (x) = [φS1 (x), ..., φ

S
j (x), ..., φ

S
t (x)]

in order. All samples are ranked according to the corre-
sponding scores measured by the function of a specific
query strategy and the most “well-behaved” ones (that is,
those with the highest scores) are selected.

From the task formulation above, we can see that the
query strategy is a crucial component of active learning. The
query strategy measures how valuable a sample is for the
later model training and determines which sample should
be selected. Generally, these active learning query strategies
have their own measurement function φS(x) to evaluate
each unlabeled sample x and select the best ones. We have:

x∗ = argmaxxF
(
HSt (x)

)
= argmaxxF

(
[φS1 (x), ..., φ

S
j (x), ..., φ

S
t (x)]

)
.

(1)

where F is our measurement function processing the histor-
ical evaluation sequence. F can be a simple linear function
or some other complex machine learning algorithms.

Most existing active learning approaches rank samples
only according to φSt (x) which is the evaluation result in the
tth iteration. All of them ignore the abundant information
delivered by the former elements φS1 (x) to φSt−1(x) that they
calculated in the past iterations. So generally for existing
methods, we have F

(
HSt (x)

)
= φSt (x), and Eq. (1) is

simplified to:

x∗ = argmaxxφ
S
t (x), (2)
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where φSt (x) can be calculated in various ways, as intro-
duced in Section 3. We propose to analyze and explore more
information contained in the entire sequence of historical
results, i.e., HSt (x), to increase the effectiveness of sampling
for active learning.

3 RELATED WORKS

In this section, we divide the related works into two main
parts: (1) general query strategies and (2) task- or model-
specific active learning approaches.

3.1 General Query Strategies
Common query strategies [1] can be categorized into three
groups: informative models, representative models and
diversity-based models. They select samples according to
different criteria, and highlight different samples.

3.1.1 Informative Models
Informative models select samples that provide the most
information for model training. Uncertainty, expected gra-
dient length and disagreement of the model committee are
three most popular metrics for the amount of information.

(1) Uncertainty-based methods [21] are the simplest and
most commonly used approaches, especially for probabilis-
tic models. They select samples with high uncertainty on
label predictions and that are difficult for models to learn.
Two typical uncertainty-based methods are least confidence
(LC) and entropy. In the LC method, confidence of a sample
refers to the model’s prediction probability for its label, so
the evaluation score is calculated by:

φLC
t (x) = 1− Pθ(y∗|x). (3)

Here y∗ = maxyi P (yi|x), and yi ranges over all possible
labels. θ are the model parameters. Entropy measures the
uncertainty of a sample based on the entropy of its output
probability distribution:

φ
Entropy
t (x) = −

∑
i

Pθ(yi|x) logPθ(yi|x). (4)

(2) Expected gradient length (EGL) [22] selects samples
that would lead to the greatest changes in the underlying
model, which can help the model converge to the best as
quickly as possible. Because the true label is unknown, we
replace the actual gradient with the expectation which is
obtained by marginalizing over the gradients calculated on
all possible label assignments:

φEGL
t (x) =

∑
i

Pθ(yi|x)‖ 5 lθ(L ∪ 〈x, yi〉)‖. (5)

Here, θ is parameters of the current model and lθ(L∪〈x, yi〉)
refers to the loss value when the sample x labeled as yi is
added to the labeled set. Unfortunately, the computational
cost of the gradient expectation is extremely high, which
limits the application of EGL in practice.

(3) Query-by-Committee (QBC) [13], [14] is a framework
aiming to minimize the version space of the underlying
model. This approach usually maintains a committee of
models all of which are trained on the current labeled set but
get various parameters. Then, each committee votes on the

label prediction of all unlabeled samples and the samples
about which they have most disagreement are selected. A
common disagreement measure is the average Kullback-
Leibler (KL) divergence [23], calculated as:

φKL
t (x) =

1

C

C∑
c=1

D(Pc||Pavg), (6)

where D(Pc||Pavg) is the KL divergence and Pavg(yi|x) is
the average of probabilities.

3.1.2 Representative Models
The representative method aims to select a small set of sam-
ples that can represent the overall distribution and avoid
selecting noisy data [10], [16]. It is often combined with
uncertainty query strategies to boost each other. A typical
method is a density-based model, which is defined as:

φDM
t (x) = φSt (x) ·

1

|U |
∑
xi∈U

sim (x, xi) . (7)

Here, S is an informative query strategy, φSt (x) represents
the informativeness score, and sim(x, xi) is a function to
measure the similarity between two samples.

3.1.3 Diversity-based Sampling
To improve efficiency, we selected a large batch of samples
at each iteration sometimes. A diversity criterion is usually
applied in such batch-mode active learning frameworks to
select various samples. This avoids information redundancy
and covers as much information as possible. Generally, we
use the dissimilarity between samples to reflect the diver-
sity and combine informativeness to score samples [18].
The most common method follows the maximal marginal
relevance (MRR) formula [24]:

φMMR
t (x) = λ× φSt (x)− (1− λ) ∗maxxi∈L sim(x, xi). (8)

where λ is a hyper-parameter to balance the influence of the
diversity and the informativeness φSt (x).

3.2 Specific Active Learning Approaches
Basic query strategies introduced in Section 3.1 have been
applied to specific AI tasks with some adjustments accord-
ing to different tasks or models [2], [3], [5], [16], [25], [26].
Davy et al. [20] considered a little historical evaluation re-
sults, proposing HUS which directly utilizes the sum of the
last several evaluation scores and HKLD using the historical
evaluations by composing a committee with models trained
in the past k iterations. Recently, many studies [4], [12], [27]
combined active learning with neural networks for the task
of sequence labeling and generation. Shen et al. [12] used the
prediction probability normalized by the sequence length to
eliminate the bias of selecting longer sentences, and Zheng
et al. [27] considered the uncertainty as the changes between
successive epochs. Deng et al. and Sinha et al. [4], [28]
used GAN [29] to realize a representative strategy. Chen
et al. [30], [31] applied active learning to a specific field,
named entity recognition (NER) in clinical text. Besides,
Fang et al. [6] proposed policy-based active learning (PAL)
to learn a dynamic active learning strategy from data under
the framework of reinforcement learning [32]. Similarly, Liu
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Fig. 1: The general framework of the proposed active learn-
ing method. Unlike the existing query strategies, which use
only evaluation results in the current iteration t, our strategy
uses the historical evaluation results in a fixed-size window
(the size is 3 in this example).

et al. [33] tried to learn query strategy with imitation learn-
ing [34]. For document ranking, Long et al. [35] adopted
active learning to select samples minimizing the expected
loss. In text classification, Zhang et al. [3] proposed an AL
method (EGL of word embedding) for models with word
embeddings by adjusting the standard EGL and achieved
strong performance. They assumed word embeddings to be
crucial for the text classification model to learn the feature
representation of a sentence. Therefore, they highlighted
samples having the largest gradient expectation on the word
embeddings. Samples selected by this method help the
model to learn a great word embedding. More generally, Gal
et al. [7] presented an approach suitable for all Bayesian net-
works and achieved state-of-the-art on image classification,
called Bayesian uncertainty (BALD). Bayesian uncertainty is
a specific method designed for neural networks to measure
a sample’s uncertainty and has been proved to be correct
and effective both in theory [36] and empirically [37].

All the task- or model- specific approaches described
above have the same problem as the general frameworks:
they use only the last evaluation score to select samples,
except that HUS and HKLD simply apply the historical
results. In this paper, we exploit the information of historical
evaluation results to extend several state-of-the-art methods,
achieving marked improvements.

4 HISTORICAL SEQUENCE-BASED SAMPLING

4.1 Motivation

Recall that we use pool-based active learning as our basic
framework, and the goal is to learn a high-performance
model with the fewest human annotation resources. The
general process has been described in Section 2. Figure 1
illustrates the general framework of our active learning
method. We can see that after t iterations, the scores cal-
culated in each time step construct a sequence HSt (x) =

[φS1 (x), · · · , φSj (x), · · · , φSt (x)]. We call it historical se-
quence or historical evaluation results in this paper. In
general, several typical trends can be observed in the his-
torical sequences (shown in Figure 2): (a) relatively stable,
(b) increasing, (c) decreasing, and (d) fluctuating. The four
trends describe the samples’ different performances during
the active learning process. Samples with trend (a) or (c)
show relatively high evaluation scores for many iterations.
These may be more valuable for model training than trend
(b), which has a high value in only the last iteration. Besides,
a fluctuating case (like trend (d)) shows more uncertainty
than a stable case (like trend (a)), which should also be dis-
tinguished clearly. Therefore, looking back on past iterations
can help us measure a sample more comprehensively.

Let us illustrate the usefulness of historical evaluation
results by an example. Assuming that two samples xm
and xn have the same evaluation result in the tth itera-
tion, in existing methods, they will be regarded equally.
However, they have different historical evaluations, say
for an entropy-based method with five historical entropy
results: H

Entropy
5 (xm) = [0.69, 0.68, 0.69, 0.68, 0.69] and

H
Entropy
5 (xn) = [0.33, 0.42, 0.58, 0.54, 0.69]. xm shows great

uncertainty along with the model’s updating process (like
trend (a) in Figure 2), whereas xn shows such high uncer-
tainty in only the last iteration for one time (like trend (b) in
Figure 2). We argue that it is unreasonable to ignore the pre-
vious results and consider the two samples equally merely
according to their last evaluation results. In this paper, we
propose to compare such two samples by their historical
performance and make a more accurate choice. Stated in
Section 1, we mainly focus on informative strategies. In fact,
we have access to a large collection of historical sequences
which contain information about the samples’ performance
variation along with the model’s updating steps. We can
make a detailed analysis of the historical sequences and use
additional information contained in them to improve the
performance of sample selecting.

In this paper, we first apply the historical evaluation
results to the general query strategies introduced in Sec-
tion 3.1. Here, we propose several new algorithms, includ-
ing two heuristic approaches and a learning-based one.
Then, we improve several specific state-of-the-art active
learning approaches by introducing historical sequences.

4.2 Weighted Sum of Historical Sequence (WSHS)

With regard to the informative model, we calculate the
historical evaluation sequences based on a specific informa-
tive query strategy S , such as entropy, LC and EGL. We
found some typical but different patterns after an analysis
of general trends of the sequences, as shown in Figure 2. If
only the evaluation result in the last iteration is considered,
these kinds of samples would be thought to have almost
the same amount of information. However, samples with
high informativeness values for many times (like trends (a)
and (c) in Figure 2) are substantially more important and
valuable for model training than the ones with a high value
in only the current iteration (like trend (b) in Figure 2). Con-
sequently, we pay attention to measure the informativeness
of a sample based on the evaluation results in both current
and former iterations. We design a query strategy that uses
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Fig. 2: Four different changing trends. (a) relatively stable, (b) increasing, (c) decreasing and (d) fluctuating.

the weighted sum of values in the historical sequence to
select samples. This method highlights samples with high
informativeness along the training iterations, formulated as:

FWSHS (HSt (x)
)
=

t∑
j=1

wj · φSj (x), (9)

where φSj (x) represents the evaluation result of sample x in
the jth iteration, and wj is the corresponding weight.

We can set wj in various ways. In this paper, we assume
that the model trained in a latter iteration has more influence
on the current model training, and earlier models that are
far from the current model have less influence. We set the
importance of previous results to decrease exponentially,
different from directly adding up the historical evaluation
results in HUS [20]. This leads to the weighting function:

wj =

{
0 1 ≤ j ≤ (t− l),
2j−t (t− l + 1) ≤ j ≤ t,

(10)

where l is used to control a window: only the scores gen-
erated in the last l iterations are considered. In practice, we
can set l according to experimental experience.

Note that our method can be treated as an extension of
an existing query strategy S with the score function φS(x).
If the parameter l = 1, our method degrades to primitive
φS(x) only with the current evaluation results.

4.3 Fluctuation of Historical Sequence (FHS)
Uncertainty is one of the most widely explored criteria in
active learning. Uncertainty-based query strategies tend to
select samples with the least certainty about label predic-
tion. In the tth iteration, each sample has a corresponding
historical evaluation sequence HSt (x). Two typical trends of
sequences related to fluctuation are shown in Figure 2, in
which (a) reflects a stable case, and (d) reflects a fluctuating
case. In terms of uncertainty, a sample with stable perfor-
mance and low uncertainty for the updating model tends
to be certain. However, great fluctuation in the historical
sequence indicates the uncertainty of the instance, which is
more likely to be located at the model’s decision boundary
and to be beneficial for model training. Consequently, the
fluctuation of a sample’s performance along with the itera-
tions is a crucial measurement for uncertainty. We propose
combining the fluctuation of the historical sequence and
the evaluation result in the current round as a new score
function, highlighting samples that show great fluctuation
in the historical sequence and has great informativeness in
the current iteration. We have:

FFHS
(
HSt (x)

)
= ws · φSt (x) + wf · V (HSt (x)), (11)

where V (HSt (x)) represents the fluctuation of the evalua-
tion sequence. Parameters ws and wf are used to balance
the two components. The fluctuation of the sequence HSt (x)
is determined by the variance:

V
(
HSt (x)

)
=

1

l
·

l∑
i=1

φSt−i+1(x)−
1

l
·

l∑
j=1

φSt−j+1(x)

2

.

4.4 Learn from Historical Sequences (LHS)

We use heuristic rules in the above two methods to utilize
historical information to help select samples. The weighted
sum of historical sequence (WSHS) takes multiple histor-
ical evaluation results into consideration. And the second
method (FHS) pays attention to the connection between the
fluctuation of historical sequences and uncertainty. How-
ever, both approaches focus on merely one specific feature
and highlight one kind of sample when selecting, ignoring
the information of other aspects. As we have found, there
may be much effective information contained in the histor-
ical sequences and it is difficult to combine these features
in a direct way. To take fuller advantage of the historical
evaluation results, we further propose a learning based
query strategy intended to learn how to select samples
with the information contained in the historical sequences
automatically. Fang et al. [6] adopted reinforcement learning
to train a learning based active learning algorithm and Liu
et al. [33] applied imitation learning. In this paper, we select
a simple algorithm, the learning to rank (LTR) model, to
learn the query strategy effectively. We regard the sampling
process of active learning as a ranking problem, where we
use a ranker to sort unlabeled samples and select the best
ones iteratively. Another advantage of using the LTR model
is that it is not necessary to compute the exact value for
each unlabeled sample; they can just be compared to get
relative relations. Three main components are required to
train a ranker: samples to be sorted, samples’ features for
ranking and their corresponding labels. We will describe
these components in detail as follows.

4.4.1 Samples to Be Sorted

Generally, we can directly sort all the samples in the unla-
beled set and choose the best ones to annotate. However,
usually there are a large amount of unlabeled samples,
which causes the ranking space to be too large and will
increase the training difficulty and training errors for the
ranker. To reduce the sample space without affecting the
results, we first select a set of well-performed samples to

Authorized licensed use limited to: Renmin University. Downloaded on February 20,2021 at 08:59:03 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3045816, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

form a relatively small candidate set, based on the evalu-
ation scores of several traditional query strategies such as
the entropy and LC. Then, the ranker is applied to sort the
candidates and select the best samples.

4.4.2 Features for Ranking
To make full use of the information contained in the his-
torical evaluation sequences, we extract several features for
ranking, elaborated as follows.
• historical evaluation results: Referring to our first method
WSHS in Section 4.2, we know it is important to con-
sider evaluation results in both the current and past it-
erations. Therefore, we take the historical evaluation re-
sults based on a specific method S in the last l iterations
[φSt−l+1(x), ...φ

S
t (x)] as a main component of the ranking

features, where l is a hyper-parameter to control the history
window. Compared with the fixed weights in the WSHS, the
importance weights of each historical evaluation results can
be learned automatically in this method.
• fluctuation of historical sequence: Following our FSH
method in Section 4.3, we also use the fluctuation of the
historical sequences to measure the uncertainty of samples.
• trend of historical sequence: The trend of the historical
sequence reflects a sample’s performance variation on the
updating model along the active learning process. For ex-
ample, considering a historical sequence calculated by an
entropy-based strategy, an increasing trend means that the
model becomes more and more uncertain about the predic-
tion of this sample. We use MK (Mann-Kendall) Trend [38]
to characterize the trend of historical sequences.
• the predicted next result: Evaluation results in the histor-
ical sequence are collected in a step order so that we can
regard the sequence as a time series to some extent. On
the basis of the characteristics of time series, we are able to
predict the sample’s evaluation result in the next iteration
based on the historical data, which is of great significance
to measure the sample and direct the selection. Various
methods have been devised for time series prediction such
as the auto-regressive integrated moving average (ARIMA)
model [39] and the LSTM neural network [40]. We use the
LSTM model to predict the next evaluation score in our
study and set the predicted score as a ranking feature. Here,
we train the predictor LSTM with the historical evaluation
sequences generated on a labeled dataset by a specific query
strategy S ; the evaluation results in the past k iterations are
inputs to predict the current result.
• output probability of the model: Many traditional query
strategies select samples according to scores calculated on
the output probability of the model Pθ(yi|x), such as the
entropy with Eq. (4) and the LC based on Eq. (3). To
generalize existing methods, we directly use the predictive
probability distribution as a part of our ranking features.

4.4.3 Labels
The labels used in our LTR framework measures the use-
fulness of samples for the model training in later iterations.
We test the current model M on the testing set and rep-
resent its performance as Eval(M). Then, the unlabeled
sample x is annotated and added to the labeled set, and
we update the model to M ′, whose performance on the
testing set is represented as Eval(M ′). Consequently, we

Algorithm 1 Learn an Active Learning Ranker

Input:
A small labeled set L, a large unlabeled set U , basic
query strategies [S1, S2, . . . , Sm], rank training set T=[]

Output:
An active learning ranker R;

1: repeat
2: Use all labeled data in L to train a model M ;
3: Test current modelM on testing set, gettingEval(M);
4: Use current model M to evaluate all samples in U ;
5: Select batches of samples [B1, . . . , Bm] with basic

query strategies (such as entropy, lc) to create can-
didate set C;

6: for i ∈ {1, 2, . . . , ‖C‖} do
7: Add xi to L, update M to M ′, compute Eval(M ′);
8: Extract features of xi, getting Fi;
9: Add a rank training sample (Fi, Eval(M

′) −
Eval(M)) to T

10: end for
11: Add samples with the highest value of Eval(M ′) −

Eval(M) to L;
12: until rank training data are enough
13: Train a ranker with training data T ;

can use score(x) = Eval(M ′) − Eval(M) to measure the
usefulness of the sample x. The higher the score, the better
the sample. However, considering that we add only one
labeled sample to update the model and there would be
some errors with the score, we convert the absolute score
into a level and use the level as the rank label instead
of directly using the score. This process also reduces the
difficulty of the LTR model training. For example, say there
are scores 0.01, 0.015, 0.02, 0.008, 0.025 for five unlabeled
samples. We divide them into three levels with an interval
of 0.01: 1[0.008], 2[0.01, 0.015] and 3[0.02, 0.025], and use the
levels 1, 2, 3 to annotate the samples for training the ranker.

With the three main components defined above, we can
train an active learning ranker which prefers samples with
the largest value for model training under the framework
of learning to rank, and then use the ranker to sort and
select unlabeled samples. The training steps are briefly
summarized in Algorithm 1.

Looking into this learning-based method, we can find
that it requires labeled samples like [6] to train the ranker.
Recall that active learning is usually used on datasets with
limited labeled samples; therefore, we specifically propose
two ways to apply this method. One is to first annotate
a portion of the samples to train a ranker and then use
the ranker to select the remaining unlabeled samples in
the same dataset. And the other approach is to train a
ranker on an applicable labeled dataset and apply it on other
unlabeled datasets of the same task.

4.5 Improvement for State-of-the-art Methods

The above approaches are general and can be applied to ba-
sic query strategies and task- or model-specific active learn-
ing algorithms. In this paper, we focus on three state-of-the-
art informative active learning methods: EGL of word em-
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bedding [3] for text classification, Bayesian Uncertainty [7]
for bayesian networks and MNLP for NER.

EGL of word embedding (EGL-word) This method
is designed based on Eq. (5). With the motivation that
word embedding is crucial for learning vectors of text,
this method prefers samples with a maximum gradient
expectation on the word embedding layer. A max-over-
words approach is used to emphasize the particular word
in a sentence. EGL of word embedding is computed as:

φEGL-w(x) = max
j∈x

∑
i

Pθ(yi|x)‖ 5 lE(j)(L ∪ 〈x, yi〉)‖, (12)

where 5lE(j) is the gradient on the embedding of word j.
Bayesian Uncertainty (BALD) Bayesian Uncertainty is

a way to measure sample uncertainty specially designed
for neural networks. We represent its evaluation function
as φBALD(x) whose details and theory are in [7].

Maximum Normailized Log Probability (MNLP) In
NER task, the log prediction probability is computed as the
sum of probabilities over words, so that the LC method nat-
urally tends to select longer sentences. MNLP is proposed to
eliminate this bias by normalizing the log probability with
sentence length, as:

1− max
y1,...,yn

1

n

n∑
i=1

logP [yi|y1, . . . , yi−1, xij ]. (13)

For the three strategies, we can directly apply our meth-
ods WSHS (in Eq. (9)) and FHS (in Eq. (11)) to improve
them by introducing historical results, making the sample
selection more stable and accurate.

TABLE 2: Comparison of the time and space complexity
between basic strategies and our methods.

Complexity Basic Strategy WSHS/FHS/LHS

Time O(T) O(T+1)
Space O(N) O(l*N)

4.6 Discussion about Efficiency
In practical applications, efficiency, including time and
space complexity, is an important criterion. Here, we will
discuss the efficiencies of our algorithms. According to
the problem formulation in Section 2, active learning must
evaluate the unlabeled samples in every iteration, and we
record the cost time asO(T ). Therefore, historical evaluation
results can be obtained in each iteration like existing meth-
ods without extra computation, and only a small amount
of additional time is required to process these historical
evaluation results in the current round. This is negligible
compared with the model’s training and evaluation time,
regarded as O(1). Our learning-based method LHS requires
some time to train the ranker in advance, but it requires
little time to apply the trained ranker to select unlabeled
samples. Consequently, our methods do not have a notice-
able increase in time. As for space complexity, all query
strategies need space to store the current evaluation results,
as much as O(N). Some extra space is required for storing
the historical evaluation results, but this is not a heavy cost
currently. Our algorithms need to store only the recent l

TABLE 3: Statistics of four text classification datasets. #class:
number of samples’ classes; maxlen: maximum sentence
length; N : dataset size; |V |: vocabulary size; V pre: number
of words with pre-trained embedding.

Dataset #class maxlen N |V | Vpre

MR 2 56 10,662 18,765 16,448
SST-2 2 53 9,613 16,185 14,838
Subj 2 23 10,000 21,323 17,913
TREC 6 37 5,952 9,592 9,125

TABLE 4: Statistics of NER datasets. #Docs/ #Sentences/
#Tokens: number of documents/sentences/tokens.

Dataset Split #Docs #Sentences #Tokens

CoNll-2003 English Train 946 14,987 203,621
Dev 216 3,466 51,362
Test 231 3,684 46,435

CoNll-2002 Spanish Train - 8,322 264,715
Dev - 1,914 52,923
Test - 1,516 51,533

CoNll-2002 Dutch Train 287 15,806 202,644
Dev 74 2,895 37,687
Test 119 5,195 68,875

iterations of results which is usually small, so they do not
incur much more space. The comparison of the time and
space complexity is shown in table 2. In summary, our
methods can not only achieve the same efficiency as basic
methods, but also improve the effect.

5 EXPERIMENTS

In this section, we verify the effectiveness of our methods
on two common NLP tasks: text classification and NER. We
first decribe the datasets, models and baselines. Then, we
report and analyze the experimental results.

5.1 Datasets

5.1.1 Task1: Text Classification
We select three widely used benchmarks for the text classi-
fication task: two for binary classification and one for multi-
class classification. The Subj [41] dataset is used to train the
ranker for our LHS method. Statistics of all the datasets are
summarized in Table 3.

MR: This dataset [42] contains many movie reviews
with one sentence per review. The target is to classify these
reviews as positive or negative.

SST-2: This dataset comprises positive and negative
reviews from the Stanford Sentiment Treebank SST-1
dataset [43]. The concrete construction process is in [44].

TREC: This is a question dataset [45], involving classify-
ing questions into 6 types.

Subj: This dataset comprises sentences that can be clas-
sified as subjective or objective, introduced in [41]. It will be
applied in our LHS method to train the ranker.

5.1.2 Task2: Named Entity Recognition
For the NER task, we experiment with the most widely
used CoNLL-2002/2003 datasets [46] for English, Spanish
and Dutch, whose statistics are shown in Table 4. All of
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them contain four types of named entities: persons (PER),
organizations (ORG), locations (LOC) and miscellaneous
names (MISC). Following existing work [47], we convert its
BIO tagging scheme into the BIOES tagging scheme.

The MR and Subj datasets are randomly split into 10
equal parts for a 10-fold cross validation. For SST-2, TREC
and CoNLL-2003, following [43], [45], [46], we use the
original split of training/validation/testing sets.

5.2 Models, Parameter Settings, and Metrics

5.2.1 Task1: Text Classification
We select TextCNN as the basic model for text classifica-
tion; it was proved to achieve strong performance on this
task [44], [48]. Its detailed architecture, implementation,
and settings for hyperparameters are available in [44]. In
this study, we use the word embeddings pretrained by
Word2Vec1. In terms of active learning, we do 20 rounds
of batch sampling for MR and SST-2 with a batch size of
25, while the batch size for TREC is 100 because the multi-
class model is harder to train. The first batch of samples is
selected at random to initialize the model. Then each time
after adding new instances, we fine-tune the model for 10
epochs with the augmented labeled set.

5.2.2 Task2: Named Entity Recognition
We use BiLSTM-CNNs-CRF [47] as the basic model for the
NER task. Model details and parameter settings can be
found in [47]. We initialize word vectors with public word
embedding of corresponding languages. We set the batch
size as 100 and develop batch sampling for 20 rounds up to
2,000 annotated samples.

For LHS, we choose LambdaMart [49] as the LTR model
and apply the Subj dataset to train the ranker. We use simple
LSTM to predict the next evaluation result based the entire
historical evaluation sequence.

In each task, for datasets split randomly for cross valida-
tion, we repeat the active learning process on each division
and calculate the average value as the final result. If the
dataset has been split in the original study, we do experi-
ments with its original split for several times.

Metric selection for both tasks follows their original
models [44], [47]. For text classification, accuracy was chosen
as the evaluation metric, and we use the average F1 on NER.
We measure the effect of AL algorithms by the performance
of model with the same number of labeled samples or
the number of labeled samples required for the model to
achieve a certain accuracy.

5.3 Baselines

We compare our methods with several baselines, including
basic methods and state-of-the-art specific approaches. In
addition, existing methods that have simply made use of
historical evaluation results are also considered. Due to our
methods focus on informative strategies, the baselines we
selected are mainly informative methods.

Random: This method acts as if all unlabeled samples
obey i.i.d and randomly samples from the unlabeled set.

1. https://code.google.com/archive/p/word2vec/

TABLE 5: Number of annotated samples required to achieve
accuracy of 0.72, 0.73 and 0.735 when various active learn-
ing approaches are used for text classification of the MR
dataset. Bold indicates the best results, which are achieved
by the proposed methods. 500+ means that more than 500
annotated samples are required to achieve the target.

Accuracy 0.72 0.73 0.735

Random 440 500+ 500+
Entropy 380 500+ 500+
HUS(Entropy) 380 430 500+
WSHS(Entropy) 280 370 500+
FHS(Entropy) 280 405 500+
LHS(Entropy) 245 310 340

LC 300 425 500+
HUS(LC) 370 500 500+
WSHS(LC) 300 420 470
FHS(LC) 260 335 420
LHS(LC) 245 315 350

EGL 300 425 500+
HUS(EGL) 370 500 500+
WSHS(EGL) 300 420 450
FHS(EGL) 270 330 400
LHS(EGL) 260 330 370

Entropy: This method computes entropy for each sample
with Eq. (4) and select samples with the largest entropy.

Least confidence (LC): This method calculates scores for
samples by Eq. (3), then chooses samples with the least
certainty in terms of labeling.

History Uncertainty Sampling (HUS): This method de-
fines uncertainty as the sum of the uncertainty calculated in
the last k iterations. In this paper, we use entropy or LC to
measure the uncertainty.

EGL of word embedding(EGL-word): Selects samples
resulting in the largest gradient on the word embedding
computed as Eq. (12)

Bayesian Uncertainty (BALD): Selects samples with the
largest bayesian uncertainty. The score function is in [7].

Maximum Normalized Log Probability (MNLP): Select
samples with the largest score calculated by Eq. (13)

5.4 Experimental Results
We conduct various experiments to compare the effective-
ness of our methods and baselines. For our first two strate-
gies, WSHS and FHS, we do experiments on both the text
classification and NER. For the third strategy LHS, we train
the ranker on the binary classification dataset Subj so that
we only apply it on the other two 2-class datasets of text
classification. Reports and analyses are as follows.

5.4.1 Experimental Results on General Query Strategies
Figure 3 shows the results of existing general query strate-
gies and our general methods WSHS, FHS and LHS on both
text classification and NER tasks. Table 5 lists the number
of samples to be annotated when various approaches are
applied to achieve a certain result. After analyzing Figure 3
and Table 5, we come to four conclusions:

(1) In most cases, our three general active learning
approaches i.e. WSHS, FHS and LHS outperform the
corresponding baselines on the two NLP tasks, when
combined with the entropy, LC and EGL method. This
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Fig. 3: The performances of general active learning query strategies. The x-axes show the number of labeled samples. The
1st, 2nd, 3rd column: experimental results of text classification, and the 4th column: experimental results of NER.

result fully demonstrates the effectiveness of some in-
formation contained in historical evaluation results and
our strategies. Here are some examples to show the result
more clearly. Focusing on the first column of Figure 3 which
shows the experimental results of the text classification on
the MR dataset, we find that the curves of our methods lie
above the curves of other baselines. In Table 5, the basic en-
tropy query strategy and HUS require 380 labeled samples
to achieve an accuracy of 0.72. However, our WSHS and FHS
methods combined with the entropy strategy require only
280 samples, saving almost 100 samples’ annotation cost. As
for NER, as shown in the 4th column, WSHS and FHS can
achieve a relatively high F1-score much more quickly than
the baselines, showing better performance, especially for the
English dataset. When sufficient labeled data are available,
our methods are also comparable with other approaches.

(2) Benefitting from processing and analyzing the
historical evaluation results more globally, our three
strategies outperform the closest baseline HUS [20]. Pay
attention to Figure 3, we find the curves of our three general
active learning strategies lie upon the curves of HUS, saving
more than 100 samples’ annotation costs on the MR dataset.
HUS performs similarly to the entropy approach without
obvious improvement, the same as the results in [20]. This
may be because HUS regards all historical uncertainty
scores as having the same importance and uses the direct
sum to select samples, which is inconsistent with the in-
tuition and facts. We believe that the latter models should
have more influence on the current model and that historical
results far from the current iteration may bring some noise.

(3) Comparing our first two heuristic methods, FHS

performs a little better than WHSH in most situations.
Looking at the curves of WSHS and FHS in Figure 3, we
find that the curves of FHS lie above those of WSHS in
most subfigures. Looking at Table 5, we find that up to
85 samples’ annotation costs can be saved by using the
approach FHS combined with LC to achieve an accuracy
of 0.73 on the MR dataset, compared with WSHS. FHS is
designed to incorporate the fluctuation of historical evalua-
tion sequences into sample selection, and the results prove
that the fluctuation of historical sequences is an effective
measurement of sample uncertainty. Therefore, we suggest
that higher priority be given to the FHS query strategy.

(4) Focusing on Figure 3, we observe the learning-
based method LHS performs the best on both binary-
classification datasets, especially on MR. The 6th row in
Table 5 indicates that LHS combined with entropy requires
only 340 annotated samples to achieve an accuracy of 0.735
on the MR dataset, so it incurred the lowest cost of all the
general active learning methods. But we find the improve-
ments of LHS over FHS on the SST-2 dataset are not so
significant. To make more detailed analysis, we experiment
to compare the average WSHS score and FHS score of all
selected samples in our three proposed methods. From the
results shown in Table 6, we observe that both WSHS and
FHS focus on only one aspect of historical evaluation results
and select samples with high score on the corresponding
feature. However, LHS selects more comprehensive samples
with both relatively high WSHS and FHS scores. Further-
more, it also combines some other features extracted from
the historical sequences by automatically learning. Thus,
we infer the improvements of LHS are not so significant
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Fig. 4: The performances of state-of-the-art active learning approaches combined with historical evaluation sequences.
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Fig. 5: Analysis of different hyper-parameters.

over FHS on some datasets may due to that LHS does not
select better samples based on FHS method but focuses on
different samples. But its best performance still proves that
there are many effective features of the historical sequence
helpful for selecting samples such as the trend, and the
values in the sequence and its fluctuation.

TABLE 6: Average WSHS/FSH score of selected samples in
different methods.

Methods WSHS score FHS score

WSHS 1.1707 0.000012
FHS 1.0077 0.005074
LHS 0.8255 0.001735

5.4.2 Analysis of Hyper-parameters

In our first two heuristic strategies WSHS and FHS, there
are some critical hyper-parameters, i.e the size of the history
window and the weight of the fluctuation. To analyze how
these hyper-parameters affect the performance, we conduct
experiments on the MR dataset with different sizes of the
history window for WSHS, and we fix the size as 3 to

experiment with different variance weights for FHS. All the
results are illustrated in Figure 5. In the left picture, we find
the window size has some influence on the WSHS method,
and a moderate size performs the best. We analyze it may be
because when the size is small, we can not make full use of
the information of the historical evaluation results, but too
early results will bring some noise. Thus, we suggest the
history window size to be 3-5. As for the FHS, the variance
weights close to 0.5 perform better.

TABLE 7: Experimental results of ablation study.

#Samples 100 200 300 400 500

LHS 0.6590 0.7078 0.7250 0.7356 0.7380
-history sequence 0.6544 0.7073 0.7137 0.7263 0.7285
-fluctuation 0.6546 0.7080 0.7191 0.7238 0.7297
-sequence trend 0.6515 0.7131 0.7218 0.7267 0.7361
-next prediction 0.6515 0.7131 0.7218 0.7267 0.7361
-probability 0.6591 0.7114 0.7251 0.7326 0.7356

5.4.3 Ablation Study of LHS
In the proposed learning based query strategy LHS which
learns how to select samples with the information contained
in the historical sequences, we extract a series of features
for each unlabeled sample, including historical evaluation
results, fluctuation of historical sequences, trend of historical
sequences, the predicted next result and output probability
of the model. To further analyze the effect of each feature,
we carry out an ablation study to turn off all feature one-by-
one and compare the results. All the experimental results
are illustrated in Table 7. From Table 7, we can see that
there are some impacts on the performance after remov-
ing any feature, which indicates the various information
contained in the historical sequence can help evaluate the
effectiveness of unlabeled samples for model training. The
two features, historical evaluation results and fluctuation of
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historical sequences, have the greatest impacts. And they are
exactly the two aspects we focus on in the first two heuristic
algorithms, demonstrating that WSHS and FHS can mine
critical information in the historical sequences.

5.4.4 Improvement on State-of-the-art Methods
In addition to the basic active learning methods, we also
combine our proposed methods with state-of-the-art ap-
proaches. The comparison results are shown in Figure 4.

Figure 4 indicates that the EGL-word, BALD and MNLP
approaches on both the text classification task and NER
are much improved by introducing historical evaluation
results with the WSHS or FHS methods. On the MR
dataset, EGL-word with fluctuation of the historical se-
quence (FHS(EGL-w)) and BALD combined with the WHSH
method promote the original approaches greatly. Similarly,
results on the SST-2 dataset also support the conclusion.
About the NER task, the BALD based methods consistently
perform better than those MNLP based methods. But the
historical sequences improves the MNLP approach more.
In summarize, taking historical evaluation results into con-
sideration also helps these state-of-the-art methods select
samples more accurately.

6 CONCLUSION

IN this paper, we argue that historical evaluation results
are helpful for comparison when selecting samples in

active learning and that full use needs to be made of the
information contained in the historical sequences. On the
basis of this idea, we proposed several general heuristic
methods that incorporate these historical sequences into
existing active learning strategies, including the weighted
sum and fluctuation of historical evaluation results. We also
introduced a learning based query strategy that learns how
to select samples automatically based on features extracted
from the historical sequences, under the framework of learn-
ing to rank (LTR). In addition, we improved some state-of-
the-art query strategies by exploiting historical evaluation
results. Our methods can be easily implemented in practical
applications and would not affect the efficiency. Experimen-
tal results on two tasks text classification and NER verified
that our approaches could outperform all the basic baselines
and state-of-the-art methods. To improve our research in
the future, we will further analyze the historical evaluation
sequences and explore more effective features.
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