
FedPS: A Privacy Protection Enhanced Personalized Search
Framework

Jing Yao
School of Information

Renmin University of China
Beijing, China

jing_yao@ruc.edu.cn

Zhicheng Dou
Gaoling School of Artificial

Intelligence
Renmin University of China

Beijing, China
dou@ruc.edu.cn

Ji-Rong Wen
Beijing Key Laboratory of Big Data
Management and Analysis Methods,
Key Laboratory of Data Engineering
and Knowledge Engineering, MOE

Beijing, China
jirong.wen@gmail.com

ABSTRACT
Personalized search returns each user more accurate results by
collecting the user’s historical search behaviors to infer her inter-
ests and query intents. However, it brings the risk of user privacy
leakage, and this may greatly limit the practical application of per-
sonalized search. In this paper, we focus on the problem of privacy
protection in personalized search, and propose a privacy protection
enhanced personalized search framework, denoted with FedPS.
Under this framework, we keep each user’s private data on her in-
dividual client, and train a shared personalized ranking model with
all users’ decentralized data by means of federated learning. We
implement two models within the framework: the first one applies
a personalization model with a personal module that fits the user’s
data distribution to alleviate the challenge of data heterogeneity
in federated learning; the second model introduces trustworthy
proxies and group servers to solve the problems of limited com-
munication, performance bottleneck and privacy attack for FedPS.
Experimental results verify that our proposed framework can en-
hance privacy protection without losing too much accuracy.

CCS CONCEPTS
• Information systems→ Personalization.

KEYWORDS
personalized search; privacy protection; federated learning
ACM Reference Format:
Jing Yao, Zhicheng Dou, and Ji-Rong Wen. 2021. FedPS: A Privacy Protec-
tion Enhanced Personalized Search Framework. In Proceedings of the Web
Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3442381.3449936

1 INTRODUCTION
Personalized search tailors document lists for each user based on
the user’s interests to satisfy her information need behind the query
which might be ambiguous [19, 40]. Many studies have been pro-
posed, including traditional methods relying on features [8, 9, 19,
42, 43] and learning based models that employ deep learning to

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449936

mine user preferences [21, 26, 47, 48, 50]. Existing models exploit
users’ personal information, such as historical query sequences and
click behaviors, to infer their interests and real intent under a query.
This raises the risk of user privacy leakage [1, 23, 37]. At present,
the problem of user privacy protection is receiving more and more
attention. Many countries formulate some privacy laws [23]. In
this paper, we focus on the privacy protection issue in personalized
search, and investigate the possibility of implementing a personal-
ized search model without exposing user privacy.

Current solutions for privacy protection in search mainly con-
sider the identifiability and linkability of privacy [1]. Identifiability
means who is the user. Linkability is the possibility of inferring the
user’s interests from the observed query behaviors. Some studies
utilize anonymous user id or group id tomask user identities [37, 52].
But some users may issue private queries (such as their names), so
that the user’s interests, gender and other information can still be
deduced from the log. For example, it was shown that detailed user
profiles can be constructed based on the published AOL anonymous
dataset [5]. To reduce the linkability, the query obfuscation solution
is explored [1, 4, 33, 49]. It aims to hide the user’s real search intent
among a set of noisy queries. Though great effects of privacy pro-
tection have been achieved by these methods, they still expose the
user’s search behaviors to the server and collect the logs to train a
personalization model on the server. As web technology develops,
there are more malicious attackers on the web, and the obtained
personal data can be used in various ways. According to [23], most
users are worried about their personal data being collected, ex-
ploited or released. Currently, users access search engines through
their own Internet devices with certain computing, storage and
communication capabilities, such as smartphones. Thus, we can
use these devices to store the privacy-sensitive data and complete
some computing tasks locally.

In personalized search, every user owns a personal query log
that contains the user’s detailed query behaviors. We first mine the
user’s preferences from the log as her interest profile. For example,
SLTB model [9] extracts topic-based and clicked-based features
from the search history, and PEPS [47] trains personal word embed-
dings with the user’s individual log. Then, a personalized ranking
model is used to calculate scores for candidate documents based
on the user profile to generate personalized results. This process
mainly involves three materialized components: the query log, the
created user profile, and the trained personalized ranking model.
With regard to the contained privacy, the most sensitive part is
the original query log of each user, which might contain much

3757

https://doi.org/10.1145/3442381.3449936
https://doi.org/10.1145/3442381.3449936


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Yao, Zhicheng Dou, and Ji-Rong Wen

personal information; the second is the user profile built on the
search history, which explicitly or implicitly reflects user interests.
The personalized ranking model has no direct access to the original
log hence it contains much less privacy. To prevent user privacy
leakage, we claim that we are not supposed to record user search logs
and construct user profiles on a remote server – we can only store these
data on the corresponding user’s client devices. Thus, on each client,
we only have a user’s personal data whose amount is very limited. It
is infeasible to solely use these data to train a reliable personalized
model for the user. To jointly train a shared high-quality personal-
ization model with query logs distributed on all users’ devices, we
adapt federated learning to personalized search and design a pri-
vacy protection enhanced framework, referred to as FedPS. With
this framework, we are able to train a reliable personalized search
model with all users’ knowledge without exposing their original
logs and profiles, which enhances privacy protection and saves the
bandwidth of exchanging query logs.

In FedPS, the client submits the user issued query to the search
engine along with cover queries to obscure the real intent, then the
personalized ranking model deployed locally re-ranks the returned
documents of the real query and shows the result to the user. The
query logs, as well as the built user profile, are stored on the client.
All clients and a server cooperate to train a shared personalized
ranking model. In each step, the server samples several clients and
sends the current model to them; these clients update the model
with local data and upload the parameter updates; the server aggre-
gates all updates to get a new model. We implement two models
within the general framework. In the first one, namely FedPSFlat,
we adapt the state-of-the-art personalized search model PEPS [47]
to make it privacy compatible. We select PEPS because it uses per-
sonal word embeddings that could be stored and updated locally
and is free of data from other users, and it mitigates the data hetero-
geneity problem in federated learning. But there is only one central
server in FedPSFlat and contacting numerous clients could cause a
performance bottleneck for the server. Besides, some clients may
have limited communication or computation during training. Thus,
in the second model FedPSProxy, we introduce group servers and
trustworthy proxies to improve the flatten FedPS to a hierarchical
structure. The servers do not connect to the clients but proxies, and
those poorly connected clients could transfer their model comput-
ing tasks to the proxy. This model solves performance pressure,
limited communication and privacy attack for FedPS. Experiments
on two log datasets prove that FedPS protects user privacy without
losing too much search accuracy.

Our main contribution is summarized as: (1) We explore a cru-
cial issue in personalized search – privacy protection, which is
one of the bottlenecks in the practical application of personalized
search. This is the first time the privacy issue is considered in a
deep personalized search model. (2) We give a detailed analysis on
the data used and generated in personalized search, and evaluate
their privacy sensitivity. Based on the analysis, we design a pri-
vacy protection enhanced framework FedPS by adapting federated
learning to state-of-the-art personalized search and implement two
specific models. Experiments confirm that our framework can pro-
tect privacy without affecting the ranking quality too much. (3) The
first model FedPSFlat alleviates the data heterogeneity challenge of
federated learning. The FedPSProxy introduces trustworthy proxies

and group servers to relieve performance pressure for the server
and promote privacy protection.

In the rest of the paper, related works are reviewed in Section 2.
The FedPS framework is presented in Section 3. In Section 4 and 5,
we introduce the experiments. The paper is concluded in Section 6.

2 RELATEDWORK
2.1 Personalized Search
Personalized search has been widely studied due to its ability to
return users more satisfying search results. The basic idea is in-
ferring user interests from the search history and re-ranking the
general search results based on the interests. Most early models
were derived from heuristic methods or used features to analyze
user preferences. For example, Dou et al. [19] proposed P-Click to
re-rank documents by how many times the user has clicked them
in the search history. Some models applied a topic model to obtain
topic-based features from the clicked documents which are used
to express user interests [13, 22, 38, 42–44]. SLTB [9] combined
both the click-based and topic-based features extracted from the
search history with the learning-to-rank (LTR) algorithm Lamb-
daRank [12]. Moreover, some works [7, 16] demonstrated that the
user’s location, reading level and other features are also helpful for
personalization.

Deep learning has been widely applied in personalized search
due to its representation learning ability for mining potential user
preferences. Song et al. [39] used the individual data to adapt the
global model. Ge et al. [21] designed a hierarchical RNN with query-
aware attention to capture sequential information hidden in the
history and dynamically build user profile according to the cur-
rent query. Lu et al. [26] and Yao et al. [48] respectively leveraged
the generative adversarial network and reinforcement learning to
help construct better user profiles. Besides, some works [27, 47, 50]
attempted to disambiguate the current query with personal word
embeddings for each user, search context or knowledge graph. All
these models make improvements in personalization, but they ig-
nore the privacy protection issue. In this paper, we design a privacy
protection enhanced personalization framework.

2.2 Privacy Protection in Personalization
The inherent tension between personalization and user privacy orig-
inates from the essence of personalization techniques, which track
the user’s search process to infer her query intents and interests. As
people become more concerned about their privacy [23], privacy
protection in personalization receives widespread attentions.

Shen et al. [37] defined four levels of privacy protection in per-
sonalized search: pseudo identity, group identity, no identity and no
personal information. Various approaches are proposed to achieve
different levels of protection. They mainly focus on the identifiabil-
ity and linkability of user privacy. Anonymous user id [17], group
user id which is shared by a group of users [52] and peer-to-peer
query schemes [14, 18] where each user submits queries issued by
other users were exploited to mask the user identity. Considering
the raw text may contain user privacy information, Li et al. [24] and
Bendersky et al. [6] converted the original texts into anonymous
n-grams or generalized attribute values. To prevent the disclosure
of specific user interests from the collected user query log, many

3758



FedPS: A Privacy Protection Enhanced Personalized Search Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

studies added noise to the recorded data [15, 33]. Additional fake
queries are generated along with the real query to obscure the
user’s query intents [1, 4, 36]. These approaches play a role in pri-
vacy protection, but all users’ original query logs are still centrally
collected by them to train the model.

Federated learning [28] is a great technique to train a shared
model with all users’ data distributed on their individual devices,
without the need to centrally store these data. It maintains a global
model on the central server; each client trains the global model
with the local data and sends the model update to the server; then
all these updates are used to improve the current global model.
This method guarantees the security of each participant’s original
data compared to traditional machine learning. However, it has
also been demonstrated that the model updates might leak the user
privacy [30]. Consequently, several defensemethods were proposed,
such as Multi-Party Computation (MPC) [11, 20], Homomorphic
Encryption (HE) [32] and Differential Privacy (DP) [29]. Secure
MPC [20] is a class of cryptography technique for many participants
to jointly train a model in a peer-to-peer topology. DP [29] protects
privacy by adding random noise to the uploaded data, which has
an impact on model accuracy. Our privacy protection enhanced
framework is designed based on federated learning.

3 OUR PROPOSED APPROACH
3.1 Problem Formulation
In personalized search, we first analyze the user’s search history to
build a user interest profile, then the personalized ranking model
customizes a document list for the user based on her user profile.
This process mainly involves the user’s original search log, user
profile, a personalized ranking model and some shared assisted
data such as term frequencies, word embeddings, etc. We carefully
analyze their contents and list the involved user privacy below.
• User’s original search log, including all queries issued by the
user, browsed document lists and click behaviors. Search log is the
most privacy-sensitive data in personalized search, and studies [5]
have shown that information (such as name, residence, and hobbies)
of some users can be identified by analyzing their issued queries.
• User profile constructed from the search log. Most personalized
search models build user profiles to represent user interests. Dif-
ferent formats of user profiles are used in existing works. Typical
profiles include term, topic, click distributions [9, 43], sequential
search behavior representation vectors [21], and personal word
embeddings [47]. User profiles are usually aggregated vectorized
representations of user behaviors, so they contain less private in-
formation than original query logs, but are still privacy-sensitive.
•Apersonalized rankingmodel that calculates the personalized
score for candidate documents based on the query and user profile.
Parameters of the model mainly reflect the personalized ranking
strategy with extracted features or representation vectors as the
input. Thus, the model contains little user privacy.
• Other auxiliary data used to help ranking, such as the shared
word embeddings [21, 47, 50]. The association between user privacy
and these data is determined by the specific model.

According to the analysis above, the user’s original query log
contains the most private information, followed by the user profile.
Stated in Section 1, to protect privacy, we are not supposed to collect

Query log 𝑯𝟏

U𝐬𝐞𝐫 𝐏𝐫𝐨𝐟𝐢𝐥𝐞 𝑷𝟏

Personalized
Model𝑴𝒕

Parameter
Updates

Train

Query log 𝑯𝑵

U𝐬𝐞𝐫 𝐏𝐫𝐨𝐟𝐢𝐥𝐞 𝑷𝑵

Parameter
Updates

Train

New Personalized
Model𝑴𝒕$𝟏

… ∑
UpdateAggregate

Upload

Send the latest model

Client N

Server

True search query
“Museum in Baltimore”

Add Cover Queries
“Bird’s Nest Stadium”

Filter search results

Non-personalized
Search Engine

×
×
√

General doc listPersonalized
results

Client 1

Personalized
Model𝑴𝒕

record

Send the latest model

Figure 1: The FedPS framework. The blue lines illustrate the
data stream of the use process, and the black lines show the
data stream of the training process.

search logs and build user profiles on a remote server. Currently,
users access the search engine through their own client devices
with certain computing, storage and communication capabilities,
denoted asC1,C2, . . . ,CN . Thus, we store the user’s search history
H , build the user profile P and personalize the general search results
with a personalized ranking model on the client. To train the person-
alized ranking model, the safest method is to train a personal model
on each user’s client with local data. However, training a reliable
neural model usually depends on a lot of samples, and the data of a
single user is not enough. Therefore, we apply federated learning to
personalized search to train a shared high-quality personalization
model with rich data distributed on all users’ clients.

In the following, we will describe our proposed framework FedPS
and two different implementations within this framework.

3.2 FedPS —— The Framework
The FedPS framework is shown in Figure 1, and the process is: the
user enters a query on her own client; the client sends the issued
query accompanied with several cover queries to the search engine
to obtain the relevant documents; then the personalized ranking
model deployed on the client adjusts the document list of the real
query and presents the personalized result to the user. After the user
gives feedback on the result, the issued query, general document
list, personalized document list and the user’s clicks are recorded in
the local query log. During the whole process, the user’s complete
query log is only stored on the client.

We adopt the query obfuscation method [4, 36, 49] to hide the
user’s genuine query intent among a set of generated unrelated
cover queries on the server side. The number of cover queries should
not be too large which will otherwise affect the server’s response
speed. We first train an LDA (Latent Dirichlet Allocation) [10] topic
model on the whole document set to infer the topic proportion of
the issued query, which represents the user’s real search intent.
Then, cover queries are generated on different topics with similar
entropy on account of plausibility. The specific method is not the
key problem of this paper, and more details can be found in [4,
49]. Different from recording cover queries into the search log on
the server, which will distort the user interest profile and have
negative impacts on personalization, we just add cover queries

3759



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Yao, Zhicheng Dou, and Ji-Rong Wen

when submitting the query to the search engine. After all the search
results are returned to the client, we filter those fake queries and
only record the real query into the local log. Therefore, the user
profile in our framework will not be influenced by cover queries.

All clients cooperate to train the personalized ranking model,
and a central server is responsible for controlling the whole col-
laboration process. We optimize the personalized ranking model
referring to FedAvg [28]. FedAvg is one of the widely used dis-
tributed optimization algorithms in federated learning. Suppose
that a certain amount of log data has been stored on each client, and
there is a randomly initialized personalized ranking model on the
server. The model here can be any learning based personalization
model. At this point, all the N clients begin to communicate with
the server to train the model for a total of R rounds. In each round,
we ensure that every client updates the model once, and complete
the model training on all clients in N

K steps. The operations in
each step t are: First, the server samples K clients and sends the
latest personalized ranking modelMt to them. Second, each of the
selected clients receives the latest modelMt from the server, and
updates the model for E epochs with the training samples D and
user profile P constructed on the local log data H . Mini-batch sto-
chastic gradient descent (SGD) optimization algorithm is applied.
Then, all the selected clients send the parameter updates of the
personalized ranking model back to the server, with the history H ,
training samplesD and user profile P kept locally. Third, the server
aggregates the parameter updates from all the selected clients, and
applies the aggregation to update the current modelMt to a new
one Mt+1. During the above joint model training process, some
clients may have limited and unreliable communication because
mobile devices are frequently offline or in poorly connected envi-
ronments. Furthermore, the available computing resources on some
clients may be not enough to complete the model training task.
FedPS trains the shared personalization model in a synchronous
way. To prevent the server from waiting too long for the clients
with a poor connection or computation, we set maximum response
time Tmax , and ignore the model updates of those clients without
response during this period. The whole federated training process
is described in Algorithm 1.

Note that if the parameter K = 1, the federated training algo-
rithm degrades to a streammethod. All available clients are accessed
one by one to update the model trained by the last client. Due to
the model is updated by only one user at each time, the parameter
updates may expose the user’s data features and privacy to subse-
quent users. Therefore, we don’t consider the case of K = 1, and
select more than one client in each step. If K = N , the algorithm
is similar to full-batch gradient descent, where we are required
to consider all clients and spend a lot of time for calculation and
communication in every step. To balance effects and efficiency, we
usually set K as an appropriate value between 1 and N . We also
conduct experiments to evaluate different values of K in Section 5.2.

After the R rounds of model training with the existing log data on
all clients are completed, the server broadcasts the trained personal-
ization model to clients for subsequent use. Users will continuously
perform search on their own devices and generate new query logs.
Thus, we can further update the personalized ranking model with
new data. Both the general document lists returned by the search

Algorithm 1 Federated Training of Personalization Model
B is the local batch size, E is the local model update epoch, and η
is the learning rate.
Randomly initialize the personalized ranking modelM1
for each round r = 1, 2, . . . ,R do

for each step in t = 1, 2, . . . , NK do
Server samples K different clients
Wait updates from each of the K selected clients for Tmax
for each client j ∈ {1, 2, . . . ,K} in parallel do

ReceiveMt from the central server
Construct training samples D and user profile P on H

M
j
t+1 ← SGD(Mt ,D, P ,B,E,η),nj = ∥D∥

Send parameter updates ∆M j
t+1 to the central server

end for
Mt+1 = Mt +

∑K
j=1

nj
n (∆M

j
t+1),n =

∑K
j=1 nj (∆M

j
t+1 of

clients exceeding Tmax are NULL.)
end for

end for
Broadcast the trained modelM to all clients

engine and locally personalized results are recorded on the client.
In order to remove the impact of the previous personalized results
on the subsequent updating of the personalized ranking model, we
always utilize the non-personalized data.

We consider two ways to update the model. The first is an online
training method that the client sends an update application to the
server if the amount of newly generated data is enough. Then, the
client updates the current global model with new data and uploads
the parameter updates to the server. After the server receives pa-
rameter updates from K clients, it aggregates all these updates to
generate a new model and distributes the new model to all clients.
However, there are numerous users; if each client communicates
with the server to update the current model once some new data is
generated, a relatively high communication cost will be required
and the model performance may also be unstable. In addition, the
frequency of searching and the amount of newly generated data
are very unbalanced among users. Some users frequently issue new
queries and their corresponding clients incrementally update the
personalized ranking model will make the model biased towards
these active users and the overall performance will be worse. On
account of these problems, we propose a more feasible model up-
dating method that reduces the communication cost and makes the
model perform more stable. We set a fixed time interval to update
the model (such as three days), which is determined by comprehen-
sively considering the communication, computing resources and
users’ search frequency. During the time interval, all clients employ
the model trained in the previous stage without updates. After a
time interval, the server starts a task to jointly train a new person-
alized ranking model from scratch with the current log data on all
clients for R rounds, as stated in Algorithm 1. With the training
completed, the server broadcasts the new model to all clients for
the use of the next stage. Compared with the online incremental
update, this method updates the model with data from all clients in
every stage, which makes the model better adapt to the global data
distribution and achieve better overall performance. To speed up

3760



FedPS: A Privacy Protection Enhanced Personalized Search Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

personal
word 
embeddings

global
word 
embeddings

…

…

…

…

…

multi-head
attention

𝑮𝑾𝒒

𝑮𝑾𝒅

Word Embedding 
Layer

(𝒒, 𝒅)
KNRM

MLP

𝑭(𝒒, 𝒅)

Additional features

𝑮𝑪𝑾𝒒

𝑭𝑷𝑸

𝑭𝑷𝑪𝑾

𝑭𝑮𝑾

𝑭𝑮𝑪𝑾multi-head
attention

multi-head
attention

𝑮𝑪𝑾𝒅

𝑭𝑷𝑾

𝑷𝑪𝑾𝒅

KNRM

KNRM

KNRM

𝑭𝒓

…
…

multi-head
attention

𝑷𝑾𝒒
𝑷𝑪𝑾𝒒

…

𝑷𝑾𝒅

GRU

dense layer

𝑷𝑸𝒒

Figure 2: Structure of the personalized search model em-
ployed in FedPSFlat.

the updating process and save computing resources, we can also
choose to update the model of the previous stage with only the
newly generated data in this stage.

So far we have described the FedPS framework. In the next
sections, we implement two models to cope with some challenges,
such as data heterogeneity and communication efficiency.

3.3 FedPSFlat: the Flatten FedPS
In this implementation, we specially employ a personalized search
model with a personal module to tackle the challenge of data het-
erogeneity in federated learning, introduced in the next.

3.3.1 Personalized Search Model. During search process, differ-
ent users tend to click different documents under the same query.
Therefore, the whole logs of all users naturally suffer from non-IID
distribution. This is one of the critical challenges for standard feder-
ated learning which trains a single global model for all clients [25].
Multi-task learning is used to model this statistical heterogeneity by
treating the model training on every client as a separate task. Focus-
ing on state-of-the-art personalized search model PEPS [47], it sets
up a module which contains personal word embeddings for each
user trained from the user’s own search data to disambiguate the
query keywords. In this case, the personal word embedding module
can adapt to the user’s personal data distribution, and it is promis-
ing to alleviate the problem of data heterogeneity like multi-task
learning. We adapt PEPS as the personalized search model in this
implementation, shown in Figure 2. The main modules are briefly
introduced as follows, and more details can be referred to [47].

Word embedding layer. There is a global word embedding
matrix and a personal word embedding matrix in this layer. The
global word embeddings are shared and updated with all users’
data. The personal word embeddings are different for different
users, which are trained with merely the corresponding user’s data
to contain the user interested word meanings and can be used as the
interest profile. Without centrally collected query logs, we initialize
the global word embeddings with the word2vec [31] model trained
on the document collection or the Wikipedia corpus. As for the
personal word embeddings, we use the global word2vec model or
that trained with the user’s individual search log for initialization.

Matching & Ranking. Through the word embedding layer, we
are able to convert the query q and document d into vectors. Five

kinds of text representations of different aspects are considered, in-
cluding the personal and global word vectors PW q , PW d ,GW q ,GW d ,
personal and global contextual representations PCW q , PCW d ,GCW q ,
GCW d to clarify the keywords by modeling the interactions be-
tween contexts with multi-head self-attention [41], and personal-
ized query representation PQq .

With these text representations, we calculate the personalized
scores and re-rank the candidate documents. As for the four types
of word representations, we use the neural matching component
KNRM [46] to compute the interactive matching scores, i.e. FPW ,
FPCW , FGW , FGCW . For the query representation PQq , the cosine
similarity with the document is calculated as FPQ . In addition,
a series of click and topic features are fed into an MLP to get a
relevance score F r . Finally, all the scores are combined through an
MLP layer to compute the personalized score of the document as:

F (q,d) = MLP(FPW , FPCW , FGW , FGCW , FPQ , F r ). (1)

We use the pairwise learning-to-rank algorithm LambdaRank [12]
to train the model. For each client, document pairs are created on
the local query log.

3.3.2 Model Training. We train the personalized searchmodel with
Algorithm 1. Considering user privacy, we have to make a detailed
discussion about the parameters to be exchanged. Generally, all the
parameters of the above model can be divided into personal word
embeddings, global word embeddings and parameters of the rank-
ing module. The personal word embeddings are updated with the
user’s individual data and used as the user profile which contain a
wealth of user privacy. Thus, we should keep this part of parameters
on the client. Parameters of the personalized ranking model contain
the least privacy. We can upload these parameters to the server for
aggregation to obtain a more reliable personalized ranking model.
In addition, the global word embeddings are knowledge shared by
all users, but the updates of this module could also reflect the word
distribution of the user’s query log. Therefore, whether and how to
upload the global word embeddings depends on the requirement of
privacy protection. We consider the following three cases.

Case1: Ignore the small amount of user privacy that may be
contained in the updates of global word embeddings and upload
the complete parameter updates.

Case2: Taking into account that some words with low frequency
or specific information may leak personal privacy or interests, we
sample some words that appear frequently in the document collec-
tion, and only upload the updates of these words.

Case3: In order to strictly avoid user privacy leakage, we do not
upload parameter updates of global word embeddings, and keep
the pre-trained global word embeddings fixed on the server side.

Although the whole global word embeddings have a large num-
ber of parameters, we only upload the embedding updates, which
usually focus on a few terms and will not cause too much commu-
nication pressure and bandwidth expense.

3.4 FedPSProxy: Hierarchical FedPS with Proxy
In FedPSFlat, all clients communicate with the central server to
jointly train the personalized ranking model. This setting mitigates
the privacy risks associated with centrally collecting data from
each device, but there are still some problems. (1) The only central

3761



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Yao, Zhicheng Dou, and Ji-Rong Wen

server may become the performance bottleneck in the training
process. In actual application, there is a large number of clients.
Communicating and exchanging data with all clients will take the
server a lot of time and computing resources. A failure of the central
server will interrupt all communications in the current training
step. (2) There exist potential risks of privacy attacks. After a client
updates the model with local data, the parameter updates can re-
flect some information about the user’s data. Directly uploading
the updates to the server will provide the malicious server with an
opportunity for privacy attack. Thus, it is necessary to mask the
contained private information or break the link between the user
and the corresponding parameter updates. Currently, there are sev-
eral defense techniques to cope with privacy leakage in federated
learning, including Multi-Party Computation (MPC) [20], Homo-
morphic Encryption (HE) [32] and Differential Privacy (DP) [29].
But encryption methods increase communication and computa-
tion cost, which grows quadratically with the number of clients
especially costs for the central server. And DP leads to a loss of
the model accuracy.(3) Some client devices with limited communi-
cation, computing or storage abilities may slow down the entire
training process, because FedPS trains the global model in a syn-
chronous way. In Section 3.2, we claim to set maximum response
time and discard the model updates of those stragglers, but this
loses training data and may reduce search accuracy.

We attempt to address the above issues by introducing proxies
and group servers to improve the flatten FedPS where all clients
communicate with the central server into a hierarchical structure.
Figure 3 presents FedPSProxy, a four-layer implementation of FedPS.
We can build more layers based on the number of users and privacy
requirements. The central server sets a series of group servers to
relieve the communication pressure. Each group server is respon-
sible for communicating with a part of clients. And this structure
can dynamically adapt to large-scale users scenario by increasing
group servers. In addition, the clients can not directly access the
server but through a proxy for privacy protection. We are supposed
to ensure that the proxies are trustworthy and reliable. Referring
to edge computation [45, 51], we set proxies as the edge gateway
at home (the safest), edge server of a work organization and so on.
Under this layered model, there are some changes in the operations
of the server and clients. The specific changes and the benefits they
can bring to eliminate the above problems are as follows:

Communicating with server/clients. In FedPSProxy, the cen-
tral server cannot directly connect to the clients. When a client
wants to submit an application of training or updating the model
to the server, it first sends the message to the corresponding proxy.
Then, the proxy aggregates all applications from clients in its scope
and sends a message to the group server, which indicates how
many clients made a request. The central server receives informa-
tion about how many devices are connected from group servers,
and samples a batch of available clients. Each group server broad-
casts the latest global model to the selected proxies connected to
it. Then, each proxy sends the model to the selected clients within
its scope. Compared with client devices, the number of proxies
is much smaller. Furthermore, there are a series of group servers
responsible for communication, instead of a single central server.
Thus, the FedPSProxy model solves the communication bottleneck

Proxies

Central Server

Clients

…

…

∑ ModelQueries ∑ ModelQueries ∑ ModelQueries

… … …
Query log

U𝐬𝐞𝐫 𝐩𝐫𝐨𝐟𝐢𝐥𝐞

Ranking model

∑ Model

Computing
task

Use process

Training process

Model /
UpdateQuery

Issued
query

Global Model /
Update

∑ Model ∑ Model

Group Servers

…

Query
Model /
Update

Figure 3: Architecture of the four-layer FedPSProxy model.
The blue lines show the data stream of the use process, and
the black lines show the data stream of the training process.

for the central server and improves efficiency since multiple group
servers and proxies can work in parallel.

Uploading the model updates. When a client uploads the pa-
rameter updates to the server, it first sends the updates to the proxy,
then the proxy aggregates the updates from all selected clients
within its scope and uploads the aggregation to the group server.
Finally, the central server combines parameter updates on all group
servers. This method breaks the link between the model updates
and the user on the server side, avoiding user privacy leakage. For
example, a single user’s updates of the global word embeddings can
be used to infer the words that frequently appear in the user’s query
log, but the aggregated word embedding updates of multiple users
within a proxy are not easy to expose the data information of a
single user. In addition, if users require stronger privacy protection
and do not expect to expose parameter updates to the proxy, it is
more feasible and efficient to apply encryption algorithms such as
MPC among small-scale users under the proxy, which can save a
lot of communication and computation costs.

Uploading issued queries. Stated in Section 3.2, when the
client submits a issued query to the server to obtain non-personalized
search results, we apply the query obfuscation method to mask the
user’s real query intents. In FedPSProxy, the clients under a proxy
upload their issued queries to the server through the same proxy,
which hides each single user in a group of users and protects the
user privacy. In such case, there is no necessity to upload addi-
tional cover queries, promoting the response speed and reducing
bandwidth expense.

Offloading computing task. In our FedPSProxy model, the
proxies are generally trustworthy and reliable in communication
(e.g., edge server of the company). Thus, the client devices with
weak communication, storage or computing abilities can offload
their tasks composed of the local query log, user profile and per-
sonalized ranking model to the proxies. The proxy with stronger
computing power will help train the model and generate person-
alized search results. If the user is still worried about the security
of proxies, they can also choose to keep their original log data and
the input layers on the client, and offload the remaining model
layers and calculation to the proxy. In general, this method solves

3762



FedPS: A Privacy Protection Enhanced Personalized Search Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Statistics of the experimental datasets.

Type AOL Commercial

Time Span Mar−May 2006 Jan−Feb 2013
User Num 118,067 5,998
Query Num 3,461,637 738,731
Session Num 391,893 275,910
Avg/Max Query Per User 29.32 (1,449) 138.93 (3,207)
Avg/Max Query Per User-Day 2.043 (358) 5.713 (153)

the delay and data loss in the federated training process caused by
stragglers, making the FedPS framework more feasible and effective.
For the clients with limited capabilities and resources, this method
also relieves their burden of communication and model calculation.

To conclude, FedPSProxy addresses the following problems: the
performance bottleneck of the central server in large-scale user
scenario, the limited connection and computation of clients, and
the privacy attack of the flatten model.

4 EXPERIMENTAL SETTINGS
4.1 Dataset and Evaluation Metrics
Lacking the condition to conduct experiments with real client
devices, we employ two widely used non-personalized query logs
for simulation. Statistics of the two datasets are shown in Table 1.

AOL Dataset is a public three-month log [34]. Each record is
identified by an anonymous user id based on which we divide
all the data into query logs of different users. We follow [2, 3] to
process the original AOL log. First, the query sequences are split
into sessions with borders decided by the difference between two
consecutive queries. Then, we cut thewhole log into the background
set and experimental set. The background set contains the first five
weeks log, used to build interest profiles. The last eight weeks
experimental data is separated into the training, validation and
testing set with the proportion 6:1:1. In the AOL set, only the URLs
of clicked documents are recorded, based on which we crawled
the title of the corresponding documents. Then, we use the same
method as [2, 3] to rank all documents with BM25 [35] and sample
the top documents as the candidates. 50 documents are selected for
each test query, while 5 candidates per training/validation query
to speed up training. To ensure the validity of personalization, we
filter users without enough background set or training set.

Commercial dataset includes query logs in Jan. and Feb. 2013.
Each query corresponds to a complete document list and the in-
formation of click behaviors. Following [21, 26], we view the doc-
uments with more than 30 seconds of dwelling time as satisfied
clicked documents. With 30 minutes of inactivity as the interval,
we separate the query sequences into sessions. Then, the log of
the first six weeks is used as historical data to mine user interests;
the remaining two weeks data is split into training, validation and
testing set with 4:1:1 ratio.

Evaluation Metrics With the clicked documents as relevant
and other candidate documents as irrelevant [48], we choose three
common metrics to evaluate the ranking results: MAP, MRR and
P@1. A more reliable metric for personalized search P-Improve
is also employed. Following [47, 50], we only use P-Improve on

Table 2: KL-Divergence of different privacy protection tech-
niques. The best results are shown in bold.

Model AOL Dataset Commercial Dataset
KL-Divergence KL-Divergence

GroupUser 2.715 -61.72% 2.854 -65.84%
CoverQuery 5.071 -28.50% 1.563 -81.29%
FedPSFlat 7.092 – 8.356 -
FedPSProxy 5.403 -23.82% 9.073 8.58%

the commercial dataset whose recorded document lists were really
presented to users. In addition to ranking quality, we also define
a metric to measure the privacy protection capability of models,
which is the Kullback-Leibler divergence between the real user
profile and the observed profile on the server [4]. The larger the
KL divergence, the less privacy is disclosed. Since user interests are
mainly reflected in the issued queries and clicked documents, we
use the distribution of all terms in the issued queries and clicked
documents as the user profile.

4.2 Baselines and Our Models
The original rankings of the AOL set are generated by BM25 [35]
and that of the commercial set is returned by the search engine.
Besides, we select other baselines, including neural ranking models,
personalized search models and privacy enhanced models.

KNRM [46]: It is a neural model using kernels to extract features
from interactions between the query and document for ranking.

HRNN [21]: This work employed a hierarchical RNNwith query-
aware attention to build the short-term and long-term user profiles.

HTPS [50]: Inspired by BERT, Zhou et al. [50] proposed to en-
code historical queries as the context with the transformer [41] to
enhance the representation of the current query for disambiguation.

PEPS [47]: It trained personal word embeddings for each user
to clarify the personalized meaning of some keywords. We turn off
its query reformulation module in our implementation.

GroupUser [52]: A group of users share a single identity and
their search logs are recorded together to build user profile at the
group level, hiding the privacy information of each single user.

CoverQuery [1, 4]: This approach first applies a topic model to
infer the user’s query intent, then generates several noisy queries
from unrelated topics to conceal the user’s real intentions.

The two privacy protection baselines are both applied to PEPS.
FedPSFlat and FedPSProxy are our proposed models.
As for the personalized searchmodel, we train a 100-dimword2vec

model on the document set to initialize the global and personal
word embeddings. Other hyper-parameters are set the same as
PEPS [47]. We adopt Adam optimizer to train the personalization
model on clients. In each update step, we sample 10 clients to up-
date the model for 1 epoch. The models are trained on the whole
training set and evaluated on the test set. We assume 10% of the
clients are in poor communication during training. We define 100
users as a group in the GroupUser approach. And we separate 100
users under each proxy, 1,000 proxies under each group server in
FedPSProxy. One query is randomly generated as the cover query.

3763



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Yao, Zhicheng Dou, and Ji-Rong Wen

Table 3: Overall performance ofmodels. The percentages are computed based on the corresponding originalmodel. †means no
significant differences from the original model with paired t-test at p<0.05 level. Results of the best privacy enhanced model
are shown in bold.

Model AOL Dataset Commercial Dataset
MAP MRR P@1 MAP MRR P@1 P-Imp.

Original Rank .2504 -64.8% .2596 -64.2% .1534 -75.5% .7399 -9.8% .7506 -9.6% .6162 -15.1% - -
KNRM .4291 -39.7% .4391 -39.4% .2704 -56.9% .4916 -40.1% .5001 -39.8% .2849 -60.7% .0655 -74.1%
HRNN .5423 – .5545 – .4854 – .8065 – .8191 – .7127 – .2404 –
FedPS & HRNN .5419† -0.07% .5541† -0.07% .4852† -0.04% .8061† -0.05% .8186† -0.06% .7125† -0.03% .2402† -0.08%
HTPS .7091 – .7231 – .6272 – .8219 – .8315 – .7287 – .2548 –
FedPS & HTPS .7085† -0.08% .7226† -0.07% .6268† -0.06% .8213† -0.07% .8309† -0.07% .7282† -0.07% .2545† -0.12%
PEPS .7115 – .7246 – .6266 – .8206 – .8305 – .7256 – .2533 –
GroupUser .6917 -2.78% .7037 -2.88% .6106 -2.55% .8145 -0.74% .8248 -0.69% .7204 -0.72% .2411 -4.8%
CoverQuery .7101† -0.20% .7232† -0.19% .6252† -0.22% .8201† -0.06% .8299† -0.07% .7151† -0.07% .2528† -0.20%
FedPSFlat .7074† -0.58% .7205† -0.57% .6229† -0.59% .8195† -0.13% .8294† -0.13% .7247† -0.12% .2525† -0.32%
FedPSProxy .7112† -0.04% .7242† -0.06% .6262† -0.06% .8204† -0.02% .8304† -0.01% .7254† -0.03% .2532† -0.04%

5 EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Overall Performance
The overall results, including the privacy protection effect and
ranking quality, are shown in Table 2 and Table 3. We can observe:

(1) The FedPS framework not only protects the user pri-
vacy best, but also achieves better personalization results
than other privacy enhanced personalized models. In Table 2,
FedPS models get the best result of KL-Divergence which is used
to measure privacy protection capability. The GroupUser and Cov-
erQuery use some noise to hide the user’s true identity and query
intentions but still collect user search logs on the server side. How-
ever, under our framework, the user’s original log data is guaran-
teed not to be exposed at all so user privacy is better protected.
Besides, FedPSProxy outperforms both the GroupUser and Cover-
Query methods on all ranking metrics on the two datasets. Due
to noise is added to the user’s search log in the two baselines but
FedPS exploits the real query log on the client side to analyze the
user’s interests, FedPS performs more accurate personalization. We
find that the CoverQuery method also has no significant loss of the
ranking results though some fake queries are added to the log. We
deduce it may because that the fake queries increase training data
of the model, thereby reducing the impacts of vague user profiles.

(2) The FedPS framework is adaptive to various learning-
based personalized search models and attains comparable
results to the originalmodels trained from the centrally stored
data. We apply the FedPS framework to several state-of-the-art
personalization models, including HRNN, HTPS and PEPS, and
compare them with the original models. As shown in Table 3, there
is no much difference between the results of them and the orig-
inal models on all ranking metrics, confirmed by paired t-test at
p < 0.05 level. This proves that our privacy protection framework
will not cause much loss to ranking quality.

(3) FedPSProxy outperforms FedPSFlat. In this experiment,
we set 10% of the clients in poor connection or offline during the
training process. For FedPSProxy, these stragglers can transfer their
computing tasks to the corresponding proxy which helps complete
model training. But FedPSFlat ignores these clients as well as the
training data on them, thus affecting the model performance. In

Table 4: The performance of FedPSProxy with different K . K
is the number of clients sampled in each step. ‘Rounds’ is
the total rounds of model training until convergence. ‘Steps’
is the total number of model update steps.

K Rounds (R) Steps (NK ∗ R) Best MAP
5 3 1x 15762 1x 0.7112
10 3 1x 7881 0.5x 0.7112
20 4 1.3x 5254 0.33x 0.7112
30 6 2x 5254 0.33x 0.7079
100 8 2.7x 2101 0.13x 0.6997

actual application, there are indeed a certain percent of clients
with poor communication ability, so FedPSProxy with some error
tolerance shows better applicability and feasibility.

To summarize, our FedPS framework indeed has the abil-
ity to protect user privacy without impacting the model ac-
curacy too much, and it greatly adapts to various learning
based personalized search models.

5.2 Study of Different Parameters
In Algorithm 1, there are two main parameters to be determined, i.e.
the number of sampled clients and the epoch the model is trained
locally in each step. We experiment with different parameters and
illustrate the results in Table 4 and Table 5. ‘Rounds’ is the total
rounds of model training until convergence, used to measure the
communication and computation cost. ‘Steps’ represents the total
number of model update steps. In each step, the selected clients
work in parallel, so ‘Steps’ can be a measure of wall-clock time cost.

Number of sampled clients K . In each joint training step, we
sample more than one clients to update the current model with their
own data locally, then merge their updates to generate a new global
model, which avoids exposing the parameter updates of a single
user to other users. Presented in Table 4, we set K as 5,10,20,30 and
100. As K increases, we observe that the total number of training
steps decreases, saving wall-clock time. However, a larger value
of K makes the model converge slowly and requires more rounds

3764



FedPS: A Privacy Protection Enhanced Personalized Search Framework WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 5: The performance of FedPSProxy with different E. E
represents the epoch of local model training in each step.

E Rounds (R) Steps (NK ∗ R) Best MAP
1 4 1x 10508 1x 0.7112
2 3 0.75x 7881 0.75x 0.7091
3 3 0.75x 7881 0.75x 0.7088

Table 6: Communication time for joint model training in a
round by different FedPS models. T represents the time to
exchange model parameters, and d is the delay time due to
poor communication.

Settings delay ratio=10% delay ratio=20%
K = 100 K =

1000
K = 100 K =

1000
FedPSFlat 236134T + 11551d 236134T + 23557d
FedPSProxy 47240T 6902T 44878T 6664T

of communication and model training. Moreover, the model with
smaller K tends to achieve greater results. The possible reason
is that the gradients generated by various clients with non-i.i.d
data might be quite different from each other and it would be less
effective to update the model by simply aggregating these gradients,
causing the model turn into worse performance.

Local epoch E. For each selected client, it can update the model
with local data for E epochs. We conduct experiments with E =
1, 2, 3 respectively. K is set as 10. Observing the results in Table 5,
we find developing local update on each client for more than one
epoch could reduce the number of training rounds and steps, saving
communication and wall-clock time costs. But there are some losses
on the model’s effect. We infer it may due to that more local training
epochs in each step cause the model to overfit to the limited local
data, thus decreasing the global performance of the model.

This study shows different hyper-parameters have various effects
on the model accuracy, time and computation resources. We should
take these factors into account to select appropriate parameters.

5.3 Effect of Proxy and Group Server
In order to test whether FedPSProxy has the ability to reduce the
performance burden of the central server and promote the feder-
ated training efficiency, we compare the required communication
time to jointly train the personalization model for a round with
FedPSFlat and FedPSProxy. We focus on the time spent for broad-
casting the current global model and uploading the parameter up-
dates, both of which are assumed equal to T . We consider 118,065
users in the AOL log. FedPSFlat samples K clients in each training
step, while FedPSProxy first samples K/10 proxies, then samples 10
clients in the scope of each proxy. Moreover, we discuss that 10% or
20% of the devices have a poor connection and suffer a delay d in
each step. In FedPSProxy, such stragglers offload their computing
tasks to the proxies so we ignore the time cost of data exchange
between these clients and the corresponding proxy. The comparison
of communication time is shown in Table 6.

4.10-4.16 4.17-4.23 4.24-4.30 5.1-5.7 5.8-5.15 5.16-5.23 5.24-5.310.20

0.25

0.30

0.35

0.40

0.45

0.50

△M
AP

PEPS FedPSProxy FedPSFlat(offline ratio = 10%)

Figure 4: Results of continuous model updating simulation.

From Table 6, we see that the training process of FedPSFlat can be
easily slowed down by the devices with limited connection, costing
much additional delay time. In contrast, FedPSProxy is almost not
affected by these errors, showing robust performance and higher
efficiency. The value beforeT is used tomeasure the communication
time of data exchange among the server, group servers, proxies
and clients. FedPSProxy greatly reduces the communication time
of the central server compared to FedPSFlat, and the reduction is
greater as the number of sampled clients K gets larger, significantly
relieving the communication pressure of the server.

5.4 Simulation of Continuous Model Updating
In the previous experiments, the personalizationmodel is trained on
the whole training set, without subsequent updates. In this section,
we use the data of AOL from 3rd Apr to 31st May to simulate
the continuous model updating process described in our FedPS
framework. We cut all log into 8 stages with one week as a stage.
First, the personalized search model is initialized with the first week
data. Then, after each week, we apply the currently available logs to
retrain the model from scratch, and evaluate the trained model on
the data of the next stage. We consider 10% of the clients are offline
or in poor connection. The improvement on MAP of PEPS and our
two models over the original ranking are displayed in Figure 4.

Generally, the results of all models improve as the data increases
with stages. FedPSProxy performs inferior to PEPS trained with the
centrally collected data in early stages. It may due to the training
data on each client is very limited in early stages, and using the
limited local data to update the model could cause the model to
overfit to the individual data. In later stages with enough local data,
FedPSProxy almost achieves similar results as PEPS. FedPSFlat per-
forms a little worse than FedPSProxy, because it ignores the offline
clients during training while computing tasks of these stragglers are
transferred to the proxies in FedPSProxy. As the data on each client
increases, the effect differences between the two FedPS models
caused by discarding training data of the offline clients get larger.

6 CONCLUSION
In this study, we focus on the privacy protection issue in personal-
ized search, and propose a privacy protection enhanced framework
FedPS for learning based personalized search models. It stores the
user’s privacy-sensitive query log and interest profile on the client,
and employs federated learning to jointly train a shared person-
alized ranking model with all clients and their decentralized data.

3765



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Yao, Zhicheng Dou, and Ji-Rong Wen

Within this framework, we design two implementations, FedPS-
Flat and FedPSProxy. FedPSFlat eliminates the challenge of data
heterogeneity. The second model improves FedPSFlat by introduc-
ing proxies and group servers to promote privacy protection and
relieve the performance pressure caused by large-scale clients. Ex-
perimental results confirm that our framework protects user privacy
without affecting the model accuracy too much. In the future, we
will explore techniques for stronger user privacy protection.

ACKNOWLEDGMENTS
Zhicheng Dou is the corresponding author. This work was sup-
ported byNational Natural Science Foundation of ChinaNo. 61872370
and No. 61832017, Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098, and Shandong Provincial Natural
Science Foundation under Grant ZR2019ZD06.

REFERENCES
[1] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Intent-aware

Query Obfuscation for Privacy Protection in Personalized Web Search. In SIGIR
2018. ACM, 285–294.

[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Multi-Task
Learning for Document Ranking and Query Suggestion. In ICLR 2018,.

[3] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context Atten-
tive Document Ranking and Query Suggestion. In Proceedings of SIGIR 2019.

[4] Wasi Uddin Ahmad, Md. Masudur Rahman, and Hongning Wang. 2016. Topic
Model based Privacy Protection in PersonalizedWeb Search. In SIGIR 2016. ACM.

[5] Michael Barbaro and Tom Zeller. 2006. A Face is exposed for AOL searcher no.
4417749. New York Times (2006).

[6] Michael Bendersky, Xuanhui Wang, Donald Metzler, and Marc Najork. 2017.
Learning from User Interactions in Personal Search via Attribute Parameteriza-
tion. In WSDM 2017. ACM, 791–799.

[7] Paul N. Bennett, Filip Radlinski, RyenW.White, and Emine Yilmaz. 2011. Inferring
and using location metadata to personalize web search. In SIGIR 2011.

[8] Paul N. Bennett, Krysta Marie Svore, and Susan T. Dumais. 2010. Classification-
enhanced ranking. In Proceedings WWW 2010. 111–120.

[9] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the impact of short- and long-term
behavior on search personalization. In SIGIR ’12. 185–194.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2001. Latent Dirichlet
Allocation. In NIPS 2001. 601–608.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.

[12] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In (ICML 2005). 89–96.

[13] Mark James Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. 2010.
Towards query log based personalization using topic models. In CIKM 2010.

[14] Jordi Castellà-Roca, Alexandre Viejo, and Jordi Herrera-Joancomartí. 2009. Pre-
serving user’s privacy in web search engines. Comput. Commun. 32, 13-14 (2009).

[15] Gang Chen, He Bai, Lidan Shou, Ke Chen, and Yunjun Gao. 2011. UPS: efficient
privacy protection in personalized web search. In SIGIR 2011. ACM, 615–624.

[16] Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la Chica,
and David Sontag. 2011. Personalizing web search results by reading level. In
CIKM 2011. 403–412.

[17] Roger Dingledine. 2011. Tor and Circumvention: Lessons Learned - (Abstract
to Go with Invited Talk). In CRYPTO 2011 (Lecture Notes in Computer Science,
Vol. 6841). Springer, 485–486.

[18] Josep Domingo-Ferrer, Maria Bras-Amorós, Qianhong Wu, and Jesús A. Manjón.
2009. User-private information retrieval based on a peer-to-peer community.
Data Knowl. Eng. 68, 11 (2009), 1237–1252.

[19] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. 2007. A large-scale evaluation
and analysis of personalized search strategies. In WWW 2007.

[20] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic In-
troduction to Secure Multi-Party Computation. Found. Trends Priv. Secur. 2, 2-3
(2018), 70–246.

[21] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
2018. Personalizing Search Results Using Hierarchical RNN with Query-aware
Attention. In CIKM 2018.

[22] Morgan Harvey, Fabio Crestani, and Mark James Carman. 2013. Building user
profiles from topic models for personalised search. In CIKM’13. 2309–2314.

[23] Alfred Kobsa. 2007. Privacy-Enhanced Web Personalization. In The Adaptive Web,
Methods and Strategies of Web Personalization (Lecture Notes in Computer Science,
Vol. 4321). Springer, 628–670.

[24] Cheng Li, Mingyang Zhang, Michael Bendersky, Hongbo Deng, Donald Metzler,
andMarc Najork. 2019. Multi-view Embedding-based Synonyms for Email Search.
In SIGIR 2019. ACM, 575–584.

[25] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag.
37, 3 (2020), 50–60. https://doi.org/10.1109/MSP.2020.2975749

[26] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. 2019. PSGAN:
A Minimax Game for Personalized Search with Limited and Noisy Click Data. In
SIGIR 2019. 555–564.

[27] Shuqi Lu, Zhicheng Dou, Chenyan Xiong, Xiaojie Wang, and Ji-Rong Wen. 2020.
Knowledge Enhanced Personalized Search. In SIGIR 2020. ACM, 709–718.

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works fromDecentralized Data. InAISTATS 2017 (Proceedings of Machine Learning
Research, Vol. 54). PMLR, 1273–1282.

[29] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learn-
ing Differentially Private Recurrent Language Models. In ICLR 2018.

[30] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting Unintended Feature Leakage in Collaborative Learning. In 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. IEEE, 691–706.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In ICLR 2013, Proceedings.

[32] Shiho Moriai. 2019. Privacy-Preserving Deep Learning via Additively Homomor-
phic Encryption. In ARITH 2019. IEEE, 198.

[33] HweeHwa Pang, Xuhua Ding, and Xiaokui Xiao. 2010. Embellishing Text Search
Queries To Protect User Privacy. Proc. VLDB Endow. 3, 1 (2010), 598–607.

[34] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search.
In Infoscale 2006. 1.

[35] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval
3, 4 (2009), 333–389.

[36] David Sánchez, Jordi Castellà-Roca, and Alexandre Viejo. 2013. Knowledge-based
scheme to create privacy-preserving but semantically-related queries for web
search engines. Inf. Sci. 218 (2013), 17–30.

[37] Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2007. Privacy protection in per-
sonalized search. SIGIR Forum 41, 1 (2007), 4–17.

[38] Ahu Sieg, Bamshad Mobasher, and Robin D. Burke. 2007. Web search personal-
ization with ontological user profiles. In CIKM 2007.

[39] Yang Song, Hongning Wang, and Xiaodong He. 2014. Adapting deep RankNet
for personalized search. In WSDM 2014. 83–92.

[40] Jaime Teevan, Daniel J. Liebling, and Gayathri Ravichandran Geetha. 2011. Un-
derstanding and predicting personal navigation. In WSDM 2011. 85–94.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30.

[42] Thanh Vu, Dat Quoc Nguyen, Mark Johnson, Dawei Song, and Alistair Willis.
2017. Search Personalization with Embeddings. In ECIR 2017.

[43] Thanh Tien Vu, Alistair Willis, Son Ngoc Tran, and Dawei Song. 2015. Temporal
Latent Topic User Profiles for Search Personalisation. In ECIR 2015. 605–616.

[44] Ryen W. White, Wei Chu, Ahmed Hassan Awadallah, Xiaodong He, Yang Song,
and Hongning Wang. 2013. Enhancing personalized search by mining and
modeling task behavior. In WWW ’13. 1411–1420.

[45] Qiong Wu, Kaiwen He, and Xu Chen. 2020. Personalized Federated Learn-
ing for Intelligent IoT Applications: A Cloud-Edge based Framework. CoRR
abs/2002.10671 (2020).

[46] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In SIGIR 2017. 55–64.

[47] Jing Yao, Zhicheng Dou, and Ji-Rong Wen. 2020. Employing Personal Word
Embeddings for Personalized Search. In SIGIR 2020. ACM, 1359–1368.

[48] Jing Yao, Zhicheng Dou, Jun Xu, and Ji-Rong Wen. 2020. RLPer: A Reinforcement
LearningModel for Personalized Search. InWWW ’20. ACM / IW3C2, 2298–2308.

[49] Puxuan Yu, Wasi Uddin Ahmad, and Hongning Wang. 2018. Hide-n-Seek: An
Intent-aware Privacy Protection Plugin for Personalized Web Search. In SIGIR
2018. ACM, 1333–1336.

[50] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2020. Encoding History with
Context-aware Representation Learning for Personalized Search. In SIGIR 2020.

[51] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing.
Proc. IEEE 107, 8 (2019), 1738–1762.

[52] Yun Zhu, Li Xiong, and Christopher Verdery. 2010. Anonymizing user profiles
for personalized web search. In WWW 2010. ACM, 1225–1226.

3766

https://doi.org/10.1109/MSP.2020.2975749

	Abstract
	1 Introduction
	2 Related Work
	2.1 Personalized Search
	2.2 Privacy Protection in Personalization

	3 Our Proposed Approach
	3.1 Problem Formulation
	3.2 FedPS —— The Framework
	3.3 FedPSFlat: the Flatten FedPS
	3.4 FedPSProxy: Hierarchical FedPS with Proxy

	4 Experimental Settings
	4.1 Dataset and Evaluation Metrics
	4.2 Baselines and Our Models

	5 Experimental Results and Analysis
	5.1 Overall Performance
	5.2 Study of Different Parameters
	5.3 Effect of Proxy and Group Server
	5.4 Simulation of Continuous Model Updating

	6 Conclusion
	Acknowledgments
	References

