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Deep semantic matching aims to discriminate the relationship between documents based on deep neural networks. In recent
years, it becomes increasingly popular to organize documents with a graph structure, then leverage both the intrinsic doc-
ument features and the extrinsic neighbor features to derive discrimination. Most of the existing works mainly care about
how to utilize the presented neighbors, whereas limited efort is made to ilter appropriate neighbors. We argue that the
neighbor features could be highly noisy and partially useful. hus, a lack of efective neighbor selection will not only incur
a great deal of unnecessary computation cost, but also restrict the matching accuracy severely.

In this work, we propose a novel framework, Cascaded Deep Semantic Matching (CDSM), for accurate and eicient
semantic matching on textual graphs. CDSM is highlighted for its two-stage worklow. In the irst stage, a lightweight CNN-
based ad-hod neighbor selector is deployed to ilter useful neighbors for the matching task with a small computation cost. We
design both one-step and multi-step selection methods. In the second stage, a high-capacity graph-based matching network
is employed to compute ine-grained relevance scores based on the well-selected neighbors. It is worth noting that CDSM is a
generic framework which accommodates most of the mainstream graph-based semantic matching networks. he major chal-
lenge is how the selector can learn to discriminate the neighbors’ usefulness which has no explicit labels. To cope with this
problem, we design a weak-supervision strategy for optimization, where we train the graph-based matching network at irst
and then the ad-hoc neighbor selector is learned on top of the annotations from the matching network. We conduct extensive
experiments with three large-scale datasets, showing that CDSM notably improves the semantic matching accuracy and ei-
ciency thanks to the selection of high-quality neighbors. he source code is released at htps://github.com/jingjyyao/CDSM.
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Fig. 1. Example of ad-hoc neighbor selection. The key document is linked tomultiple neighbors (papers in its reference) of dif-
ferent semantics. While estimating its relationship with Q1, N1 will be selected as both documents are about semi-supervised
learning; while estimating the relationship with Q2, N2 will be selected due to the correlation with word representation.

1 INTRODUCTION
Deep semantic matching aims to discriminate the relationship between documents based on deep neural net-
works [5, 9, 20]. It plays a critical role in today’s intelligent web services, such as recommendation systems,
search engines, and online advertising systems [26]. Conventional semantic matching models mainly analyze
the intrinsic features of the documents. hanks to the increasing capacity of deep neural networks, a series
of advanced document encoders have been proposed, especially those based on pre-trained language models
[11, 15, 17].

1.1 Semantic Matching on Textual Graphs
Many textual datasets can be naturally organized with graph structures, e.g., the webpages of online products
can be linked based on users’ web browsing behaviors, and the academic literature can be linked based on their
citation relationships. In recent years, it becomes increasingly popular to discriminate the matching relation-
ship between two documents on such textual graphs [13, 27, 31, 32], where both the intrinsic document features
and the extrinsic neighbor features are jointly leveraged. Existing works mainly emphasize the design of graph-
based matching models, whereas limited efort is dedicated to the selection of appropriate neighbors. It’s usually
assumed that most of the neighbors are informative, and semantic matching may always beneit from the incor-
poration of neighbor features. As a result, existing methods [27, 32] either use all the available neighbors if the
computation capacity allows, or heuristically sample a subset of neighbors for eicient computation.

We argue that the neighbors could be highly noisy and partially useful, thus appropriate neighbor
selection is vital for graph-based semantic matching. Contradicted to the common assumption, we empir-
ically ind the following properties. 1) he neighbor features can be highly noisy: in many situations, only a small
fraction of neighbors could actually contribute to the current semantic matching. 2)he neighbor feature’s usefulness
is conditional: a neighbor may contribute to the semantic matching given one particular target document, but it
may become useless when dealing with another target document (as Example 1.1).As such, a lack of efective neigh-
bor selection will severely restrict the performance of graph-based semantic matching. he irrelevant neighbors
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will not only take a huge amount of unnecessary computation cost, but also introduce strong background noise
which deteriorates the matching accuracy.

1.2 Our Work
In this paper, we propose the Cascaded Deep Semantic Matching (CDSM) framework to address the above
challenges. It completes the semantic matching task in two consecutive steps. First, an ad-hoc neighbor selection
step is performed to select the optimal subset of neighbors w.r.t. the given documents. By focusing on these
selected neighbors which are truly informative, the subsequent semantic matching step can be accomplished
with both high accuracy and high eiciency, as background noise and unnecessary computation costs from the
irrelevant neighbors can be avoided.
• Ad-hoc Neighbor Selection. In CDSM, the neighbor selection is performed in an ad-hoc manner. It is

empirically found that merely a small number of neighbors may accurately contribute to the semantic matching
task between two speciic documents; and an informative neighbor in one matching task will probably become
useless in another task1. herefore, static neighbor selection will be inappropriate. Instead of assigning ixed
neighbors to each document, CDSM makes Ad-hoc neighbor selection, i.e., neighbors are selected w.r.t the
counterpart to be matched. Speciically, given a document and its matching counterpart, CDSM aims to identify
the neighbors that are closely related to the counterpart. Only the neighbors relevant to the counterpart will be
preserved for the subsequent semantic matching task, while the irrelevant ones will be iltered out. We use a
concrete example to illustrate the underlying intuition.

Example 1.1. As shown in Figure 1, the key document “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding” should be linked to all documents within its reference list. N1 is about “semi-supervised
learning”, and N2 is about the “representation of words”; meanwhile, there are many more neighbors about other
topics, like “ImageNet dataset”, “machine reading comprehension”, etc. To determine whether the query document
Q1 has a citation link with the key document, the ad-hoc neighbor selector will choose N1 to contribute useful infor-
mation, rather than N2. Both N1 and Q1 are about “semi-supervised learning”. Based on such supporting evidence,
the connection between the key document and Q1 can be positively determined with high conidence. However, given
another query document Q2, the neighbor N2 becomes a plausible choice. Both Q2 and N2 are about “word represen-
tation”, based on which the connection between the key document and Q2 can be positively determined with high
conidence.

he neighbor selector is also designed to be lightweight. Given that each document may be linked to a
vast number of neighbors, it will be infeasible to identify their utilities with heavy-loaded functions. In CDSM,
the neighbor selector makes use of lightweight estimation networks, whose inference cost will be small. It is
also experimentally validated that the highly simpliied backbone networks are already suiciently accurate to
identify useful neighbors. As a result, the computation overhead of neighbor selection will be small enough,
making CDSM comparably eicient as the existing methods based on heuristic neighbor sampling.

he subsequent semantic matching is performed based on the well-selected neighbors from the irst stage. As
discussed, both accuracy and eiciency of the semantic matching will beneit from such a selection, thanks to the
elimination of background noise and unnecessary computation costs. It is worth noting that CDSM is aGeneric
framework, where the mainstream graph-based matching models (e.g., the recent works which combine GNNs
and pre-trained language models [13, 31, 32]) can be seamlessly incorporated as the backbone of the matching
network.
•Training viaweak-supervision. Onemajor challenge for CDSM is that there are no explicit measurements

of the neighbors’ usefulness, which hinders the training of the neighbor selector. In our work, we develop a

1check Section 3 for the empirical analysis
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weak-supervision strategy, where the neighbor selector is trained on top of weak annotations obtained from
the semantic matching model. Intuitively, given a pair of documents Q and K, a useful neighbor of Q should
provide additional evidence to support the correlation between Q and K. In other words, a useful neighbor will
strengthen the correlation between Q and K. Based on such an intuition, we make a formalized deinition, which
serves as the criterion of whether a neighbor is useful in a speciic semantic matching task.

Deinition 1.1. Given a pair of documents � and � , and the function M(·) which measures the semantic
correlation between� and� . A neighbor�.�� is useful, if the semantic correlation between� and� is improved
when � is aggregated with �.�� :M(� ⊕ �.�� , �) >M(�,�) (“⊕” is the aggregation operator).

With the deinition of neighbor usefulness, we develop a weak-supervision algorithm for CDSM. First, the
graph-based semantic matching networkM is trained with the neighbors sampled by heuristics. Second, the
well-trained semantic matching network makes annotation for the usefulness of each neighbor �.��/�.�� . Fi-
nally, the neighbor selector is trained based on the annotation results, where it learns to discriminate the highly
useful neighbors from the less useful ones.

Extensive experimental studies are conducted with three large-scale datasets: DBLP, Wiki and Bing Ads2. he
CDSM’s efectiveness is veriied from two perspectives. Firstly, as a generic framework, it notably improves
the accuracy of a variety of graph-based semantic matching models. Secondly, it achieves competitive running
eiciency as high-quality neighbors can be efectively selected with a small computation cost.

To summarize, our major contributions are listed as follows:
• We identify the importance of neighbor selection in the graph-based semantic matching task.
• Wepropose a novel generic frameworkCDSM.With the selection of high-quality neighbors, CDSMachieves

both high accuracy and high eiciency for graph-based semantic matching.
• We design the weak-supervision strategy to efectively train the neighbor selector on top of the semantic

matching network’s annotations.
• We perform comprehensive experimental studies, whose results verify the efectiveness and eiciency of

CDSM as a generic framework.
he rest of the paper is organized as follows. he related works are reviewed in Section 2. he graph-based

semantic matching problem is formally deined and empirically analyzed in Section 3.he detailed methodology
of CDSM is elaborated in Section 4. he experimental studies are discussed in Section 5 and 6. Finally, the whole
work is concluded in Section 7.

2 RELATED WORKS
Semantic matching between documents is a fundamental problem in information retrieval and recommendation
systems. Conventional works mainly rely on the intrinsic document features, e.g., bag-of-words [18], latent
semantic analysis [12] and topicmodeling [3]. In recent years, various neural text encoders have been extensively
explored for this task. In [20, 28], convolution neural networks are utilized to capture the local contextual paterns
of the input texts; and in [16, 19], recurrent neural networks are employed to encode the sequential relationship
between tokens. he latest works are usually built upon the large-scale pre-trained language models, like BERT
and RoBERTa [4, 14, 17]. he semantic matching accuracy can be signiicantly improved thanks to the high-
quality deep contextualized text representations.

Actually, many textual datasets can be organized in the form of a graph. For example, in sponsored search,
advertisements can be linked together based on users’ co-click behaviors [13, 32]. Similarly, online articles and
webpages can be connected as a graph according to their mutual linkage relationships. In recent years, it becomes
increasingly popular to conduct ine-grained semantic matching on such textual graphs [1, 8, 13, 23, 27, 31, 32],
2he irst two are widely used open benchmark datasets, and the third one is a massive industrial dataset collected by Bing Search.
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leveraging both the intrinsic document features and the extrinsic neighbor features. he typical approaches
[6, 30] will irstly encode each document node into latent representations; and then make use of graph neural
networks to aggregate the graph neighbor information.he latest works usually combine graph neural networks
with pre-trained language models [13, 32], where the underlying semantics of each individual document can be
capturedmore efectively. To facilitate the in-depth interaction between the textual features and graph structures,
Yang et al. [27] propose GraphFormers: the GNN components are nested into each layer of the transformer. In
such a way, each document’s representation can be contextualized by involving the graph information.

Despite the achieved progress so far, these works mainly focus on designing a beter model to aggregate
existing neighbors (all neighbors or those selected heuristically), whereas limited efort is made for the selection
of truly informative neighbors. Empirically, we have found that 1) the neighbor features can be noisy and 2)
the usefulness of a neighbor is conditional, diferent for diferent matching counterparts. In this paper, we are
commited to solving the problem of efective neighbor selection to improve both the accuracy and eiciency of
graph-based semantic matching.

3 PROBLEM DEFINITION
his section covers the following issues: 1) the deinition of graph-based semantic matching, 2) the empirical
analysis of how neighbor selection maters in graph-based semantic matching, and 3) the deinition of neighbor
selection, which plays a central role in our CDSM framework.

3.1 Graph-based Semantic Matching
Semantic matching is a critical issue in information retrieval and natural language processing. Given a query
document � and a key document � , a semantic matching model predicts the relevance score between the two
documents based on their textual features. Since many real-world data can be organized as graphs, the graph-
based semantic matching goes beyond by leveraging the textual features from both the target nodes (i.e. � and
� ) and their linked neighbors on the graph. In this place, we deine the graph-based semantic matching task in
the form of a typical ranking problem.

Deinition 3.1. (Graph-based SemanticMatching) Given a pair of documents: query� and key� , together with
their neighbor sets �.� and �.� , the graph-based semantic matching modelM learns to predict the relevance
score between the query and key as:

�(�,�) =M(� ⊕ �.�, � ⊕ �.� ), (1)
(“⊕” is the aggregation operator), such that a positive key �+ can be ranked higher than a negative key �− :
�(�,�+) > �(�,�−).

Although the neighbor features may provide complementary information to the semantic matching task, they
should be utilized with caution due to the following defects. First, the neighbor features are prone to strong
noise: many of the neighbors may contribute litle useful information to the semantic matching task. Secondly,
the usefulness of a neighbor is conditional: a neighbor can be helpful to the semantic matching task between a
query and a speciic key document, but turns useless when dealing with other keys. In the following discussion,
an empirical analysis is presented to demonstrate the neighbors’ impacts.

3.2 Neighbors’ Impact: An Empirical Analysis with TextGNN
We take one of the latest graph-based semantic matchingmethods, TextGNN [32], for our analysis.he TextGNN
framework uses the pre-trained language model BERT as the text encoder, and graph neural networks (like
GraphSage) as the graph aggregator. he input documents, i.e. the query/key and their neighbors, are encoded
by the text encoder at irst. hen, the text embeddings are aggregated by the graph aggregator to get the inal
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Fig. 2. TextGNN with counterpart atention. The center document�,� and their neighbors are encoded by the pre-trained
language model (with stacked transformers) at first; the neighbors are then aggregated based on the atention of the match-
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Fig. 3. Case analysis on DBLP. The horizontal axis shows the number of neighbors utilized in each semantic matching task,
and the vertical axis shows the semantic matching accuracy (measured by precision@1).

representation for semantic matching. In our work, we make an analysis based on the following adaptations of
TextGNN.

First, we introduce the “counterpart atention” as shown in Figure 2. he “counterpart” means the document
to be matched: the query’s counterpart is the key, while the key’s counterpart is the query. To identify the
neighbors that truly contribute to the current matching task, the neighbors are scored and aggregated based on
their atention with the counterpart document:

AGG(� ) =
∑

�

�� ∗ ���
, �� = CP − ATT(���

, ��� ). (2)
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AGG(·) is the neighbor aggregation function and CP-ATT(·) means the counterpart atention. ���
and ��� are

the embeddings of the neighbor �� (could be �.�� or �.�� ) and the counterpart document respectively. With
this adaptation, TextGNN becomes more robust to noisy neighbors, as truly useful neighbors for the counterpart
can be highlighted with higher atention weights.

Second, we select a subset of neighbors for graph-based semantic matching. A neighbor is selected if it is
rankedwithin the “Top-�” positions w.r.t. the counterpart atention scores. By this means, the quality of neighbor
features can be improved as the potentially irrelevant neighbors can be largely removed, therefore leading to
higher semantic matching accuracy.

We perform experimental analysis with the DBLP dataset (refer to Section 5 for details). A total of three
alternatives are compared: (1) he original TextGNN with GraphSage aggregator (using mean-pooling for im-
plementation), and uniformly sampled neighbors. (2) he adapted TextGNN with counterpart atention, and
uniformly sampled neighbors. (3) he adapted TextGNN with counterpart atention, and the Top-� neighbors.
All neighbors are sampled from the same candidate set, and each document owns at most 50 neighbors. he
analysis results are shown in Figure 3. he semantic matching accuracy (measured by Precision@1, with 1 posi-
tive key and 29 negative keys) is checked when diferent numbers of neighbors are incorporated. he following
properties can be observed from the shown results.
• here is indeed strong noise within the neighbor features. he adapted TextGNN with Top-� neighbors

consistently outperforms the one with uniformly sampled neighbors, which indicates that the subset of Top-�
neighbors is more useful. Besides, the accuracy of TextGNN with the Top-� neighbors reaches its apex when �
is merely around 20; it goes down when more neighbors are introduced. It is probably because the additional
neighbors (thereater the apex) are less relevant, which provides litle useful information but noisy features to
the semantic matching task.
• he usefulness of neighbors is conditional, dependent on the given counterpart. For both methods with

the uniformly sampled neighbors, the adapted TextGNN with counterpart atention outperforms the original
TextGNN consistently. Such an observation indicates that a neighbor is likely to contribute more to the semantic
matching task if it is relevant to the matching counterpart.

Both indings are consistent with our statements about the neighbor features: noisy and conditionally useful.
Without an efective neighbor selection mechanism, the graph-based semantic matching could be inaccurate and
ineicient due to the introduction of useless neighbors. Notice that although the “counterpart atention based
Top-� neighbor selection” improves the accuracy, it has low feasibility in practice as the entire neighbors still
need to be encoded by heavy-loaded text encoders. A practical selection mechanism will be introduced in our
subsequent discussion.

3.3 Neighbor Selection
Given the discussed properties of the neighbor features, it is important to select the subset of neighbors which
are truly helpful to the speciic semantic matching task. In this paper, we aim to learn a neighbor selector to
complete the selection deined as follows.

Deinition 3.2. (Neighbor Selection) Given the semantic matching task between the query document � and
key document � (whether � is positive or negative is unknown), the neighbor selector S(·) learns to identify
the subsets of neighbors:

�.�̃ ← S(�.� |�,�), � .�̃ ← S(�.� |�,�); (3)
such that the semantic matching accuracy can be optimized on top of the selection result:� ⊕�.�̃ and � ⊕�.�̃ .

According to the above deinition, the selector S(·) is expected to realize the following two functionalities.
(1) Ranking: which identiies the relative importance of the neighbors; (2) Truncation: which determines how
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Fig. 4. The whole architecture of our CDSM framework with a two-stage workflow: (1) A lightweight ad-hoc neighbor
selector is deployed to filter the optimal subset of neighbors for the matching documents; (2) A high-capacity matching
model is employed to calculate the relevance score with these selected neighbors.

many top-ranked neighbors should be selected and utilized. Insuicient selection will be less informative, while
excessive selection will introduce noise.

Besides, the selector is desirable for satisfying two properties. Ad-hoc: instead of assigning a ixed set of
neighbors to each document, the selection needs to be dynamically dependent on the given counterpart: the
query’s neighbors are selected w.r.t. the key to be matched, and vice versa. Lightweight: the neighbor selector
needs to be highly eicient, such that it could traverse all neighbors for the optimal subset with afordable
computation overhead.

4 CASCADED DEEP SEMANTIC MATCHING
In this work, we propose Cascaded Deep Semantic Matching (CDSM), a generic framework for accurate and
eicient semantic matching on textual graphs. It consists of two modules: the lightweight ad-hoc neighbor se-
lector, and the high-capacity graph-based semantic matching network. Besides, we design a hybrid optimization
algorithm to train the above two modules. We also demonstrate a prototype implementation of CDSM, which
realizes the properties required in Section 3 and shows strong empirical performance.

4.1 The CDSM Framework
he proposed CDSM framework is illustrated in Figure 4, which completes the graph-based semantic matching
in two consecutive steps. First, a lightweight ad-hoc neighbor selector is developed to ilter the optimal subset of
useful neighbors that would help to discriminate the semantic relationship between the query and key. Second,
a high-capacity graph-based matching network is employed to calculate the relevance score based on the given
documents and their selected neighbors. he detailed formulations are introduced as follows.

4.1.1 Ad-hoc Neighbor Selector. In the irst stage, the CDSM takes the query document� , key document � and
all their neighbors �.� = [�.�1, . . . , �.��], �.� = [�.�1, . . . , � .��] as the input. hen, the ad-hoc neighbor
selection is performed with two operations: 1) ranking, which estimates and compares the importance of all
the neighbors, and 2) truncation, which determines how many top-ranked neighbors should be selected (i.e, the
value of � when making Top-� selection).
•Ranking function. We discuss two optional forms of the ranking function.he irst one is the one-step rank-

ing function R��� (·), where the importance of a query’s neighbor �.�� and a key’s neighbor �.� � is computed
as follows:

� (�.�� ) = R
��� (�.�� |�,�);

� (�.� � ) = R
��� (�.� � |�,�).

(4)

ACM Trans. Intell. Syst. Technol.
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Because the computation of the neighbor’s usefulness � (�.�� ) and � (�.� � ) purely relies on the� and � , the im-
portance scores of all neighbors�.� and �.� can be simultaneously computed in one step. he top-� neighbors
can be directly selected thereater:

�.�̃ = top-� (� (�.�� ) |∀�.�� ∈ �.� );
�.�̃ = top-� (� (�.� � ) |∀�.� � ∈ �.� ).

(5)

he other option is the multi-step ranking function, which consecutively ilters useful neighbors one by one in
multiple steps. In this method, the importance score of a neighbor is estimated based on not only the match-
ing documents � and � , but also the already selected neighbors �.�̃ and �.�̃ (initialized to be empty at the
beginning):

� (�.�� ) = R
��� (�.�� |�,�,�.�̃ );

� (�.� � ) = R
��� (�.� � |�,�, �.�̃ ).

(6)

he underlying intuition is that the selected neighbors are desired of providing comprehensive information about
� and � ’s relationship. As a result, their underlying semantics are desired to be diversiied. In other words, it
is unnecessary to choose multiple identical or highly similar neighbors, because no additional information can
be introduced by them. In this place, the selection is performed for � consecutive rounds w.r.t to the already
selected neighbors. he neighbor with the largest information gain is selected in each step:

�.�̃ ← �.�̃ +�.�∗, �.� ← �.� \�.�∗, where �.�∗ = argmax(r(�.�� ));

�.�̃ ← �.�̃ + �.�∗, � .� ← �.� \ �.�∗, where �.�∗ = argmax(r(�.�� )) .
(7)

• Truncation. he ranking function only measures the relative importance of all neighbors, whereas it is
still unclear how many top-ranked neighbors should be selected. Some documents may have very few useful
neighbors for the given semantic matching task, while others may have a large number of useful neighbors. In
this paper, we propose the following heuristic strategies to determine how to truncate the top-ranked neigh-
bors to get the optimal subset, including basically static methods and more lexibly dynamic methods. All these
strategies can be easily applied together with the ranking functions. In practice, the truncation strategy can be
chosen based on empirical performance.

Fixed Capacity. he simplest way of truncation is to set a ixed capacity and always select the same number of
neighbors for all documents when making the Top-� selection. As discussed above, a ixed capacity may lack the
lexibility to deal with documents with diferent numbers of useful neighbors. hus, more complicated strategies
are further introduced for a complement.

Absolute Value ashreshold. Since the utility of neighbors is relected by the predicted score � (�.�� ) or � (�.� � ),
we think there should be an absolute score threshold � to distinguish whether a neighbor is necessary to be
selected. In this case, a neighbor �.�� will be selected if � (�.�� ) > � , the same for �.� � . Both approaches set a
static threshold (capacity or value) for truncation, more lexibly dynamic methods are listed in the next.

Overall Ranking. Recall that we deine the semantic matching task in a typical ranking style as Deinition 1.1,
we think the truly positive key documents would have more useful neighbors to support their connection with
the query document than those negative ones. hus, when measuring the utility of all keys’ neighbors with the
ranking function, the positive key counterpart would have more neighbors that achieve high ranking scores,
and more neighbors should be selected for it. Based on this hypothesis, we propose to rank the neighbors of all
candidate keys in a uniied list, and select those neighbors within the Top-� position. We illustrate the matching
tasks between a query document� and a series of key documents �1, �2, . . . as an example. We copy� for many
times to construct document pairs with all the keys, obtaining [�1, �1], [�2, �2], . . .where all�� are the same. For
all keys, we rank all their neighbors�� .� � in a uniied list based on the ranking score � (�� .� � ) and selected those
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Fig. 5. The hybrid optimization workflow of the CDSM framework: (1) Training the graph-based matching network M
based on the document pairs with heuristically sampled neighbors; (2) Annotating the neighbors’ usefulness with the well-
trained matching network; (3) Training the neighbor selector with these weak annotations.

neighbors within the Top-� position for the corresponding key. With regard to the copied queries�1, �2, . . ., we
rank all their neighbors �� .� � in an uniied list on top of their ranking scores � (�� .� � ) and select the Top-�
neighbors. Although the � and �.� are copied, when dealing with diferent key documents, the ranking score
of the query neighbors is decided by diferent keys to highlight diferent neighbors.

Relevance Score as hreshold. Another intuition is that the introduction of neighbor features should strengthen
the correlation between� and� , as presented in Deinition 1.1.herefore, we expect that the selected neighbors
can outscore the original relevance between� and � . At irst, we measure the� and � ’s similarity as ���(�,�)
(sample implementation of ���(�,�) will be introduced in Subsection 4.3). hen, a neighbor �.��/�.�� will be
selected if it satisies � (�.�� ) > ���(�,�)/� (�.�� ) > ���(�,�).

To summarize, the method of ixed capacity selects the same number of neighbors for all documents, while
the other three methods are adaptive to diferent matching tasks. he two kinds of strategies can be combined
together to beneit each other.

4.1.2 Graph-based Matching Network. In the second stage, a graph-based semantic matching network is de-
ployed. he matching network will take the query � , key � , and the selected neighbors �.�̃ and �.�̃ as the
input. hen, it predicts � and � ’s relevance score as:

�(�,�) =M(� ⊕ �.�̃ , � ⊕ �.�̃ ), (8)

where “⊕” is the graph aggregator. hough CDSM is generic and adaptive to various matching models, we desire
a high-capacity graph-based semantic matching network in order to derive ine-grained relevance prediction,
e.g., TextGNN and GraphFormers. (his is diferent from the neighbor selector which requires lightweight com-
putation.) Besides, knowing that the matching network only needs to deal with a small set of well-selected
neighbors, |�.�̃ | ≪ |�.� | and |�.�̃ | ≪ |�.� |, the relevance prediction is ensured to be made with much less
computation overhead.
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4.2 The CDSM Optimization
he optimization of CDSM is challenging because there are no explicit measurements of neighbors’ usefulness.
To deal with this challenge, we propose a hybrid optimization worklow, where the neighbor selector is trained
on top of weak annotations from the semantic matching network.
•Hybrid Optimization he proposed hybrid optimization works in the following three steps, as illustrated

in Figure 5. First, we train the graph-based matching networkM based on the labeled document pairs and ran-
domly sampled neighbors. Second, the well-trained semantic matching model is used to annotate the neighbor’s
usefulness based on Deinition 1.1. Finally, the ad-hoc neighbor selector is trained on the annotation results
through contrastive learning. he details of each step are illustrated in the following.
•Train SemanticMatchingNetwork. Given a positive pair of documents�,� and their neighbors�.�, �.�

which are selected by random sampling or heuristic rules, the matching score is calculated as�(�,�) =M(� ⊕
�.�, � ⊕ �.� ) (Eq. 8). hen, we randomly sample a batch of negative key documents [�−1 , �−2 , . . . , �−� ]. he
matching network is trained to distinguish the positive keys from the negative keys by minimizing the classii-
cation loss.

L��� = −
exp(�(�,�+))

exp(�(�,�+)) +
∑

� exp(�(�,�
−
� ))

. (9)

In our implementation, we make use of “in-batch negative samples” [10, 15] to reduce the computation cost,
where for one positive document pair, the keys of the other samples in the same mini-batch are viewed as
negative keys.
• Train Ad-hoc Neighbor Selector. he neighbor selector is trained via weak supervision, with neighbors’

usefulness annotated by the semantic matching model trained in the last step. Based on whether the one-step
or multi-step ranking function is utilized, the data annotation is performed in two diferent ways.

When the one-step ranking function ���� (·) is utilized, a neighbor’s usefulness is determined purely based
on the input features of � and � . For a positive pair of documents �,� , their semantic matching score without
any neighbor features can be calculated asM(�,�). hen, the usefulness of each query neighbor �.�� for this
matching task is evaluated asM(� ⊕�.�� , �), and that of each key neighbor�.�� is denoted asM(�,� ⊕�.�� ).
A neighbor is useful if it improves the matching network’s prediction about the relationship between � and � ,
based on which the labels are generated by the formulations:

� (�.�� ) =

{

+ : M(� ⊕ �.�� , �) >M(�,�),

− : M(� ⊕ �.�� , �) ≤ M(�,�),

� (�.�� ) =

{

+ : M(�,� ⊕ �.�� ) >M(�,�),

− : M(�,� ⊕ �.�� ) ≤ M(�,�) .

(10)

� (�.�� ) and � (�.�� ) are the labels of the neighbors, andM(·) denotes the matching network’s predicting func-
tion.

When the multi-step ranking function ���� (·) is utilized, the neighbor’s usefulness is measured based on not
only � and � , but also the already selected neighbors. As a result, we deine a neighbor to be useful if it further
improves the matching network’s prediction about � and � ’s relevance ater introducing it into the currently
selected neighbor subset �.�̃ , � .�̃ .

� (�.�� ) =

{

+ : M(� ⊕ {�.�� , �.�̃ }, �) >M(� ⊕ �.�̃ , �),

− : M(� ⊕ {�.�� , �.�̃ }, �) ≤ M(� ⊕ �.�̃ , �),

� (�.�� ) =

{

+ : M(�,� ⊕ {�.�� , � .�̃ }) >M(�,� ⊕ �.�̃ ),

− : M(�,� ⊕ {�.�� , � .�̃ }) ≤ M(�,� ⊕ �.�̃ ).

(11)
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With the neighbors of all positive document pairs annotated, we construct neighbor pairs comprised of a
positive neighbor � +� and a negative neighbor � −� to train the selector by contrastive learning. Taking a given
query document � as an example, the neighbor selector is learned by minimizing the following loss:

L��� = −
1

1 + exp(−(� (�.� +� ) − � (�.�
−
� )))

. (12)

� (�.� +� ) and � (�.� −� ) are calculated by the corresponding ���� (·) or ���� (·), when diferent ranking functions
are applied.

4.3 The CDSM Implementation
In this place, we show a prototype implementation of the ad-hoc neighbor selector, which will be used in our
experiments. In order to guarantee eiciency, we adopt a lightweight architecture, including a CNN-based text
encoder and a ranking function. he implementation of graph-based semantic matching networks follows base-
line models, whose details will be introduced in Section 5.

As for the CNN-based text encoder, the input is an individual text, taking the query � = [�
�
1 ,�

�
2 , . . .] as an

example.he irst layer is a word embedding layer that converts tokens into low-dimensional vectors. By passing
the query through this layer, we obtain a word embedding matrix �� = [�

�
1 , �

�
2 , . . .]. he second layer is a 1-d

CNN layer, capturing local context information within the text sequence to obtain beter word representations.
As for the i-th term, its context-aware representation ��� is calculated as:

�
�
� = ReLU(�� × ��(�−� ) :(�+� ) + ��), (13)

where ��
(�−� ) :(�+� )

means the word embeddings from the position (� −�) to (� +�). 2� + 1 is the size of the context
window. �� and �� are the parameters of CNN ilters. hrough the 1-d CNN layer, the output is a matrix of
contextual word representations, denoted as �� = [�

�
1 , �

�
2 , . . .]. Considering that diferent words in a sentence

contribute diferent informativeness, we set the third layer as a word-level atention network. he query in the
atention mechanism is a trainable dense vector �� . We compute the atention weight of each word based on
the interaction between the query �� and the context-aware word representation, i.e.,

�� =
exp(�� )

∑ |� |
�=1 exp(� � )

, �� = (�
�
� )
� tanh(�� × �� + ��). (14)

Finally, the text representation �� of � is the weighted sum of all word representations based on the atention
weights, as:

�� =

|� |
∑

�=1

���
�
� . (15)

Using this CNN-based text encoder, we are able to obtain the text representation for the matching documents
�,� and all the presented neighbors.

With�,� and all neighbors represented as vectors, the ranking function is employed on them to evaluate the
neighbors’ importance. With regard to the one-step ranking function, we calculate the usefulness of a neighbor
as the relevance between it and the matching counterpart:

R��� (�.�� |�,�) = (�
�.�� )� �� , (16)

R��� (�.�� |�,�) = (�
�.�� )� �� . (17)
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Table 1. Time complexity analysis of CDSM and other graph-based matching methods.

Method All Neighbors Heuristic Selection CDSM
Time Complexity � ∗�� � ∗�ℎ + � ∗�� � ∗�� + � ∗��

Table 2. Statistics of the three datasets.

Dataset Wikidata5M DBLP Product
#Item 4,018,299 3,691,796 2,049,487
Avg.#N 27.35 46.94 17.02
#Train 7,145,834 3,009,506 3,004,199
#Valid 66,167 60,000 50,000
#Test 100,000 100,000 536,575

As for the multi-step ranking function, it calculates the usefulness for a neighbor �.��/�.�� according to
both the selected neighbor set �.�̃ /�.�̃ and the matching documents �,� . To highlight the diferent aspects
of information that the already selected neighbors cover, we perform max-pooling along the last dimension to
aggregate all selected neighbors. hus, the usefulness is calculated as:

R��� (�.�� |�,�,�.�̃ ) = � ( [�
� ,max-pool(��� |∀�� ∈ � )])

� �� , (18)

where � = �.�̃ +�.�� . � (·) is an MLP layer, [·, ·] indicates vector concatenation, and max-pool(·) is the max-
pooling operation along the last dimension.

For the function ���(·) to measure � and � ’s similarity, it works as:

���(�,�) = (�� )� �� . (19)

4.4 The CDSM Eficiency Analysis
As stated in Section 1, iltering a set of irrelevant neighbors with a lightweight neighbor selector could improve
both the eiciency and accuracy of graph-based semantic matching. Here, we deploy a mathematical time com-
plexity analysis to prove the CDSM eiciency. We compare the computation time for the semantic matching
task of directly using all neighbors, sampling neighbors heuristically and selecting neighbors with our CDSM
framework. he comparison results are displayed in Table 1.

In Table 1, �� represents the time cost of a high-capacity semantic matching network to encode a document.
�� indicates the time cost of the lightweight selector to process a neighbor node (�� << ��). �ℎ means the time
cost of selecting a neighbor through heuristic methods, such as random sampling. � and � represent the number
of all available neighbors and that of the selected neighbors respectively. As such, when � << �, CDSM saves
a lot of time for computing the ine-grained document representations compared with using all neighbors. Our
designed lightweight selector obtains document representations through CNN, thus the time cost �� would be
so small that CDSM can be comparably eicient as the heuristic sampling methods.

In the next sections, we conduct experiments to verify the strong performance and eiciency of the above
introduced simpliied selector.
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5 EXPERIMENTAL SETTINGS

5.1 Datasets and Evaluations
5.1.1 Datasets. We use three large-scale textual graph datasets for evaluation. 1)Wikidata5M3, a million-scale
knowledge graph dataset introduced in [24]. It contains entities and their connections. Each entity has an aligned
passage from the corresponding Wikipedia page and we take the irst sentence from the passage as its textual
description. 2) DBLP4. his dataset contains academic papers up to 2020-04-09 collected from DBLP5. he con-
nections between diferent papers are built upon their citation relationships. We use each paper’s title as its
textual description. 3) Product. his is a product graph dataset constructed from the real-world Bing search
engine. We track each user’s web browsing events along with the targeted product web pages and divide her
continuous events into sessions with 30 minutes of user inactivity as interval [29]. Following a typical product
graph construction method in e-commerce platforms [22], the products within a common session are linked to
each other. Each product has its corresponding textual description which indicates the product name, brand,
type and so on.

For these three datasets, we uniformly sample at most 50 neighbors for each center node from the set com-
prised of its one-order and two-order neighbors. he statistics of datasets are listed in Table 2.

5.1.2 Evaluations. In this paper, we deine the graph-based semantic matching task in the form of a ranking
problem, as Deinition 3.1. For each positive pair of query and key document, we sample 29 negative key docu-
ments, and the target is to rank the positive key higher than these negative keys. Two common ranking metrics
are leveraged to evaluate the matching accuracy: precision@1 (p@1) and ndcg.

5.2 Baselines
Our proposed CDSM is a generic framework to improve both the accuracy and eiciency of the graph-based se-
mantic matching task. It is highlighted for the two-stage worklow instead of a speciic semantic matchingmodel:
a lightweight neighbor selector to obtain informative neighbors and then the graph-based semantic matching
task is conducted, where various mainstream graph-based matching models can be adapted.

5.2.1 Graph-based Semantic Matching Models. To verify its generality, various mainstream graph-based seman-
tic matching models are incorporated as the backbone of the matching network. In these models, texts are all
encoded with BERT. he last layer’s [CLS] token embedding is treated as the document representation.
• BERT [4]: It calculates the semantic matching score as the dot product between the query’s and key’s [CLS]

vectors encoded by BERT respectively, without any neighbor features.
• TextGNN [32]: his is one of the most recent graph-based semantic matching methods, with pre-trained

language model BERT as the text encoder and GNNs to aggregate the information from neighbors. We consider
the following forms of GNNs. GAT [21], which combines neighbors and the center document as a weighted
sum of all their text vectors. he weight of each text vector is calculated as the atention score with the center
document.GraphSage [7], where the neighbors are irst aggregated, then the aggregation result is concatenated
with the center document embedding and passed through a dense layer to generate the inal representation for
semantic matching. here are four diferent aggregation variants: MaxSage and MeanSage, which aggregate
neighbors by max-pooling and mean-pooling respectively. AttnSage aggregates the neighbors based on their
atention scores with the center document. Counterpart aggregates the neighbors based on their atention
scores with the matching counterpart, as presented in Section 3. he above variants of TextGNN are denoted as
TextGNN(GAT/Max/Mean/Attn/CP) in our experiments.
3htps://deepgraphlearning.github.io/project/wikidata5m
4htps://originalstatic.aminer.cn/misc/dblp.v12.7z
5htps://dblp.uni-trier.de/
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• BERT4Graph: his is a naive extension of BERT from traditional text matching to graph-based semantic
matching. For the query, it concatenates the tokens of the query and all neighbors, with a [CLS] token added to
the head.hen, the joint token sequence is inputed into BERT for ine-grained interactions.he last layer’s [CLS]
token embedding is used for the semanticmatching, the same for the key document.he semanticmatching score
is calculated as their cosine similarity.
• GraphFormers [27]: his model adopts a deeper fusion of GNNs and text encoders than TextGNN to make

more efective use of neighbor features. It nests GNN components between the transformer layers to conduct
iterative text encoding and neighbor aggregation.

Except that BERT uses no neighbor information, the other matching models consider neighbors. We apply
them as the backbone of the matching network, and compare their performance under diferent neighbor selec-
tion methods.

5.2.2 Selection Approaches. Furthermore, to verify the efectiveness of the ad-hoc neighbor selector under our
CDSM framework, we compare it with other selection approaches, including random sampling and two heuristic
rule-based methods. All these baselines assign a static set of neighbors to each document, without dynamically
considering the matching counterparts like our CDSM. Details are listed as follows.
• Random Sampling: For each document, a set of distinct neighbors is randomly sampled from all the pre-

sented neighbors.
• Popularity: For each document, we rank all its neighbors according to their popularity, i.e., how many

nodes they have connections with. hen, the top-� popular neighbors are selected.
• Similarity: For each center document, the top-� neighbors that are most similar to it are selected. he

similarity is computed as the dot product between their vectors encoded by BERT.
• CDSM: his indicates the ad-hoc neighbor selector under our framework.

5.3 Model Setings
In our experiments, UniLMv2-base [2] is applied as the backbone of BERT. As for the ad-hoc neighbor selector,
the word embedding layer is initialized with the underlying word vectors in UniLMv2-base. Dimensions of the
word embeddings and hidden states are set as 768. We utilize the uncased WordPiece [25] to tokenize all text
sequences. he max length of sequences is set as 64 for Wikidata5M, 32 for DBLP, 32 for Product. For the CNN
text encoder, the size of the context window is 3. he batch size is 300 and the learning rate is 1e-5. Adam
optimizer is applied for training the selector.

As for high-capacity matching models, on Wikidata5M, DBLP and Product, the batch size is 160, 240, 240; the
learning rates are 5e-6, 1e-6, 1e-5. ‘In-batch negative samples’ and Adam are used for optimization. Each training
sample is comprised of two groups of documents: 1 query document with 5 randomly sampled neighbors; and 1
key document with 5 randomly sampled neighbors. he training is conducted with 8x Nvidia V100-16GB GPUs.

6 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct extensive experiments to explore the following research questions:

• RQ1: As a generic framework, can CDSM consistently improve both the accuracy and eiciency of the se-
mantic matching task when combined with various graph-based semantic matching networks? (Discussed in
Subsection 6.1)
• RQ2: Diferent truncation approaches are proposed to determine the number of selected neighbors. How do

they impact the efect and eiciency of the semantic matching task respectively? (Discussed in Subsection 6.2)
• RQ3: Can the simpliied selector learn to identify the usefulness of neighbors precisely enough? (Discussed

in Subsection 6.3)
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Table 3. Overall performance of diferent graph-based semantic matching models with diferent available neighbor sets: all
neighbors, randomly sampled 5 neighbors, 5 neighbors selected according to the popularity, the similarity with the center
document and the usefulness measured by CDSM. “†” denotes that the result is significantly beter than other selection
methods (except for all neighbors) in t-test with � < 0.05 level. “∗” denotes that the result is significantly beter than that
with all neighbors in t-test with � < 0.05 level. Results of the best neighbor selection method are shown in bold.

Data Methods All Random (5) Popularity (5) Similarity (5) CDSM (5)
p@1 ndcg p@1 ndcg p@1 ndcg p@1 ndcg p@1 ndcg

Wiki

BERT .644 .817 - - - - - - - -
TextGNN(GAT) .580 .772 .521 .732 .416 .664 .587 .781 .581 .778
TextGNN(Mean) .694 .850 .678 .840 .627 .810 .662 .828 .694† .850†
TextGNN(Max) .687 .844 .676 .839 .653 .827 .666 .831 .697† .852†
TextGNN(Atn) .696 .850 .679 .840 .620 .803 .664 .829 .694† .850
TextGNN(CP) .705 .856 .681 .841 .679 .843 .674 .836 .704† .855†
BERT4Graph - - .690 .846 .622 .789 .683 .841 .705† .858†
GraphFormers .704 .854 .689 .845 .698 .852 .685 .841 .707 .860

DBLP

BERT .821 .914 - - - - - - - -
TextGNN(GAT) .826 .918 .776 .892 .790 .900 .851 .929 .860†∗ .936∗
TextGNN(Mean) .845 .908 .817 .894 .816 .894 .815 .891 .844† .907†
TextGNN(Max) .805 .888 .812 .891 .813 .892 .812 .890 .833†∗ .902†∗
TextGNN(Atn) .843 .906 .815 .892 .813 .892 .813 .875 .842† .906†
TextGNN(CP) .852 .917 .819 .901 .818 .901 .816 .899 .850† .916†
BERT4Graph - - .864 .936 .873 .941 .878 .942 .901† .955†
GraphFormers .903 .955 .877 .944 .882 .946 .880 .942 .909† .959†

Product

BERT .481 .707 - - - - - - - -
TextGNN(GAT) .568 .774 .578 .781 .545 .760 .567 .770 .588∗ .787
TextGNN(Mean) .746 .883 .723 .868 .721 .867 .703 .852 .748† .885†
TextGNN(Max) .730 .873 .728 .871 .721 .867 .712 .858 .756†∗ .890†∗
TextGNN(Atn) .744 .882 .725 .869 .722 .867 .706 .847 .741† .881
TextGNN(CP) .756 .889 .728 .871 .723 .867 .710 .857 .760† .892†
BERT4Graph - - .739 .877 .733 .873 .722 .864 .771† .898†
GraphFormers .737 .879 .715 .864 .711 .862 .701 .852 .759†∗ .891†

• RQ4: How about the efect and eiciency of the one-step and multi-step ranking functions in CDSM? (Dis-
cussed in Subsection 6.4)

6.1 Overall Performance (RQ1)
To demonstrate the generality and efectiveness of CDSM, we compare the performance of diferent semantic
matching models in various scenarios where diferent neighbor sets are available: all neighbors, 5 randomly
sampled neighbors, 5 most popular neighbors, 5 neighbors most similar with the center document and 5 neigh-
bors iltered by the ad-hoc neighbor selector in CDSM. he comparison results are presented in Table 3. We
also conduct sensitivity testing with TextGNN(CP) on the number of neighbors selected by diferent methods,
shown in Figure 6. Furthermore, we check the matching accuracy with the top � neighbors selected by CDSM
as � becomes larger, shown in Figure 7. Due to the limitation of computing resources, at most 5 neighbors are
tested for BERT4Graph and GraphFormers. Observing all these results, we have several indings:
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Fig. 6. Performance curves of the TextGNN(CP) model with diferent numbers of neighbors selected by diferent methods.
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Fig. 7. Performance curves of diferent semantic matching models with diferent number of neighbors selected by CDSM.
The best results are marked by black circles.

First, extrinsic neighbor features provide helpful information for the semantic matching task, but
these neighbor features are indeed highly noisy. Selecting an optimal neighbor subset can achieve bet-
ter performance than using all neighbors. With joint consideration of the center document and neighbors,
these graph-based semantic matching models outperform the BERT only baseline in most cases. BERT4Graph
and GraphFormers which make fuller use of the neighbor features achieve the best results. However, only a
small fraction of neighbors actually contribute to the semantic matching accuracy while others are noise. Com-
paring the results of diferent graph-based matching models with all neighbors and the best-performed 5 neigh-
bors (shown in bold) on all datasets in Table 3, most matching models present similar performance. his result
demonstrates that a lot of neighbors take no information to improve the matching accuracy. Focusing on the
performance curves displayed in Figure 7, the curve of most models rises irst and then goes down as more and
more neighbors with litle informativeness are involved. his trend proves that selecting a set of truly informa-
tive neighbors can achieve beter matching accuracy than utilizing all neighbors.

Second, our proposed lightweight ad-hoc neighbor selector has the ability to eiciently select the
truly informative neighbors to enhance the semantic matching accuracy. As shown in Table 3, the 5
neighbors selected by our CDSM framework performmuch beter than the neighbor subsets constructed by other
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selection baselines. Random sampling is unable to distinguish the usefulness of neighbors. In Popularity and
Similarity, a static set of neighbors with a speciic atribute is assigned to each document and used in matching
tasks with various counterparts, thus leading to negative performance. Especially for the Popularity method, a
popular neighbor node on the textual graph may be general and contain less informativeness to help speciic
document matching tasks, which is obvious on theWiki dataset. Diferently, our neighbor selection is performed
in an ad-hoc manner to ilter neighbors that are relevant to the current counterpart to facilitate the current
matching task. Figure 6 further presents the comparison between diferent selection methods with diferent
numbers of neighbors. CDSM could always ilter more informative neighbors to achieve beter results than other
methods, especially for cases where the computation resources are limited and the number of available neighbors
is small. From Figure 7, we can come to that the neighbors ranked at high positions by CDSM signiicantly
improve the semantic matching accuracy, whereas the neighbors with lower scores hardly improve the accuracy
and even reduce the results. his observation proves that our selector can precisely measure the usefulness of
neighbors for a speciic matching task. Besides, we also test the time and space cost of neighbor selections.
Table 5 shows that the neighbor selector is suiciently lightweight and eicient.

hird, our generic CDSM framework can be well combinedwith various graph-basedmatchingmod-
els to consistently achieve better efects and eiciency on the semantic matching task. As shown in
Table 3, for diferent graph-based matching models, our CDSM framework can consistently select an efective
neighbor subset to achieve comparable or beter results than using all neighbors. his veriies the generality of
our proposed CDSM framework. In Figure 7, we ind that the best results of diferent models are all achieved with
a small subset of informative neighbors selected by our selector, instead of encoding all the presented neighbors.
hus, a large amount of unnecessary encoding cost is saved and much background noise is avoided to get beter
results. Observing Table 5, litle selection cost is increased while large encoding cost can be reduced by selecting
a subset of neighbors by CDSM.herefore, both the efects and eiciency of semantic matching can be improved
with the CDSM framework.

To conclude, we conirm that neighbor selection is critical for the graph-based semantic matching
task. Our CDSM framework can eiciently select a more efective neighbor subset for the matching
task, improving both efectiveness and eiciency.

6.2 Analysis of Truncation (RQ2)
As for the ad-hoc neighbor selector in our CDSM framework, in addition to the ranking function that predicts
the relative importance of all neighbors, we set truncation to determine howmany top-ranked neighbors should
be selected. Several diferent truncation approaches are proposed.We take empirical experiments to analyze their
impacts on the efects and eiciency of semantic matching respectively. he results are displayed in Table 4. For
all cases, the max number of selected neighbors is restricted to 20.

First of all, seting a relatively small ixed capacity as the truncation shows very stable performance on vari-
ous matching models. For the documents with few informative neighbors, these neighbors are involved without
too much noise. For those documents with a lot of efective neighbors, selecting a part of top-tanked neighbors
may be suicient to distinguish them from the negative keys. Introducing adaptive strategies further reduces
the computation cost, even promoting the matching accuracy. By seting an appropriate absolute value thresh-
old, we could adaptively select informative neighbors for each pair of matching documents. Fewer neighbors
will be selected for the scenarios where only a small fraction of neighbors are informative, instead of a ixed
number, thus saving a lot of computing resources. More neighbors would be selected for the documents that
have many informative neighbors, providing more supporting evidence to enhance the matching. he relevance
score threshold shows the best performance in most cases. Recall that in Deinition 1.1, we argue that a neighbor
contributes to a speciic document matching task when it provides additional evidence. As such, the relevance
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Table 4. Comparison of truncation methods. “Avg.N” indicates the average number of selected neighbors.

Datasets Methods Fixed Capacity Absolute Score Overall Ranking Relevance Score
NDCG Avg.N NDCG Avg.N NDCG Avg.N NDCG Avg.N

Wiki

TextGNN(GAT) .784 14.00 .784 7.09 .785 4.04 .784 5.79
TextGNN(Mean) .850 6.00 .850 4.23 .851 5.62 .850 9.99
TextGNN(Max) .853 5.00 .852 2.99 .852 2.80 .853 3.22
TextGNN(Atn) .850 7.00 .850 5.71 .850 5.71 .851 10.28
TextGNN(CP) .856 20.00 .855 10.33 .856 14.85 .856 10.66

DBLP

TextGNN(GAT) .937 10.00 .938 10.13 .938 11.06 .937 6.80
TextGNN(Mean) .911 16.00 .910 11.06 .911 11.80 .911 8.13
TextGNN(Max) .905 11.00 .901 8.95 .905 8.47 .905 7.32
TextGNN(Atn) .910 15.00 .910 12.93 .910 12.47 .910 8.87
TextGNN(CP) .920 18.00 .919 14.28 .920 14.32 .920 9.48

Product

TextGNN(GAT) .788 7.00 .788 2.27 .788 3.36 .788 4.77
TextGNN(Mean) .885 6.00 .885 4.71 .886 3.27 .886 3.91
TextGNN(Max) .893 3.00 .893 2.56 .892 1.76 .893 2.55
TextGNN(Atn) .883 8.00 .883 5.82 .883 4.05 .882 4.46
TextGNN(CP) .892 6.00 .892 4.67 .892 3.31 .891 4.34

Table 5. Comparison about the time and space cost of the lightweight selector and high-capacity semantic matching net-
work.

Scenarios All 50 Neighbors Select 5 Neighbors
Time(ms) Space(MB) Time(ms) Space(MB)

Selection - - 1.72 1000
Matching 1425.0 10219 217.0 2361
Total 1425.0 10219 218.72 3361

score threshold performs as a serious ilter to highlight neighbors that are more informative than the center
document.

6.3 Efects and Eficiency of Selector (RQ3)
To ensure the running eiciency, the neighbor selector in our CDSM framework should be lightweight. We
compare its computation cost with the high-capacity matching network and present the results in Table 5. he
time and space cost of the selector are both much smaller than the expensive matching model, which could
be ignored. hen, we conduct an experiment to analyze whether the highly simpliied selector can learn to
accurately identify useful neighbors.

Due to a lack of labels to explicitly measure the usefulness of neighbors, we develop a weak-supervision
strategy to train the neighbor selector on top of weak annotations generated by the well-trained matchingmodel.
hus, we evaluate the learning ability of the simpliied selector by how well it could adapt to the annotations
from the matching model. We make a comparative analysis of their respective evaluations about the neighbors.
At irst, we rank all neighbors of each matching task according to their usefulness measured by the semantic
matching model as Deinition 1.1. hen, we apply the trained selector to score the neighbors and observe which
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Fig. 8. Distribution of the top 10 neighbors selected in the CDSM framework. The rank position is decided by the usefulness
annotated by the well-trained semantic matching model.

neighbors in the above ranking are scored as the top 10.he distribution of original ranking positions is displayed
in Figure 8. We ind that most of the top 10 neighbors scored by the selector still correspond to those ranked
at the top 10 positions by the high-capacity matching model, some at 10-20. his demonstrates that the highly
simpliied selector its well to the annotations provided by the high-capacity matching model. It can identify
useful neighbors eiciently and accurately.

6.4 One-Step v.s. Multi-Step Selection (RQ4)
As for the ad-hoc neighbor selector in CDSM, we propose two diferent ranking functions, i.e. one-step and
multi-step ranking functions. he one-step ranking function measures the usefulness of all neighbors based on
only �,� and selects the top-� highest-scoring neighbors at one step. he multi-step ranking function ranks
and selects neighbors one by one. In each step, the neighbor leading to the largest information gain is selected.
We experiment to compare these two selectors with TextGNN. Limited by the computing resources, at most 5
neighbors are selected.

Observing the performance curve of the two ranking functions in Figure 9, both approaches have the ability
to distinguish the informativeness of diferent neighbors and select efective neighbors for the matching task.
he multi-step ranking function performs a litle beter than the one-step. We infer that it may be because the
multi-step method selects neighbors in a greedy way to construct a best-performed neighbor subset, instead of
evaluating each neighbor separately. In this case, the computation cost of multi-step selection would be much
larger than the one-step selection since it needs to evaluate the neighbors multiple times. On the whole, the
more eicient one-step selection can achieve a beter trade-of between efects and eiciency. We employ the
one-step ranking function in other studies.
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Fig. 9. Performance curves of One-Step Selector and Multi-Step Selector on the Wiki dataset.

6.5 Case Study
he neighbor selector is the core module in our proposed CDSM framework, and the quality of selected neigh-
bors would directly afect the accuracy of the subsequent text matching. In order to evaluate the quality of neigh-
bor selection, we carry out a qualitative case study on the DBLP dataset. For each pair of documents (uery � ,
Key � ) to be matched, we adopt the neighbor selector to score all neighbor nodes. hen, we compare the infor-
mation contributed to the current matching task by the top 5 neighbors and the worst 5 neighbors respectively.
Experimental results are presented in Figure 10.

We make the following observations. As for the neighbors highly scored by the selector, they can contribute
some valuable information for determining the relationship between the current query and key documents. For
example, facing the query “Reinforcement learning: a survey”, the neighbor selector highlights the node relevant
with “reinforcement learning” for discrimination. As for the query “’DeepLab: Semantic Image Segmentation…’,
neighbors related to image segmentation are selected. However, the low-scoring neighbor nodes are much less
relevant to the query but only relevant to the key, and even introduce noisy signals.

7 CONCLUSION
In this paper, we identify the importance of neighbor selection in the graph-based semantic matching task and
propose a novel framework, Cascaded Deep Semantic Matching (CDSM). It leverages a two-stage cascaded work-
low for the semantic matching task. A lightweight neighbor selector is employed to eiciently ilter informative
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Deep Models
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1. Selective Removal of Impulse Noise Preserving Edge 

Information
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3. Context-Aware Synthesis for Video Frame Interpolation 3. Edge Focusing

4. GraspFusion: Realizing Complex Motion by Learning 

and Fusing Grasp Modalities with Instance Segmentation
4. Feature space learning model

5. Semi-supervised Segmentation of Optic Cup in Retinal 

Fundus Images Using Variational Autoencoder
5. R-CASENet: A Multi-category Edge Detection Network

Fig. 10. Case study of the selected and discarded neighbor nodes of the key document for the corresponding query. “yellow”
highlights relevance with the query and “blue” highlights relevance with the key.

neighbors for the given matching documents in the irst stage. hen, the matching model calculates ine-grained
relevance scores based on these selected neighbors. Both higher matching accuracy and speed are achieved by
our CDSM framework, as unnecessary computation and background noise from irrelevant neighbors are avoided.
We develop CDSM as a generic framework that can be seamlessly incorporated with mainstream graph-based
models. A weak-supervision strategy is proposed to train the selector with weak annotations generated by the
matching model. Empirical experiments on three large-scale textual graph datasets conirm the efectiveness
and generality of our CDSM framework.

In summary, one limitation of the current CDSM is that the neighbor selector can accurately compare the
usefulness of neighbors to highlight informative ones, but presents weak performance on truncation, i.e. de-
termining how many neighbors should be selected. In Section 4.1, we discuss several truncation approaches,
without one consistently performing the best on all datasets. Designing a more universal automatic truncation
method is a research topic in the future. In addition, the current two-step optimization method of CDSM can be
iterated multiple times. How to enhance the ability of both the selector and matching model through iterative
optimization is also under-explored.
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