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Search result diversiication aims to generate diversiied search results so as to meet the various information needs of users.
Most of those existing diversiication methods greedily select the optimal documents one-by-one comparing with the selected
document sequences. Due to the fact that the information utilities of the candidate documents are not independent, a model
based on greedy document selection may not produce the global optimal ranking results. To address this issue, some work
proposes to model global document interactions regardless of whether a document is selected or not, which is inconsistent
with actual user behavior. In this paper, we propose a new supervised diversiication framework as an ensemble of global
interaction and document selection. Based on a self-attention encoder-decoder structure and an RNN-based document
selection component, the model can simultaneously leverage both the global interactions among all the documents and
the interactions between the selected sequence and each unselected document. This framework is called Greedy Diversity
Encoder with Self-Attention (GDESA). Experimental results show that GDESA outperforms previous methods that rely just
on global interactions, and our further analysis demonstrates that using both global interactions and document selection is
necessary and beneicial.

CCS Concepts: · Information systems→ Information retrieval diversity.
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1 INTRODUCTION

According to studies, the majority of user-issued queries contain short, ambiguous, or unclear words or phrases
[11, 14, 29, 30]. For example, when the query łJavaž is issued, one user may search for information about łJava
islandž, while another may want information about the łJAVA programming languagež. Even a single user may
expect diverse results that can cover diferent aspects of their information need. Search result diversiication is
used to address this problem by returning a diversiied document list that can satisfy a variety of information
needs.

Existing models of search result diversiication can be categorized into supervised and unsupervised, depending
on whether supervised learning is applied. Most traditional approaches are unsupervised, and they rely on
handcrafted features and functions [1, 5, 9, 13, 27]. In recent years, an increasing number of researchers have
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attempted to apply machine learning methods to search result diversiication to automatically learn an eicient
ranking function [34, 35, 41]. These supervised approaches model the diversity of each candidate document
either by the subtopic coverage of the results [1, 9, 13, 15, 27] (also known as explicit approaches), or by the
novelty based on document-document similarity without using subtopics [34, 35, 41, 45] (also known as implicit
approaches).

Obtaining a global optimal ranking for search result diversiication is a NP-hard problem, because the model
has to search the entire ranking space by enumerating all possible permutations of documents. In general, there
are three typical methods to tackle this problem:
(1) The irst one is a greedy document selection strategy. This is the most common method that frames

document ranking problem as a greedy sequential document selection ś A diversiication model ills each rank
position sequentially by comparing each candidate document with the selected documents and selecting the most
diversiied one. The interaction between each candidate document and all selected documents can be used as
diversity features. We refer to this type of interaction as sequential interaction. The greedy document selection
strategy can be used as a simpliication of the global optimal ranking and thus reducing the computing cost. Since
users typically browse the document list from top to bottom, greedy document selection is also advantageous
due to its resemblance to human behavior.

However, researchers [12] found that conventional greedy document selection approaches cannot always result
in global optimal rankings. This is because previous methods focused exclusively on the interaction between
each candidate document and the selected document sequence, neglecting the candidate document’s interaction
with other candidate documents. Because the information utilities of all candidate documents are interdependent,
selecting one of them will inluence the utilities of others. As a result, selecting each locally optimal document
sequentially may not lead to a global optimal document ranking. This problem is even more severe when the
selected sequence is short or empty (typically at the beginning stage of ranking). For instance, assuming there are
three candidate documents {�1, �2, �3}, where �1 covers the subtopic �1; �2 covers �2, �3; �3 covers �1; and all three
documents have similar relevance scores to the given query. At the beginning, the selected sequence is empty,
so any of the candidate documents can be viewed as a łdiversiied documentž for the empty selected sequence,
namely the diversiication scores of {�1, �2, �3} are indistinguishable. For such a case, a greedy selection-based
diversiication model will select �1 for the irst ranking position. However, because the diverse ranking task
seeks to satisfy most user intents at the former position, �2 is a better choice than �1 in terms of intent-based
diversiication metrics (e.g., �-nDCG). A straightforward solution for this problem is to introduce additional
subtopic information, as some explicit approaches have done. However, in practice, it is diicult to collect the
ground truth of user intent coverage for each document in ranking tasks. As an alternative, existing explicit
diversiication models employ automatically mined subtopics, which are diferent from the actual user intents.
Consequently, these models cannot estimate the user intent coverage of each document accurately. In other
words, explicit diversiication methods cannot solve such a łcold startž problem completely.

(2) Another possible solution is to consider the entire candidate document sequence as a whole and model
the interactions between all candidate documents globally. We refer to this kind of document interaction as
global interaction. In recent years, several multivariate ranking models have been proposed [2, 20]. They use
sequential neural networks (e.g., LSTM or Transformer [33]) to learn the global interactions between all candidate
documents. The documents are ranked according to the ranking scores computed by the model. Nevertheless,
such kind of methods ignores the sequential interactions and pays less attention to the document selection
process. Indeed, in search result diversiication, the selected documents and candidate ones play diferent roles
in the process. The next selection is highly relied on the previous selection status. The global interaction based
methods is hard to accurately rank all documents in one time. Moreover, things are more severe when some
documents are ranked at the sub-optimal positions. The sequential interaction-based methods can adjust the
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Fig. 1. The comparison of sequential interaction and global interaction. For the sequential selection models, each candidate
document can interact with the selected document sequence, but the candidate documents themselves are independent of
each other. For models that consider global interaction (e.g., DESA), all documents can interact with each other, and the
model does not distinguish whether a document is selected or not. Our proposed GDESA is an ensemble framework, in
which both global interaction and sequential interaction are taken into account.

latter part of the sequence so as to reduce the redundancy in previous part, but the global interaction based
methods are helpless on these cases.

(3) In addition to applying greedy search or considering global interaction, researchers also tried Monte-Caro
Tree Search (MCTS) to explore a larger ranking space and increase the probability of selecting the global optimal
document [12]. However, as a deep reinforced learning model, it is diicult to train and deploy in real applications
since MCTS is extremely time-consuming. Besides, since MCTS is a sequential process that is incompatible with
parallel computing, it is diicult to accelerate the model training with modern powerful hardware such as GPUs
and other parallel computing devices.

In this paper, we propose a new search result diversiication framework that combines both global interaction
and sequential interaction. We call this framework Greedy Diversity Encoder with Self-Attention (GDESA).
The comparison between our framework and existing methods is shown in Figure 1. For global interaction,
we employ a self-attention based encoder-decoder structure (similar to our previous work [22]) to model the
global document interactions between candidate documents and subtopics. In the framework of GDESA, we
use a self-attention based encoder to model the candidate document sequence and the subtopics. This encoder
component can measure the global document interactions between each document in the candidate sequence
for re-ranking, while the global interactions indicate the novelty of each candidate document. Additionally, our
framework contains an optional decoder component that can learn the subtopic coverage of diferent documents
when the subtopics are available. We also analyze the mechanism how self-attention works in diversiication
tasks theoretically. For sequential interaction, we equip our framework with an RNN-based greedy sequential
selection component. It can greedily select the best candidate document at each ranking position. By this
means, our method can inherit the advantages of the greedy document selection strategy. Instead of applying
reinforcement learning and MCTS, our framework is based on multi-head self-attention and supervised learning.
The training/inference can be well-supported by parallel computing hardware.

Experimental results on the TREC Web Track data show that our GDESA model outperforms the state-of-
the-art implicit and explicit diversiication models. The improvement of GDESA over DESA demonstrates the
efectiveness of our proposed greedy sequential selection component and the combination of global and sequential
interaction. Moreover, our detailed analysis indicates that introducing the new component has less inluence on
training and inference eiciency.
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The contributions of this paper are summarized as follows:

(1) We propose a search result diversiication framework that incorporates both global document interaction
and sequential interaction. Compared with the previous approaches that are solely based on greedy
sequential selection, our framework has a higher probability of achieving the global optimal ranking.
Additionally, our framework is more similar to the actual user behavior in diversiication tasks than global
interaction based approaches.

(2) More speciically, we use a self-attention based encoder-decoder structure for modeling global document
selections. We then theoretically analyze why self-attention is suited to the task of search result diversii-
cation. Besides, we employ an RNN-based component to model the selected sequence in order to select
candidate documents greedily.

(3) Experimental results demonstrate that our proposed framework can outperform existing implicit and explicit
approaches signiicantly. Both training and inference are efective and eicient. Subsequent experiments
and analysis indicate the value of leveraging both global interaction among all the documents and sequential
interaction between selected document sequence and candidate documents.

This paper is an extension of our previous work [22] which has been presented at the Conference on Information
and Knowledge Management (CIKM 2020). The main extensions of this paper are listed as follows:

(1) Comparing with our previous framework of DESA, the new GDESA framework can leverage both global and
sequential document interactions. We further demonstrated that it’s necessary and beneicial to incorporate
the two kinds of interactions to improve the performance of search result diversiication.

(2) We measure the training and inference time of DESA and GDESA, demonstrating that GDESA is efective
and eicient compared with the previous MCTS-based work [12].

(3) We extend the experimental results with new baselines including DALETOR [39], DVGAN [18], MDP-
DIV [36] and PPG-DIV [38]. Based on the results of those new baselines, we also analyze the efect of initial
ranking lists in diversiication tasks.

(4) We propose a discussion on relevance and diversity, and we further demonstrated that our proposed GDESA
framework is robust to deal with poor initial ranking lists1.

The rest of the paper is organized as follows. In Section 2, we introduce some related work, including a brief
introduction of search result diversiication, the sequential-based approaches, and the global-based approaches.
In Section 3, we introduce the structure of our GDESA framework and explain how the framework leverages both
global interaction and greedy document selection. In Section 4, we describe the self-attention based components
in detail. Section 5 contains the description of the sampling and optimization process, the analysis of how
self-attention works in search result diversiication task, the analysis of time complexity, and the comparison
between our GDESA framework and previous methods. In Section 6, we report our experimental result, and we
analyze it in detail. Finally, we make a conclusion of our work in Section 7.

2 RELATED WORK

2.1 Background of Search Result Diversification

Most of the traditional ranking models in Information Retrieval are based the Probability Ranking Principle
(PRP) [25] hypothesis, which assumes that all the documents are independent one another. While in search result
diversiication, a document’s diversity is based on its novelty compared with others, so the model has to consider
the dependencies between diferent documents.

1In our paper, łpoorž means that there are only a few intent-covered documents in initial ranking lists, while łrichž means that there are

many candidate documents with intents covered. In the view of evaluation metrics, łintent-coveredž means that this document has got a

positive diversify judgment.
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Table 1. Categorization of previous sequential-based diversification approaches.

Unsupervised Supervised Reinforced

Explicit/Integrated IA-Select, HxQuAD, PM2,
TPM2, TxQuAD, xQuAD,
HPM2

DSSA, DVGAN -

Implicit MMR SVM-DIV, R-LTR, PAMM,
NTN

MDP-DIV, PPG-DIV,
M2DIV

Existing diversiication approaches can be classiied as implicit or explicit, depending on whether user intents
(represented as subtopics) are explicitly modeled. The implicit diversiication approaches measure the similarity
between each candidate document and the previously selected documents and assumes that a novel candidate
document should be dissimilar with the selected documents. The most typical implicit model is the Max Margin
Relevance (MMR) [5] model:

ScoreMMR = �score(�� , �) − (1 − �)max� � ∈�sim(�� , � � ), (1)

where score(�� , �) denotes the relevance score of the current document candidate �� and the given query �, and
sim(�� , � � ) denotes the similarity of �� to the selected document � � in the selected set � . The less similar the
candidate document is to the selected documents, the more diverse it will be. The inal ranking score of the
candidate document is a linear combination of the relevance and novelty scores.
The explicit approaches measure the diversity of documents by explicitly modeling the intent coverage of

documents. Those user intents are represented as subtopics. In explicit diverse ranking, a candidate document
is considered diverse if it covers as many new subtopics for the given query as possible when compared with
the selected document sequence. Ideally, explicit approaches would outperform implicit approaches since they
can explicitly model subtopic coverage. While in practice, online ranking tasks lack the ground truth for intent
coverage, and the mined subtopics may not be comparable to the actual user intents. As a result, the explicit
approaches may not always outperform than implicit methods.
Besides, according to a recent literature [19], existing methods can also be divided into approaches with

sequential interaction and approaches with global interaction. In the following section, we will introduce them in
detail.

2.2 Sequential-based Diversification Approaches

Most existing approaches are based on sequential document selection to generate the diversiied ranking lists.
These approaches are referred to as łsequential-based approachesž. They usually compare each candidate docu-
ment with the selected document sequence, then select and append the next document to the selected document
sequence. This process is repeated until all candidate documents are selected. Some sequential-based methods
are implicit approaches [23, 31, 34, 35, 41, 45]), while others are explicit approaches [9, 13, 15, 27]. Recent years,
integrated approaches have also been proposed to integrate both implicit and explicit features for diversiication.
DVGAN [18] is a typical method that uses an implicit model and an explicit model as the generator and discrimi-
nator respectively in a GAN (Generative Adversarial Networks) structure. According to the optimization process,
existing sequential-based methods can also be divide into unsupervised approaches, supervised approaches, and
reinforced approaches, as shown in Table 1.
All sequential-based methods apply a greedy selection strategy. They independently compare each single

candidate document to the selected document sequence and ill in the document ranking list with the locally
optimal document one by one. Interaction between all the candidate documents is neglected. Since the actual
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information utilities of the candidate documents are not independent, this strategy cannot guarantee a global
optimal ranking. Some researchers [12, 36] proposed to use Monte-Caro Tree Search (MCTS) to search a larger
ranking space and minimize the gap between local optimal and global optimal rankings. However, the method is
diicult to train due to its high time requirement, and it can only model the document novelty but neglects the
subtopic coverage.

2.3 Global-based Learning-to-Rank Approaches

For ad-hoc ranking task, it has been reported that global inter-document interaction is beneicial for improving
the ranking performance in online systems [2, 24]. Based on this observation, researchers have proposed various
approaches, including DLCM [2], SetRank [20], and DIN [21]. These approaches are based on multivariate scoring
functions that are implemented using a recurrent neural network or multi-head self-attention network. They
take the entire document sequence as input and simultaneously return all ranking scores. The inal ranking list is
produced by sorting all the documents according to their ranking scores. These approaches are referred to as
łglobal-based approachesž, because they measure the interactions between all candidate documents on a global
scale.
As an early exploration, DLCM [2] leveraged an LSTM network with an attention mechanism to model the

document sequence. Later, since a self-attention mechanism (also known as self-attention network) has achieved
great success in many NLP tasks [10, 33, 43, 46], researchers developed various ranking models using self-
attention networks to better model document interaction. Typical methods, such as DIN (Document Interaction
Network) [21] and SetRank [20], use a Transformer-like [33] multi-head self-attention encoder. Additionally,
researchers found that the self-attention network can provide a permutation equivalent for the document list,
which aids in ranking task.

Given that the sequential-based diversiication approaches overlook interaction between candidate documents,
it is straightforward to extend the global-based learning-to-rank approaches for diversiication. For example,
DALETOR [21] is a global-based diversiication approach based on DIN, and DESA [22] is based on SetRank.
However, those global-based ranking approaches do not distinguish whether a document is selected or not, so the
sequential selection process is neglected. Indeed, the selected documents and candidate documents play diferent
roles in search result diversiication. The selection process is relied on the status of previous selected document
list. Besides, it is common for a user to browse documents from top to bottom, so the top results are much more
important for diversiication. Therefore, we believe sequential interaction is still beneicial for diversiication
task.

2.4 Other Diversification Approaches

There are a few other diversiication approaches. For example, Yigit-Sert et al. [40] proposed three approaches to
transform the subtopic matching and weighting problem to a learning-to-rank problem. The methods depend on
extra features specialized for explicit diversiication based on known query aspects. Liang et al. [17] proposed a
supervised learning framework for enhancing the diversiication performance with personalized diversiication.
Diferent from these methods, we focus on search result diversiication without additional information.

3 PROPOSED METHOD

In this section, we will give the problem statement of search result diversiication and introduce the overall
framework of our proposed GDESA. More details about the implementation and optimization will be described
in Section 4 and Section 5.

ACM Trans. Inf. Syst.
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Table 2. Notations used in this paper.

Notation Description

� Input query

I,�� All subtopics corresponding to �

�� A single subtopic, �� ∈ I
D Candidate document sequence

� Embeddings of candidate document sequence

� Embeddings of all subtopics

R Returned document rank list

��,� Relevance features of document � to query �

��,�� Relevance features of document � to subtopic ��

d Initial document embedding for the document �

�� Initial subtopic embedding for the subtopic ��

�enc
�

Encoder output for the document �

�dec
�

Decoder output for the document �

hDS
�

Output of document selection component for the document �

hDSC Hidden state of selected context C
��� Relevance score of the document to the subtopic ��

S�,I Combination of all the subtopic satisfaction scores for �

��,�,I Document vector for generating the ranking score

[; ] Concatenation operation

3.1 Problem Formulation

Table 2 lists the notations used in this paper and their descriptions. For the query �, the corresponding subtopics
are represented as I, where |I | = � . And �� is the �-th subtopic (� ∈ [1, �] and �� ∈ I). Given � and the initial
ranking list D which includes a group of candidate documents, the diversiication approach aims at re-ranking
D to generate a diversiied ranking list R.

Diferent from the ad-hoc retrieval task which focuses on returning relevant documents, search result diversii-
cation must taken into account both the relevance of each individual document and its novelty compared with
the selected document sequence. As we described in Section 1, most existing diversiication models are based on
the greedy selection approach: each of the documents in the diversiied lists is iteratively selected by evaluating
the relevance of each remaining document and the novelty it adds to the previous selected documents. It must be
noted that in those previous models, each candidate document is compared separately to the selected document
sequence. The interaction between all candidate documents is overlooked, which may lead to suboptimal ranking
results.

Our method is based on DESA, in which all diverse ranking scores for each candidate document are computed
simultaneously, and the diverse ranking list is generated by directly sorting the documents according to their
scores, without resorting to greedy document selection. However, as discussed in Section 2.3, the greedy document
selection process is also beneicial for diverse ranking. Due to the permutation equivalence of self-attention[20],

ACM Trans. Inf. Syst.
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Fig. 2. The overall structure of GDESA. The framework takes the entire candidate document sequence and subtopics
together as input, and returns the encoded and decoded representations of each candidate document simultaneously. For
the �-th document �� , the static features of the document includes query relevance features x� , the encoded and decoded

representation henc� and hdec� , and subtopic coverage scores S�,I , while the dynamic features hDS
�

are based on the the hidden

state of selected sequence hDSC . The ranking score �� is obtained by the combination of static and dynamic features with a

learning-to-rank function.

.

the DESA framework without greedy document selection may fail to accurately measure the efect of ranking
positions.
To tackle this problem, we propose a GDESA framework that combines both global interaction and greedy

document selection process.

3.2 Overview

Figure 2 shows the overall structure of our proposed GDESA framework. Similar to existing document selection-
based approaches, GDESA greedily selects the next best document and sequentially generates R. The diference
is that the candidate documents in GDESA can interact with each other globally before the ranking starts. For
each ranking position, the ranking score � for the candidate document � can be described as:

� = GDESA(D, �,I, C, �), (2)

where C is the context state of the previous selected document sequence. The features used in GDESA are a
combination of static and dynamic features, which can be described as follows:

GDESA(�) = LTR
( [

Stat (D, �, �,I); Dyn(C, �)
] )

. (3)

Here GDESA(�) is the shortened form of GDESA(D, �,I, C, �). Stat(·) denotes the static features, while Dyn(·)
denotes the dynamic features. LTR denotes a learning-to-rank function, and [; ] is the concatenation operation.
The static features represent the properties of each document in initial sequence regardless of whether a document
is selected or not. Conversely, the dynamic features are changing during the progression of the greedy document
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selection process. At each ranking position, the document with the best ranking score will be selected and
appended to the selected document sequence. The two components can be trained in an end-to-end manner.

3.3 Dynamic Feature Component

The dynamic features are changing along with the greedy document selection process. We build a document
selection component to model the sequential interaction features and select the most diversiied candidate
documents at each position depending on the previous selected document sequence.
According to previous research, a self-attention network is permutation equivalent [20], which means that

it is inefective at modeling the sequential interaction between a selected document sequence and candidate
documents. Inspired by previous work [15], we apply an RNN-based model as the document selection component
and use the unsupervised method doc2vec [16] to generate the initial document representations rather than
building the optimized document representations automatically. For the candidate document � , the component
based on RNN cell at the �-th ranking position can be described as:

hDS� = tanh(W� [hDSC ; d] + b�), (4)

where W� and b� are parameters. The RNN cell takes previous hidden states hDSC and a candidate document d as

input, and returns the next hidden state hDS
�
. In our implementation, we apply LSTM as the RNN cell due to its

superiority on modeling long sequence. Consequently, hDS
�

is used as the dynamic features:

Dyn(C, �) = hDS� . (5)

3.4 Static Feature Component

The static features Stat (D, �, �) of the document � in GDESA are generated by the component of global document
interactions, which can be seen as a variation of DESA framework. Speciically, the static features of the candidate
document � are:

Stat(D, �, �,I) = [x�,� ; henc� ; hdec� ;S�,I] . (6)

Here S�,I is the combination of all subtopic satisfaction scores for � , x�,� is the combination of relevance features

between � and �. henc
�

and hdec
�

are document representations of � generated by self-attention encoder and decoder.
The static feature component of GDESA framework takes the initial ranking as input, and returns the static
features including the document representations, relevance features, and subtopic coverage. These features are
static, which means that they are not inluenced by the document selection process. More details are provided in
Section 4.

3.5 Ranking Process

As described in Equation 3, a learning-to-rank function takes the combination of static and dynamic features for
each candidate document � as input, and returns its ranking score � as follows:

� = tanh(w⊤� v + �), (7)

v = [henc� ; henc� ; x�,� ;S�,I ; hDS� ] . (8)

Most previous models are solely based on greedy sequential selection [28]. These models compare each
candidate document with the selected sequence, and the interaction between other candidate documents are
neglected. On the contrary, DESA takes a non-diversiied initial ranking sequence as input, models the global
interaction, and simultaneously returns the diversiied ranking scores of all documents. The ranking list is
generated by sorting all the candidate documents with their ranking scores without a document selection process.

ACM Trans. Inf. Syst.
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Algorithm 1 Greedy Selection Ranking of GDESA

Input:

The initial document sequence for ranking: � = {�1, . . . , ��}
The corresponding query: �

Output:

The diversiied document sequence �
� ← ∅
H
global
�

= SelfAtn(�) // pre-compute the global document interaction representations with the Self-Attention
encoder and dencoder
C = h��0 // initialize the irst hidden state for the empty |� |
while |� | < |� | do
�� = GDESA(Hglobal

�
, �,�)

� = argmax(�� )
� ← �

⋃{�}
C ← h��

�
//update C with the hidden state corresponding to the selected document

end while

return �

In our GDESA, both the document selection process and global interaction between documents are taken
into account. In general, GDESA takes all interaction between selected and unselected documents as ensemble
features. In ranking phase, it irst takes the initial ranking sequence D, query � and subtopics I as input, and
returns the static features Stat(D, �,I) for the entire sequence D. Since the static features of the documents are
independent with the document selection process, Stat(D, �,I) can be pre-computed at the beginning of the
ranking process, thus reducing the inference latency of the framework. When the static features of the documents
are computed, the framework focuses on the dynamic features for document selection.
For each ranking position � , the dynamic feature component is initialized with the hidden state hDSC corre-

sponding to the selected document sequence context C. When the component is initialized, hDS
�

is computed for

each candidate document � , and the ranking score � is calculated by the combination of h��
�

, x�,� ,S�,I and the

pre-computed [henc
�

, hdec
�
]. Once all candidate documents have been scored, the model can greedily select the

best candidate document with the highest score and append it to the selected document sequence. When the
document � is selected, hDSC will be updated with hDS

�
and the document selection component will be re-initialized

with the updated hDSC . This process is summarized in Algorithm 1. As a result, the state of the document selection
component is updated according to the document selection process, while the document representations for
global interaction remain unchanged. Due to the fact that the self-attention encoder is computed only once, the
computational cost of the GDESA framework will not be prohibitively high for online ranking tasks.

4 SELF-ATTENTION BASED STATIC FEATURE COMPONENT

In this section we will introduce the static feature component of GDESA based on self-attention networks. This
component is a combination of relevance features, subtopic coverage scores, and self-attention based document
representations.

4.1 Overall Structure

Similar to DESA, the static feature component takes the entire candidate document sequence as input and
models the interaction between all candidate documents by measuring their information utilities globally. More
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speciically, we inherit the encoder-decoder structure based on self-attention networks in DESA to model the
relationship between each document in D and each subtopic �� ∈ I. The encoder component takes the entire
candidate document sequence D as input, and returns the representations of all documents simultaneously.
Since the self-attention encoder allows the documents to interact with each other globally, those document
representations can relect the novelty or dissimilarity of a document. After the encoder-based representations
of both document sequence and subtopics are produced, the decoder component will take those two kinds of
representations as input, returning the decoded document representations indicating the subtopic coverage of the
documents. This framework is lexible and the decoder component is optional. It can be removed when subtopics
are not available. Under this circumstance, the component will work implicitly by modeling the document
interaction only.

4.1.1 Document Representations. For the static feature component, we use the same initial document representa-
tions as the ones used in dynamic feature component. We use the unsupervised method doc2vec [16] to generate
the preliminary document representations instead of building the representations automatically.

4.1.2 Self-atention Encoder. The self-attention encoder in the static feature component takes � as input and
returns the representations Henc

�
of the entire document sequence. When the subtopics are available, the encoder

also takes the embeddings of subtopics � as input and returns the representations � enc
�

for all subtopics, i.e., we
have:

Henc
� = SelfAtnEnc(�), Henc

� = SelfAtnEnc(� ), (9)

where the self-attention encoder is denoted as SelfAttnEnc(·). In the next section we will describe the decoder in
details.

4.1.3 Self-atention Decoder. The decoder takes the encoded representation of document sequence Henc
�

and

subtopics Henc
�

as input, and returns the decoded representations Hdec
�

for all the documents. For every document,
the decoded representation indicates the document’s subtopic coverage. This step can be described as the following
equations, where the decoder is denoted as SelfAttnDec(·):

Hdec
� = SelfAtnDec(Henc

� ,Henc
� ), henc� = Henc

� [index(�)], hdec� = Hdec
� [index(�)], (10)

where Henc
�
[index(�)] denotes the vector at index � in Henc

�
. For the document � , the encoded and decoded

representations henc
�

and hdec
�

are used to obtain the document’s ranking score. The component of modeling
subtopic coverage is called as łdecoderž in our paper. While in some other works [32, 44, 47ś49], this operation is
also known as łcross-attentionž.

4.1.4 Subtopic Coverage Scores. For each subtopic �� ∈ I, (� ∈ [1, |I |]), we use a linear learning-to-rank function
to learn the coverage score ��,�� through the subtopic relevance features x�,�� :

S�,I = [��,�1 ; . . . ; ��,� |I | ], ��,�� = x⊤�,��w� ·�� .

Here w� is a parameter, and�� is the weight of the subtopic �� . Following previous work [15, 22, 31], we use 18
traditional IR features for x�,� and x�,�� . Those features are listed as follows:

(1) BM25, TF-IDF and LMIR scores. Each of those three features is applied to those following levels: body, title,
anchor, URL and the whole passage.

(2) The PageRank score of the document.
(3) The number of incoming and outgoing links.

To enhance the subtopic coverage scores and reduce the efect of latent subtopic redundancy, we reuse the
subtopic representations of Henc

�
to obtain a score for each subtopic, which is then converted into a subtopic
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weight using a softmax function:

S� = (H� )⊤wI, W� = sotmax(S� ), �� = W� [index(�� )] . (11)

These scores denote the encoder-based weights of the subtopics. When a subtopic is redundant, its weights will
be penalized by the self-attention encoder. Details will be described in Section 4.3.

4.1.5 Summary of Static Features. The summarized document feature vectors v⊤
�,�,I are concatenated by the

following components: the query relevance features x�,� , the encoded document representation henc
�

and decoded

document representation hdec
�

, and the coverage scores of all the subtopics S�,I . Note that we use the same set of

ranking features for query � as those used for subtopics. This feature vector v⊤
�,�,I can be used as the output of

static feature component:

Stat(D, �, �,I) = v⊤�,�,I, v⊤�,�,I = [x�,� ; henc� ; hdec� ;S�,I] . (12)

In the remaining part of this section, we will describe the implementation of self-attention based encoder and
decoder.

4.2 Self-Atention Encoder

In GDESA, the self-attention encoder component denoted as SelfAttnEnc(·) can measure the global interactions
between all the items in the given input sequence. It takes the whole candidate document sequence D as input,
returning all the hidden states Henc

�
simultaneously. These hidden states are used as the document representations

with global interactions, which can indidate the novelty of every candidate document comparing with the other
ones. In this section we will introduce the implementation of self-attention encoder in detail.

4.2.1 Atention Function. In diversiication task, the self-attention layers take the document embeddings as
input. Diferent from RNNs, a self-attention network does not model the sequence information explicitly, so the
standard Transformer structure also includes an optional component of positional encoding to incorporate the
sequence information. In our work, we use trainable position embeddings which is the same as BERT [10]. These
embeddings can capture the sequence information of the documents by adding them to the input document
embeddings.

The self-attention component is implemented with multi-layer Transformer encoder blocks, which are based
on the scaled dot-product attention function denoted as Attn(·), as follows:

Atn(Q,K,V) = sotmax(QK
⊤
√
�
)V. (13)

where Q, K and V denote the query2, key and value matrices of the attention function, respectively. In diversiica-
tion tasks, the model takes the sequence of document representations D as input, and the query matrix can be
deined as Q = D.

4.2.2 Multi-Head Atention. Following previous work [20], we use the multi-head strategy to learn multiple
aspects of diferent documents. The multi-head attention strategy, denoted as MultiHead(·), irst projects the
inputs Q,K,V into ℎ diferent heads with the dimension �̂ = �/ℎ:

MultiHead(Q,K,V) = [a1; . . . ; aℎ], a� = Atn(QW�
� ,KW

�
� ,VW

�
� ), � ∈ [1, ℎ] . (14)

Here, all theWs are parameters. Previous research [20] has shown that using the multi-head strategy can help
the self-attention network to learn better document similarity distribution concerning multi-aspects. For the
self-attention, we have Q = K = V.

2Here łqueryž represents the query in dot-product attention, not the łqueryž in information retrieval.
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4.2.3 Overall Structure of Self-Atention Encoder. The overall structure of the encoder component is a multi-
layer stack of multi-head self-attention blocks. Similar to the original Transformer encoder block, each of these
self-attention encoder layers contains a dropout layer and a fully connected feed-forward network (denoted as
FeedForward(·)) with ReLU function as activation function. The �-th layer of the block is denoted as MSB� and
the encoder component SelfAttnEnc(·) with � layers can be described as follows:

SelfAtnEnc(D) = MSBL (MSBL−1 (. . .MSB1 (D)), (15)

MSB(Hprev) = LayerNorm(X + FeedForward(X)), (16)

X = LayerNorm(Hprev +MultiHead(Hprev,Hprev,Hprev)), (17)

where LayerNorm(·) denotes the layer normalization operation [3], and Hprev is the output hidden state matrix of
the previous encoder layer. For the irst layer, Hprev = D.

After multi-layers of multi-head attention interactions, the output hidden states of � input documents Houtput =

[henc1 , . . . , henc� ] can be used as the encoded document representations Henc
�

. This representation can indicate
the novelty of a document, and the learning-to-rank function can use this representation to judge whether a
candidate document is novel or redundant compared with other candidate documents.

4.3 Self-Atention Decoder

As described in Section 4.1.2, the encoder can also take the subtopics as inputs, and return the encoded represen-
tations of the subtopics. This is because the subtopic embeddings we used are actually the document embeddings.
We used the subtopic embeddings released by Jiang et al. [15] based on the doc2vec representations of pseudo
documents. More details about those subtopic embeddings can be found in Jiang’s paper.
The encoded subtopic representations are important to the decoder since these representations include the

attention distributions of the subtopics. In diverse ranking tasks, the available subtopics are mined from the
query, and they are usually more than the actual user intents. Comparing with the user intents, the subtopics may
still contain redundancy and mislead the diversiication model. As the encoded subtopic representations include
the encoder attention distributions of the subtopics, these distributions can be used to leverage the subtopics’
potential redundancy and minimize the misleading efect. The efort of redundancy reducing is identical to the
encoder-based subtopic weights mentioned in Section 4.1.4.

The decoder structure takes the representation of documents as query matrix, and subtopics as key and value
matrix, returning the Hdec representation matrix for the documents with the multi-head attention function:

Hdec = SelfAtnDec(Henc
� ,Henc

� ), (18)

SelfAtnDec(Henc
� ,Henc

� ) = MultiHead(Henc
� ,Henc

� ,Henc
� ). (19)

The output of the decoder hdec� is the subtopic representation of the document �� . This representation models
the subtopic coverage of document �� . The remaining part of the decoder component is similar to the encoder
component, including the feed-forward network, ReLU activation function, and layer normalization.

4.4 Modeling Global Document Interactions via Self-Atention

Based on self-attention networks, the static feature component of GDESA can globally measure the interactions
among all the candidate documents. The global interaction can make the GDESA model outperform the previous
models, especially when assessing former ranking positions. We expand on the example used in Section 1 to
explain. Assuming there are three candidate documents �1, �2, �3, with �1 covering the subtopic �1, �2 covering
�2, �3 and �3 covering �1, and the three documents have similar relevance scores to the given query. The subtopics
provided to the model are not identical to actual user intents and the model cannot measure the intent coverage
precisely. In the view of global interactions, �1 and �3 are redundant because they are similar with each other,
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while �2 is novel comparing with both �1 and �3. As a result, GDESA with global interactions can return a higher
ranking score for �2. Then, �2 is put on a former ranking position.

Both DESA and GDESA apply a self-attention mechanism to model the global interaction between documents.
However, the self-attention itself cannot distinguish whether a document has been selected or not, because all
documents are computed simultaneously. Under this circumstance, it is hard for the model to predict the position
of each document precisely as some document selection is heavily relied on previous selection. To tackle this
problem, we add a sequential interaction component to simulate the selection process. The global interaction
is only conducted between candidate documents, so the selection is also relied on their relationship with the
previous selected document list. By this means, our GDESA can inherit some advantages of greedy document
selection. The whole process can better meet the goal of search result diversiication, namely satisfying more
user intents at former ranking positions.

5 OPTIMIZATION AND ANALYSIS

In this section, we will introduce the model training and optimization of GDESA. We further analyze the
mechanism of self-attention diversiication task in theory. Finally, we will compare our framework with previous
works and discuss the diferences between them.

5.1 Training and Optimization

We irst introduce the optimization process of GDESA. As we described in Algorithm 1, for each ranking position,
GDESA takes all documents in the sequence D, all subtopics I, and the selected sequence context C as input,
and returns the ranking scores of all the unselected candidate documents for greedy document selection. In the
training phase, the score of a ranking � is calculated by summing up all the scores of documents in � :

�� =

|� |︁

�=1

�� . (20)

5.1.1 List-pairwise Sampling. Since datasets for search result diversiication task are limited, we use the list-
pairwise sampling approach proposed by Jiang et al. [15] to obtain suicient training samples. We use pairs of
training samples (�,�1, �1) with common context � . The documents �1 and �2 in the pair are concatenated with
� to generate the document sequence pair �1 and �2 respectively, so that the metric (e.g., �-nDCG) of the positive
document ranking sequence� (�1) is better than the negative ranking sequence� (�2).

The sampling process is described as follows: we irst obtain a group of contexts � with diferent lengths, then
the rest of the candidate documents are traversed, sampling a pair of document (�1, �2) where the metrics of
[�,�1] and [�,�2] are diferent. Here, some contexts � are obtained from the ideal rankings generated by human
labeled user intents annotations, and the others are sampled randomly. When using the list-pairwise samples, the
original loss function can be deined as a binary classiication log-loss formation:

���� =
︁

�∈�

︁

�∈��
|Δ� | [�� log(� (�1, �2)) + (1 − �� ) log(1 − � (�1, �2))] (21)

where � is a pair of samples; �� is all sampled pairs of query �; � is the set of all the queries; �� = 1 for positive
and 0 for negative; and � (�1, �2) = � (��1 − ��2 ) is the probability of being positive. Δ� = � (�1) −� (�2) represents
the weights of this sample, meaning that if the metric gap between the positive and negative rankings is larger,
the sample is more important. This process can be seen as a simulation of document selection process. With
the given context � , selecting the positive document �1 rather than �2 will be more beneicial to the diversity
of document sequence since� (�1) > � (�2). Training with pairwise sample (�1, �2) makes the model prefer to
select a better document, which is the same as the ranking process of greedy document selection.
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5.1.2 Sequence Mask for Training. In the training phase, both positive and negative samples are the ground-truth
rankings, not the candidate document sequence. Hence, the self-attention component is modiied with a sequence
mask used in the original Transformer decoder structure. Similar to users’ behavior, the diverse ranking task
is a top-down process, and the evaluation metrics of the document at the position � should not be afected by
the document at the position � ( � > �). Taking a pair of list-pairwise samples as an example: for the pair [�,�1]
and [�,�2] mentioned in Section 5.1.1, the document representation h���

�
of the document � (� ∈ �) will not be

afected by the appended document �1 or �2.
The sequence mask can prevent the unexpected self-attention interaction and guarantee that each document

only interact with itself and the documents at former positions. The scores of documents at former positions will
not be afected by the documents at latter positions. The sequence mask only takes efect in the training phase.

5.1.3 Context-based Pairwise Loss. As we described in Equation (20), the scores of a ranking � is the sum of
all document ranking scores in the sequence. For the sampling pair �1 = [�,�1] and �2 = [�,�2], we have got
��1 =

∑

�∈�1
�� + ��1 and ��2 =

∑

�∈�2
�� + ��2 . Here, �1 = �2 = � . Equation (7) shows that the ranking score of a

candidate document � is determined by those following components: the relevance features x�,� and subtopic

scores S�,I , the self-attention based document representations [henc
�

;hdec
�
], and the RNN-based hidden state

hDS
�
. x�,� and S�,I are the mono-variate features of � which will not be inluenced by other documents, so we

get x�1,� = x�2,� and S�1,I = S�2,I . Due to the sequential property of recurrent neural networks, we can also

get HDS
�1

= HDS
�2
. In Section 5.1.2, we mention that a sequence mask is deployed into the self-attention encoder,

and it will strictly guarantee that Henc
�1

= Henc
�2

. Since �1 and �2 are under the same query, we have I1 = I2 and
Henc
�1

= Henc
�2

, so it can also guarantee that Hdec
�1

= Hdec
�2

.

In conclusion, for the documents in common context � , it can strictly guarantee that
∑

�∈�1
�� =

∑

�∈�2
�� . So,

we can get:

��1 − ��2 = ��1 − ��2 , (22)

� (�1, �2) = � (�1, �2). (23)

Denoting the binary classiication log-loss function as LogLoss, Equation (21) can be simpliied as:

���� =
︁

�∈�

︁

[�,(�1,�2 ) ]∈��
|Δ� |LogLoss(� (�1, �2)) . (24)

This is the deinition of the context-based pairwise function. For search result diversiication task, the scores of
�1 and �2 depend on the context � . However, since the metrics of the context documents should not be afected
by the latter documents, the ranking scores of

∑

�∈� �� will not afect the loss function. This means that the
context-based pairwise loss function can be deined in the form of a pairwise loss function for the document pair
(�1, �2). It must be addressed that this loss function is actually a kind of listwise loss function since ��1 and ��2
depend on the whole ranking lists of the documents. The target of the model optimization is to maximize the
distance between the positive document �1 and negative document �2. When the model is trained, the goal of the
optimization is to improve the model’s ability to indicate whether a single document in the candidate sequence is
novel and covers more subtopics than the other candidate documents.

5.2 Theoretical Analysis

In this section, we analyze the efect of self-attention in the encoder-decoder structure of GDESA. Here, we
describe in detail why self-attention is suitable in the diverse ranking task. For simplicity, we will irst focus
on a single-layer self-attention function in the encoder component and ignore those additional strategies, e.g.,
positional embedding, multi-head attention, or layer normalization.
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The self-attention interaction of the document sequence � is calculated in parallel as an entire matrix, and
the attention score can be written as the following equation focusing on the �-th document �� represented as �� ,

discarding the scalar factor
√
� :

ScoreAtn (Q� ,K) = sotmax(Q�K⊤). (25)

For self-attention, it can be approximated that Q = K = V = D, and q� ≈ d� . The q�K
⊤ in Equation (25) can be

seen as the dot product scores between the �-th document and each document in the sequence including itself.
Using the softmax function, these scores are converted into weights. Since the dot product of two documents can
represent the similarity score between the two documents, the weights model the similarity distribution between
�� and each document in the sequence. The self-attention output of �� is deined as follows:

henc� = sotmax( [�1, . . . , ��])⊤V = [�1, . . . ,��]V = W⊤� V. (26)

Here, � is the length of document sequence, �� is the dot product between document �� and �� , and �� is the
similarity weight converted from �� . Section 5.1.1 shows the details of list-pairwise sampling for training. With
shared selected context document sequence � , positive and negative document pair �pos, �neg, the positive and
negative samples can be written as [�,�p] and [�,�n]. Given the softmax function property,

∑�
�=1�� = 1, for the

weights distribution of document �� , the equation can be written as:
︁

�∈�
�� +�� = 1. (27)

In the view of MMR, compared with the context � , the positive document �pos should be a novel document,
which means that �pos should be dissimilar with the documents in the context � . The dot product scores of �pos
with other documents �� (� ∈ �) should be signiicantly smaller than the scores of �pos with itself, indicating
�pos ≫

∑

�∈� �� (� ∈ �). After the softmax function, we get �pos ≫
∑

�∈� �� (� ∈ �). For the negative document
�neg, since it is a redundant document, the dot product scores with the context documents will be close to the score
with itself, and�neg ≫

∑

�∈� �� (� ∈ �) is no longer valid. As a result, a positive document will gain an attention
distribution concentrated to the document itself, while a negative document will gain an average distribution.
This is identical to the spirit of MMR, since a novel document should be dissimilar with the other documents, and
its similarity scores with other documents should be much smaller than the score with itself. Figure 3 shows the
diferent attention distributions of novel and redundant documents.
Using context-based pairwise optimization, the attention distribution distance between the positive and

negative documents will increase, and the learning-to-rank function of the model will be trained to return a
ranking score of �pos higher than �neg. With more self-attention layers, the distribution distance between the
positive and negative samples will expand further, and the learning-to-rank function will be more efective to
judge the novelty of a candidate document.
The analysis above is based on the self-attention encoder. Similarly, the document representation of self-

attention decoder can be deined as the following equations:

hdec� = Atn(henc� ,Henc
� ,Henc

� ) = [�dec
1 , . . . ,�dec

� ]Henc
� = (Wdec

� )⊤Henc
� . (28)

Here,�dec
� denotes the attention weights between document �� and subtopic �� . Similar to the encoder attention

distribution, the decoder attention distribution of hdec� will focus on the subtopics relevant to �� , and the irrelevant
subtopics will be ignored with lower attention weights. The decoder attention distributions of positive and
negative documents will be similar to the encoder attention. For the positive document, the attention distribution
will be concentrated on the relevant subtopics, and for the negative document, the distribution will be averaged
since none of the subtopics are relevant to the document. The decoder takes the encoded output representations
of documents H���D and subtopics H���I as input. A redundant document will also be afected by its encoder
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Fig. 3. Diferent atention distribution of novel and redundant documents

attention distribution, as its decoder attention distribution will be averaged more than the decoder attention
distribution for its original representation. This efect is also valid for subtopics. For a subtopic �� with redundant
encoder attention, since henc��

= (W���
��
)⊤I, its corresponding decoder attention weights�dec

� will also be afected
and weakened through the average distribution of Wenc

��
.

Taking hdec� as input, the learning-to-rank function will be able to model the subtopic coverage of d� together
with the relevance scores of subtopics.

5.3 Comparison with Previous Work

GDESA is inspired by several previous works: sequential-interaction based search result diversiication approach,
e.g., DSSA, and global-interaction approach, e.g., SetRank and our previous work of DESA. In this section, we will
compare GDESA with diferent types of previous works and analyze their diferences in detail.

5.3.1 GDESA v.s. Sequential-based Supervised Learning Approaches. The typical state-of-the-art supervised
learning approaches include the following ones: PAMM-NTN [35] for modeling the implicit diversity features,
DSSA [15] for modeling explicit diversity features, and DVGAN [18] for integrating both implicit and explicit
features. Ideally, the model with explicit features should always perform better than the model with implicit
features. But in practise, the explicit features are usually extracted from documents and mined subtopics, which
may not be identical to the actual user intent coverage. As a result, it will be optimal to combine both explicit and
implicit features. DSSA, DVGAN, and GDESA are sharing the unsupervised document and subtopic embeddings.
While DSSA is an explicit model and it does not measure the implicit diversiication features among documents.
Both GDESA and DVGAN combine the implicit and explicit features together to achieve better diversiication
results. For DVGAN, two instances of diversiication models are used as the generator and discriminator of GAN.
Usually the generator is an explicit model and the discriminator is an implicit model. And for GDESA, the implicit
and explicit features come from the self-attention and cross-attention encoders based on document and subtopic
representations.

Besides, all those supervised approaches mentioned above purely depend on sequential interactions and greedy
selection algorithms, which may lead to local optimal ranking results. In a global view, these results may be
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suboptimal. While the GDESA framework ensembles both sequential and global interactions, which can minimize
the gap between local optimal and global optimal rankings.

5.3.2 GDESA v.s. Global-based Supervised Learning Approaches. Typical multivariate ranking approaches include
DLCM [2], DIN [21], and SetRank [20]. DLCM is based on RNNs and attention mechanism, and the rest works
are based on self-attention networks. All those approaches mentioned are designed for ad-hoc ranking tasks,
and the corresponding diversiication extensions include DALETOR [39] and DESA [22]. All these global-based
approaches, for both ad-hoc ranking and diversiication, are not relied on sequential document selection. They
do not distinguish whether a document is selected or not. Since the self-attention network is permutation
equivalent [20], both DESA and DALETOR may overlook the ranking positions in diversiication tasks. Although
DALETOR can implicitly model the sequential interactions via optimizing the diversity metric, it is still beneicial
to model the sequential interactions more explicitly with an independent component. GDESA is based on DESA,
and it includes a document selection component for modeling the sequential interaction between the selected
document sequence and diferent candidate documents.

5.3.3 GDESA v.s. MDP-based Reinforced Learning Approaches. Typical reinforced learning (RL) based approaches
include MDP-DIV [36] and M2DIV [12], and MDP-DIV is further extended with PPG [38] (Pairwise Policy
Gradient) in order to reduce the variance of model training and measure the relative goodness of the documents.
We discuss those works in the following sections.

MDP-DIV is a sequential-based approach, and the candidate documents are selected via Markov Decision
Process (MDP). As a reinforced learning approach, MDP-DIV formulates the diverse ranking task as a process of
sequential selection and decision. In the view of reinforced learning, the state S represents the current condition
of the selected sequence and candidate documents, and the actionA denotes the operation of selecting a candidate
document and appending it into the selected sequence. For each action, the reward � is denoted as the increment
of evaluation metric (e.g., �-nDCG) corresponding to the action of document selection. With the policy function
� , the model tries to select the document with the best rewards in order to achieve an optimal ranking. The
advantage of MDP-DIV is that it can measure both the immediate rewards and the long-term returns by traversing
all the candidate documents in model training. Besides, it can make use of the additional information utility
for each document selection, and its light-weighted policy function makes it easy to re-rank a large scale of
documents in the initial ranking sequence.

However, compared with GDESA, MDP-DIV has got the following disadvantages:
First of all, MDP-DIV is still based on greedy selection, and it does not measure the global document interactions.

As a result, MDP-DIV will also lead to local optimal rankings instead of global optimal rankings. Second, as an
implicit diversiication approach, MDP-DIV cannot take advantage of external subtopic information. Moreover,
the policy function of MDP-DIV is completely based on unsupervised document embeddings, e.g., doc2vec, and
the relevance features are omitted. Xia et al. [36] claimed that MDP-DIV has got the advantage of end-to-end
diverse ranking without any handcrafting features. But in fact, Jiang et al. [15] have also claimed that the quality
of unsupervised embeddings is insuicient to model the relevance between queries (including subtopics) and
documents. This may be because DSSA is based on the poor Lemur initial rankings. For poor initial ranking lists,
the traditional IR features, e.g., BM25 are still necessary to judge if a document is relevant.
Search result diversiication aims to satisfy user intents at former ranking positions. If a document satisies

any user intents behind the query, it must be relevant to this query. A łdiversiiedž but irrelevant ranking list
will not satisfy user intents. With a rich initial ranking list, MDP-DIV may perform well since it will be easier to
select a relevant document covering intents. But if the ranking list is poor, MDP-DIV may fail to capture the
correct document with intent covered, leading to bad performance.

Besides, MDP-DIV is trained with the strategy of policy gradient, and the policy gradient strategy will directly
utilize the absolute performance scores instead of relative goodness. This may increase the variance of gradient
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estimation, and the model may fail to estimate if a document is better than another one. The successor work
of PPG focus on resolving the issue of relative goodness by introducing pairwise policy gradient in the model
training of MDP-DIV, which is similar to the pairwise loss function used in supervised learning. While the other
issues mentioned above are remained.

5.3.4 GDESA v.s. M2DIV. Another successor work of MDP-DIV is M2DIV, here łM2ž denotes MDP and MCTS
(Monte Carlo Tree Search). Same as GDESA, M2DIV also focuses on minimizing the gap between local and global
optimal rankings. In order to achieve this goal, M2DIV adapts MCTS instead of greedy selection to select the next
candidate documents in the sequential selection process. Comparing with greedy selection, MCTS can explore the
possible rankings in a larger scale of ranking spaces. As a result, the rankings searched by MCTS will get closer
to the global optimal rankings. While the critical issue of M2DIV is that MCTS is extremely time-consuming.
For online ranking tasks, MCTS may not be feasible since the inference latency is too high. In order to address
this issue, M2DIV also includes a raw policy without MCTS for online ranking tasks. Unfortunately, the time
consumption of model training is unavoidable. In the condition of commercial search engines, there will be a large
amount of training data, and the exploiting time cost of model training will be unafordable and unacceptable.
Moreover, MCTS is a sequential process, and it is diicult and inefective to accelerate the model training

with typical parallel computing hardware. In the training algorithm of MCTS, the framework selects a node
recursively until reaching a leaf node. Then, the node will either be expanded through simulation with value
function or evaluated with the ground-truth. Due to the sequential dependency, most of these processes above
can only be computed on a single CPU core, and only the simulation part can theoretically be accelerated by
parallel computation. But in practice, the implementation of parallel simulation is diicult, and the rest parts of
the algorithm cannot be accelerated. Besides, the policy function of M2DIV is only a single layer LSTM, which
may not take full advantage of GPU computing. For typical computing machines, the CPU should irst copy
data from system memory into video memory before GPU computation, and it should also copy the data back
into system memory when the GPU has inished computing. Copying data between system memory and video
memory should pass the data through the PCI-Express channels, which requires extra time latency. Since the
policy function in M2DIV is not large enough, the time saved by GPU computing can barely cover the increasing
latency of data pass-through. As a result, using GPU in M2DIV model training cannot signiicantly increase the
training speed.

Compared with M2DIV, GDESA is much more efective and eicient in both online ranking and model training.
The core operator in GDESA is Multi-Head Self-Attention (MHSA), which is widely supported by multiple deep
learning frameworks, such as PyTorch or LightSeq, leading to easy implementation of the model. The model
training of GDESA can be easily accelerated by GPUs or other parallel computing hardwares. For model training,
a GPU-accelerated GDESA can be more than 100× faster than M2DIV. It should also be addressed that the training
process of all MDP-based models also requires a larger scale of initial ranking sequences as input. As a result, the
model training of GDESA is faster than MDP-DIV and PPG.

5.4 Analysis of Time Complexity

In this section, we analyze the time complexity of GDESA. The framework of GDESA can be divided into the
static and dynamic components, and only the dynamic components is computed repeatedly in the document
selection process. The static component includes the encoder and decoder based on self-attention networks.
Ignoring the dimension expansion of document and subtopic embeddings, the time complexity is:

Θstat = �enc |D|2�� + �dec |D||I|�� + |I|� + |I|�� . (29)

Here, � is the number of relevance features, �� and �� are the hidden sizes of document and subtopic embeddings.
�enc and �dec denote the number of layers in encoder and decoder respectively.
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For the dynamic component, with vanilla RNN cells for document selection, the complexity of each single
ranking position is:

Θdyn = � (� + �� ) + |� |, (30)

|� | = 2�� + � +� + |I|. (31)

Here� is the hidden size of the cell, and |� | is the dimension of the vector |� | for overall scoring of Equation 12.
The overall time complexity can be described as:

Θ = Θstat + |R|Θdyn . (32)

In online ranking tasks, as those static features are unaware of the document selection process, the static
components will compute only once. Since the search result diversiication task is a re-ranking task, the ranking
list |D| will not be too long. In real ranking tasks, |R | can be smaller than |D|. For example, the model may take
the initial ranking list D with |D| = 50, while the length of diversiied ranking list R can be as small as |R | = 20.
Search result diversiication aims to satisfy more user intents at former ranking positions. For the TREC oicial
evaluation metrics, at most top 20 documents in the re-ranking lists are taken into consideration. In the real
applications, users prefer to pay more attention to the results on the top ranking positions, while ignoring the
latter results. On a 40 core 2.2GHz CPU server, the GDESA ranking takes about 44.7ms per query, and on the
same server with a Titan V GPU, the latency of a single query is about 24.7ms. Details about the ranking latency
will be described in Section 7.5.

6 EXPERIMENTAL SETTINGS

6.1 Data Collections and Evaluation Metrics

6.1.1 Datasets. In the experiments we used the same dataset as previous diversiication models (e.g., HxQuAD,
PAMM-NTN, and DSSA), which includes the Web Track dataset from TREC 2009 to 2012. There are in total 200
queries and 198 queries are used since query #95 and #100 have got no diversity judgements to use. Each of them
includes 3 to 8 annotated subtopics, and the relevance rating is marked as relevant or irrelevant at subtopic level.
We conduct all experiments on the ClueWeb09 dataset [7].

The subtopics used by the model come from the Google query suggestions provided by Hu et al. [13], and we
only use the irst level of the subtopics with no hierarchical subtopics. The maximum subtopic number of the
queries is 10, and the average subtopic number is about 9.48. As those previous works did [13], we regard all the
subtopics as having uniform weights. For the implicit approaches, the subtopics are ignored.
For a fair comparison, we used the same document relevance features and embeddings as with DSSA, which

have been released by Jiang et al. [15] in the repository on GitHub3. The training data includes 18 relevance
features for each query and subquery produced by traditional IR models, e.g., BM25 and TF-IDF, and the document
embeddings are generated by doc2vec with a window size of 5. In future work, we plan to incorporate several
deep-learning based technologies for feature extraction and document representation, e.g., K-NRM [37] or
BERT [10].
All of our training and evaluation data samples are exactly the same as DSSA. The list-pairwise training

samples are produced by the top-20 documents of Lemur initial rankings, and the top-50 initial rankings are used
for evaluation. And the pseudo documents for subtopic embeddings are produced by the top-20 (Z) documents.
Codes and ranking iles can be accessed at: http://github.com/qratosone/GDESA.

3https://github.com/jzbjyb/dssa
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6.1.2 Evaluation Metrics. The oicial diversity evaluation metrics of Web Track include ERR-IA [6], �-nDCG [8],
and NRBP [4], which are used in our experiments. Besides the metrics above, we also include the metrics of
Precision-IA [1] (denoted as Pre-IA), D#-nDCG [26] and Subtopic Recall [42] (denoted as S-rec). Inheriting
the spirit of the previous works [15, 18, 34, 35], all the metrics were computed on the top 20 results in the
document ranking lists. Two-tailed paired t-test are used to conduct signiicance testing with �-value<0.05. In
the signiicance testing, GDESA is compared with DSSA as the SOTA explicit supervised model of sequential
interactions.

6.2 Model Setings

On our GPU machine, the training phase of GDESA with the training samples of 160 queries can be inished
in three hours. We tuned the layer number � of the self-attention network in order to avoid overitting, with
� = �enc + �dec, where �enc is the number of layer for the encoder component and �dec is the number of layers for
the decoder. The layer number of LSTM is ixed into 1 and we only tune diferent � in cross validation. The batch
size is 256 and the learning rate is 0.008. Notice that the hyper-parameter settings of the encoder and decoder in
GDESA are not identical to the settings in DESA. Details of those settings will be described in Section 7.3.

We compare our settings with the non-diversiied baseline and those of previous implicit/explicit supervised
models. The detailed settings of GDESA are described next.We use ive-fold cross validation to tune the parameters
in all experiments with the widely used metrics �-nDCG@20. The settings of the baseline models are described
as follows:

Lemur. We use the search results produced by the language model and retrieved by the Lemur service as the
non-diversiied baseline.4 These results are released by Hu et al. [13] and can be found on the website.5 All the
diversiication approaches in our experiments use the search results of Lemur as initial ranking sequences.

xQuAD [27], PM2 [9], HxQuAD, and HPM2 [13]. These are the unsupervised explicit baseline approaches
for comparison. All the unsupervised methods use the parameter � to combine the relevance and diversity linearly.
HxQuAD and HPM2 require an extra parameter � to control the weights of the hierarchical subtopic layers. The
parameters are tuned with cross validation, and ListMLE [41] is used to learn a prior relevance function without
diversiication.
R-LTR [45], PAMM [34], and PAMM-NTN [35]. Inspired by previous work [15], we use the metric of

�-nDCG@20 to tune the parameters. The neural tensor network (NTN) is combined with both R-LTR and PAMM,
which are denoted as R-LTR-NTN and PAMM-NTN, respectively. The number of tensor slices for NTN is tuned
from 1 to 10, and the number of positive ranking �+ and negative ranking �− are tuned per query for the PAMM.
DSSA [15]. DSSA is the previous state-of-the-art explicit supervised diversiication approach. It models

diversity by subtopic matching scores with attention-based weights. We train the DSSA model with the released
code and data, and use the following optimized settings described in the work of DSSA: we use LSTM cells and
max-pooling on subtopic attention; the hidden size is 50; the dimension of the doc2vec embedding is 100; and
the random permutation counts 10 for the list-pairwise samples. In the released data, the author only provides
the document and subtopic embeddings of doc2vec, not the embedding of LDA reported in the work. Since the
quality of document embedding is not the focus of our work, for a fair comparison, all the experiments of NTN,
DSSA, DVGAN, DESA and GDESA are based on the same doc2vec embeddings. We denote this result as as DSSA
(doc2vec).

DVGAN [18]. DVGAN integrates an explicit model and an implicit model with a GAN framework. We use the
best setting of DVGAN-doc reported in the paper, namely using DSSA as generator and R-LTR as discriminator
and sampling about 10 samples of 10 negative rankings of 20-document-length for each query.

4Lemur service: http://boston.lti.cs.cmu.edu/Services/clueweb09_batch/
5http://playbigdata.ruc.edu.cn/dou/hdiv/
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DESA [22]. DESA is a global-based ensemble approach with both implicit and explicit features. We use use the
same coniguration in the paper: �enc = 2, �dec = 1 with head num � = 8. With the doc2vec embeddings, the
projected embedding length is 256 and feed-forward length is 400.

MDP-DIV [36]. MDP-DIV is an implicit diversiication approach based on reinforcement learning and Markov
Decision Process (MDP). We directly use the released code and coniguration iles and slightly adjust some of the
hyper-parameters.6 The learning rate is 1e-4, the hidden size is 5, and � is 1. The lengths of training and inference
permutation are expanded to 20. Since the evaluation metrics reported in [36] is based on another initial rankings
which are diferent from the Lemur initial rankings used in our experiments, we report the results based on their
initial rankings and our initial rankings, which are denoted as łMDP-DIV (original)ž and łMDP-DIV (Lemur)ž,
respectively.7

For łMDP-DIV (Lemur)ž, since it requires a large amount of documents to train the policy function, we use the
documents with intent annotations in the top-500 initial ranking list of Lemur. These documents can be obtained
by the data preparation tool łprep.pyž in Jiang’s GitHub Repository, and more details of the tool can be found in
the README ile of the Repository. The document and query embeddings for łMDP-DIV (Lemur)ž are the same
as used in DSSA and GDESA. The evaluation metrics used in the original experiments of MDP-DIV is ERR-IA@10
and �-nDCG@10. However, in our experiments, we use ERR-IA@20 and �-nDCG@20.

PPG-DIV [38]. PPG-DIV is an implicit approach based on reinforcement learning and integrates the strategy
of pairwise policy gradient (PPG). As the author does not release the data corresponding to their experiments, we
only reproduce the experiments on our Lemur initial rankings. Similar to MDP-DIV, we denote these results as
łPPG-DIV (Lemur)ž. Following the discussion parts of the original paper [38], we train the model for 200 epochs.
As there are not detailed settings provided in the paper, we directly use the settings released in their code.

DALETOR [39]. DALETOR is a global-based implicit diversiication approach relying on optimizing the
diversity metric. As the source code is not released, we implement DALETOR by ourselves for the experiments.
Following the paper [39], we optimize the model with the loss of �-nDCG. Notice that the results reported in [39]
are based on the initial rankings which are the same as łMDP-DIV (original)ž. We reproduce the experiments of
DALETOR only on Lemur initial rankings, the results are denoted as łDALETOR (Lemur)ž.

7 EXPERIMENTAL RESULTS

7.1 Overall Results

Table 3 shows the overall results of all the models. GDESA outperforms all those implicit and explicit baselines
based on sequential interaction features. The performance improvement is statistically signiicant on all metrics
except for Pre-IA and D#-nDCG. These experimental results clearly demonstrate the advantage of GDESA.
Comparing the SOTA sequential-based approach, the improvement of GDESA over DSSA on �-nDCG is about
3%. As an explicit model, DSSA uses the RNN and attention mechanism to select the best document satisfying
the subtopics needed by the selected sequence, but it does not model the document novelty implicitly. GDESA
outperforms DSSA by leveraging both document novelty and subtopic coverage simultaneously. Besides, DSSA
purely depends on greedy document selection, which may select the local optimal document at each step leading
to a global suboptimal ranking. Conversely, the self-attention networks in GDESA can learn the global document
interactions, which can signiicantly minimize the gap between local and global optimal rankings.

GDESA can also slightly outperforms DVGAN and DESA without document selection. These two approaches
can leverage both implicit and explicit features for diversiication. While DVGAN purely focuses on sequential
interactions and DESA only models global interactions. These results indicate that for the diverse ranking task
both sequential interactions and global interactions are of great importance. It is beneicial to leverage both

6https://github.com/sweetalyssum/RL4SRD
7It should be addressed that the results of łMDP-DIV (original)ž are not comparable with those of other baselines.
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Table 3. Performance of all approaches. The best results are in bold. ⋆ indicates that the GDESA model significantly
outperforms all implicit and explicit baselines (� < 0.05 in two-tailed paired t-test), except DVGAN and DESA. Notice that
łMDP-DIV (original)ž is not comparable with other baselines.

Methods ERR-IA �-nDCG NRBP Pre-IA S-rec D#-nDCG

Lemur .271 .369 .232 .153 .621 .424
xQuAD .317 .413 .284 .161 .622 .437
PM2 .306 .411 .267 .169 .643 .450
HxQuAD .326 .421 .294 .158 .629 .441
HPM2 .317 .420 .279 .172 .645 .454

R-LTR .303 .403 .267 .164 .631 .441
PAMM .309 .411 .271 .168 .643 .450
R-LTR-NTN .312 .415 .272 .166 .644 .451
PAMM-NTN .311 .417 .272 .170 .648 .457
DSSA (doc2vec) .350 .452 .318 .184 .645 .471

MDP-DIV (Lemur) .307 .402 .274 .156 .606 .430
MDP-DIV (Original) .375 .503 .333 .234 .706 .547
PPG-DIV (Lemur) .229 .328 .186 .119 .598 .393
DALETOR (Lemur) .305 .396 .270 .149 .606 .420

DVGAN .367 .465 .334 .175 .660 .472
DESA .363 .464 .332 .184 .653 .475

GDESA .369⋆ .469⋆ .337⋆ .185 .662⋆ .480

the two kinds of interactions: the global interactions among all the documents, and the sequential interactions
between each candidate document and the selected sequence.

7.2 Influence of Initial Rankings

Search result diversiication is often conducted as a re-ranking stage based on an initial ranking list. Recall that
diversiication tasks are designed to suit diferent user intents at former ranking positions; thus, a diverse but
irrelevant result list cannot satisfy users’ actual information needs. This is the principle of the evaluation metrics.
Using �-nDCG as an example: for document �� at the ranking position � , if �� satisied an intent that has already
been satisied, the value of �� will be penalized since �� satisies a redundant intent. However, if �� satisies no
intent, the metric of �� will be 0 as �� is irrelevant to the query. In other words, for a given query, a relevant
document can cover at least one intent, whereas an irrelevant one cannot cover any intent.

As shown in Table 3, we can conirm that:

(1) GDESA can slightly outperform those advanced baselines, e.g., DESA or DVGAN, yet the improvements
are not signiicant.

(2) Based on Lemur rankings, the approaches of MDP-DIV, PPG-DIV, and DALETOR perform badly. The
performance of łPPG-DIV (Lemur)ž is even worse than łMDP-DIV (Lemur)ž.

We further check the quality of initial rankings used in our experiments. The rankings used by MDP-DIV,
PPG-DIV, and DALETOR are denoted as original rankings. We found that in Lemur rankings, there are 16 empty
queries among all the given queries, implying that there are no positive documents in the top-50 ranking lists
corresponding to the queries. Furthermore, only 8.34 documents on average have positive annotations for the
top-50 rankings per query, whereas 22.64 documents have positive annotations for the top-500 rankings. As a
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comparison, in original rankings, there are an average of 67.06 documents with positive intent annotations per
query. Based on these observations, we conduct the following analysis of the inluence of initial rankings for
diversiication approaches.

7.2.1 Ceiling Efect of Initial Rankings. Due to the properties of re-ranking tasks, the performance of diversiication
models is limited by the initial ranking lists. For diversiication metrics, such as �-nDCG, the TREC oicial
evaluation tool normalizes the result with the global best ideal ranking lists, which are composed of all positively
annotated documents. However, in practice, the initial ranking list can only cover a subset of positively annotated
documents. Since the search result diversiication task is a re-ranking task, a diversiication model cannot generate
a document that is not included in the initial ranking list. As a result, the intent coverage of initial ranking
lists has a signiicant impact on the performance of diversiication approaches. For example, as aforementioned,
Lemur rankings have 16 dummy queries. Any of those diversiication approaches will result in the evaluation
metrics for those queries being set to 0, as there are no documents satisfying any of the intents. With such poor
initial ranking lists, it is diicult to produce signiicant improvement when compared to strong baselines such
as DVGAN and the original DESA. To our knowledge, even some of the recently proposed approaches [23, 31]
based on BERT [10] cannot outperform those strong baselines signiicantly. We speculate that when a group
of better initial ranking lists are given, the model’s performance will be further improved. We forgo extensive
analysis because it is beyond the scope of this work.

7.2.2 Discussion on Relevance and Diversity. This section discusses the results of MDP-DIV, PPG-DIV, and
DALETOR respectively. To make a fair comparison, we use the released code to reproduce the experiments
of MDP-DIV and the performance of MDP-DIV (original) is close to that reported by the authors. However,
our experimental results indicate that the performances based on the Lemur initial rankings are very bad. The
performance of PPG-DIV (Lemur) is even worse than MDP-DIV (Lemur).
The main diference falls into the relevance components. As Xia et al. described in the paper [36], the policy

function of MDP-DIV is completely based on the document and query embeddings, and it does not depend on
any diversity or relevance features. The policy function of PPG-DIV is similar to MDP-DIV. In DALETOR, the
relevance is implicitly measured by using document and query embeddings with the latent cross algorithm
to generate the document representations. The common part of those three approaches is that all those three
approaches do not include an independent relevance component to measure the relevance of the documents.
Those approaches measure the relevance implicitly with the embeddings of queries and documents, omitting the
relevance features.
Most of those existing implicit diversiication approaches focus on modeling the novelty (or dissimilarity) of

documents, while some recent work [31] has already demonstrated that the diversiication approaches should
directly model the novelty of intent coverage instead of the novelty of documents. For diversiication approaches,
the relevance components can ensure a document is covering actual intents (relevant), while the relevance signals
based on embeddings are not strong enough to judge the relevance of documents [15]. As we discussed above,
on average there are about 7 times more positive documents per query in łoriginal rankingsž compared with
Lemur top-50 rankings. For high-quality initial ranking lists covering rich annotated documents, all those three
approaches can outperform PAMM-NTN [35] signiicantly. However, for Lemur ranking lists there are not enough
annotated documents, and those embedding-based approaches without relevance features may fail to distinguish
the relevant documents. As a result, those three approaches fail to satisfy user intents when a poor initial ranking
list is given.
For PPG-DIV, we also ind that the evaluation metrics of the training set can hardly raise when the training

process goes on. These results indicate that the pairwise strategy in PPG-DIV is more sensitive to the quality of
initial ranking lists. Compared with pairwise learning-to-rank, PPG-DIV is generating the training pairs łonlinež
during model training. In the view of supervised learning, the pairwise policy gradient strategy can be seen as
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a łlearning-to-samplež process. Theoretically, when there are enough annotated documents in initial ranking
lists, the łlearning-to-samplež pairwise policy gradient strategy can outperform handcrafted pairwise sampling.
However, when a poor ranking list is given, it will be diicult to automatically sample high-quality document
pairs. As a result, PPG-DIV may sufer more negative efects when a poor initial ranking list is given.
Diferent from those three approaches, the framework of PAMM-NTN includes a feature-based relevance

matching component. This may be the reason why PAMM-NTN can outperform those three approaches on
Lemur initial ranking lists. In order to achieve fair performance with poor ranking lists given, we assume that
the ranking models of MDP-DIV, PPG-DIV, and DALETOR should be re-designed and enhanced with relevance
features. Further exploration is omitted because modifying the model structure of those approaches is irrelevant
to our work. As GDESA depends on the relevance features of queries and subtopics, it can achieve signiicantly
better performances on low-quality initial ranking lists, such as Lemur.

7.3 Influence of Diferent Model Setings

We conducted several experiments to investigate the inluence of diferent settings to the performance of GDESA.
As we described above, since GDESA mainly depends on the efect of self-attention, we set the layer number
of LSTM cells as 1 and the dimension of hidden states is set as 50. We focus on the self-attention component.
The baseline settings of the self-attention component include: the initial document/subtopic embedding is 100
dimensions, and it is projected into 160 dimensions as the input of the self-attention network, �FF is set as 400 in
the feed-forward network, and the head number � is 8 for the multi-head attention operation.

We test the efect of diferent numbers of encoder and decoder layers. The encoder layer number �enc is tuned
from 2 to 4 with the decoder layer number �dec ranging from 0 to 2. Experimental results of diferent settings are
shown in Table 4. As can be observed, changing the settings of the self-attention component slightly inluences
GDESA’s performance. In our experiments, we found that the total number of self-attention layer � should
be strictly limited in order to prevent over-itting and achieve good performance. Besides, the decoder layer
plays an important role of leveraging subtopic coverage, but too many decoder layers will also harm the overall
performance. Our experimental results show that �enc=2 and �dec=1 yield the best performance with the overall
layer number � = 3.

Following previous work [15], we also investigate the efect of diferent RNN cells including vanilla cells, GRU
and LSTM. Results are also shown in Table 4. The cells of GRU and LSTM yield slightly better performance than
vanilla cells. This potentially stems from the advantage of modeling long-range dependencies for GRU and LSTM
cells. We also ind that the diference is relatively small. Similar results are reported by DSSA [15].

7.4 Influence of Subtopic Setings

GDESA use the decoder component to generate the decoded document representations indicating the coverage
of the subtopics. In order to check the efect of subtopic-related components, we conduct some experiments to
evaluate the performance of diferent subtopic-related model settings. These settings are listed as follows. Notice
that łDSž means that the setting includes the document selection component, and łNo DSž means that the setting
does not include the component.

(1) No Subtopics (DS). Both the decoder component and the subtopic scores are removed. The model works as
an implicit model using the document novelty only.

(2) Scores only (No DS). The decoder component is removed and only the subtopic scores are used. All subtopics
are enhanced with the encoder-based weights.

(3) Scores only (DS). This setting is the same as łScores only (No DS)ž except that it contains the document
selection component.
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Table 4. Performance of GDESA with diferent setings.

Settings ERR-IA �-nDCG NRBP Pre-IA S-rec

�enc=2, �dec=0 .362 .460 .332 .181 .654
�enc=3, �dec=0 .365 .466 .333 .182 .660
�enc=4, �dec=0 .361 .461 .329 .180 .655

�enc=2, �dec=2 .363 .465 .329 .185 .665
�enc=1, �dec=2 .365 .466 .332 .184 .658
�enc=2, �dec=1 .369 .469 .337 .185 .662

No Subtopics (DS) .348 .453 .314 .180 .654
Scores only (DS) .365 .466 .333 .182 .660
Scores only (No DS) .360 .461 .328 .182 .655
Original Subtopics (DS) .353 .456 .320 .182 .656
Encoded Subtopics (No DS) .365 .465 .333 .180 .659

Vanilla .366 .466 .336 .179 .659
GRU .367 .468 .336 .182 .660
LSTM .369 .469 .337 .185 .662

Original DESA .363 .464 .332 .184 .653
GDESA .369 .469 .337 .185 .662

(4) Original subtopics (DS). Both the decoder component and the subtopic scores are used. All subtopics are
enhanced with encoder-based weights. The decoder takes the original subtopic representations as input,
but not the encoded subtopics.

(5) Encoded weights (No DS). Both the decoder component and the subtopic scores are used. All subtopics are
enhanced with encoder-based weights. This setting can be seen as a variation of DESA enhanced by the
encoder-based subtopic weights.

For the settings of łNo Subtopicsž and łScores onlyž without decoder components, we use the optimized settings
of � = 8 and � = �enc = 3. As for the other settings, we use the optimized setting of �enc = 2 and �dec = 1.
Experimental results are shown in Table 4. The łNo Subtopicsž setting is an implicit version of GDESA. Compared
with other settings of GDESA, this result demonstrates that the subtopic coverage information plays an important
role in GDESA framework. It is important to integrate implicit and explicit features for search result diversiication
to cover both document novelty and subtopic coverage. While the �-nDCG metric of this setting is close to DSSA
(doc2vec) as a explicit baseline, indicating the advantage of GDESA’s ensemble framework in leveraging both
global interactions and document selection.
Furthermore, these results can also prove that the self-attention encoder can be used to reduce the latent

redundancy of the subtopics. As we described in Section 6.1.1, the average subtopic number is 9.48 among all the
queries, however, the actual user intent numbers are only 3 to 8, which are smaller than the subtopic numbers
in diverse ranking task. These results indicates that the subtopics used in ranking process may still contain
redundancy and mislead the diversiication model.
We can take the query #1 łobama family treež in the TREC WebTrack dataset as an example. There are ten

subtopics based on Google query suggestions, while there are only three actual user intents in the TREC oicial
subtopic annotations. There are two subtopics �1 for łobama family tree picturesž and �2 for łobama family
tree photosž in the query suggestions. While both �1 and �2 correspond to the same user intent, the redundant
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subtopics may mislead the model to select a document which covers the diferent subtopics and increase the
actual redundancy.

Following DESA, GDESA take the subtopic embeddings I as the input to self-attention encoder to obtain the
encoded representations. The representations are used as part of the decoder inputs, and we further re-use those
representations to generate the encoder-based subtopic weights. These two approaches can both overcome the
latent negative efect of subtopic redundancy. Compared with original subtopic embeddings, the encoded subtopic
representations can integrate the subtopics’ encoder attention distribution into the decoder attention. Similar
to the document’s attention distribution, the subtopic’s attention distribution can also indicate the redundancy
of a subtopic. The decoder attention of the redundant subtopic will be afected by the encoder attention. As a
result, the decoder attention will be adjusted to reduce the negative efect of the latent subtopic redundancy to
the diverse ranking task.

Similarly, the encoder-based weights can also reduce the efect of subtopic redundancy. The S� in Equation (11)
can be seen as the ranking score of subtopics, and a redundant subtopic will be punished by a smaller score
and subtopic weight. In original DESA, the subtopic weight � � ( � ∈ [1, �]) is a uniform weight of 1/� . In our
experiments, the �-nDCG metric of łScores only (No DS)ž is close to the metric of original DESA. This result
indicates that when there are no decoder in the framework, the encoder-based subtopic weights can take similar
efort to reduce the subtopic redundancy.

7.5 Analysis of Inference Time

This section analyzes the inference time of GDESA. We compare GDESA with some previous methods, including
the sequential-based DSSA [15], DVGAN [18], MDP-DIV [36], and the global-based DESA [22].

7.5.1 Experimental Setings. For all those models except MDP-DIV, the inference experiments are reproduced
on both CPU and GPU environments. As the policy function of MDP-DIV is too small to take the advantage of
GPU computing, we only reproduce the experiments of MDP-DIV on CPU. As we described in Section 5.4, we
reproduce the experiments on a single server with 40 CPU cores and a single Titan V GPU. All those models
except MDP-DIV are implemented by PyTorch, and the GPU will be disabled when measuring the CPU-based
inference time. For GDESA, we separately analyze the computational time of static features, and the results are
denoted as łGDESA (Static).ž
All those models will take the top-50 initial ranking lists as input and re-rank the documents to generate the

top-20 diversiied ranking lists. We will measure the average inference latency per query. For MDP-DIV, we
conduct another experiments taking the top-200 initial ranking lists as input and generate the top-20 ranking
lists.

7.5.2 Results and Discussions. Our experimental results are shown in Table 5. These results indicate that GDESA
can work eiciently on both CPU and GPU environments. On CPU environments, the inference latency per
query is only 46ms, and GPU acceleration can further reduce the latency to 22ms. As a deep-learning based
diversiication model with sequential selection, GDESA is about 2× faster than DSSA and DVGAN on CPU and
6× faster on GPU.

In Section 3.5, we mentioned that only the dynamic features in GDESA should be computed repeatedly during
the document selection process. The static features Stat(D, �,I) are unchanged during the document selection
process and are computed only once. For DSSA and DVGAN, the entire model has to be computed repeatedly. The
dynamic component in GDESA includes only a single RNN cell, while DSSA includes both RNN cells and a bilinear
subtopic attention component. DVGAN includes both a DSSA model and an implicit model, e.g., PAMM-NTN or
R-LTR. As the dynamic component in GDESA is signiicantly lighter than DSSA and DVGAN, the computing
speed of GDESA for document selection is much faster than DSSA and DVGAN. Besides, the computing of static
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Table 5. Results of inference time latency.

GDESA GDESA (Static) DSSA DVGAN DESA MDP-DIV

Setting GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU Top-50 Top-200

Time (ms) 22 46 7 16 145 155 146 154 6 14 8 22

features mainly depends on self-attention networks, which is suitable for parallel computing. For DSSA and
DVGAN, as all components required repeatedly computing, the inference latency on GPU is similar to the latency
on CPU. For GDESA, using GPU to accelerate the computing of GDESA can reduce almost 50% of the inference
time. These results indicate the advantage of GDESA.
Besides, the inference speed of MDP-DIV and DESA is faster than GDESA. DESA is purely based on global

interaction, it can be seen as a subset of GDESA with static features only. In Table 5, it can be seen that the
computational time of static features in GDESA is comparable to the overall time of DESA. Since the sequential
selection process is not used in DESA, it can fully take the advantage of GPU-based parallel computing. MDP-DIV
depends on a light-weighted policy function for MDP-based sequential selection. It does not include a large-scale
deep neural network, so the overall time complexity is also low for a CPU-based machine. As the absolute
inference time of GDESA is acceptable, it is beneicial to use GDESA to achieve better performance.

7.6 Analysis of Model Training Time

In this section, we analyze the training time of GDESA and compare it with M2DIV. We train both models on a
single fold with 160 training queries and 40 test queries. For GDESA we train the model with all the list-pairwise
training samples for at most 10 epochs. For M2DIV, inspired by the discussion part of the paper [12], we train
the model for 100 epochs based on the released code. We only measure the time for training, and the time for
evaluation is not included. The overall training time of GDESA is measured on GPU excluding the time of I/O,
and the time of M2DIV is measured on both CPU and GPU. As a comparison, we also report the results of DSSA
on GPU and MDP-DIV (Lemur) on CPU. Results are listed in Table 6.
These results show that the training of GDESA is much more eicient than M2DIV. The training time of

M2DIV is about 80× more than that of GDESA. In real-world application of commercial search engines, the
scale of training data are large. Therefore, even for oline training, the booming time cost is unafordable and
unacceptable. We also ind that the time cost is reduced little when a GPU is applied for M2DIV model training.
These results are consistent with our analysis in Section 5.3.4. The model training process of M2DIV requires
repeatedly document selection and Monte-Carlo simulation, and this process is extremely time-consuming.
Compared with MDP-DIV, the training time of M2DIV is about 10× more than that of MDP-DIV. Moreover, each
selection step depends on the completion of previous steps, leading to the diiculty for parallel computing. When
the model is trained on GPU, the RL controller has to repeatedly transfer data between system memory and GPU
memory. As the policy function of M2DIV is not large enough to beneit from parallel computing, the saved time
of GPU computing may barely cover the increasing latency of passing data through PCI-E channels. These results
demonstrate again the advantage of GDESA. Similar to other supervised models such as DSSA, GDESA does not
require a CPU-based controller, all the components of the framework can be trained end-to-end on GPU. Besides,
the operator of multi-head self-attention is suitable for parallel computing, and it can be easily accelerated via
GPU computing. When a large-scale of training data are given, GDESA can be trained and accelerated with
multiple GPUs. Compared with DSSA, the training speed of GDESA is slightly slower because the overall network
structure of GDESA is larger than DSSA. While the component of self-attention encoder and decoder are suitable
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Table 6. Results of model training time. We omit the training time of DESA as it’s almost the same as GDESA.

GDESA DSSA M2DIV MDP-DIV (Lemur)

Setting GPU CPU GPU CPU GPU CPU GPU CPU

Time (hours) 2 - 1.5 - 210 222 - 20

Table 7. Metrics improvement per ranking position. łTotal Imp.ž denotes the total improvement of DESA on all the 200
queries, łAvg Imp.ž denotes the average improvement per position.

ERR-IA �-nDCG

@5 @10 @20 @5 @10 @20

DSSA .328 .344 .351 .400 .428 .452
GDESA .346 .361 .368 .418 .443 .469

Total Imp. 3.60 3.40 3.40 3.60 2.06 2.37
Avg Imp. .720 .340 .170 .720 .300 .170

for parallel computing, the parameter increasing of GDESA does not lead to a signiicantly increase in training
time.

7.7 Efect Analysis for Global Interaction

As described in Section 4.4, with the help of global document interaction, our proposed GDESA framework can
perform better than the greedy document sequential selection based model at former ranking positions. We
analyze the efect of global document interactions in GDESA at diferent ranking positions. We compare GDESA
with DSSA, which is the state-of-the-art sequential selection based model. In this experiment, we use the ERR-IA
and �-nDCG metrics computed on top 5, top 10, and top 20 results of a document ranking list to check the efect
of GDESA at former ranking positions. Results are shown in Table 7. We calculated the total metric improvement
of DESA compared with GDSSA. For simplicity, we use the sum of the metrics for all 198 queries instead of the
mean metrics, denoted as Total Imp. We calculate the average metric improvement per position to measure the
improvement that GDESA delivered at diferent ranking position ranges, and this value is denoted as Avg Imp. For
example, the ERR-IA@5 of GDESA and DSSA (doc2vec) is 0.346 and 0.328, the total improvement of ERR-IA@5
is calculated as (0.346 − 0.328) × 200 ≈ 3.60, and the average improvement of ERR-IA@5 is 3.60/5 ≈ 0.720.
From the results, it can be seen that the average metric improvement values per position for short ranking

lists are more signiicant than those for longer ranking lists. The experimental results are similar to the analysis
in Section 4.4, indicating that in the early stage of ranking, the models merely based on document selection
may fail to select the globally best candidate document for a short or empty selected sequence. For GDESA, the
self-attention networks can measure all candidate documents globally and promote the diversiied documents at
former positions, satisfying the user intents earlier compared to the models merely based on document selection.

7.8 Efect Analysis for Sequential Property of Self-atention

In this section, we discuss the efect of sequential information in the self-attention component. In GDESA
framework, the self-attention encoder for global interaction contains a trainable positional embedding, and
the sequence mask mentioned in Section 5.1.2 is not used during the ranking process. In the ranking phase,
the document sequence in the self-attention component remain static, and we conduct an experiment with the
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Table 8. Influence of sequential setings in self-atention networks.

Methods ERR-IA �-nDCG

No-posenc .358 .458
Static .368 .469

Dynamic .365 .466

Table 9. Evaluation results per query.

Query ID � (DESA) � (GDESA) Δ�

36 .344 .638 .293
174 .314 .593 .279
193 .393 .633 .239
94 .191 .369 .178
138 .469 .642 .173

GDESA framework using a dynamic document sequence in self-attention component as a comparison. Results are
shown in Table 8. łno-posencž denotes the variant of self-attention without positional embeddings, and łstaticž
denotes our full model. łdynamicž denotes the variant in which the selected document � is appended into the
selected sequence C, and the inputD ′ to the self-attention network isD ′ = [C;Drest].Drest is the rest candidate
document sequence in which the selected document � is removed from the candidate sequence.
From the result, we can see that the positional embeddings are important for achieving good performance,

while using the dynamic document sequence that is changing with the document selection process causes slightly
performance loss. Similar to the ordinal embeddings in SetRank [20], the positional embeddings in GDESA
framework provide the sequential information of the documents in initial ranking D, not in diversiied ranking
R. Because the initial ranking is a relevance ranking without diversiication, the sequence information for the
self-attention network’s input sequence represents the documents’ relevance rather than the position information
for a diversiied ranking sequence R. Besides, SetRank [20] has demonstrated that the self-attention network is
permutation equivalent. As a result, the self-attention component in our framework is unaware of the position
information in the diversiied ranking list R. The experimental results relect the advantage of utilizing an
RNN-based component over a self-attention network for document selection.

7.9 Efect Analysis on Document Selection Peruery

In this section, we validate the efectiveness of document selection component in GDESA. We compare GDESA
with a variant of DESA that is enhanced by the encoder-based weights. We analyze the performance of the
two models per query with the typical evaluation metric �-nDCG@20, results are shown in Table 3. We use
� (GDESA) and� (DESA) to denote the evaluation metric of two model.

In all the 198 queries from the dataset, for most of the queries,� (GDESA) is close to� (DESA). There are in
total 12 queries which Δ� > 0.1 (Δ� = � (GDESA) −� (DESA)). Due to space limitation, we select the top-5
queries, and show their evaluation results in Table 9.
The results in Table 9 show that the GDESA-advantage queries have got poor user intent coverage for the

candidate documents. Speciically, all of the � (DESA) metrics are lower than 0.5. Focusing on the query #36,
Figure 4 shows the �-nDCG variation of GDESA and DESA at each position, where x-axis denotes the ranking
position, and y-axis denotes �-nDCG corresponding to each position.

ACM Trans. Inf. Syst.



GDESA: Greedy Diversity Encoder with Self-Atention for Search Results Diversification • 31

1 2 3 4 5 6 7 8 9 1011121314151617181920
Ranking Positions

0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a-
nD

CG

GDESA DESA

Fig. 4. �-nDCG variation with diferent positions for GDESA and DESA.

From this igure, it can be seen that based on the same static features, the full GDESA framework with
document selection component is more suitable for those candidate documents with poor initial ranking lists.
As we described in Section 7.8, the self-attention network is unaware of the positions in diversiied ranking
R. Concretely, we can observe that the result of DESA from the irst position to the third position keeps zero
because the model fails to select and promote the best diversiied document. A poor ranking list may only contain
a few documents covering intents, and each ranking position must be precisely measured. For the query #36,
DESA promotes a document with intent into the range of top-5. However, GDESA has successfully promotes the
document to the top-1 ranking position, leading to a better ranking results.

Compared with the DESA variation without document selection, our full GDESA framework can integrate both
the global interaction features and the document selection features based on the previous selected documents.
With the same static features, the step-by-step sequential selection process of GDESA can precisely model the
sequence information at each position in the diversiied ranking R, trying to promote the document with more
intents to the former ranking positions. These results indicate that the integration of global interaction features
and sequential interaction features is beneicial to the overall performance of the framework. For search result
diversiication task, the global document interaction features are powerful for modeling the interaction between
all those candidate documents. However, the document selection process can also contribute to the inal results.

While for search result diversiication task, the ranking position of each document is of great importance since
users usually read the documents from top to bottom in real scenarios. As a result, the sequential interaction
is critical for precisely measuring the status of each ranking position, especially the top ranking positions. In
conclusion, it is necessary and beneicial to leverage the two kinds of interaction: the global interactions between
all documents and the sequential interaction between the selected sequence and each candidate document.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a search result diversiication framework that exploits both global document interaction
and document selection. Based on our previous work, we extend the framework with an RNN-based component
for document selection. Compared with previous work in diverse ranking tasks, this is the irst time that all
interactions between candidate documents and between each candidate document and the selected document
sequence are modeled. Experimental results show that our framework can signiicantly outperform all baselines,
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including document selection models and global interaction models. In comparison to the document selection
models, measuring the global document interactions between candidate documents can greatly reduce the gap
between the local and global optimal rankings. In comparison to those global interaction models that do not
include document selection, it is beneicial to exploit the document selection capability in addition to the global
interaction. We also analyze the inluence of sequential information in self-attention networks and demonstrate
the importance of using an RNN-based document selection component. We demonstrate that, while global
document interaction features are powerful for diversiication, it is still required and beneicial to integrate
the features of document selection. To simplify the problem in this work, we reuse the document relevance
features and embeddings from previous works, and one of our future work is using a BERT-based relevance
matching approach or document feature extractor to improve the quality of document representation. Besides,
our document selection component only considers document novelty, another future work could be integrating
subtopic coverage into the document selection component.
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