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Recent studies show that historical behaviors (such as queries and their clicks) contained in a search session can beneit
the ranking performance of subsequent queries in the session. Existing neural context-aware ranking models usually rank
documents based on either latent representations of user search behaviors, or the word-level interactions between the
candidate document and each historical behavior in the search session. However, these two kinds of models both have their
own drawbacks. Representation based models neglect ine-grained information of word-level interactions, whereas interaction
based models sufer from the length restriction of session sequence because of the large cost on word-level interactions. To
complement the limitations of these two kinds of models, we propose a uniied context-aware document ranking model which
takes full advantage of both representation and interaction. Speciically, instead of matching a candidate document with every
single historical query in a session, we encode the session history into a latent representation and use this representation to
enhance the current query and the candidate document. We then just match the enhanced query and candidate document
with several matching components to capture the ine-grained information of word-level interactions. Rich experiments on
two public query logs prove the efectiveness and the eiciency of our model for leveraging representation and interaction.

CCS Concepts: • Information systems→ Retrieval models and ranking.

Additional Key Words and Phrases: Document Ranking, Session Search, Neural-IR

1 INTRODUCTION

Search engine has become an increasingly popular way for people to get information from the Web. It receives
a query and returns a ranked document list for the user to browse and click. Usually, a user’s search intent is
complex, so that she needs to try multiple queries and browse some websites to obtain the information that
satisies her search intent. This series of user search behaviors (i.e., issued queries and browsed documents) is
referred to as a search session [18, 29]. Leveraging contextual information in a session has been proved useful for
inferring user’s current search intent and improve ranking [1ś3, 24, 31]. Figure 1 shows an example, which helps
us understand how a user’s search context beneits her current search. Supposing a user is issuing a query łapplež
and she has searched łmicrosoftž, her current search intent is likely to be browsing information about łapplež
company. But if she has searched łbananaž a minute before, she may be looking for fruit łapplež now. From this
example, we can ind out that the query łapplež is ambiguous and has diferent meanings under diferent search
contexts. By considering the historical queries (łbananaž or łmicrosoftž), we can identify the real intent of the

∗Zhicheng Dou is the corresponding author.
Authors’ addresses: Haonan Chen; Zhicheng Dou∗; Qiannan Zhu; Xiaochen Zuo, Gaoling School of Artiicial Intelligence, Renmin University
of China, No.59 Zhongguancun Street, Haidian District, Beijing, 100872, China, {hnchen,dou,zhuqiannan,zuoxc}@ruc.edu.cn; Ji-Rong Wen,
Beijing Key Laboratory of Big Data Management and Analysis Methods, No.59 Zhongguancun Street, Haidian District, Beijing, China,
jrwen@ruc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1046-8188/2022/1-ART1 $15.00
https://doi.org/10.1145/3529955

ACM Trans. Inf. Syst.

https://doi.org/10.1145/3529955


1:2 • H. Chen et al.

Fig. 1. An example of session contexts reflecting diferent search intents under the same query.

current query and improve the ranking performance. Hence, utilizing contextual information of the current search
session is valuable for mining a user’s actual search intent, which is the primary motivation of context-aware
document ranking.
There are already some early works focused on session context modeling [3, 4, 13, 26, 31]. Most of them

extract speciic features from the search session to analyze the user’s current search intent. For example, Shen et
al. [26] use statistical language models to model session context. Recently, with the widespread of deep learning
technologies in the artiicial intelligence ield, some neural context-aware document ranking models have been
proposed [1, 2, 24]. Following [1], we roughly divide existing neural context-aware document ranking models into
two categories: representation based models [1, 2] and interaction based models [24]. Representation based
models usually encode queries, documents, and session context into hidden representations, and compute the
ranking scores of the candidate documents based on the encoded history representation and the representation
of the current query. On the other hand, interaction based models often rank documents by the ine-grained
term-level interactions between queries and documents. For example, Qu et al. [24] concatenates all search
behaviors of the session into a long sequence and puts it into BERT to get the word-level interaction-based
contextual representations for ranking.
These neural context-aware ranking models have achieved great performance. Nevertheless, both kinds of

models have their own advantages and drawbacks. Representation based models overlook the ine-grained
word-level interactions [1, 2]. Interaction based models try to compute the interactions between every two words
in the session sequence(i.e., historical search behaviors, the current query, and candidate documents), and this
leads to sufering from the larger calculation cost with the increasing length of the input sequence. There are
a few works that attempt to integrate both interaction based features and representation based features for
ad-hoc search [17, 23], which do not include the session context into interactions. However, to the best of our
knowledge, there has not been any trying on leveraging both representation and interaction based approaches
for context-aware document ranking. In this paper, we attempt to take full advantage of representation and
interaction to perform session search.
The challenge of leveraging representation and interaction for context-aware document ranking is how to

incorporate the session context into word-level interactions while reducing calculation cost. Diferent from
HBA-Transformers [24] making every behavior (historical queries and documents) in the search session interact
with each other on word level, we attempt to encode the session history into a latent representation, and use
it to enhance the word-level interactions between the current query and the candidate documents. In other
words, instead of matching every query and document in a session, we alternatively use the history

representation to enhance the last ones of the session (i.e., the current query and the candidate docu-

ment) and then matches the last ones on word level. This will signiicantly reduce the cost of interaction,
and at the same time, it keeps the signals of historical representations. This is a light weight integration of both
representation and interactions signals for context-aware ranking. Besides, we further generate supplemental
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queries to interact with the candidate document. These supplemental queries are supposed to contain richer
information about the current user intent than the original queries and will help improve ranking quality.

More speciically, we propose aRepresentation and Interaction fusedContext-aware documentRanking model
(RICR), which can utilize the advantages of both representation and interaction based approaches. Speciically, as
shown in Figure 2, RICR is comprised of three modules:

(1) The session history encodermodule attempts to represent the session history into a latent representation.
It irst uses the behavior encoding sub-module to obtain an attentive representation for each historical
behavior with respect to the current query. This sub-module consists of the term-level query aware
attention mechanism and the inner-attention mechanism. Term-level query aware attention can capture
word-level interactions between the current query and the historical behaviors. Besides, the inner-attention
mechanism [19] encodes diferent weights of words in the current query, and uses them to integrate the
word-level interaction between the current query and a speciic behavior for the attentive representation of
that behavior. Then the session history encodermodule applies a GRU [6] on the attentive representations
of historical behaviors to obtain the sequential information of the session context.

(2) After this, the information enhancing module employs another two GRUs with the encoded history
representation as the initial hidden state to learn the enhanced word-level representations of the current
query and the candidate documents, respectively. Moreover, this module uses the inal hidden state of the
GRU used for enhancing the current query to select a supplemental query. This can help our model to deal
with the circumstance when the user’s search intent is more complex than the issued query which only
contains a small set of keywords.

(3) Finally, with the enhanced and supplemental representations ready, thematching and scoring module
computes the matching score for document ranking with the Conv-KNRM [8] component.

Rich experiments on AOL search log and Tiangong-ST search log show that our model not only gains a
state-of-the-art performance but also reduces considerable calculation cost than interaction based context-aware
models (e.g., HBA-Transformers). RICR manages to cut over 80% parameters than HBA and reduces training and
inference cost considerably. More analysis of the cost reduction is provided in Section 5.6. Besides, we conduct
some analysis of the supplemental query selection module in Section 5.5, which proves that RICR manages to
select a supplemental query that can enhance the information of the original query.

Our main contributions can be summarized as follows:
(1) We propose a context-aware document ranking model, which takes full advantages of both representation

and interaction with low calculation cost.
(2) We develop a Behavior Encoding sub-module that utilizes the word-level information of the current query

to learn historical behaviors’ attentive representations.
(3) We use the overall representation of the session history to enhance the word-level representations of the

current query and the candidate documents for later matching. Besides, we select a supplemental query from the
query database to enhance our understanding of the current query, which can make our model more robust.

The rest of the paper is organized as follows. Related works of this article, including representation based and
interaction based models, are briely introduced in Section 2. We introduce details of our context-aware document
ranking model RICR in Section 3. In Section 4, we describe the datasets, experimental settings, and selected
baselines. And in Section 5, we compare and analyze the experimental results. Finally, we make a conclusion of
the whole work in Section 6.
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2 RELATED WORK

2.1 Neural Ranking

There are already some ad-hoc neural ranking models which only use the current query to re-rank the candidate
document. These ad-hoc models can be split into two groups: representation based models [15] and interaction
based models [8, 15, 23, 32]. Representation based ad-hoc models usually encode the current query and the candi-
date document into hidden vectors, then compute the ranking score. ARC-I [15], for example, uses Convolutional
Neural Networks to represent the current query and the candidate document (CNNs), and utilizes an MLP to
calculate the ranking score. Interaction based ad-hoc models calculate the ranking score based on word-level
interaction-based information between the current query and the candidate document. For example, on the
interaction matrix of the current query and the candidate document, ARC-II [15] uses a 2D-convolution neural
network. On a word-by-word basis, Xiong et al. [32] extracts the aspects of interaction between the current query
and the candidate document. The kernel-pooling is used to provide soft match signals for ranking.

The main diference between representation based and interaction based ad-hoc models is that representation
based ones encode query and documents into latent vectors whereas interaction based ones mine the information
of word-level interactions between query and documents.

2.2 Context-aware Ranking

Previous studies have revealed that queries issued by users are usually short and ambiguous [7, 27], and these
queries’ intents are hard to understand. Modeling user’s search context inside the current search session has
been proved to help understand users’ real search intent [3, 11, 18, 33]. There are already some early works
focused on modeling session context [3, 4, 13, 26, 31]. For example, Bennett et al. [3] has proved contextual
information inside the current search session, i.e., short-term session behaviors to be important for improving
the performance of retrieval. This work uniies prior works on short- and long-term behaviors’ contribution to
personalized retrieval. Besides, their work shows that as the search session progresses, the role of the current
session’s previous behaviors in satisfying the user’s search intent becomes more and more important. Shen et
al. [26] use statistical language models to model contextual session information. White et al. [31] mine other
users’ search session which is similar to the current one and use them to identify the documents that may have
a high rank. They generate some features to build rich models of current user’s search task for the inding of
similar tasks in the history search log. These traditional retrieval models have made great progress, but most of
them only focus on some speciic features, overlooking those that may be equally valuable.

With the recent emergence of deep learning, lots of neural information retrieval models have been studied [1, 2,
8, 24, 32]. These deep models gradually resolve the problem that the extracted features are limited. Following [1],
we roughly divided existing neural context-aware document ranking models into two categories: representation
based and interaction based models.

2.2.1 Representation based models. Representation based models usually encode user search behaviors and the
session context into hidden representations, and compute the ranking scores of the candidate documents based
on both the session context and the current query.
Ahmad et al. [1] propose a multi-task neural session relevance framework (M-NSRF) to predict a user’s click

in the current session and her next query jointly. They use LSTMs [14] to model queries, documents, and the
sequence of historical queries into latent representations. Then they concatenate the representations of current
query and session history together and take it as the user’s search intent which they can re-rank candidates
based on.

Ahmad et al. [2] supplement their previous work [1] by adding attention mechanism into encoding queries and
documents. They also model the sequence of previously clicked documents in the current session as clickthrough
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information into the context representation. Though Representation based models can include rich history
information of the current session inside latent vectors, they inevitably lose the ine-grained information of
word-level interactions between queries and documents.

2.2.2 Interaction based models. There are already some ad-hoc retrieval models that focus on word-level inter-
action [8, 17, 23, 32]. However, only a few works pay attention to interaction based neural ranking model for
session search. Qu et al. [24] design a Hierarchical Behavior Aware Transformers (HBA-Transformers). They
regard queries, clicked documents, and skipped documents all as user behaviors and concatenate all behaviors
in a session into a long sequence. Then they put it into a BERT [9] encoder to make every two behaviors in
it interact with each other and get their contextual word-level interaction based representations. Then, they
use a transformer structure with behavior embedding and relative position embedding to further enhance the
representations. Finally, the representation of the irst token (ł[CLS]ž) is used to calculate the ranking score. This
is the state-of-the-art method.
Interaction based models mainly focus on ine-grained information, which makes them able to represent

user behaviors with word-level interactions. Nevertheless, interaction based models often cannot handle a long
sequence of behaviors because of high calculation cost. Qu et al. [24] use a history window to resolve this issue.
They only concatenate user’s historical behaviors in a ixed window size in the encoding stage. Still, they will
inevitably neglect some useful information of those behaviors that are not in the window.

In our work, we design a neural context-aware document ranking model which leverages representation and
interaction. Instead of making every two search behaviors interact with each other, RICR enhances the current
query and the candidate document with the encoded session context and then matches them. Experimental
results show that our method is simple but efective.

3 OUR METHOD

The main goal of our model is to capture the ine-grained information of word-level interactions with the session
context into consideration while reducing the calculation cost. Rather than matching every single query and
document in a session, RICR uses the encoded representation of session history to enhance the word-level
interaction between the current query and the candidate document, which manages to signiicantly reduce the
cost.

3.1 Problem Definition

Before shedding light on RICR, we irst need to state the task and some notations. In a search session, to express
a complex intent, a user might need to try several diferent queries and browse some websites to obtain the
satisfying information. Her former search history, i.e., search context has inluence on her current search activity.
Therefore, it is crucial to use her session context to facilitate current search. The search context S is comprised
of the historical queries and their corresponding clicked documents:

S = {(q1,D1), (q2,D2), ..., (qn−1,Dn−1)}, (1)

where qi is the i-th query of the session, Di = {di,1, ...,di,M } refers to the corresponding list of clicked documents.
As stated in [2, 24], the skipped documents have little value, so we don’t include them in S. The goal of context-
aware ranking is to rank the candidate document list Dn based on both the current query qn and the session
context S. Speciically, we rank Dn by the ranking scores of every document in it. The ranking score of a
candidate document d under the session history S and the current query q (short for qn ) is denoted as P (d |S,q).

Note that when no ambiguity is involved, we will refer to q and d as the current query and the corresponding
candidate document to be ranked, respectively.

ACM Trans. Inf. Syst.
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Fig. 2. The detailed structure of RICR. Our model has three modules: (1) Session history encoder: RICR uses the Behavior
Encoding(BE) sub-module to encode historical behaviors. BE consists of the term-level query aware atention mechanism
and the inner-atention mechanism. Then we use a GRU to model the sequential history information and take the last
hidden state of it as the overall history representation (H). (2) Information enhancing: RICR uses H as the initial hidden
state of two GRUs to enhance q and d . Besides, we also use the last hidden state of the GRU used for enhancing q to
select a supplemental query qs for q and enhance qs with a GRU as well. (3) Matching and scoring: With the enhanced
and supplemental representations ready, RICR computes the matching score for document ranking with the Conv-KNRM
component.

3.2 Overview

In this work, we propose a context-aware document ranking model to encode S into a latent representation and
use it to enhance the word-level representations of q and d . Further, based on these enhanced representations,
RICR obtains ine-grained information of word-level interactions in the matching module. Speciically, as shown
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in Figure 2, RICR can be divided into three main modules: session history encoder module, information enhancing

module and matching and scoring module. With the statement and notations stated in Section 3.1, we give a brief
introduction of these three modules as follows:

(1) Session History Encoder. As shown in the upper right part of Figure 2, the goal of this module is to
encode the session context S into a single latent representation for further usage in the enhancing module.
RICR irst uses a Behavior Encoding(BE) sub-module (illustrated in the upper left part of Figure 2) to encode
each behavior in S. The BE sub-module consists of the term-level query aware attention mechanism and the
inner-attention mechanism [19], which can utilize the word-level information of q to encode historical behaviors.
Then, a GRU [6] is applied to the attentive representations of encoded historical behaviors to obtain the sequential
information of S. We use the inal hidden state of this GRU as the overall history representation.

(2) Information Enhancing. As shown in the middle of Figure 2, the goal of this module is to use the overall
history representation to enhance the information of queries and documents on word level. RICR applies two
GRUs with the encoded history as their initial states to encode the sequential information buried in the word
sequences of q and d , respectively, which can also incorporate historical information into the enhancement.
Besides, we use the inal hidden state of the GRU used for enhancing q to select a supplemental query qs to make
our model more robust.

(3) Matching and Scoring. As shown in the lower part of Figure 2, the goal of this module is to gain ine-
grained information of word-level interactions. With the original and the enhanced representations of q, qs , and
d ready, RICR utilizes several matching components (Conv-KNRM [8]) to compute the matching scores of all
paired combinations between these queries and documents.

3.3 Session History Encoder

With this module, RICR attempts to model session historyS into a single vector for further usage in the enhancing
module. To obtain this latent representation, we use the Behavior Encoding (BE) sub-module at the lower level
to encode historical search behaviors and a GRU at the higher level to model the sequential structure of session
histories.

(1) Encoding Historical Search Behaviors. In this part, for each behavior in S, given a sequence ofT words
{o1, ...,oT }, we irst embed them into dw -dimensional vectors {w1, ...,wT } using a pre-trained word embedding
model word2vec [22]. Instead of those complex embedding models, such as BERT [9], we choose word2vec as our
initialized embedding model to reduce the cost. Moreover, as stated in Section 3.1, there may be several clicked
documents (Di = {di,1, ...,di,M }) for each historical query qi . We simply calculate the mean of these documents’
word embedding vectors to get a ixed-length vector for further performing of the attention mechanism, i.e.,
di = mean(Di ). Note that we need the word-level information in the information enhancing module, so we
take the average of these word embeddings over all clicked documents instead of their tokens. Let’s assume the
shape of the tensor of clicked documents is [the batch size, the length of session history, the number of clicked
documents, the number of words in the document, the size of word embeddings], the average is taken on the
third dimension, i.e., document-level. We will refer to di as the aggregated representation of the corresponding
clicked documents of qi . We leave more advanced approach to aggregating clicked documents as our future work.

Over the word embedding layer, we encode historical search behaviors using the BE sub-module as follows:

h
q
i = BE(qi ), (2)

hdi = BE(di ), (3)

where h
q
i and hdi are the output representations of qi and di , the BE sub-module consists of the term-level

query aware attention mechanism and the inner-attention mechanism. Let us take the encoding of qi as
example to walk through the structure of BE.
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qi will irst go through the term-level query aware attention mechanism. The motivation of this mechanism
is that diferent words of the current query q have diferent focuses on the words of a historical behavior. For
example, the current issued query is łTencent managerž and a historical query is łAlibaba presidentž. The
word łmanagerž will pay more attention on łpresidentž than łAlibabaž. But for łTencentž, łAlibabaž draws more
attention. We use the term-level query aware attention mechanism to capture this kind of various focuses. We
compute the focused result of qn, j (we use it to represent the embdding vector of the j-th word in q to avoid
ambiguity) on qi as follows:

h
q
i, j = softmax *

,

(qn, jW
q
+ bq ) (qiW

k
+ bk )T

√
dw

+
-
(qiW

v
+ bv ), (4)

where qi is the embedding of qi , h
q
i, j is the attentive representation which aggregates the focuses of qn, j on every

word of qi , Wq , bq , Wv , bv ,Wk and bk are the parameters to apply linear transformations on representations,
dw is the dimension of word embeddings. To be noted, allW of the linear transformations in the term-level query
aware attention mechanism don’t change the dimension of the vector to which it is applied.

Then, we apply the inner-attention mechanism [19] on the obtained attentive representations to identify the
weights of words in q. The intuition here is that the importance of each word in q are diferent with respect to
the encoding of qi . For example, the current query is łhistory of Chinaž. The weights of łhistoryž and łChinaž
should be higher than that of łofž. We re-weight the word-level attentive representations of a behavior, e.g., hqi
as follows:

h
q
i =

|q |
∑

j=1

α jh
q
i, j , (5)

α j = softmax
(

tanh(hqi, jW2 + b2)W1 + b1
)

, (6)

where hqi is the weighted output representation of qi , tanh(·) is a tangent activation function, W2 ∈ Rdw×dw ,
W1 ∈ Rdw×1, b2 and b1 are the parameters of a two-layer perceptron to compute the attention weight. Through
this, the word of q which is more informative, its corresponding focused result on a search behavior (e.g., hqi, j )

would have a larger weight in the aggregated representation of that behavior (hqi ).
Note that we use the developed BE sub-module instead of other sophisticated structures like Transformer [28]

because we attempt to encode each historical behavior with only the information of itself and q into consideration
to reduce the cost.

(2)Modeling Sequential Session Histories. In a search session, a user often issues several queries, browses
the returned documents, and clicks on some of them. The sequential information of the session histories is
crucial for inferring her current search intent. For example, a user’s current query is łpopulationž. Without any
historical information, we may be confused about her intent. But if we know that her last two queries are łChinaž
and łcapitalž, we will infer that her current intent is searching for łpopulation of China’s capital.ž, which is a
concatenation of the sequential history information. In this part, we attempt to model this kind of sequential
information. Speciically, for the representations of each historical query (qi ) and the corresponding clicked
documents (di ) , we irst combine them to get a ixed-length vector of the behaviors made at timestamp i . Then,
intending to utilize RNN’s recurrent structure to model sequential information explicitly, we use a GRU to model
the sequential session histories. We use GRU rather than LSTM [14] to reduce the cost.
Speciically, for the attentive representations (obtained in Eq. 2 and Eq. 3) of a historical query (hqi ) and its

corresponding clicked documents (hdi ), we use a multi-layer perceptron (MLP) with the tanh(·) as the activation
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function to combine them together into a ixed-length vector:

hi = MLP(hqi ,h
d
i ), (7)

where hi is the combined representation of the behaviors at timestamp i . Then, a GRU is used as the encoder of
sequential historical information. It computes the hidden state of each step as follows:

si = GRU(si−1,hi ), (8)

where si ∈ Rdh is the hidden state at the i-th behavior, dh is the dimension of the GRU’s hidden unit. We take the
last hidden state sn−1 as the overall encoded history representation H.

3.4 Information Enhancing

In this module, RICR irst utilizes two GRUs with the encoded history H as their initial hidden states to enhance
the information of q and d . Then RICR uses the inal hidden state of the GRU used for enhancing q to select a
supplemental query and enhances it as well. These two ways of information enhancing are illustrated as follows:
(1) Enhancing the representation of q and d with the Session History. The main goal of our model is

to obtain the information of word-level interactions along with contextual information, and in the meantime,
reduce the cost. So instead of matching every behavior in the search session, we attempt to use the history (H)
to enhance the current query q and the candidate document d , and then match them. Most works represent d
independently from the session context [1, 2, 11]. However, we believe it should also be represented contextually.
For example, let us suppose d is łmouse Amazonž. If a historical clicked document is łcomputer mousesž, we will
know that d may lead the user to where she can purchase computer mouses, not animal mice. In the following,
we describe how we utilize the encoded history H to enhance the information of q and d .

To start with, we use two GRUs to enhance the word-level representations of q and d , respectively. The
recurrent structure of RNN can give the words contextual representations by encoding the sequential information
of the sentence. Besides, we use the encoded history H as the initial hidden state of the GRU to add session
history information into the enhancing process. We obtain the word-level enhanced representations of q and d as
follows:

q+ = {wq+
1 , ...,w

q+

T
} = Enhance({wq

1 , ...,w
q

T
}), (9)

d+ = {wd+
1 , ...,w

d+
T } = Enhance({wd

1 , ...,w
d
T }), (10)

where {w1, ...,wT } are the embedded word vectors from the word embedding layer, {w+1 , ...,w+T } are the enhanced
embeddings. Speciically, following gives the process of word-level enhanced representations, i.e.,

si = GRU(si−1,wi ), s0 = H, (11)

w+i = MLP(si ), (12)

where s0 is the initial hidden state, si ∈ Rdh is the hidden state at the i-th word, dh is the dimension of the GRU’s
hidden unit, w+i is the enhanced word representation, MLP(·) is a multi-layer perceptron with tanh(·) as the
activation function.
(2) Enhancing q with a Supplemental Query. When a user issues a query, she might only input a set of

keywords that she is interested in. For example, a user issues a query łwedding songsž, whereas her actual search
intent is to ind a song to dance with at her son’s wedding. This kind of search intent is not fully expressed by
the issued query, which makes it hard to be satisied, especially with a lack of historical behaviors. To deal with
this kind of circumstance, we attempt to mine a supplemental query for q from the query database to help us
understand it, which can make our model more robust. Note that the query database we use here is the query
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set of the training dataset. We select 9 candidate queries from the database for each query. Following [21], we
evaluate a candidate’s supplemental rate based on the following function:

sup(qc |q) = spe(qc |q) + sim(qc |q), (13)

where:

(1) qc is the candidate query, sup(qc |q) is the supplemental rate of qc against q;

(2) spe(qc |q) = len(qc )−len(q )
len(q ) when every word of qc appear in q, otherwise spe(qc |q) = 0. This component

computes the speciicity between qc and q.
(3) sim(qc |q) is the similarity between qc and q. We use the python class SequenceMatcher1 to compute the

similarity here. We choose it because it is a human-friendly longest contiguous and junk-free sequence
comparator. We leave more advanced approaches to calculating similarity, e.g., semantic similarity as our
future work.

We use the function above to choose the top 9 queries in the database as candidates for every query. Besides,
following [21], to ensure that if q matches the user’s current search intent or all candidates are worse than q, we
also add q into the candidate set, which makes each candidate set contains 10 queries.
To choose one from the candidates, we irst use the mean of the word embedding vectors to represent them.

Then, for each candidate, we concatenate its representation with the inal hidden state of the GRU which is used
to enhance q (sq

T
, introduced in Eq. (11)). After this, we apply an MLP with relu(·) as the activation function on it:

pi = MLP([sq
T
,qci ]), (14)

where qci is the i-th candidate. Then pi goes through a softmax function to get the probability of selecting qci .
Finally, qci which has the largest pi is selected as the supplemental query qs . The intuition here is that we

utilize the information of both S and q to infer which candidate we should select. And in the case that our model
tries to degenerate to q, it will select q from the candidates. Moreover, we obtain the enhanced version of the
supplemental query with the same process illustrated in Section 3.4:

qs+ = Enhance(qs ). (15)

3.5 Matching and Scoring

In the following, we describe how we perform the word-level interactions between queries and documents, and
how we integrate diferent aspects of interactions to get an overall score.
In this module, to capture the ine-grained information of word-level interactions, we use several matching

components to calculate the ranking score of d . There are some promising matching components for re-ranking,
such as KNRM [32], Conv-KNRM [8], Duet [23], etc. RICR uses Conv-KNRM as its matching component because
of its ability to model n-gram soft matches, which can capture the word-level information more thoroughly.
Besides, we construct RICR on top of Conv-KNRM instead of BERT because we want to model long-sequence
session context with less GPU memory and lower computation cost than BERT-based models. (BERT-based
models are often incapable of dealing with long session sequences. HBA simply uses a small history window to
only deal with a short session sequence.) There will be a more thorough discussion of eiciency in Section 5.6.
We obtain four scores to get a thoroughly understanding of the relevance between q and d : P (d,q), P (d,q+),
P (d+,q), P (d+,q+). Besides, we obtain another four scores to get a supplemental understanding of the relevance by
matching qs and d : P (d,qs ), P (d+,qs ), P (d,qs+), P (d+,qs+). q and d are the original current query and candidate
document. q+ and d+ are the information enhanced version of them. qs and qs+ are deined in Eq. (15). Each score
is computed as follows:

P (d,q) = CKNRM(d,q), (16)

1https://docs.python.org/3/library/dilib.html
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where P(d,q) is the matching score between a query and the corresponding candidate document, CKNRM is
short for Conv-KNRM.
Let’s shed light on P (d,q) as an example. The Conv-KNRM component irst applies convolution ilters to

compose n-grams from the text. We irst construct a similarity matrix M . Each element Mi, j of the matrix M

is the embedding similarity between the i-th word qi of q and the j-th word dj of d by cosine similarity. Then,
we use some RBF kernels on the similarity matrixM to covert word-level interactions to multi-level soft-match
features ϕ (M ) between the query and document:

ϕ (M ) =

T
∑

i=1

logK⃗ (Mi ), (17)

K⃗ (Mi ) = {K1 (Mi ), ...,KK (Mi )}, (18)

Kk (Mi ) =
∑

j

exp(−
(Mi, j − µk )2

2σ 2
k

), (19)

whereT is the number of words in q, K is the number of RBF kernels, µk and σk are the mean and variance of the
k-th RBF kernel , ϕ (M ) is the obtained ranking features.

Totally, we use eight Conv-KNRM components with diferent parameters to calculate the matching scores of all
combinations. Finally, all these eight scores are combined together using an MLP to get the overall ranking score:

P (d |S,q) = Φ

(

P (d,q) , P
(

d+,q
)

, P
(

d,q+
)

, P
(

d+,q+
)

,

P (d,qs ) , P
(

d+,qs
)

, P
(

d,qs+
)

, P
(

d+,qs+
)

)

, (20)

where Φ(·) is an MLP with tanh(·) as the activation function, P (d |S,q) is the overall ranking score for d with
respect to the current query q and the session context S.

3.6 Model Learning

To train our model, we apply a standard pairwise learning-to-rank (LTR) algorithm. For the usage of pairwise loss,
we craft pairwise training documents on the search log in the data preprocessing stage. The positive samples are
the clicked documents and the negative samples are the skipped documents. The ranking loss for q is computed
as follows:

LR (q) =
∑

(dp,dn )∈Dp,n
q

max
(

0, 1 − P (dp |S,q) + P (dn |S,q)) , (21)

where Dp,n
q is the crafted paired document set for q, dp is the clicked document and dn is the skipped document.

By this loss function, we train our model to re-rank the positive samples higher than the corresponding negative
samples.

4 EXPERIMENTAL SETTINGS

4.1 Datasets and Evaluation Metrics

We evaluate our model on two public search logs. The statistics of these two datasets are shown in Table 1.

4.1.1 AOL Search Log. We use the one provided by Ahmad et al. [2]. Each query in the training and validation
datasets has 5 candidate documents. For each query in the testing dataset, there are 50 candidate documents
retrieved by BM25 [25]. As suggested in [2, 10, 16], we only use the title as the content for each document.
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Table 1. Statistics of all datasets.

AOL Training Validation Test

# session 219,748 34,090 29,369
# query 566,967 88,021 76,159
average # query per session 2.58 2.58 2.59
# candidate per query 5 5 50
average query length 2.86 2.85 2.9
average document length 7.27 7.29 7.08
average # click per query 1.08 1.08 1.11

Tiangong-ST Training Validation Test(Click) Test(Relevance)

# session 143,155 2,000 2,000 2,000
# query 344,806 5,026 4,420 2,000
average # query per session 2.41 2.51 2.21 1.00
# candidate per query 10 10 10 10
average query length 2.89 1.83 3.26 3.92
average document length 8.25 6.99 8.76 10.11
average # click per query 0.94 0.53 0.78 6.48

4.1.2 Tiangong-ST Search Log. Tiangong-ST Search Log [5] is collected from Sogou, a Chinese commercial
search engine. It consists of 18-day user-issued queries, their top 10 results, and the click information made on
the results. Among all the sessions, there are 2,000 sessions whose last query have human relevance labels. We
use these sessions as the test set. For the rest of the sessions, we use the last 2,000 sessions as the validation set
and the remaining sessions as the training set. In the training and validation sets, each document has a label
that shows whether it was clicked by the user. For the testing dataset, because only the last query in each

session has an annotated relevance score, we construct two testing sets based on the original testing

data:

(1) Tiangong-ST-Click: In this testing set, we don’t use the last query of each session. Each document has a
label that shows whether it is clicked by a human.

(2) Tiangong-ST-Relevance: In this testing set, only the last query in a session that has a manual annotation is
used. Each of these queries is manually annotated with a ive-graded relevance score. More details about the
relevance score can be found in [5]. When counting the statistics of this dataset, we take the documents with the
relevance score higher than 1 as the clicked documents. Therefore, the average number of clicked documents for
each query of this testing set seems to be larger than those of the training and validation sets in Table 1. Note
that when a context-aware model is being evaluated on this dataset, the previous queries of each session (i.e.,
queries in another testing set) are still used as session context.

Note that following [2, 10, 16], we only use the title as the content for each document.

4.1.3 Evaluation Metrics. To evaluate our model, we use Mean Average Precision (MAP), Mean Reciprocal
Rank (MRR), and Normalized Discounted Cumulative Gain (NDCG) [30] as metrics. Speciically, NDCG includes
NDCG@1, NDCG@3, NDCG@5, and NDCG@10, where NDCG@k indicates NDCG at position k . For Tiangong-
ST-Relevance, the relevance label has ive levels of 0-4, which is not suitable for using MAP or MRR. Hence, we
considered documents with labels larger than one are relevant to compute MAP and MRR. All evaluation results
are calculated by TREC’s evaluation tool (trec_eval) [12].
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4.2 Baselines

We use two kinds of baseline models as comparisons to prove our model’s efectiveness:
(1) Ad-hoc Models: These models do not utilize any information from search history, i.e., they only use q to

re-rank d .

• BM25 [25] is a classical retrieval algorithm that ranks d based on the terms of q appearing in d .
• ARC-I [15] represents q and d with Convolutional Neural Networks (CNNs). Then it uses an MLP to
calculate the ranking score.
• ARC-II [15] is interaction-based. A 2D-convolution neural network is utilized on the interaction matrix of
the current query and the candidate document.
• KNRM [32] extracts the features of interaction between q and d on word-level. The kernel-pooling is used
to provide soft match signals for ranking.
• Conv-KNRM [8] is an extension of KNRM, which models n-gram soft matches with CNNs.
• Duet [23] integrates both representation based features and interaction based features to rank d for ad-hoc
search.

(2) Context-aware Models: These models utilize both S and q to calculate the ranking score of d .

• M-NSRF [1] predicts the user’s click in the current session and his next query jointly. It models queries,
documents, and session history information into continuous vectors respectively. Then it computes the
ranking score based on these representations.
• CARS [2] solves query suggestion task and document ranking task simultaneously. Diferent from previous
works [1], it adds attention mechanism into encoding queries and documents. It also encodes the sequence
of clicked documents in the current session into a context representation.
• HBA-Transformers [24] concatenates all search behaviors of the session into a sequence and puts it into
BERT to get the word-level interaction based contextual representations. Then, HBA uses a hierarchical
behavior attention module which consists of behavior embedding and position embedding to further
enhance the representations. Finally, the representation of the token [CLS] is used to calculate the ranking
score. This is the state-of-the-art method.2

4.3 Experiment Setup

We re-implemented all baselines. All baselines used the same pairwise ranking loss as RICR. For ARC-I, ARC-II,
Duet, M-NSRF, and CARS, we selected their hyper-parameters following [2]. As for KNRM, Conv-KNRM, and
HBA, we selected their hyper-parameters following their original papers [8, 24, 32]. As suggested in [24], we
ine-tuned the BERT encoder of HBA during training. All models (including RICR) were trained for 10 epochs on
AOL data set and 5 epochs on Tiangong-ST data set. Note that we didn’t use early-stopping strategy and selected
the best result among all epochs as the inal result.
To inalize the parameters of our model, we tried multiple sets of experiments on the validation set. The

decided parameters are as follows. We set the pre-trained 100-dimensional word2vec model [22] as the initial
word embedding, the dimension of GRU’s hidden unit as 256, the max length of a session as 7, the max length of
a query as 7, the max document length as 15, the dropout rate as 0.1, the learning rate as 0.001 and the training
batch size as 512. As for the Conv-KNRM components, their kernel pooling layers all have 21 kernels with
diferent parameters, and one of them is used for exact matching (µ = 1.0 and σ = 0.001). Other hyperparameters
of Conv-KNRMs are set as suggested in [8]. We use AdamW [20] as the optimizer, and train our model on a 12G
TITAN V GPU. The code is released on GitHub at https://github.com/haon-chen/RICR.

2There are some slight diference between our re-implemented results and those of the original paper of HBA. This is because of diferent
batch size settings. We use a considerably smaller batch size than HBA does (32 versus 512) due to the limitation of computing resources.
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Table 2. Overall results on all three testing datasets. łHBAž is short for HBA-Transformers. łImprov.ž reflects improvements
of RICR over HBA-Transformers. ł⋆ž indicates this model is context-aware. ł⋄ž indicates this model utilizes interaction-based
features. ł†ž indicates our model outperforms all baselines significantly (p < 0.05 in two-tailed paired t-test). The best
performance is in bold and the second-best performance is underlined.

Dataset Model MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

AOL

BM25 0.2200 0.2271 0.1195 0.1862 0.2136 0.2481
ARC-I 0.3559 0.3661 0.2032 0.3308 0.3773 0.4242
ARC-II⋄ 0.4114 0.4217 0.2507 0.3945 0.4396 0.4837
KNRM⋄ 0.3861 0.3954 0.2268 0.3640 0.4115 0.4578
Conv-KNRM⋄ 0.4282 0.4380 0.2634 0.4156 0.4598 0.5007
Duet⋄ 0.4268 0.4364 0.2616 0.4134 0.4580 0.5002
M-NSRF⋆ 0.4308 0.4479 0.2951 0.4297 0.4832 0.5214
CARS⋆ 0.4363 0.4457 0.3005 0.4313 0.4801 0.5309
HBA⋆

⋄ 0.5273 0.5382 0.3770 0.5254 0.5597 0.5916
RICR⋆⋄ 0.5338† 0.5450† 0.3894† 0.5267† 0.5648† 0.5971†

Improv. 1.23% 1.26% 3.29% 0.25% 0.91% 0.93%

Tiangong-ST-Click

BM25 0.2963 0.3073 0.1181 0.2085 0.2910 0.4649
ARC-I 0.6657 0.6899 0.5368 0.6474 0.7015 0.7557
ARC-II⋄ 0.6684 0.6995 0.5451 0.6470 0.7103 0.7602
KNRM⋄ 0.6733 0.6952 0.5356 0.6629 0.7149 0.7615
Conv-KNRM⋄ 0.6925 0.7138 0.5575 0.6769 0.7248 0.7761
Duet⋄ 0.6952 0.7145 0.5594 0.6838 0.7335 0.7776
M-NSRF⋆ 0.6849 0.7111 0.5649 0.6741 0.7182 0.7746
CARS⋆ 0.6923 0.7128 0.5682 0.6829 0.7297 0.7774
HBA⋆

⋄ 0.6961 0.7185 0.5658 0.6855 0.7366 0.7790
RICR⋆⋄ 0.7472† 0.7697† 0.6401† 0.7450† 0.7822† 0.8174†

Improv. 7.34% 7.13% 13.13% 8.68% 6.19% 4.93%

Tiangong-ST-Relevance

BM25 0.7837 0.8225 0.6029 0.6646 0.7072 0.8541
ARC-I 0.7901 0.8580 0.7271 0.7263 0.7451 0.8781
ARC-II⋄ 0.7977 0.8621 0.7390 0.7463 0.7588 0.8842
KNRM⋄ 0.8139 0.8915 0.7429 0.7489 0.7561 0.8896
Conv-KNRM⋄ 0.8132 0.8921 0.7498 0.7474 0.7593 0.8889
Duet⋄ 0.8025 0.8762 0.7389 0.7357 0.7572 0.8844
M-NSRF⋆ 0.8077 0.8811 0.7154 0.7329 0.7503 0.8805
CARS⋆ 0.8112 0.8850 0.7389 0.7428 0.7492 0.8846
HBA⋆

⋄ 0.8142 0.8929 0.7598 0.7509 0.7617 0.8893
RICR⋆⋄ 0.8147† 0.8937† 0.7670† 0.7636† 0.7740† 0.8934†

Improv. 0.06% 0.09% 0.95% 1.69% 1.61% 0.46%
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5 RESULTS AND ANALYSIS

5.1 Overall Performance

The overall results on all datasets are presented in Table 2. We can ind that all neural models outperform the
traditional model BM25 signiicantly, which indicates that the task we study is diicult and meaningful. It can be
clearly observed that RICR outperforms all baseline models on all datasets in terms of all metrics. This indicates
that our model successfully takes full advantage of representation and interaction to improve the re-ranking
performance. For example, our model has achieved about 13.13% improvement on NDCG@1 comparing to the
state-of-the-art baseline HBA-Transformers on Tiangong-ST-Click set, and about 3.29% improvement in the terms
of NDCG@1 on AOL set. Further, we can ind out that:

(1) RICR performs better than all ad-hoc models, which indicates the importance of modeling ses-

sion history. The ad-hoc models do not take the session context into consideration, while RICR does. Therefore,
the higher performance of RICR than ad-hoc models suggests that modeling session context is important. Besides,
RICR obtains the best performance among all context-aware models, which proves its efectiveness for modeling
session context. Intriguingly, we ind most existing context-aware models perform worse than the interaction
based ad-hoc model Conv-KNRM on Tiangong-ST set. The reason may be that these models fail to capture
ine-grained interactions on word level, thus unable to take full advantage of historical information.

(2) Interaction based methods generally outperform representation based ones. We can ind out that
even without the usage of session context, the interaction based model Conv-KNRM still performs better
than representation based context-aware models on Tiangong-ST-Click set. Besides, the interaction based
context-aware model HBA-Transformers outperforms all other baselines on all datasets. These can indicate
the efectiveness of mining the information of interactions between queries and documents. Comparing to all
interaction based models, RICR achieves better performance, which proves that it manages to take full advantage
of both representation and interaction to improve the re-ranking performance.

5.2 Ablation Analysis

To prove the efectiveness of our model, we design several variants of RICR to evaluate the importance of the
components. Speciically, we conduct ablation experiments on all three datasets as follows:

• RICR w/o. HE. We remove the queries and documents obtained by history enhancing (HE, introduced in
Section 3.4), i.e., d+, q+, and qs+. In another word, we only use these two matching scores: P (d,qs ), P (d,q)
to re-rank d .
• RICR w/o. DE. We remove the history-enhanced candiate documents (DE, introduced in Section 3.4) and
the corresponding four matching scores, i.e., P (d+,q+), P (d+,q), P (d+,qs+), and P (d+,qs ).
• RICR w/o. BE. We remove the behavior encoding sub-module (BE, introduced in Section 3.3), which
consists of the term-level query aware attention mechanism and the inner-attention mechanism. Instead,
we simply encode each historical search behavior by averaging the embedding vectors of its words.
• RICR w/o. SQS.We abandon the supplemental query selection (SQS, introduced in Section 3.4) and the
corresponding four matching scores, i.e., P (d,qs ), P (d+,qs ), P (d,qs+), and P (d+,qs+).

The results of ablation experiments are shown in Table 3. From which we can see that all three ablated models
underperform the full model. Speciically, we can further obtain the following conclusions:

(1) Utilizing contextual information of session history is necessary. In the information enhancing
module, RICR uses the encoded session history as the initial state of three GRUs to learn the enhanced word
representations of q, qs , and d , respectively. This adds the information of S into the later matching module. Our
model’s performance decreases after discarding the matching of enhanced queries and documents. For example,
it makes our model decrease 13.08% in terms of NDCG@10 on AOL dataset. The signiicant decrease shows that
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Table 3. Performance of ablated models on all datasets.

Dataset Metric w/o. HE w/o. DE w/o. BE w/o. SQS RICR (Full)

AOL

MAP 0.4454 -16.56% 0.5087 -4.93% 0.5271 -1.26% 0.5287 -0.96% 0.5338

MRR 0.4552 -16.48% 0.5192 -4.97% 0.5381 -1.27% 0.5391 -1.08% 0.5450

NDCG@1 0.2796 -28.20% 0.3566 -9.51% 0.3803 -2.34% 0.3813 -2.08% 0.3894

NDCG@3 0.4355 -17.32% 0.5014 -5.04% 0.5201 -1.25% 0.5219 -0.91% 0.5267

NDCG@5 0.4779 -15.39% 0.5399 -4.61% 0.5577 -1.26% 0.5593 -0.97% 0.5648

NDCG@10 0.5190 -13.08% 0.5750 -3.84% 0.5914 -0.95% 0.5929 -0.70% 0.5971

Tiangong-ST-Click

MAP 0.7216 -3.43% 0.7402 -0.94% 0.7329 -1.91% 0.7409 -0.84% 0.7472

MRR 0.7425 -3.53% 0.7622 -0.98% 0.7513 -2.39% 0.7631 -0.86% 0.7697

NDCG@1 0.5998 -11.00% 0.6281 -1.85% 0.6099 -4.72% 0.6284 -1.83% 0.6401

NDCG@3 0.7180 -3.62% 0.7359 -1.22% 0.7297 -2.05% 0.7404 -0.62% 0.7450

NDCG@5 0.7612 -3.96% 0.7752 -0.90% 0.7699 -1.57% 0.7771 -0.65% 0.7822

NDCG@10 0.7978 -3.62% 0.8121 -0.65% 0.8060 -1.39% 0.8126 -0.59% 0.8174

Tiangong-ST-Relevance

MAP 0.8127 -0.25% 0.8133 -0.17% 0.8139 -0.10% 0.8144 -0.03% 0.8147

MRR 0.8890 -0.53% 0.8881 -0.63% 0.8927 -0.11% 0.8912 -0.28% 0.8937

NDCG@1 0.7605 -0.85% 0.7612 -0.76% 0.7643 -0.35% 0.7647 -0.30% 0.7670

NDCG@3 0.7511 -1.64% 0.7537 -1.30% 0.7546 -1.18% 0.7524 -1.47% 0.7636

NDCG@5 0.7705 -0.45% 0.7693 -0.61% 0.7673 -0.87% 0.7692 -0.62% 0.7740

NDCG@10 0.8901 -0.37% 0.8902 -0.36% 0.8909 -0.28% 0.8912 -0.25% 0.8934

using contextual information (i.e., S) is necessary for inferring a user’s intent. It is consistent with our analysis
in Section 5.1.

(2) Enhancing the candidate document with session history is efective. Diferent from most works
that represent d independently from the session context [1, 2, 11], RICR enhances the candidate document with
session history. The performance of RICR decreases after discarding the corresponding matching scores of the
enhanced document. For example, it makes our model decrease 9.51% in terms of NDCG@1 on AOL dataset. This
proves the efectiveness of enhancing the candidate document.

(3) It is important to utilize the information of the current query to encode historical behaviors.

RICR uses the Behavior Encoding(BE) sub-module to encode every behavior in S. It consists of the term-level
query aware attention mechanism and the inner-attention mechanism. Term-level query aware attention can
encode each behavior in S with the word-level interactions between the behavior and q. Besides, the inner-
attention mechanism can identify the diferent importance of words in q, and use it to encode the representations
of behaviors in S. From Table 3, we ind that removing BE causes a decrease of our model’s performance. For
example, NDCG@1 decreases 2.34% on AOL dataset. This conirms the efectiveness of our BE sub-module. We
conduct more analysis of BE in Section 5.4.

(4) The supplemental query that we select can make our model more robust. In the information en-
hancing module, we select a supplemental query (qs ) based on both session context and q. It can help our model
to deal with the circumstance when the user issues a small set of keywords as q while her search intent is more
complex than this. After we abandon the supplemental query selection (SQS) and its corresponding four matching
scores, the performance of our model decreases. For example, removing SQS causes a 1.83% decrease in the terms
of NDCG@1 on Tiangong-ST-Click dataset. This proves the efectiveness of our supplemental selection module.
More analysis is provided in Section 5.4.
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Fig. 3. Performance on sessions with diferent lengths.

5.3 Efect of Session Length

To study the impact of context information on sessions with diferent lengths, we split the test set of AOL dataset
into three bins:

(1) Short sessions (with 2 queries) - 66.5% of the test set;
(2) Medium sessions (with 3-4 queries) - 27.24% of the test set;
(3) Long sessions (with 5+ queries) - 6.26% of the test set.
Note that following [2], we ilter out sessions with only one query, i.e., without context information.
We compare RICR with Duet, CARS, and HBA-Transformers on AOL dataset and present the results on MAP

and NDCG@3 in Figure 3. We can obtain the following conclusions from the experiment:
(1) RICRmanages to take full advantage of representation and interaction tomodel session context.

We can clearly ind that RICR outperforms all context-aware document ranking models on all three groups of
sessions. This proves RICR’s efectiveness in learning context information. RICR irst utilizes the BE sub-module
with a GRU to encode the session context into a latent vector. Then it uses this latent representation to enhance
the word-level interaction between the current query and the candidate document for scoring. Through this,
RICR manages to model and utilize the session context.

(2) Modeling historical information is essential for improving ranking performance. It is evident that
the ad-hoc ranking model Duet performs worse than all three context-aware document ranking models on all
bins of sessions. This demonstrates the importance of modeling session context once again.

(3) RICR can handle long sessions better than HBA-Transformers. From Figure 3, we can ind that all
models’ performance on long sessions decreases drastically. However, RICR’s performance is relatively stable
comparing to the BERT-basedmodel HBA-Transformers. For example, HBA decreases 10.23% in terms of NDCG@3
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on long sessions comparing to that on medium sessions, whereas RICR only decreases 4.90%. This supports our
claim that RICR can handle long sequences better than the SOTA model HBA-Transformers.

Table 4. An example search session with three queries. q1 and q2 are the historical queries, q is the current query. Bold words
of q1 and q2 are given higher weights with respect to a specific word of q by term-level query aware atention mechanism.
Bold words of q are given higher weights by inner-atention mechanism.

q q1 q2

popular a song for my son groom and mother wedding dance songs
wedding a song for my son groom and mother wedding dance songs
songs a song formy son groom and mother wedding dance songs

Table 5. An example query łpopular wedding songsž with its candidate set. The selected supplemental query is in bold and
marked with a ł✓ž.

Index Candidate query

1 listen to most popular wedding songs
2 wedding songs
3 ✓family wedding songs

4 wedding songs example
5 wedding processional songs
6 free wedding songs
7 popular love songs
8 money dance wedding songs
9 new wedding tradition songs
10 popular wedding songs

5.4 Case Study of Behavior Encoding and Supplemental uery Selection

To further verify the efectiveness and interpretability of the behavior encoding (BE) sub-module, we take a
qualitative example from AOL search log and illustrate it in Table 4. The original session has four queries: ła song
for my sonž (q1), łgroom and mother wedding dance songsž (q2), łpopular groom and mother wedding dance
songsž and łpopular wedding songsž (q). We take the last one as the query being issued, i.e., q, and abandon the
third one because it is almost identical to q2. In Table 4, we highlight two words for each query that gain higher
attention weights. For example, the words łweddingž and łsongsž of q are in bold because they are given higher
weights by inner-attention mechanism, which indicates that they are more informative than other words in q. For
q1 in the second row, the words łsongž and łsonž are in bold because they are given higher weights with respect
to the word łweddingž of q by term-level query aware attention mechanism. Like the two examples above, most
of the given attention weights are reasonable and interpretable. This proves the value of our BE sub-module.
Besides, we also take a look at how does our model select the supplemental query for q. The candidates and

the selected result are presented in Table 5. It can be observed that the selected query łfamily wedding songsž
is clearly consistent with the user’s current search intent, which is to ind a song to dance with at her son’s
wedding. Whereas q is too simple to infer this intent, which indicates that the supplemental query can make
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our model more robust. We can also infer that our model selects the supplementary based on both the historical
information and q, which is consistent with our claim in Section 3.4.

Table 6. Statistics of the selected supplemental queries of AOL data set. The original query is in bold.

Supplemental Rate Rank 0 1 2 3 4 5 6 7 8 9

Proportion 0.3544 0.0588 0.0653 0.0584 0.0591 0.1020 0.0859 0.0762 0.0695 0.0704

5.5 uality of Selected Supplemental ueries

To further study the quality of the supplemental query selected by RICR, we take a look at some statistics of
the selected supplemental queries of AOL data set and present them in Table 6. The irst row of this table is the
rank of the supplemental rate of each candidate, which is computed by Eq. 13. The second row is the proportion
of the queries being selected. As stated in Section 3.4, to ensure that if the original query matches the user’s
current search intent or all candidates are worse than the original query, we also add it into the candidate set and
place it at the head of the candidate set, i.e., rank 0. We can ind that about 35% supplemental queries end up
being the same as the original query, i.e., about 65% supplemental queries have the information that the original
query does not have. Besides, we also use a sentence-transformers model3 to compute the semantic similarity
between the supplemental queries and the original one. The average similarity is 0.6452. This indicates that
RICR manages to select a supplemental query that can enhance the information of the original query.
5.6 Cost Comparison between RICR and HBA-Transformers

The main goal of our model is to capture the information of word-level interactions along with contextual
information, and in the meantime, reduce the cost. To investigate how does our model perform with respect to
cost reduction, we compare the cost of our model and HBA-Transformers in two ways: an analysis of the number
of parameters and an experiment on training and inference cost.

5.6.1 The Number of Parameters. For HBA-Transformers, it has two main components: a BERT Encoder (BERT-
Base-Uncased) and a Hierarchical Behavior Attention module. The BERT-Base model has a position embedding
layer and 12 encoders. Each encoder has two main parts: a Multi-Head Attention module and a Feed Forward
layer. Each part in each encoder has a residual connection around it and is followed by a layer-normalization step.
Most parameters of HBA-Transformers fall into the BERT Encoder. Besides, the Hierarchical Behavior Attention
module has a two-level attention mechanism, which also requires training.

For RICR, most parameters fall into four parts: a Word Embedding layer, a Behavior Encoding sub-module, four
GRUs, and eight Conv-KNRM components. The BE sub-module, which is used to encode historical behaviors,
consists of a term-level query aware attention and an inner-attention. Among the four GRUs, one is used to
encode the sequential information of S, and the other three are used for enhancing word-level representations
of q, d , and qs . Conv-KNRM is used to capture the ine-grained word-level interactions between queries and
documents.
The main diference that makes our model manage to reduce the cost is that in the history encoding stage,

instead of making every two search behaviors interact with each other, RICR only obtains the interaction
information between the current query and each historical behavior. This can be told by the diference between
our Behavior Encoding sub-module and HBA’s BERT Encoder.

We count the number of the parameters which require training for both models, respectively, and the results
are: HBA-Transformers has 117,044,738 parameters and RICR has 23,043,270 parameters. We can clearly ind out

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Fig. 4. The training and inference cost of RICR and HBA. The batch size for training is 16 and 100 for inference. The experiment
is conducted on a 12G TITAN V GPU.

that our model cuts about 80% parameters than HBA-Transformers, which achieves our goal to reduce
the calculation cost.

5.6.2 Training and Inference Cost. To have a more straightforward view of the calculation cost of RICR and
HBA, we record their training and inference cost on the AOL dataset on a 12G TITAN V GPU, respectively. We
record the occupation of GPU memory and the running time as the cost. We record the total running time on all
the queries as the training and inference time, respectively. The IO, tokenization, and word embedding have all
been considered. The results are presented in Figure 4. For the training stage, it is evident that our model saves
over a half training time than HBA, and at the same time, takes only about 14.4% of HBA’s GPU memory usage.
This proves our model’s oline training eiciency. Furthermore, for the inference stage, our model uses only
15.8% of HBA’s GPU memory and spends 9.7% of HBA’s inference time. This can conirm RICR’s online inference
eiciency.

We have compared the training cost, inference cost, and the number of trainable parameters of RICR and HBA.
In a word, from these analysis and experiment, we can conclude that our model manages to reduce the calculation
cost considerably.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a context-aware document ranking model RICR which leverages representation and
interaction. We irst use word-level attention mechanisms and RNN to encode the session history. Then we
use this encoded history to enhance the representations of the current query and the corresponding candidate
document. To make our model more robust, we also select a supplemental query for the current query. At last, we
use several matching components to obtain the ine-grained information of word-level interactions. Our model
manages to incorporate the session context into the word-level interactions while reducing the calculation cost.
Experimental results prove the efectiveness and the eiciency of our model.
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For future work, we are interested in: (1) developing more advanced approaches instead of just averaging
the word embedding to aggregate clicked documents. (2) studying more efective approaches to calculate the
similarity between the current query and the candidate queries to select the supplemental query. (3) exploring
how our proposed model performs on long document contents instead of only titles. (4) extending our work to
diferent scenarios, such as personalized search.
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