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ABSTRACT
The configuration of 512 window size prevents transformers from
being directly applicable to document ranking that requires larger
context. Hence, recent works propose to estimate document rele-
vance with fine-grained passage-level relevance signals. A limita-
tion of such models, however, is that scoring each passage inde-
pendently falls short in modeling inter-passage interactions and
leads to unsatisfactory results. In this paper, we propose a Multi-
view inter-passage Interaction based Ranking model (MIR), to
combine intra-passage interactions and inter-passage interactions
in a complementary manner. The former captures local seman-
tic relations inside each passage, whereas the latter draws global
dependencies between different passages. Moreover, we represent
inter-passage relationships via multi-view attention patterns, allow-
ing information propagation at token, sentence, and passage-level.
The representations at different levels of granularity, being aware
of global context, are then aggregated into a document-level rep-
resentation for ranking. Experimental results on two benchmarks
show that modeling inter-passage interactions brings substantial
improvements over existing passage-level methods.
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• Information systems → Information retrieval; Retrieval
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Figure 1: Examples of query-passage pairs. Despite few lex-
ical overlaps, 𝑃𝑘 is relevant by exploiting the information
from 𝑃2 that “the land of enchantment” is a nickname.

1 INTRODUCTION
Document ranking plays an indispensable role in information re-
trieval (IR). Recently, exploiting contextual language models, such
as BERT [10], has achieved remarkable gains from deeper text under-
standing. However, the computational and memory requirements of
the quadratic attention mechanism limit the input sequence to 512
tokens [2]. Applying BERT directly to document ranking scenarios
is confronted with the challenge that the document length is too
long to fit into the transformer window.

Consequently, several works propose to estimate document rele-
vance with fine-grained passage-level relevance signals. First, doc-
uments are partitioned into passages based on textual discourse
units [4] or simply fixed-length windows [16] that do not rely on
the document structure. Then, local relevance signals are obtained
by applying BERT to each passage individually [8, 40]. Furthermore,
they are converted to the document-level relevance score via the
score or representation aggregation module [23, 33, 38].

Most of these works are built on the basic hypothesis that pas-
sages are independent from each other and the relevance score of
each passage could be assigned separately. However, they only con-
sider semantic dependencies inside the passagewhile neglect the un-
derlying relations among passages. We argue that handling inter-
passage relations are crucial in capturing longer-rangeword
dependencies and generating superior document-aware con-
textualized representations. As presented in Figure 1, the query
contains a nickname “the Land of Enchantment”(underlined) and all
passages come from the same document. Ignoring the information
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Figure 2: Examples of document pairs1 with the same query.
Though both have relevant contents (in red), the topic of 𝑑2
is not aligned with the query and should be ranked lower.

revealed in 𝑃2 that this nickname refers to New Mexico (empha-
sized by italics), the relevance of 𝑃𝑘 will be underestimated due to
few lexical overlaps. Conversely, introducing such dependency as a
supplement can boost the relevance score of 𝑃2 and thus benefit the
ranking of the entire document. By building coreference links on
informative tokens (e.g., the red dash line on NewMexico), different
passages are connected and their representations are enriched to
achieve better query-passage matching. In summary, we claim that
introducing token-level relations between some selective terms of
different passages can promote key information exchange among
passages and improve document ranking performance.

Furthermore, modeling inter-passage relationships at higher lev-
els of granularity, e.g., sentence and passage-level, enables us to
identify the key topic of the entire document. As shown in Figure 2,
in conjunction with passage-level interactions in 𝑑2 (namely, 𝑃 ′1𝑃

′
2

or 𝑃 ′1𝑃
′
3), we realize that 𝑑2 is more concerned with another topic,

i.e., “steps to prevent weight gain”. Though 𝑑2 contains terms (high-
lighted in red) relevant to the query, the document-level topic it
mainly expounds deviates from the information need the query
represents (i.e., “consequences of obesity”). In contrast, by interact-
ing 𝑃1 and 𝑃2 (or 𝑃3) in 𝑑1, we discover contents in 𝑑1 is coherently
focused on the topic “the harmness of obesity”. Thus, 𝑑1 is more top-
ically consistent with the user search intents and should be ranked
higher than 𝑑2. In a word, we envision that higher level inter-
passage interactions help capture global semantic coherence
of all passages and induce document-level topics implicitly,
which inherently complement existing passage-level methods.

In this paper, we propose aMulti-view inter-passage Interaction
based Ranking model (MIR), to augment the transformer [31] with
the ability to capture inter-passage correlations for document rank-
ing. Due to the complexity in interacting arbitrary pair of tokens
from different text pieces, we pre-select a subset of informative
“pivot” tokens (§3.1.2), and subsequently construct graphs following
their inherent relations (§3.1.3). Specifically, as document semantics
usually present the word-sentence-passage hierarchy, we repre-
sent inter-passage relationships via multi-view attention patterns.
1𝑆𝑖,𝑗 represents the j-th sentence in the i-th passage.

Hence, graphs on different granularity levels (i.e., token, sentence,
passage) are constructed, with pivot tokens resembling nodes and
edges representing semantic links. First, token-level edges are built
to characterize global syntactic (e.g., word dependencies) or seman-
tic features for sailent terms. Then, sentence and passage-level
links are drawn to capture global semantic coherency and induce
the topical structure of the entire document. By this means, MIR
models rich contextual information beyond the segment length.
Meanwhile, the pivot token selection provides a balance between
efficiency and model representation capacity (§5.2).

Overall, MIR is composed of stacking attention blocks and an
multi-view aggregation layer on top to generate a global document
representation. Each block has two sub-layers, i.e., an intra-passage
attention layer and an inter-passage attention layer. The former cap-
tures local semantic relations inside each passage, whereas the latter
compensates for the limited intra-attention span and draws global
dependencies between different passages based on pre-constructed
graphs. In each block, pivot tokens serve as a conduit for informa-
tion flow and their representations are enriched via graph-informed
inter-passage attention. Coupled with intra-passage attention, in-
formation introduced by pivot tokens are further propagated to
regular tokens. In this way, the combination of intra-passage and
inter-passage attention upgrades themodel to be aware of the global
document context. Finally, the aggregation layer combines these
document-aware representations at different levels of granularity,
to form a comprehensive document embedding for ranking.

To summarize, our contributions are three-fold: 1) We investi-
gate the problem of modeling interactions among passages within
a long document for better document ranking. It is the first time
that the inter-passage dependencies are seriously studied for neural
document ranking. 2)We integrate intra-passage and inter-passage
interactions into a unified framework, which enables document-
aware contextual representations. Meanwhile, interactions among
different passages are conditioned on a small subset of pivot tokens,
making a trade-off between efficiency and effectiveness. 3)We de-
signmulti-view attention patterns to allow information propagation
at different levels of granularity, which help capture longer-range
dependencies and induce topical structure of documents.

2 RELATEDWORK
Passage based Document Ranking. Many approaches have
been developed to address the 512 limit of transformer models.
A common idea is to split the document into (overlapping) pas-
sages [4, 29], process each passage separately [1, 8, 16, 24–26], then
combine the signals with a sophisticated aggregation model [23,
25, 38]. Some works explore different strategies to combine the
passage ranking scores. Dai and Callan [8] took the maximum
(BERT-MaxP), first (BERT-FirstP), and summation (BERT-SumP) of
matching scores of query-passage pairs as document-level ranking
scores. To deal with documents with varying length, IDCM [16]
further used an intra-document cascade ranking model with a fast
passage selectionmodule. However, all these approaches are usually
trained on passages, without any information flow across passages,
limiting the contextualization within the current passage. Others
also investigate sophisticated representation aggregation methods
to obtain a document embedding for ranking. PCGM [33] performed



Figure 3: The overview of MIR. Blue, orange and yellow represent tokens associated with passage (P), sentence (S), token (T)
level graphs, respectively. Grey denotes regular tokens that do not participate in graph construction.

sequential passage representation aggregation using a LSTM [15].
However, its training relies on passage-level cumulative gain an-
notations [34]. Several works achieve representation aggregation
via max or attention pooling [23, 44], or in a complex hierarchical
manner [32, 36, 37, 41]. Particularly, Transformer-XH [42] modeled
text sequences by linking them with eXtra Hop attention paths.
Though these methods can alleviate the lack of global document
context to some extent, how to guide information propagation at
different levels of granularity still remains underexplored.

Long-Document Transformers. Thinking of the full atten-
tion model as a complete graph, another line of works modifies
the quadratic full attention by designing sparse attention patterns
(graphs) [6, 17, 21, 28, 30, 43], making it feasible to process long doc-
uments. For example, Child et al. [6] used a form of dilated sliding
window of blocks of size 8x8 to achieve sparsification. Subsequent
works further explore the idea that combines local windowed at-
tention with a task motivated global attention [2, 3, 13, 21, 39].
Global attention are added to global tokens to attend to all tokens,
whereas regular tokens only attend to to a local neighborhood. Tak-
ing Longformer [3] for instance, global attention in QA is provided
on all query tokens. For memory efficiency, they implement custom
CUDA kernels using Tensor Virtual Machine (TVM) [5].

In this work, pivot tokens share some similarities with global
tokens. Nevertheless, pivot tokens are carefully selected based on
importance and graphs at different levels of granularity are con-
structed to capture diverse relations. These designs are more suited
for the document ranking task.

3 METHODOLOGY
A naive solution to modeling inter-passage interactions is to inter-
act arbitrary pair of tokens from different passages. However, it is
usually infeasible due to limited resources. This motivates us to con-
struct inter-passage interactions on a small subset of “pivot” tokens
that play a prominent role in document semantics. To model rela-
tionships comprehensively, graphs among pivot tokens are built at
different granularity levels. Figure 3 shows the overall architecture
of MIR. MIR is comprised of two main components: (1) An itera-
tive attention stack which includes 𝐿 stacked transformer blocks
to incorporate the intra-passage and inter-passage interactions. It
learns document-level context aware token, sentence, and passage
representations. In each block, a basic intra-passage attention
sub-layer that provides localized representations is in conjunction
with an inter-passage attention sub-layer that enables flexible
information exchange and integration between passages based on
multi-view graphs. This design ensures global context information
accessible to regular tokens, with pivot tokens serving as informa-
tion transfer stations. (2) An multi-view aggregation layer gener-
ates an overall document representation for ranking based on the
learned token, sentence, and passage representations.

3.1 Passage Partition and Graph Construction
3.1.1 Passage Partition. Following [16], given a document 𝑑 with
length 𝑙 , we partition it into overlapping windows of size𝑤 with
the stride of size 𝑘 . It brings a set of approximately [𝑙/𝑘] passages:



(a) token-level links (b) sentence-level links (c) stacked attentions

Figure 4: Illustration of attention patterns for (a) token-level and (b) sentence-level. (c) shows the effectiveness of stacked
attentions. Solid lines indicate intra-passage attention that resembles a complete graph (some edges are omitted for simplicity).
Dash lines represent the inter-pasaage attention. Different colors of nodes and edges denote different views.

𝑃𝑑 = {𝑑0:𝑤−1, 𝑑𝑘 :𝑘+𝑤−1, 𝑑2𝑘 :2𝑘+𝑤−1, · · · }. For clarity, we define
𝛼 = 1 − 𝑘/𝑤 as the overlapping ratio. Particularly, we prepend
special tokens, [PSG] and [SNT], to each passage and each sentence.
They can be viewed as tokens representing a summary of passages
and sentences respectively. We use the following input format:

[PSG] query [SNT] sent1 [SNT] sent2 [SNT] · · · .

3.1.2 Pivot Token Selection. Due to the complexity in interacting ar-
bitrary pair of tokens from different passages, we pre-select several
salient “pivot” tokens as representatives. Based on the granularity of
information they carry, pivot tokens are further grouped into three
sets, i.e., P (passage-level), S (sentence-level) and T (token-level).
First, special tokens added to the inputs, i.e., [PSG] and [SNT],
represent the summary of passage and sentence level semantics.
Accordingly, we add them to P and S, respectively. Second, the
token-level set T is comprised of informative entities and ordinary
words that play a prominent role in document semantics. Entities
are annotated by an open-source framework TagMe [11]. As for ordi-
nary words, inspired by [9], we experiment with a pseudo-relevance
feedback (PRF) based weak-supervision method to estimate their
importance.

First, we use BM25 to retrieve top𝑘 (set to 10) documents for
each query. Then we collect a document’s pseudo-relevant queries
|𝑄𝑑 |, and generate the weight of term 𝑡 using the percentage of
queries that mention 𝑡 , i.e.,

𝑦𝑡,𝑝 =

��𝑄𝑑,𝑡 ��
|𝑄𝑑 |

, 𝑝 ∈ 𝑃𝑑 . (1)

3.1.3 Multi-view Graph Construction. On the basis of pivot token
types, graphs on different granularity levels are then constructed,
with pivot tokens resembling nodes and edges representing seman-
tic links. Hence, graphs are split into three separate pieces: passage
to passage (p2p), sentence to sentence (s2s), token to token (t2t).
Traditional self-attention can be viewed as a complete graph with
the identity matrix as the adjacency matrix. Instead of making
edges fully connected, we define some informative connections,
to characterize (1) syntactic (e.g., coreference), (2) discourse (e.g.,
co-occurrences) and (3) semantic (e.g., similarities) relations.

Suppose 𝑛𝑡 , 𝑛𝑠 , 𝑛𝑝 are the number of nodes in T, S and P, ad-
jacency matrices 𝑨t2t ∈ R𝑛𝑡×𝑛𝑡 , 𝑨p2p ∈ R𝑛𝑠×𝑛𝑠 , 𝑨s2s ∈ R𝑛𝑝×𝑛𝑝

are defined as: 1) 𝐴t2t
𝑖, 𝑗

= 1 if they are mentions of the same entity
or they are the same ordinary words; 2) 𝐴s2s

𝑖, 𝑗
= 1 if the pair of

sentences have overlapping terms defined in T; 3) 𝐴p2p
𝑖, 𝑗

= 1 if the
similarity score of 𝑗-th passage is ranked in the top𝑘 (set to 5) for
the 𝑖-th passage or vice versa. The score is computed by the cosine
similarity of tf-idf representations.

The reasons are as follows: (1) The first graph (token-level) en-
sures that entities or sailent terms across multiple passages are
connected via coreference links. In Figure 4a, mentions linked to
“New Mexico” are connected. Thus, different properties (e.g., pop-
ulation, nickname, landscape) of New Mexico are jointly encoded
to enrich the representation, which mitigates the lexical mismatch
between query and 𝑃𝑘 . (2) The second graph (sentence-level) mod-
els discourse relations. It captures global semantic coherency by
extracting word concurrence patterns.

In Figure 4b, interacting sentences containing “obesity” (under-
lined) from different passages help induce the document-level topic
and benefit the query-document matching. Passage-level graph has
similar effect in discovering topical structure of documents.

3.2 Iterative Attention Stacks
Overall, MIR is composed of stacking attention blocks. Each block
has an intra-passage and an inter-passage attention layer. Since
representations of pivot tokens are updated by the graph based inter-
passage attention and are aware of the global context, to integrate
such information into their original contextual representations,
each block will aggregate the outputs of two sub-layers into the
unified representations, as the inputs to the next block.

Formally, for the 𝑙-th block, we denote the outputs of the intra-
passage attention for 𝜏-th passage as 𝑯 𝑙𝜏 =

{
h𝑙
𝜏,0, · · · , h

𝑙
𝜏,𝑁

}
∈

R𝑁×𝐸 , and the outputs of inter-passage attention for passage, sen-
tence and token-level graphs as 𝑮𝑙

𝑃
∈ R𝑛𝑝×𝐸 , 𝑮𝑙

𝑆
∈ R𝑛𝑠×𝐸 , 𝑮𝑙

𝑇
∈

R𝑛𝑡×𝐸 , respectively. Here, 𝑁 and 𝐸 denote the number of tokens for
each passage and the dimensions of the representation. The block
output for the 𝑖-th token is computed as,

ĥ𝑙𝜏,𝑖 =

{
𝑾𝐶

[
h𝑙
𝜏,𝑖

; g𝑙
]
, if it is the pivot token;

h𝑙
𝜏,𝑖
, otherwise,

(2)



where g𝑙 is the corresponding node representation extracted from
one of 𝑮𝑙

𝑃
, 𝑮𝑙

𝑆
, 𝑮𝑙
𝑇
, if the 𝑖-th token belongs to or is part of a pivot

token.𝑾𝐶 ∈ R𝐸×2𝐸 is the projection matrix. The 𝑙-th block outputs
for 𝜏-th passage are denoted as 𝑯̂ 𝑙𝜏 =

{
ĥ𝑙
𝜏,0, · · · , ĥ

𝑙
𝜏,𝑁

}
.

Discussion. When attention layers are stacked, pivot tokens
serve as a bridge for information transportation. As shown in Fig-
ure 4c, regular tokens can indirectly attend to all other relevant
tokens in the document via pivot tokens. Hence, connection be-
tween “Land of Enchantment” and “beautiful landscapes” is built,
which is critical for query matching. Moreover, the information
flow among different text pieces induces a natural structure. Specif-
ically, low-level pivot tokens are linked to help characterize global
syntactic features (e.g., word dependencies) and high-level pivot
tokens are linked to summary and propagate query-aware topic
information by injecting word-sentence-passage hierarchy.

3.3 Intra-passage Attention Sub-Layer
To obtain 𝑯 𝑙𝜏 , this sub-layer applies a self-attention mechanism and
acts as the transformer layer. For each token, the representation
is computed as a weighted sum of embeddings of all other tokens.
The weights are assigned by the attention (Att) function as follows,

Att (𝑸,𝑲 , 𝑽 ) = softmax
(
𝑸𝑲⊤
√
𝐸

)
𝑽 , (3)

where 𝑸 , 𝑲 , 𝑽 ∈ R𝑁×𝐸 are different projections of inputs. The
multihead (MH) strategy further projects the inputs into ℎ different
subspaces and performs attention on each split in parallel. The
outputs are computed as,

MH (𝑸,𝑲 , 𝑽 ) = concat
( [
Att

(
𝑸𝑾𝑄

𝑖
,𝑲𝑾𝐾

𝑖 , 𝑽𝑾
𝑉
𝑖

)]ℎ
𝑖=1

)
𝑾𝑂 , (4)

where𝑾𝑄

𝑖
,𝑾𝐾

𝑖
,𝑾𝑉

𝑖
∈ R𝐸×𝐸/ℎ are parameters for the 𝑖-th subspace.

𝑾𝑂 ∈ R𝐸×𝐸 is the projection matrix to obtain final outputs.
The output for a transformer (TRM) layer is denoted as,

TRM (𝑸,𝑲 , 𝑽 ) = LayerNorm(𝑶 + FFN (𝑶)),
where 𝑶 = LayerNorm (𝑸 +MH (𝑸,𝑲 , 𝑽 )) , (5)

where FFN (·) is a fully connected two layer feed-forward network,
and LayerNorm (·) denotes the layer normalization.

For the 𝑙-th intra-passage attention layer, all of the 𝑸 , 𝑲 , 𝑽 come
from unified representations of previous layer, i.e., 𝑯̂ 𝑙−1𝜏 . In this
case, contextual representations of the 𝜏-th passage are denoted as:

𝑯 𝑙𝜏 = TRM(𝑯̂ 𝑙−1𝜏 , 𝑯̂ 𝑙−1𝜏 , 𝑯̂ 𝑙−1𝜏 ) . (6)

3.4 Inter-passage Attention Sub-Layer
This sub-layer models relationships among selected pivot tokens.
Their initial graph representations at the 𝑙-th layer are extracted
from corresponding hidden states of intra-passage attention layer,
which we denote as 𝑯 𝑙

𝑃
∈ R𝑛𝑝×𝐸 , 𝑯 𝑙

𝑆
∈ R𝑛𝑠×𝐸 , 𝑯 𝑙

𝑇
∈ R𝑛𝑡×𝐸 for

passage, sentence and token-level graphs respectively. To handle
cases where entities or terms are comprised of multiple subtokens,
we use the mean pooling of subwords to denote the embedding.

We also follow a multi-head attention based neighborhood ag-
gregation strategy, which is consistent with the mechanism in §3.3.
Note that the intra-passage attention defined in Eq.(3) can be viewed

as a complete graph, whereas inter-passage attention are built on
the pre-defined adjacency matrix (§3.1.3). Taking passage-level
graph for instance, the attention function should be modified as,

Att (𝑸,𝑲 , 𝑽 ) = softmax
(
𝑸𝑲⊤
√
𝐸

−
(
1 −𝑨p2p

)
𝐶

)
𝑽 , (7)

where 𝐶 is a large constant to mask out illegal connections
(setting to −∞). Thus, representations of passage-level graphs are
then updated as follows:

𝑮𝑙𝑃 = TRM(𝑯 𝑙𝑃 ,𝑯
𝑙
𝑃 ,𝑯

𝑙
𝑃 ). (8)

Attention for sentence and passage level graph is similar. We
use two sets of projections, to compute attention scores of intra-
passage attention and inter-passage attention, to provide flexibility
to model the different types of attention. We also experiment with
other variants, such as GCN [20] and GIN aggregator [35] (§5.3.3).

3.5 Multi-view Aggregation Layer
After stacking 𝐿 layers of attention, this layer analyzes how to
summarize outputs into an overall document representation. Prior
works, such as PARADE [23], simpy combine representations cor-
responding to [PSG]. Nevertheless, additionally exploiting features
from other views may enrich the representational power and gen-
eralize better(§5.4). Hence, we apply pooling at multiple levels of
granularity, to generate global document-aware vector from pas-
sage view (o𝑃 ), sentence view (o𝑆 ) and token view (o𝑇 ). They are
aggregated to the document representation as,

d =𝑾𝐴 [o𝑃 ; o𝐸 ; o𝑇 ] , (9)

where𝑾𝐴 ∈ R𝐸×3𝐸 denotes the projection matrix.
Taking passage-view pooling for instance, o𝑃 are obtained as,

o𝑃 = MHP
(
w𝑃 , 𝑮𝐿𝑃 , 𝑮

𝐿
𝑃

)
, (10)

where w𝑃 ∈ R𝐸 is a weight vector learned during training.
Formally, the single-head based pooling function is computed

as,

Pool
(
w𝑃 , 𝑮𝐿𝑃 , 𝑮

𝐿
𝑃

)
=

(
𝑮𝐿𝑃

)⊤
softmax

(
𝑮𝐿𝑃 w𝑃

)
. (11)

Similar to Eq. (4), to make it more expressive, we further extend to
multi-head pooling (MHP) by linearly projecting them ℎ times to
yield ℎ outputs from different subspaces. The output is denoted as,

MHP
(
w𝑃 , 𝑮𝐿𝑃 , 𝑮

𝐿
𝑃

)
=𝑾𝑂 [o𝑖 ; · · · ; oℎ] ,

where o𝑖 = Pool
(
𝑾
𝑞

𝑖
w𝑃 , 𝑮𝐿𝑃 W𝐾

𝑖 , 𝑮
𝐿
𝑃 W𝑉

𝑖

)
,

(12)

where𝑾𝑞

𝑖
∈ R𝐸/ℎ×𝐸 ,𝑾𝐾

𝑖
∈ R𝐸×𝐸/ℎ and𝑾𝑉

𝑖
∈ R𝐸×𝐸/ℎ are projec-

tion matrices for the 𝑖-th subspace.

3.6 Training
For each query𝑞, we select a positive document and several negative
documents, to form a group 𝐺𝑞 . We place a linear layer on top of
the document representation to obtain the relevance score, and
define the contrastive loss [12] for one query 𝑞 as,

L𝑞 := −log
exp

(
v⊤d+

)∑
𝑑∈𝐺𝑞

exp (v⊤d) , (13)



where v ∈ R𝐸 is the weight vector that projects the representation
into a scalar score. d is the document representation for a document
𝑑 ∈ 𝐺𝑞 and d+ ∈ R𝐸 denotes the document representation for the
selected positive sample.

4 EXPERIMENTAL DESIGN
4.1 Datasets and Baselines
Following prior work [16], we use two query sets: (1)MSMARCO:
It consists of 3.2 million documents [7] with 367,013 training queries.

The official evaluation metric is MRR, we also report MAP and
nDCG. (2) TREC 2019 Deep Learning Track: It uses the same
document collection and its test set consists of 43 queries. The
official evaluation metric is nDCG@10, we also report nDCG@100
and MAP. We compare MIR against lots of neural baselines.

BM25 [27] is a widely-used unsupervised bag-of-words retrieval
model based on IDF-weighted counting.

BERT-FirstP [8] predicts the relevance of each passage inde-
pendently and uses the score of the first passage as relevance score.

BERT-MaxP [8] encodes short paragraphs with BERT and com-
bines scores with a max-pooling layer.

IDCM [16] uses an intra-document cascade ranking model with
a fast passage selection module for efficiency.

PARADE [23] generates an overall document representation to
obtain the relevance score by aggregating passage representations.
PARADEMax utilizes a max pooling operation. PARADETF applies
the transformer to passage representations.

Transformer-XH [42] models a group of text sequences and
aggregates them with an extra-hop attention layer.

Longformer [3] uses a combination of awindowed local-context
self-attention and an task motivated global attention. Here, we re-
port the results of two variants, i.e., whether or not global attention
is provided on all question tokens, which we refer as “Longformer
(+global)” and “Longformer” respectively.

QDS-Transformer [18]: It further tailors Longformer to the
ranking task with query-directed sparse attention.

4.2 Training Configurations
We use the first stage retrieval results open sourced by HDCT [9].
All models are trained for two epochs with a batch size of 16. During
training, for each query, we use one positive samples and seven neg-
ative samples randomly sampled from top 100 documents ranked
by HDCT. We use Adam [19] with learning rate of 1e-5, 𝑙2 weight
decay of 0.01, learning rate warmup over the first 10% of steps.
For PRF-based term importance estimation (§3.1.2), we follow the
setting in the original paper [9] and select at most 10 unique terms.
Following [16], max input length is set to 2,048 tokens. Through sta-
tistical analysis, pre-constructed graphs of nearly 90% documents
have less than 64 sentence-level nodes and 256 token-level nodes.
Hence, we limit the maximum nodes in the sentence graph to 64
and the maximum nodes in token graph to 256. We set the num-
ber of layers 𝐿 to 12 and intra-passage attention layers in MIR are
initialized by BERT base model. Parameters of inter-passage at-
tention layer are trained from scratch. Unless otherwise specified,
the rest of paper report results with a window size of 128 and an
overlapping factor of 𝛼 = 0.25. Larger window size does not further
improves the effectiveness, also stated in [16, 18].

5 EXPERIMENTAL RESULTS
5.1 Overall Results
Table 1 summarizes experimental results. In general, we find that
MIR significantly outperforms existing models under different set-
tings of document lengths. More observations are as follows.

(1) Compared to models within 512 tokens, evenwith a smaller
window size (i.e., 128),MIRusing inter-passage attentionper-
forms as powerfully as BERT-FirstP (Line 4 vs. 2). In contrast,
due to the lack of inter-passage attention, BERT-MaxP with the
window size of 128 is inferior to FirstP (Line 3 vs. 2). It confirms that
the inter-passage attention is helpful to capture the global context
and preserve the expressivity of the quadratic full Transformers.

(2) Compared to models beyond 512 tokens,MIR outperforms
existing approaches in terms of all evaluation metrics. MIR
improves performance with a large margin over passage-level meth-
ods PARADE and Transformer-XH, which confirms the effective-
ness of multi-view inter-passage interactions. Concretely, on MS
MARCO, its NDCG@10 has 2.1% absolute improvement over BERT-
MaxP, 1.3% over PARADETF, and 1.4% over Transformer-XH. Fur-
thermore, MIR outperforms longformer and QDS-Transformer by a
remarkable margin (Line 13 vs. 11). This progress can be attributed
to the design of multi-view inter-passage graphs, which models
more comprehensive and informative relationships.

(3) Among all passage-level models, the ones adopting rep-
resentation aggregation perform better. Specifically, PARADE-
style methods surpass score aggregation methods such as BERT-
MaxP (Line 8 vs. 5). We argue that aggregating passage-level rep-
resentations in a lightweight layer can alleviate the severe lack of
document-level context and lead to gains. However, merely inter-
acting multiple passages in the final layer is insufficient to model
inter-passage relationships. Hence, MIR further achieves significant
improvements compared to representation aggregation baselines.

(4) Exploiting longer document input (512 vs. 2K) consis-
tently brings a substantial boost in performance. Specifically,
MIR 2K setting outperforms 512 setting by a remarkable margin
(Line 13 vs. 4). Similar patterns are observed with BERT-FirstP and
BERT-MaxP(Line 3 vs. 5). This indicates longer context contains
more abundant information, which benefits the text understanding
and thus improves the effectiveness.

5.2 Efficiency-Effectiveness Analysis
We also evaluate how the efficiency (y-axes) and the effectiveness
(x-axes) vary with the length (the maximum tokens we make use of)
from 512 to 2K. All experiments are conducted on an Nvidia DGX-1
server with 512 GBmemory and a single Tesla V100 GPU using fp16
training.We compareMIRwith BERT-MaxP using the samewindow
size of 128. In Figure 5, as expected, modeling interactions brings
computational cost and performance improvement at the same time.
However, MIR with the length of 1024 or 1280 can exceed
the best effectiveness of BERT-MaxP with 2048 tokens and
provide a higher throughput simultaneously (highlighted in
red). Moreover, MIR shows huge advantages over longformer in
both effectiveness and efficiency. This is due to the fact that global
tokens attend to all tokens across the sequence. On the contrary,
pivot tokens only interact with each other, which reduces the com-
plexity and improves efficiency. In summary, MIR with 1024 tokens



Table 1: Evaluation results for two benchmark. “†” denotes MIR is significantly better than other methods from the same
setting in t-testwith 𝑝 < 0.05 level. Best results in each setting are in bold. The second best results in each setting are underlined.

Doc.
Length

Window
Size Model TREC DL 2019 MSMARCO

nDCG@10 nDCG@100 MAP@100 nDCG@10 MRR@10 MAP@100
- - 1 BM25 0.488 0.501 0.234 0.311 0.252 0.265

512 512 2 BERT-FirstP 0.652 0.537 0.256 0.497 0.425 0.432

512 128 3 BERT-MaxP 0.634 0.531 0.246 0.477 0.409 0.417
4 MIR (ours) 0.649† 0.547† 0.257† 0.498† 0.427† 0.431†

2K 128

5 BERT-MaxP 0.657 0.547 0.259 0.497 0.427 0.434
6 IDCM 0.665 0.567 0.265 0.497 0.426 0.436
7 PARADEMax 0.659 0.547 0.267 0.503 0.429 0.437
8 PARADETF 0.660 0.554 0.271 0.505 0.435 0.441
9 Transformer-XH 0.656 0.566 0.274 0.504 0.434 0.439
10 Longformer 0.659 0.554 0.265 0.487 0.419 0.426
11 + global 0.668 0.562 0.274 0.505 0.434 0.441
12 QDS-Transformer 0.667 0.560 0.278 0.504 0.435 0.440
13 MIR (ours) 0.697† 0.578† 0.294† 0.518† 0.447† 0.454†
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Figure 5: Throughout and MAP@100 on MS MARCO.

is preferable in efficiency-sensitive scenarios, while MIR with 2048
token further improves results at the expense of computation.

5.3 Effects of Multi-view Attention Patterns
5.3.1 Different attention patterns. Table 2 explores the influence of
attention patterns with different levels of granularity. As expected,
each individual pattern contributes to thewhole. Specifically, remov-
ing the token-level links causes the most decline, which confirms
their indispensable role in incorporating fine-grained dependency
signals into contextual representations. Without inter-passage in-
teractions, the contextualization is limited to the current passage.
Therefore, the model fails to take full advantage of rich contextual
information and drops significantly in terms of all metrics.

5.3.2 Different model variations. In the middle of Table 3, we test
three variants: (1) shared: all parameters for the inter-passage and
intra-passage attention are shared; (2)without stacks: the iterative

Table 2: Ablations of attention patterns onMSMARCO. “w/o
graph” refers to removing all inter-passage interactions.

Models nDCG@10 MRR@10 MAP@100
MIR 0.518 0.447 0.454

w/o p2p 0.510 (-0.8%) 0.443 (-0.6%) 0.448 (-0.6%)
w/o s2s 0.511 (-0.7%) 0.439 (-0.8%) 0.447 (-0.7%)
w/o t2t 0.506 (-1.2%) 0.437 (-1.0%) 0.443 (-1.1%)
w/o graph 0.504 (-1.4%) 0.427 (-2.0%) 0.436 (1.8%)

Table 3: Results with different attention configurations on
MSMARCO. Middle:different model variations. Bottom: dif-
ferent neighborhood aggregators.

Models nDCG@10 MRR@10 MAP@100
MIR 0.518 0.447 0.454

shared 0.499 (-1.9%) 0.428 (1.9%) 0.435 (1.9%)
w/o stacks 0.497 (-2.1%) 0.429 (1.8%) 0.435 (-1.9%)
full-connected 0.511(-0.7%) 0.439(-0.8%) 0.447(0.8%)
MIR-GCN 0.509 (-0.9%) 0.439 (1.8%) 0.445 (-0.9%)
MIR-GIN 0.508 (-1.0%) 0.441 (-0.6%) 0.446 (-0.8%)
MIR-GraphSAGE 0.489 (-2.9%) 0.420 (2.7%) 0.426 (2.8%)

stacking pattern is removed and only one inter-passage attention
layer is placed on top of consecutive intra-passage attention layers;
(3) fully-connected: all pairs of pivot tokens are connected.

We observe that all variants hurt the performance. Sharing pa-
rameters significantly make the performance worse, which shows
that empowering model to maintain dedicated representations for
different types of attention is critical. Without the iterative stacking
pattern, the information flow across multiple passages is insufficient



and the performance drops sharply. The result degradation caused
by full-connected graph shows explicit graph structure imposes
constraints on relations (e.g., semantic similarities and discourse
relations) and MIR benefits from such relational inductive bias.

5.3.3 Different neighborhood aggregators. We use attention to con-
vey messages in the graph (§3.4). In the bottom of Table 3, we
examine three alternatives: (1) GCN [20]: the convolutional propa-
gation rule is applied; (2)GraphSAGE [14]: we use an elementwise
max-pooling operation after transformation; (3) GIN [35]: we use
multi-layer perceptrons to model relationships. The results show
that replacing attention with three variants all harms the effective-
ness. This verifies that attention, equipped with the multi-head
strategy, has the strongest representational power. In comparison,
GraphSAGE usingmax pooling severely underfits. The performance
deterioration is due to the fact that simple pooling falls short in
selecting salient information and characterizing semantic features.

5.4 Effects of Multi-view Aggregation
5.4.1 Effects of multiple views. In the middle of Table 4, we inspect
the effect of different views on the aggregation layer. Analogous
trends hold for it. Results deteriorate after removing each view,
verifying the necessity of summarizing documents from multiple
views. Moreover, we observe that the influence of removing token
view is relatively smaller. We argue that maybe the token-level
semantics have been absorbed into the summary tokens. Compared
to utilizing [PSG] purely, the supplementation of another two views
further enrich the representation and improve the results.

5.4.2 Different pooling schemes. We use attention based pooling
to do aggregation (§3.5). In the bottom of Table 4, we experiment
with different aggregation methods following [23]: (1)MIR-Max:
element-wise max pooling operation are utilized; (2) MIR-CNN:
multiple Convolutional Neural Network (CNN) [22] layers are
stacked; (3)MIR-Transformer: all embeddings are fed into a Trans-
former layer. We observe that max-pooling causes a decline in per-
formance, which confirms that max-pooling performs poorly in
identifying salient information. Unexpectedly, other complex (i.e,
Transformers) or hierarchical methods (i.e., CNN) almost yield no
additional gain. We argue that stacked attention layers have thor-
oughly promoted inter-passage interactions and the representations
have been aware of the global context. Additionally exploring de-
pendencies in the aggregation layer may not obtain improvements.

5.5 Experiment with Document Lengths
According to the length 𝐿 of corresponding positive documents, we
divide the whole query set onMSMARCO to four groups: (a) All; (b)
0 < 𝐿 ≤ 512; (c) 512 < 𝐿 ≤ 2𝐾 ; (d) 𝐿 > 2𝐾 . From Figure 6, we have
the following observations: (1) The gap between MIR and others
is widening when changing groups from (b) to (c). The reason is
that methods except MIR limit the contextualization within the cur-
rent passage and fail to utilize longer-range semantic relationships.
Additionally capturing dependencies across all segments makes
MIR more competitive under the longer document setting; (2) Sur-
prisingly, though Group (b) mainly tests short-term dependency,
MIR dramatically improves the BERT-FirstP from 47.1% to 47.6%.

Table 4: Results with different aggregation configurations
on MSMARCO. Middle: ablations studies on multiple views.
Bottom: different pooling schemes.

Models nDCG@10 MRR@10 MAP@100
MIR 0.518 0.447 0.454

w/o passage 0.513 (-0.5%) 0.441 (-0.6%) 0.448 (-0.6%)
w/o sentence 0.514 (-0.4%) 0.442 (-0.5%) 0.447 (-0.7%)
w/o token 0.515 (-0.3%) 0.445 (-0.2%) 0.451 (-0.3%)
only passage 0.509 (-0.9%) 0.439 (-0.8%) 0.445 (-0.9%)
MIR-Max 0.511 (-0.7%) 0.440 (-0.7%) 0.449 (-0.5%)
MIR-CNN 0.519 (+0.1%) 0.446 (-0.1%) 0.454 (0)
MIR-Transformer 0.518 (0) 0.447 (0) 0.453 (-0.1%)
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Figure 6: Performance on different query groups.

We hypothesis that learning from longer contexts strengthens the
ability of MIR to capture more general matching patterns.

6 CONCLUSION
Existing passage-level methods limit the contextualization within
the current passage and fail to utilize longer-range relationships.
In this work, we present MIR, a multi-view inter-passage inter-
action based ranking model. It integrates intra-passage and inter-
passage interactions into a unified framework, which enable global
document-aware contextual representations. Moreover, we design
multi-view inter-passage attention patterns, to help capture syn-
tactic features with token-level interactions and global coherency
with higher-level interactions. We conduct extensive experiments
to verify the effectiveness of modeling multi-view inter-passage in-
teractions. In the future, we will explore more sophisticated relation
patterns that particularly tailored to document ranking tasks.
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