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ABSTRACT
In session search, it’s important to utilize historical interactions be-
tween users and the search engines to improve document retrieval.
However, not all historical information contributes to document
ranking. Users often express their preferences in the process of
modifying the previous query, which can help us catch useful infor-
mation in the historical interactions. Inspired by it, we propose to
model historical query change to improve document ranking perfor-
mance. Especially, we characterize multi-granularity query change
between each pair of adjacent queries at both term level and se-
mantic level. For term level query change, we calculate three types
of term weights, including the retained term weights, added term
weights and removed term weights. Then we perform term-based
interaction between the candidate document and historical queries
based on the term weights. For semantic level query change, we
calculate an overall representation of user intent by integrating the
representations of each historical query obtained by different types
of term weights. Then we adopt representation-based matching be-
tween this representation and the candidate document. To improve
the effect of query change modeling, we introduce query change
classification as an auxiliary task. Experimental results on AOL and
TianGong-ST search logs show that our model outperforms most
existing models for session search.
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Q1: the author of 

Harry Potter

Q2: Voldemort in 

Harry Potter

Q3: How did 

Voldemort finally die

Removed terms: author

Retained terms: Harry Potter

Added terms: Voldemort

Removed terms: Harry Potter

Retained terms: Voldemort

Added terms: die

Removed terms: author, Harry Potter

Retained terms: None

Added terms: Voldemort, die

Figure 1: An example to show the potential of modeling his-
torical query change.

1 INTRODUCTION
Users usually put forward a series of queries to solve a search task
or multiple similar search tasks [1]. This process can be regarded
as an interaction between users and the search engine. During
the interactions, search engines can record much information for
processing the following user queries. The information includes
users’ historical queries and satisfying clicks, which helps clarify
users’ search intent. For example, when a user searches “attractions
in Beijing”, if he has searched “Beijing traditional snacks” before,
it’s better to return some attractions with delicious food, while if he
has searched "modern history of Beijing", it’s better to return some
historical sites in Beijing. The example shows historical interactions
can provide useful information for document retrieval.

However, not all information in the historical interactions is
useful, some information may even mislead the understanding of
current user intent. Figure 1 shows an example, where a user has
searched “the author of Harry Potter” and “Voldemort in Harry
Potter”, and now he wants to know “how did Voldemort finally die”.
It’s obvious that Harry Potter’s author is not helpful for the current
document ranking, which is mentioned in the first query. What’s
more, if the search engine only focuses on the change between
the current query and historical queries (labeled as 2○ and 3○),
it probably thinks that “Harry Potter” is not important, since it
was removed in the current query. On the contrary, “Harry Potter”
is probably omitted by the user for the sake of brevity, and if the
search engine observes that the user retains it in the first two queries
(labeled as 1○), it may increase the importance of “Harry Potter”.
This example demonstrates the potential of modeling historical
query change for the current document ranking. It can highlight
useful information more accurately compared to directly making a
comparison between the current query and historical queries.

Some traditional methods [19, 32] are proposed to model search
session through Markov Decision Process (MDP). They continu-
ously adjust the word weights by modeling the change between
historical queries. But these methods adjust the weight based on
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the exact match of the word without considering the meaning of
the word. Recently, some methods [2, 3, 6, 8, 16, 20, 27, 31, 34] are
proposed to model query change, but they focus on modeling the
change between the current query and historical queries, and not
pay attention to the effect of change between historical queries.
Furthermore, most of them adopt representation-based sequential
modeling. Specifically, they first formulate the representations of
queries and documents and then utilize recurrent neural networks
[11] or attention mechanism [28] to model the session process. The
advantage of these methods is that they can better model the seman-
tic change of the queries. However, much term level information is
lost in the process of representation learning. Besides, a distributed
representation of user intent can not reflect which terms in the his-
torical queries are more important for current document ranking.
So it’s difficult to make fine-grained interaction between historical
queries and candidate document, which have been proven [21, 33] to
be more effective than most representation-focused models [12, 13].

To solve the shortcomings of existing methods, we propose the
Historical Query Change aware ranking Network (HQCN) to im-
prove session search bymodeling historical query change. In HQCN,
we model historical query change at both term level and semantics
level, which are used for multi-granularity interactions between
historical queries and document. To be specific, firstly, for each
pair of adjacent queries in the session, we design a query change
modeling unit (QCMU) to measure the term change between the
queries. The unit adopts the attention mechanism to calculate three
types of term weights: 1) removed term weights for the previous
query, 2) retained term weights for the next query, and 3) added
term weights for the next query. In order to improve the reliabil-
ity of these three types of term weights, we designed an auxiliary
learning task, namely query change classification, to help train-
ing the parameters in the QCMU. Secondly, these term weights
are utilized to perform term based interaction between historical
queries and candidate document through attentive kernel pool-
ing method. Thirdly, to model semantic level query change, we
adopt Transformers [28] to integrate the representations of each
historical query calculated by different types of term weights and
formulate an overall representation of user intent. Then we perform
representation based matching between the candidate document
and user intent. Fourthly, we combine the context-aware ranking
scores obtained by term-based interaction and representation-based
matching and get the final document ranking score. We perform
experiments on AOL search logs [22] and TianGong-ST [5] search
logs datasets. The results show that our model outperforms most
existing neural ranking models for session search. Furthermore,
compared to HBA-Transformers [23], our model greatly improves
the computational efficiency and achieves better results.

The contributions of this paper can be summarized as follows: 1)
We propose to improve session search by modeling historical query
change, which is effective to highlight useful information in the
search context. 2) We analyse multi-granularity historical query
change at both term level and semantic level, which are separately
used for term based interaction and representation based matching
between historical queries and candidate documents. 3) We propose
to employ query change classification as an auxiliary learning task
to effectively model term-level query change.

2 RELATEDWORK
Most of the existing session search model focused on user intent
modeling. Some previous works regard user’s search intent as im-
plicit variables and try to estimate them. E.g. Shen et al. [25] utilized
historical queries and clicked documents to estimate two language
models, and then used the Kullback-Leibler divergence to mea-
sure the relevance of candidate documents. Cao et al [4]. employed
HMM to model the process of session search. With the widespread
application of deep neural networks, more and more models are
proposed to model session context to obtain semantic representa-
tion of users’ search intent. Sordoni et al. [27] used the hierarchical
recurrent encoder to obtain the hidden representation of the user’s
intent for each historical query. Similarly, Wu et al. [31] intro-
duced user feedback information to the hidden representation in
the recurrent neural networks. Wasi et al. [2, 3] adopt a similar
model structure, and they utilized a multi-task learning strategy
to train the model for query suggestion and document ranking.
Halder et al. [9] modeled the information deficit by analyzing each
historical queries-clicks pair. Qu et al.[23] designed a hierarchical
transformers-based model to distinguish different user behaviors.

Besides, some existing methods also try to model query change
to improve session search, which can be divided into two categories:
Bymodeling 1) term-level query change and 2) semantic-level query
change. To model term-level query change, Guan et al. [7] proposed
a query change retrieval model (QCM). In QCM, the search engine
agent increases or decreases a term’s weight according to its type
and its appearance in the previous user clicks. Xiang et al. [32] pro-
posed four principles to characterize query change and designed
ranking features according to these principles. Sloan et al. [26]
proposed to make inferences on the user’s information need by
understanding how a user’s queries evolve throughout the session.
The main drawback of these works is that they increased or de-
creased the weights of terms separately, which ignored the overall
semantics of the query. For semantic-level query change modeling,
Jiang et al. [16] obtained the query change representation through
the difference between the embeddings of the current query and
the next query. He et al.[10] proposed to bridge the gap between
web documents and user queries by query rewriters. Mitra [20]
calculated the distributed representations of query change. Verma
et al. [29] utilized the generation-based sequence-to-sequence mod-
els that capture session context to obtain the reformulated query.
These query reformulation models focused on learning a represen-
tation of user intent or rewrite a new query, without considering
to utilize session context directly.

3 OUR APPROACH
In this section, we describe the architecture of our proposed model
HQCN. We first make a definition of the session search task, then
we introduce four components in the model: query term weight-
ing, representation-based matching, term-based interaction and
document scoring.

3.1 Problem Definition
In session search, the search engine retrieves a ranking list of candi-
date documents according to a given query and the session context.
The session context contains the historical queries and the clicks for
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Figure 2: The overall structure of Historical Query Change Aware Ranking Network (HQCN).

each query. Suppose the given query is 𝑞𝑡 , and the session context
is S, which is defined as: S = [(𝑞1, 𝑑1) , ..., (𝑞𝑡−1, 𝑑𝑡−1)]. 𝑞𝑖 is the
𝑖-th query in the session and 𝑑𝑖 is the satisfied click (the highest
ranked click document) for query 𝑞𝑖 . The task is to rank the candi-
date documents in D𝑡 for query 𝑞𝑡 . Specifically, for each candidate
𝑑𝑡 in D𝑡 , we calculate its ranking score R (𝑑𝑡 |𝑞𝑡 ,S) and obtain the
ranking list according to the score.

3.2 HQCN: Historical Query Change Aware
Ranking Network

The overall structure of HQCN is shown in Figure 2. The model can
be divided into four parts: query term weighting, representation-
based matching, term-based interaction, and document scoring.
We first utilize query term weighting to model historical query
change and calculate query term weights. Query change classi-
fication is also implemented in this part. Then we use the term
weights to calculate the representation of user intent and perform
representation-based matching with the candidate document. After
that, we also used the term weights to perform term-based interac-
tion between candidate document and each historical query. Then
we calculate a final ranking score for the candidate document.

(1)Query termweighting. In this part, we calculate theweights
of terms in the queries based on term-level query change. We de-
scribe the term-level query change in three aspects: removed terms
from the previous query, retained and added terms in the next query.
First of all, we obtain the contextual word representations of all
queries and clicks through Transformers [28]:

𝒓
q
𝑖,1, ..., 𝒓

q
𝑖, |𝑞𝑖 | = Trm

(
𝒆
q
𝑖,1 + 𝒆

p
1 , ..., 𝒆

q
𝑖, |𝑞𝑖 | + 𝒆

p
|𝑞𝑖 |

)
, 𝑖 ∈ [1, 𝑡] .

𝒓d𝑗,1, ..., 𝒓
d
𝑗, |𝑑 𝑗 | = Trm

(
𝒆d𝑗,1 + 𝒆

p
1 , ..., 𝒆

d
𝑗, |𝑑 𝑗 | + 𝒆

p
|𝑑 𝑗 |

)
, 𝑗 ∈ [1, 𝑡 − 1] .

(1)

Where 𝒆
q
𝑖
and 𝒆d

𝑗
are embeddings of words in query 𝑞𝑖 and the

satisfied click 𝑑 𝑗 , 𝒆p is the position embeddings. To describe the
query change between 𝑞𝑖 and 𝑞𝑖−1, we calculate three types of term
weights: the removed term weights𝒘rm

𝑖−1 for query 𝑞𝑖−1, the added
term weights 𝒘ad

𝑖
and the retained term weights 𝒘rt

𝑖
for query 𝑞𝑖 .

When calculating the added and retained term weights𝒘ad
𝑖

and𝒘rt
𝑖
,

we also consider the satisfied click 𝑑𝑖−1, since users are likely to
add or retain some words according to it. We obtain the three types
of term weights through a query change modeling unit (QCMU):

𝒘rm
𝑖−1,𝒘

ad
𝑖 ,𝒘

rt
𝑖 = QCMU

(
𝒓
q
𝑖, ·, 𝒓

q
𝑖−1, ·, 𝒓

d
𝑖−1, ·

)
. (2)

Specifically, to obtain the retained weights𝒘rt
𝑖
for terms in query 𝑞𝑖 ,

we compare the contextual word representations in 𝑞𝑖 with those
in 𝑞𝑖−1 and 𝑑𝑖−1. First, we concatenate the word representations in
𝑞𝑖−1 and 𝑑𝑖−1 to obtain the history sequence 𝐻 :

𝐻 =
[
𝒉1, ...,𝒉 |𝑞𝑖−1 |+ |𝑑𝑖−1 |

]
=

[
𝒓
q
𝑖−1,1, ..., 𝒓

q
𝑖−1, |𝑞𝑖−1 |𝒓

d
𝑖−1,1, ..., 𝒓

d
𝑖−1, |𝑑𝑖−1 |

]
.

Then we perform interaction between word representations in 𝑞𝑖
and 𝐻 to get the relevance score 𝑣𝑘 for the 𝑘-th word in query 𝑞𝑖 :

𝑣rt
𝑘
=

|𝐻 |∑︁
𝑙=1

𝑚rt
𝑘,𝑙
, 𝑚rt

𝑘,𝑙
=

(
𝑾 rt

1 𝒓
q
𝑖,𝑘

)𝑇
𝑾 rt

2 𝒉𝑙
√
𝑑

. (3)

We normalize the relevance score through softmax function to
obtain the retained term weights𝒘rt

𝑖
= softmax

(
𝒗rt

)
.

Similarly, to calculate the added term weights for query 𝑞𝑖 , we
adopt the same method in Equation (3) to get the relevance score
𝑣ad
𝑘

for the 𝑘-th term, but we use different parameters𝑾ad
1 and𝑾ad

2 .
Differently, the added terms in 𝑞𝑖 are less related to the terms in



𝑞𝑖−1 and 𝑑𝑖−1. So when doing softmax, we take a negative value for
each relevance score, i.e., we let𝒘ad

𝑖
= softmax

(
−𝒗ad

)
.

As for the removed weights for terms in 𝑞𝑖−1, we only have
to compare the difference between 𝑞𝑖−1 and 𝑞𝑖 . We directly make
interaction between the contextual word representations of 𝑞𝑖 and
𝑞𝑖−1 to obtain the relevance score 𝑣rm

𝑘
for the 𝑘-th word in 𝑞𝑖−1:

𝑣rm
𝑘

=

|𝑞𝑖 |∑︁
𝑙=1

𝑚rm
𝑘,𝑙
, 𝑚rm

𝑘,𝑙
=

(
𝑾 rm

1 𝒓
q
𝑖−1,𝑘

)𝑇
𝑾 rm

2 𝒓
q
𝑖,𝑙√

𝑑
. (4)

Thenwe use the same normalization strategy as added termweights
to take a negative value for each relevance score 𝑣rm

𝑘
before the

softmax function, i.e., we have𝒘rm
𝑖

= Softmax (−𝒗rm).
In order to make these three types of word weights learn their

corresponding meanings better, we adopt query change classifi-
cation as an auxiliary learning task. Inspired by existing works
[14, 15], we propose to divide query change into four categories:
generalization, exploitation, exploration, and new task. Gen-
eralization means the next query is more general than the previous
query. Exploitation means the next query is more specific than the
previous query. Exploration means the two adjacent queries are
generally related but describe different subtopics. New task means
the two adjacent queries describe completely different topics.

Given two adjacent queries, we humans usually judge the change
category by comparing the similarities and differences between the
two queries. Specifically, if the next query doesn’t add any infor-
mation but removes some information in the previous query, it’s
likely to be generalization. If the next query doesn’t remove any
information but adds some information, it’s likely to be exploita-
tion. If the next query retains some information and replaces some
information, it tends to be exploration. If the next query removes all
information and adds some new information, it’s likely to be a new
task. In summary, the query change categories can be described by
the retained, added, and removed information of queries.

Based on the analyse above and the term weights calculated in
Eq. 2, we propose a Query Change Classifier (QCC) to classify each
pair of adjacent queries into four query change categories:

𝑐 = argmax
𝑐∈𝐶

𝑝 (𝑐 |𝑞𝑖 , 𝑞𝑖−1, 𝑑𝑖−1) = QCC (𝑞𝑖 , 𝑞𝑖−1, 𝑑𝑖−1) (5)

In QCC, we first calculate three types of query representations:
𝒓 rm
𝑖−1, 𝒓

ad
𝑖

and 𝒓 rt
𝑖
for an adjacent query pair <𝑞𝑖−1, 𝑞𝑖>:

𝒓 rm𝑖−1 =
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𝑘

𝒘rm
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q
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𝒆
q
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, 𝒓 rt𝑖 =
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𝑘

𝒘rt
𝑖,𝑘
𝒆
q
𝑖,𝑘
. (6)

Then we make comparison between 𝒓 rm
𝑖−1 with the representation

of 𝑞𝑖−1 to extract the removed information of 𝑞𝑖−1:

Δ𝒓 rm𝑖−1 = 𝒓 rm𝑖−1 −
1

|𝑞𝑖−1 |

|𝑞𝑖−1 |∑︁
𝑗=1

𝒆
q
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Similarly, to extract the added and retained information of 𝑞𝑖 , we
compare 𝒓ad

𝑖
and 𝒓 rt

𝑖
with the representation of 𝑞𝑖 separately:

Δ𝒓ad𝑖 = 𝒓ad𝑖 − 1
|𝑞𝑖 |

|𝑞𝑖 |∑︁
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𝒆
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|𝑞𝑖 |

|𝑞𝑖 |∑︁
𝑗=1

𝒆
q
𝑖, 𝑗
.

Finally, we concatenate these compared representations to make
query change classification:

𝑝 (𝑐 |𝑞𝑖 , 𝑞𝑖−1, 𝑑𝑖−1) =
exp 𝒔𝑐∑

𝑐′∈𝐶 exp 𝒔𝑐′
,

𝒔 = Dense
(
[Δ𝒓 rm𝑖−1;Δ𝒓

ad
𝑖 ,Δ𝒓

rt
𝑖 ]

)
,

(7)

where 𝒔 is a 4-d vector, and 𝒔𝑐 indicates the score of category 𝑐 .
(2) Representation-based matching. In this part, we model

semantic-level query change and learn the representation of user
intent, which is utilized to perform matching with the candidate
document. In the query termweighting part, we have obtained three
types of representations for each query: 𝒓 rm

𝑖
, 𝒓ad

𝑖
and 𝒓 rt

𝑖
according

to Eq. 6. Then we add an original query representation 𝒓o
𝑖
=
∑

𝑗 𝒆
q
𝑖, 𝑗

that contains the general information of each query.
To model the process of query change on the semantic level,

we have to make interactions between the queries in the session.
Based on different aspects of query representations, we can model
query change from different perspectives. We adopt Transformers
[28] to fulfill the interactions between queries. Specifically, for the
removed query representations 𝒓 rm of all the queries, we adopt
Transformers to obtain the interacted representations:

𝒓 rm1 , ..., 𝒓 rm𝑡 =Trm
(
𝒓 rm1 + 𝒆

p
1 , ..., 𝒓

rm
𝑡 + 𝒆

p
𝑡

)
. (8)

Here 𝒆p is the same position embeddings as that in Eq. (1). We use
the same method to obtain other types of query representations
𝒓ad, 𝒓 rt and 𝒓o. We adopt the last query’s representation as user’s
intent, and the overall representation 𝒓𝑠 is obtained from four types
of query representations by using a dense layer:

𝒓𝑠 = dense
( [
𝒓 rm𝑡 , 𝒓ad𝑡 , 𝒓

rt
𝑡 , 𝒓

o
𝑡

] )
. (9)

Then we get the matching score 𝑠rep by calculating the similarity
between 𝒓𝑠 and the candidate representation 𝒓d𝑡 =

∑
𝑗 𝒆

d
𝑡, 𝑗
.

(3) Term-based interaction. In this part, we make fine-grained
interaction between each query and candidate document based on
the term weights calculated in Eq. 2. We introduce the attention
mechanism to the existing kernel pooling method in KNRM [33]
and propose the attentive kernel pooling. Given term embeddings
of a query and a document, we first calculate a matching matrix 𝑴
according to the similarities between them:𝑀𝑖, 𝑗 = cosine

(
𝒆
q
𝑖
, 𝒆d

𝑗

)
.

Then we use attentive kernel pooling to get a 𝑘-dimensional soft-tf
feature 𝒇 = {𝐾1 (𝑴), ..., 𝐾𝑘 (𝑴)}:

𝐾𝑘 (𝑴) =
∑︁
𝑖

𝛽𝑖,𝑘 log
∑︁
𝑗

exp(−
(
𝑴𝑖, 𝑗 − 𝜇𝑘

)2
2𝜎2

𝑘

), (10)

where 𝜇𝑘 and 𝜎𝑘 are parameters for the 𝑘-th kernel. Each kernel
𝐾𝑘 calculates the soft term frequency based on different Gaussian
distributions. 𝛽𝑖,𝑘 is the attention coefficient for the 𝑖-th word in
the query for the 𝑘-th kernel, which is calculated by performing
the same kernel method on the query term weights𝒘 :

𝛽𝑖,𝑘 = exp(− (𝒘𝑖 − 𝜇𝑘 )2

2𝜎2
𝑘

) .

The rationality of this processing method is that the matrices cal-
culated by the similarity matrix 𝑴 through different kernels are
based on different Gaussian distributions. So we have to calculate



different attention coefficients for features obtained from different
kernels. We regard this process as: 𝒇 = AKP (𝑞, 𝑑,𝒘). Where AKP is
short for Attentive Kernel Pooling. Through AKP, we obtain three
types of ranking features for each historical query 𝑞𝑖 as follows:

𝒇 rm𝑖 = AKP
(
𝑞𝑖 , 𝑑𝑡 ,𝒘

rm
𝑖

)
, 𝒇 ad𝑖 = AKP
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ad
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)
,

𝒇 rt𝑖 = AKP
(
𝑞𝑖 , 𝑑𝑡 ,𝒘

rt
𝑖

)
.

(11)

Besides, we also adopt a vanilla kernel pooling method in KNRM
to calculate an original query ranking features:

𝒇o𝑖 = Kernel_Pooling (𝑞𝑖 , 𝑑𝑡 ) . (12)

The only difference in the vanilla kernel pooling method is that it
doesn’t have the weight 𝛽 in Eq. 10. Each type of ranking features
𝒇𝑖 is used to calculate the ranking scores through a dense layer:

𝑠rm𝑖 = dense
(
𝒇 rm𝑖

)
, 𝑠ad𝑖 = dense

(
𝒇 ad𝑖

)
,

𝑠rt𝑖 = dense
(
𝒇 rt𝑖

)
, 𝑠o𝑖 = dense

(
𝒇o𝑖

)
.

(13)

After obtaining the ranking score for each query, we have to
calculate each query’s weight to combine the ranking scores. Each
query has a different effect on candidate document ranking for
the current query. Some queries are important due to the removed
terms since they show what the user dislikes. Some queries are im-
portant due to the added terms, which reveal the specific preference
of the user. And some queries are important due to the retained
terms, these terms reflect the general topics that the user is con-
cerned about. So we calculate three different types of query weights:
removed query weights 𝒂rm, added query weights 𝒂ad and retained
query weights 𝒂rt. Additionally, we calculate general query weights
𝒂o to combine features 𝒇𝑜

𝑖
. The weights of the queries are calculated

according to their relatedness to the current query. Formally, we
adopt the attention mechanism to measure the relatedness:

𝑎rm
𝑘

=
𝒖rm
𝑘∑𝑡

𝑖 𝒖
rm
𝑖

, 𝒖rm
𝑘

=

(
𝑾

q
1 𝒓

rm
𝑘

)𝑇
𝑾

q
2 𝒓

rm
𝑡

√
𝑑

, (14)

where𝑾q
1 and𝑾q

2 are parameters to perform linear transformation
on the representations. 𝑑 is the dimension of the representations.
Similarly, we obtain the added query weights 𝒂ad, the retained
query weights 𝒂rt and the general query weights 𝒂o in the same
way. These weights are used to calculate term-level ranking scores:

𝑠rm =

𝑡∑︁
𝑖=1

𝑎rm𝑖 𝑠rm𝑖 , 𝑠ad =

𝑡∑︁
𝑖=1

𝑎ad𝑖 𝑠
ad
𝑖 ,

𝑠rt =
𝑡∑︁
𝑖=1

𝑎rt𝑖 𝑠
rt
𝑖 , 𝑠o =

𝑡∑︁
𝑖=1

𝑎o𝑖 𝑠
o
𝑖 .

(15)

(4) Document Scoring Finally, we calculate the ranking score
R (𝑑𝑡 |𝑞𝑡 ,S) by performing a dense layer on the seven scores:

R (𝑑𝑡 |𝑞𝑡 ,S) = Tanh
(
dense

[
𝑠rep, 𝑠rm, 𝑠ad, 𝑠rt, 𝑠o, 𝑠ah, 𝑠f

] )
, (16)

where 𝑠ah is the ad-hoc ranking score obtained through KNRM
model. 𝑠f is calculated based on adhoc relevance features, including
the tf-idf of terms in the candidate, the number of common terms in
the query and candidate, and the similarity between the embedding
of each query and the candidate.

3.3 Model Training
In the training process, we adopt a multi-task learning strategy
to train document ranking and query change models at the same
time. For each session S in the training set, we treat queries other
than the first one as the current query, then rank the candidate
documents and classify the change type for this query.

Particularly, for the document ranking task, we use the margin
ranking loss (margin=1) to train our model:

L𝑟 =
∑︁

𝑞𝑖 ∈S\{𝑞1 }

∑︁
(𝑑+,𝑑−) ∈D+,−

𝑞𝑖

max
(
0, 1 + R (𝑑− |𝑞𝑖 ) − R

(
𝑑+ |𝑞𝑖

) )
,

where R (𝑑 |𝑞) is short for R (𝑑 |𝑞,S). D+,−
𝑞𝑖 contains candidate doc-

uments pair for query 𝑞𝑖 . For pair
(
𝑑+, 𝑑−

)
, 𝑑+ is clicked by user

whereas 𝑑− is not.
For the query change classification auxiliary task, we adopt cross

entropy loss for this multi-classification problem:

L𝑐 =
∑︁

𝑞𝑖 ∈S\{𝑞1 }
−
∑︁
𝑐∈𝐶

𝑦𝑐 log (𝑝 (𝑐 |𝑞𝑖 , 𝑞𝑖−1, 𝑑𝑖−1)) ,

where 𝑦 is a one-hot vector indicating the labeled change category.
The method to get the label will be introduced in Section 4.2.3. The
overall loss is the combination of the two losses:

L = 𝛾L𝑟 + (1 − 𝛾) L𝑐 .

We train the parameters in HQCN by Back-propagation algorithm
and adopt Adam [18] as the optimizer.

4 EXPERIMENTS
4.1 Dataset
We evaluate our proposed method on two public datasets: AOL
search logs [22] and Tiangong-ST query logs [5]. MS MARCO
Conversational Search Session dataset 1 can also be used for this
task. But the sessions in it are constructed manually, not from
the real search logs. To analyze the real query change behavior of
users, we don’t use this dataset. When using AOL and Tiangong-ST
datasets, we rank the candidate documents of each query except
the first one in the session. The reason is that our method aims
to model historical query change. But for the first query in the
session, no historical query is available, which will cause most of
the parameters in the model unable to be trained. The statistics of
the two datasets are shown in Table 1.

When using the AOL search logs, we used the same dataset
as constructed in [3]. All the candidates are retrieved by BM25
[24]. The other dataset Tiangong-ST[5] is collected from a Chinese
commercial search engine, and it contains web search session data
extracted from an 18-day search log. In the training set and valida-
tion set, we utilize the clicked documents as the satisfied clicks. In
the test set, the candidate documents of each session’s last query
are manually annotated with a relevance score from 0 to 4. As a
result, when evaluating the models on Tiangong-ST, we divide the
test set into two parts: 1) Tiangong-ST Manual, containing each
session’s last query with manual labeled relevance scores for candi-
date documents. 2) Tiangong-ST Click, containing other queries
with click label as pseudo annotation.

1https://github.com/microsoft/MSMARCO-Conversational-Search



Table 1: Statistics of datasets. SL is the length of sessions, QL
is the length of queries, DL is the length of document titles,
DN is the number of candidate documents, and CN is the
number of clicks for each query.

Dataset AOL Tiangong-ST
train val. test train val. test

#Sessions 219,748 34,090 29,369 143,155 2,000 2,000
#Queries 566,967 88,021 76,159 344,806 5,026 6,420
Av.SL 2.581 2.582 2.593 2.409 2.513 3.210
Av.QL 2.862 2.851 2.900 2.894 1.830 3.460
Av. DL 7.27 7.29 7.08 8.25 6.99 9.18
Av.DN 5 5 50 10 10 10
Av.CN 1.084 1.081 1.111 0.937 0.525 3.650

4.2 Experimental Settings
4.2.1 Evaluation metrics. When evaluating the model on the AOL
dataset and Tiangong-ST Click, we use MAP, MRR and NDCG [30]
as evaluation metrics. To be specific, NDCG includes NDCG@1,
NDCG@3, NDCG@5, and NDCG@10. When using the Tiangong-
ST Manual test set, we only use NDCG@1, NDCG@3, NDCG@5
and NDCG@10 to evaluate the model, because the relevance label
on the test set has five levels of 0-4, which is not suitable to use
MAP and MRR because it’s unable to determine a score to be the
boundary between relevant and irrelevant documents.

4.2.2 Baselines. We use 8 baseline models as comparisons to verify
the effect of our model, including 1) ARC-I [12], it obtains the rep-
resentation of each piece of text by two layers of 1-D convolution
network. 2) ARC-II [12], its utilize 2D-convolution network on
the interaction matrix of the query and the document. 3) KNRM
[33], it performs fine-grained interaction between the current query
and candidate document to obtain a matching matrix and adopts
kernel pooling method to obtain the ranking features. 4) Duet [21],
it integrates the representation-focused method and interaction-
focused method. 5) M-NSRF and 6)M-Match [2], they propose
to solve query suggestion and document ranking by multi-task
learning. 7) CARS [3], it also adopts the multi-task learning strat-
egy to solve query suggestion and document ranking at the same
time, additionally, it uses attention mechanisms and introduces user
clicks to obtain a better representation of session context. 8) HBA-
Transformers [23], it utilizes hierarchical attention mechanisms
to model different user behaviors based on the output contextual
representations from Bert.

4.2.3 Annotation for query change classification. As the definition
in Section 3.2, there are four types of change between a pair of
adjacent queries: generalization, exploitation, exploration, and new
task. We design some rules to annotate the change category of
each adjacent query pair: 1) If there is no common word in the two
queries, we annotate it as “new task”. 2) If the second query contains
all words in the first query, we annotate it as “exploitation”. 3) If
the first query contains all words in the second query, we annotate
it as “generalization”. 4) If none of the above three conditions are
satisfied, we annotate it as “exploration”. This annotating method is
not completely accurate. However, our goal is not to obtain accurate

classification results, but to improve the effectiveness of learning
term weights in the model by the weakly supervised learning strat-
egy. The effectiveness of the introduction of this auxiliary task will
be verified in Section 4.4

4.2.4 Model settings. The dimension of word embedding, position
embeddings, and all the intermediate representations is set to 256.
We pre-train the word embedding through Fasttext [17], and the
training corpus is constructed by all queries and documents in the
training set of AOL and Tiangong-ST search logs. The position
embeddings in the model are initialized the same as that in [28].
In the kernel pooling layer, we use 11 kernels with different pa-
rameters, and one of them is used for exact matching (𝜇 = 1.0
and 𝜎 = 0.001). The hyperparameter 𝛾 for multi-task learning is
selected from 0.5, 0.8, 0.9, and 0.95. Finally, we find 0.8 has the best
performance. We set the dropout rate to 0.1 to avoid over-fitting,
and adopt the warm-up strategy with a warm-up portion 10% to
dynamically adjust the learning rate. The maximum learning rate
is set to 0.0001. We train our model with a 12G TITAN V GPU with
the training batch size to 64. It takes about 50 minutes to train an
epoch on the AOL search logs dataset and about 40 minutes to train
an epoch on the Tiangong-ST dataset2.

4.3 Overall results
We compare our model HQCN with other baseline models on the
two datasets. The results are shown in Table 2 3. We use KNRM
and HBA-Transformers as representatives to perform the t-test. We
have the following findings:

1)HQCNoutperforms all the session searchmodels,which
indicates the effectiveness ofmodelinghistorical query change.
Compared to the session search models based on multi-task learn-
ing M-NSRF, M-Match and CARS, HQCN significantly improves
the ranking performance on the two datasets. This proves the ef-
fectiveness of historical query change modeling and fine-grained
interaction between each query and documents. Compared to the
state-of-art session search model HBA-Transformers that utilizes
parameters from pre-trained language model, our model still has
significant improvement on AOL search logs and Tiangong-ST Click
dataset. The reason is that HQRN make interaction between each
query and candidate document directly based on the term weights
obtained by historical query change modeling. On the contrary,
HBA-Transformers generally models the entire sequence without
focusing on the interaction of candidate documents with other in-
formation. In addition, it is worth to be emphasized that HQCN
achieves better results than HBA-Transformers without using addi-
tional corpus, and also greatly improves computational efficiency.

2)HQCNoutperforms all the ad-hoc rankingmodels,which
indicates the importance session contextmodeling. Compared
to the representation focused model ARC-I, interaction focused
models ARC-II and KNRM, and Duet that combines these two meth-
ods, HQCN achieves significant improvement. These results show
the importance of modeling session context including historical
queries and clicked documents. However, we find some context-
aware ranking models perform worse than some ad-hoc search

2Source codes are available at https://github.com/blakezuo/HQCN/tree/master
3The results of CARS are lower than that reported in [3]. Because we use different
evaluation scripts. We use trec_eval while [3] uses the self-implemented scripts.



Table 2: Overall results on AOL and Tiangong-ST datasets.★ indicates the result is significantly better than KNRM. ⋄ indicates
the result is significantly better than HBA-Transformers (𝑝 < 0.05 in two-tailed paired t-test). Improv. indicates the improve-
ment of HQCN compared to the HBA-Transformers.

Dataset Metric ARC-I ARC-II KNRM Duet M-NSRF M-Match CARS HBA HQCN Improv.

AOL Search Logs

MAP 0.3361 0.3834 0.3841 0.4008 0.4217★ 0.4459★ 0.4297★ 0.5281★ 0.5448★⋄ 3.16%
MRR 0.3475 0.3951 0.3933 0.4111 0.4326★ 0.4572★ 0.4408★ 0.5384★ 0.5549★⋄ 3.06%
NDCG@1 0.1988 0.2428 0.2203 0.2492 0.2737★ 0.3020★ 0.2816★ 0.3773★ 0.3990★⋄ 5.75%
NDCG@3 0.3108 0.3561 0.3636 0.3822 0.4025★ 0.4301★ 0.4117★ 0.5241★ 0.5441★⋄ 3.82%
NDCG@5 0.3489 0.4026 0.4109 0.4246 0.4458★ 0.4697★ 0.4542★ 0.5624★ 0.5783★ 2.83%
NDCG@10 0.3953 0.4486 0.4574 0.4675 0.4886★ 0.5103★ 0.4971★ 0.5951★ 0.6070★ 2.00%

Tiangong-ST Click

MAP 0.6597 0.6729 0.6733 0.6622 0.6836 0.6778 0.6909★ 0.6957★ 0.7389★⋄ 6.21%
MRR 0.6826 0.6954 0.6932 0.6904 0.7065 0.6993 0.7134★ 0.7171★ 0.7498★⋄ 4.56%
NDCG@1 0.5315 0.5458 0.5356 0.5563 0.5609★ 0.5499 0.5677★ 0.5726★ 0.6218★⋄ 8.59%
NDCG@3 0.6383 0.6553 0.6642 0.6402 0.6698 0.6636 0.6764 0.6807★ 0.7315★⋄ 7.26%
NDCG@5 0.6946 0.7086 0.7104 0.6846 0.7188 0.7199 0.7271 0.7292 0.7643★⋄ 4.81%
NDCG@10 0.7509 0.7608 0.7609 0.7528 0.7691 0.7646 0.7746 0.7781 0.7924★ 1.84%

Tiangong-ST Manual

NDCG@1 0.7088 0.7131 0.7560 0.7120 0.7124 0.7311 0.7385 0.7612 0.7739★ 1.67%
NDCG@3 0.7087 0.7237 0.7457 0.7116 0.7308 0.7233 0.7386 0.7518 0.7682★ 2.18%
NDCG@5 0.7317 0.7379 0.7716 0.7390 0.7489 0.7427 0.7512 0.7639 0.7783 1.89%
NDCG@10 0.8691 0.8732 0.8894 0.8705 0.8795 0.8801 0.8837 0.8896 0.8976 0.90%

models, e.g. M-NSRF, M-Match and CARS are worse than KNRM
on manual annotated Tiangong-ST dataset. The reason may be that
KNRM utilize term-level fine-grained interaction between query
and document, which is more beneficial than using contextual in-
formation on this test set.

4.4 Ablation Analysis
To evaluate the effectiveness of the three major parts in our model,
including query term weighting, representation-based matching
and term-based interaction, we perform ablation analysis on the
AOL dataset and Tiangong-ST Manual dataset. Specifically, we
remove one component at a time for comparison in the following.

• w/o. QCC. We remove the Query Change Classifier and train
the model with the single task of document ranking.

• w/o. semantic. We remove the representation-based matching
part, which means we only perform term-level interaction be-
tween candidate and session context, without considering to
model the query sequence for overall user intent understanding.

• w/o. removed,w/o. added andw/o. retained. We remove three
types of fine-grained interactions in the term-based interaction
part respectively.

The experimental results are shown in Table 3, and we can get
the following conclusions through the ablation analysis:

(1) The introduction of query change classification task
can improve the model’s performance. When removing the
query change classification component in HQCN, the performance
of the model on all evaluation metrics declines. However, HQCN
w/o. QCC still outperforms all the baselines, which indicates that the
introduction of this auxiliary task is not the most important reason
for the improvement of HQCN. It mainly improves the learning
effect of term weights through weakly supervised learning.

Table 3: Results of ablation analysis on the two datasets

Dataset AOL TG-ST Manual
NDCG @5 @10 @5 @10

w/o. retained 0.5352 0.5654 0.7716 0.8897
w/o. added 0.5368 0.5678 0.7618 0.8932
w/o. removed 0.5434 0.5724 0.7644 0.8914
w/o. semantic 0.5420 0.5746 0.7722 0.8951
w/o. QCC 0.5520 0.5834 0.7740 0.8953
HQCN 0.5783 0.6070 0.7783 0.8976

(2) It’s helpful tomodel semantic level query change through
representation based matching. When we remove the represen-
tation based matching component in the model, the effectiveness of
HQCN decreases on both data sets. By analyzing the model struc-
ture, it is intuitive that if the representation-based matching part
is removed, we can only model the relationship between each pair
of adjacent queries, but cannot model the relationship between all
queries in the entire session, which makes it difficult to understand
the overall search intent of the user.

(3) Term-based interaction between the candidate docu-
ment and historical queries and clicks is effective, and the
importance of different types of term weights are slightly
different. When we remove the term-based interaction by three
types of term weights respectively, the performances of resulted
models are all worse than HQCN. Additionally, these results are also
worse than that of HQCN w/o. semantic. This indicates that term-
based interaction is more effective since it performs fine-grained
interaction between all the terms in the candidate document and
historical queries. Furthermore, we find the removed term weights
are less important than the other two types of term weights, i.e.,



Table 4: Effectiveness of modeling historical query change.
TG-MAN is short for Tiangong-ST Manual annotated set.

Model Dataset NDCG@5 NDCG@10

CQCN AOL 0.5558 -3.88% 0.5868 -3.32%
HQCN AOL 0.5783 - 0.6070 -
CQCN TG-MAN 0.7701 -1.05% 0.8938 -0.42%
HQCN TG-MAN 0.7783 - 0.8976 -

HQCN w/o. removed outperforms HQCN w/o. retained and HQCN
w/o. added. One possible reason is that the removed words in the
historical query may not appear in any candidate document, so the
contribution to the document ranking is limited.

4.5 Effectiveness of Query Change Modeling
One important contribution of HQCN is proposing to model change
between adjacent historical queries. In this part, We design a com-
parison model, named CQCN, to confirm the effectiveness of adja-
cent historical query change modeling.

In HQCN, we obtain the term weights by comparing the query
with its adjacent queries and clicks. As a comparison, we calculate
these term weights by making direct interaction between each his-
torical query with the current query. Specifically, when calculating
the retained term weights, we change the 𝒉𝑙 in Equation( 3) to 𝒓

q
𝑡,𝑙
,

which means we directly compare the query 𝑞𝑖 with the current
query 𝑞𝑡 . Then we utilize the same way to obtain the added term
weights and the removed term weights in CQCN. The meaning of
the added term weights and the removed term weights in CQCN are
the same, but to keep the structure of HQCN and CQCN consistent,
we use different parameters to calculate these two types of term
weights. The experimental results are shown in Table 4.

According to the experimental results, if we separately compare
each historical query with the current query to calculate the term
weights, the model effect will decrease. Because this approach ig-
nores the change between adjacent historical queries, which can
describe the change process of user search intent and discover more
information omitted by the user in the current query.

4.6 Impact of Session Length and Query Index
In this section, we discuss the impact of session length and query
index on model performance. We divide the session into short ses-
sion (length <= 2), medium session (length= 3 or 4) and long session
(otherwise) three categories, and compare MAP and NDCG@5 of
HQRN, HBA-Transformers and CARS on them. The experimental
results on AOL search logs are shown in Fig. 3 (a) and (b). According
to the results, the performance of the three models will decrease as
the session length increases. The reason is that long sessions are
usually more difficult, so the ranking performance will be worse.

In addition, we analyze model performance on different query
indexes. We calculate the MAP of CARS, HBA-Transformers, and
HQCN for queries in the medium sessions and long sessions. The
results on AOL search logs are shown in Fig. 3 (c). According to the
results, all the models perform better as the search task progresses
in the medium sessions. Specifically, HQCN increases by 1.31%
from M2 to M3, and increases 0.73% from M3 to M4. The reason

(a) Session Length (b) Session Length

(c) Query Index

Figure 3: Model performance on different session lengths
and different query indexes on AOL search logs.

is that more information is available as the search task progresses.
However, in long sessions, the performance of the models don’t
improve with the progress of the search task. One reason is that
there are not many long sessions (average session length on AOL
test set is 2.593), the statistical results are not stable enough. The
other reason is that the proportion of noise information in the
context of a long session will increase, and the noise information
will affect the document ranking performance of current query.

5 CONCLUSION
In this paper, we propose the HQCN to improve session search by
modeling multi-granularity historical query change. To model term
level query change, we design the QCMU to calculate three types
of term weights and utilize them to perform term-based interaction
between candidate document and session context. Furthermore, we
introduce the query change classification task as an auxiliary task
to improve term weight learning. To model semantic level query
change, we adopt Transformers [28] to model the query sequence
and perform representation-based matching between the candi-
date document and the session context. Experiments on AOL and
Tiangong-ST two search logs confirm the effectiveness of HQCN.
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