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ABSTRACT
Product search has been an important way for people to find prod-
ucts on online shopping platforms. Existing approaches in personal-
ized product search mainly embed user preferences into one single
vector. However, this simple strategy easily results in sub-optimal
representations, failing to model and disentangle user’s multiple
preferences. To overcome this problem, we proposed a category-
aware multi-interest model to encode users as multiple preference
embeddings to represent user-specific interests. Specifically, we also
capture the category indications for each preference to indicate
the distribution of categories it focuses on, which is derived from
rich relations between users, products, and attributes. Based on
these category indications, we develop a category attention mecha-
nism to aggregate these various preference embeddings considering
current queries and items as the user’s comprehensive represen-
tation. By this means, we can use this representation to calculate
matching scores of retrieved items to determine whether they meet
the user’s search intent. Besides, we introduce a homogenization
regularization term to avoid the redundancy between user interests.
Experimental results show that the proposed method significantly
outperforms existing approaches.
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1 INTRODUCTION
With the rapid development of e-commerce platforms such as Ama-
zon and Taobao, online shopping is becoming more and more pop-
ular in people’s daily life. To buy certain items, the most common
paradigm is that users issue queries to describe their demands, then
the platform provides item lists related to the queries for users to
purchase. Previous studies [2, 11, 29–32] have shown that user his-
tory is helpful to obtain the explicit user intent and further improve
the quality of search results. For example, if a user used to buy ap-
ple’s products and now issues a query “computer”, what she wants
to buy may be “Mac”. If the search engine could rank “Mac” higher,
the user’s satisfaction will be improved. Recently, to encode users’
history and model their preferences, many personalized product
search approaches [2, 3, 5, 6, 12, 13, 21, 28] have been proposed.

Existing personalized product search approaches can be roughly
classified into query-independent and query-dependent ones. The
query-independent approaches [3, 4, 21, 28] embed users into one
general profile vector without considering the current query to rep-
resent their interests. These methods can be conveniently applied
to real systems as the user representations can be calculated and
stored in the offline training stage. However, they will fail to model
the user’s dynamic search intent without considering the issued
query. To obtain user dynamic search intent, query-dependent ap-
proaches [2, 5, 6, 12] build user representation according to the
current query or candidate items in the running time. Unfortu-
nately, these approaches bring additional online computation costs
because they cannot build user embeddings in advance and need
to access the whole user history in the running time.

However, no matter which kind of profiles they use, most exist-
ing methods assume user interests can be represented as a single
vector, which we think has the following limitations. First, a single
vector in query-independent approaches cannot reflect and express
users’ multiple preferences in different categories. However, users
may have different preferences (in brand, price, features, etc.) when
they buy different kinds of products. For example, a user may prefer
“iPhone” when she wants to buy a cellphone but prefer “Surface”
when she needs a computer for work. Under this situation, if we
embed this user into one vector, the preferences of different cate-
gories will be mixed together and recommendations based on this
single preference vector will be inaccurate sometimes. Second, if
we construct a single user vector considering the current query as
query-dependent approaches, the query latency will be high due to
the online processing time of history items of users. Therefore, we
argue that we need multiple offline preference vectors to describe
a user’s diverse needs across different types of products. By this
means, we can selectively aggregate these vectors to rank products
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when the user searches for different categories of products instead
of using a single vector or integrating all of the user histories.

To achieve this goal, in this paper, we propose to use multiple
vectors reflecting diverse preferences of users.Moreover, we
focus on the offline stage and build query-independent user vectors.
Firstly, we build and store user diverse preferences separately, so
that interests in different categories will not affect each other in a
disorganized manner. A certain purchased item will only have ef-
fects on the interests related to it. Secondly, in the online service or
testing phase, the systems only need to aggregate a limited number
of preference vectors with regard to the query and candidate items.
By getting rid of processing the whole history in this way, the sys-
tems will reduce a lot of computing consumption and query latency,
compared with the query-dependent models. Furthermore, we pre-
liminarily leverage the category information to construct
and aggregate multiple interests of users. Existing approaches
modelling multiple interests [9, 18] in recommendations mainly use
the representations of products themselves to cluster user historical
interests into several vectors, without any external attribute infor-
mation. Different from them, in our model, we capture the category
embeddings for queries and items and use them to help separate
user interests. Besides, we associate each preference vector with a
category indication representation to indicate the distribution of
categories this preference focuses on. For example, a user’s first
preference may focus on cellphones and tablets while the second
one aims at computers. Embracing these category information, the
aggregation of multiple interests will have external messages as ref-
erences. We can also determine which interests stimulate a certain
purchase more accurately through these category indications.

More specifically, we propose theCategory-AwareMulti-Interest
model (CAMI) to construct multiple user profiles. The model is de-
rived from the knowledge graph embedding method as it is shown
to be effective under personalized product search situations in [4]
and can automatically learn the representations for users and prod-
ucts. To disentangle user diverse interests in different categories, we
substitute the single embedding vector for a user with 𝐾 preference
vectors and build corresponding category indication embeddings for
item, query, and each user preference. We need to confirm that both
preference and indication embeddings for a certain user are created
based on her own histories and different users can have different
category distributions. Furthermore, to avoid the homogenization
between user interests, we add a regularization term measuring the
distances between the category indication embeddings for user in-
terests into the final loss function. This redundancy regularization
term forces the model to separate interests and avoids it degrading
to the single embedding method. In the running time, our model
scores items through the matching scores between the product em-
beddings and the comprehensive user embedding based on multiple
preference vectors. The combining weights for multiple preferences
are distributed through the attention mechanism based on the cate-
gory embeddings of users, queries and items. Experimental results
show that the proposed methods can significantly outperform exist-
ing approaches and can process queries more efficiently compared
with query-dependent approaches. The main contribution of our
work is three-fold:

(1) We learn multiple interest representations to encode diverse
preferences of users in the offline stage for personalized product

search. By this means, our method can reflect user’s various inter-
ests in different categories.

(2) We leverage the category information to aggregate the mul-
tiple interests for users. Instead of using product representations
themselves to integrate user’s multiple interests, our method has
category indications as references and is more accurate.

(3) We introduce homogenization regularization into the final
optimization to avoid the redundancy between diverse interests.
The regularization term aims to maximize the margin between the
category indications, forcing the model to separate user interests.

2 RELATEDWORK
2.1 Personalized Product Search
As we discussed in Section 1, we can divide approaches in person-
alized product search into two categories according to whether the
profiles are independent on dependent to queries. Query-independent
approaches build user representations in the offline training stage,
and these vectors keep static regardless of the current query. Instead,
query-dependent approaches construct dynamic profiles according
to search context in running time.

Query-independent approaches. Existing approaches in personal-
ized product search mainly fall into this category. Ai [3] proposed
HEM model constructing user and product representations by their
related words using the latent space model. DREM [4] applied
knowledge graph embedding method leveraging meta information
about products including brands, categories into the model. Liu [21]
proposed GraphSRRL to excavate “conjunctive graph pattern” in
the user-item graphs to learn user embeddings. There also exist
probabilistic models [28] in the product search area. All of these
models can calculate user embeddings and store them in advance, so
it is convenient and efficient to apply in real systems. However, as
we discussed before, these approaches embedded users into single
vectors, which will messily integrate different interests.

Query-dependent approaches. To capture user interests dependent
on the current query or candidate item, there are some approaches
building user profiles in the running time. ZAM and AEM [2] model
adopted query attention to extract user interests from their histori-
cal interacted items. TEM [5] further improved them by replacing
query attention with Transformer structure [26]. RTM [6] also used
Transformer to integrate the words in reviews related to the user
and the candidate product and the current query. ALSTP [12] used
hierarchical RNN to model user’s long-term preference and short-
term preference and calculate their matching scores with products
respectively. These models construct user profiles in the running
time so that they can capture dynamic user interests. However, they
cannot store user embedding as query-independent approaches and
need to dynamically build them, which may bring additional com-
puting costs (For example, these approaches need to access the
whole history of the current user). As a result, query-dependent
approaches are too inefficient to apply in real systems.

2.2 Multi-Interest Networks
How to model user multiple interests has been a challenge in rec-
ommendation systems for years. Li [17] adopted capsule network
and regarded the high-level capsules as users’ interests. Cen applied
self-attention network [9] to disentangle their different preference.



Liu [22] proposed a novel network “archive network” which ini-
tialized different heads in attention with the orthogonal basis of
the embedding space. However, these approaches mainly aggre-
gate user different profiles without additional knowledge, which
leads to inaccuracy in integrating preferences. There exist a few
approaches [8] trying to leverage category information into models
but it explicitly builds one interest vector for one category, which
cannot apply if the amounts of categories are large.

2.3 Knowledge Embedding
Knowledge embedding is proposed to model multi-relational data
by capturing latent embedding for entities and relations. There
are several ways to conduct knowledge embedding including ma-
trix factorization [15, 19, 24, 25] and bayesian framework [23, 33].
Recently, some approaches [7, 20, 27] leveraging graph structure
have been proposed. These approaches model the relations as the
edges and entities as the nodes to construct a knowledge graph. In
our model, we adopt the translation-based method in knowledge
graph approaches and generative method to capture embedding
and maximize the probability of existing relations.

3 THE CAMI MODEL
3.1 Overview
In personalized product search, there are sufficient and complicated
relationships between users, products, and product attributes which
are used for modeling user and product information. A user can in-
teract with many products and a product can have several reviews.
To model these relationships, following DREM [4], we construct
a knowledge graph (KG) (shown in the left part in Figure 1) be-
cause it is shown to be effective for personalized product search.
In this graph, each node represents an entity whose type is user,
item (product), or attribute, and each edge represents an observed
relationship between entities. Each edge is also labelled with a
particular symbol representing its type. For example, as shown in
Figure 1, product “Surface Pro 7” has a relation “Is_brand” to the
“Microsoft”. In this way, the personalized product search task can
be treated as a relation prediction task in KG. That is, given a query
𝑞 issued by a user 𝑢, we need to predict which product 𝑖 can be
the tail of the edge with the label “search&purchase” of context 𝑞
starting from 𝑢.

To solve this problem, we apply typical translation-based em-
bedding methods to embed both entity nodes and relations into
continuous latent space, and regard all relations as the translations
from one entity to another. For a triplet ⟨𝑥, 𝑟,𝑦⟩ in KG, translation
methods assume that 𝑦 should be equal to the translation entity
𝑇 (𝑥, 𝑟 ), where 𝑇 is the designed translation operator. Based on this
assumption, we can optimize the embedding 𝒙, 𝒓,𝒚 for 𝑥, 𝑟,𝑦 by
maximizing the similarity 𝑆 (𝑦 |𝑥, 𝑟 ) between 𝑦 and 𝑇 (𝑥, 𝑟 ). Specif-
ically, our task is to grade 𝑆 (𝑖 |𝑢, 𝑞) to rank items, so 𝑆 (𝑖 |𝑢, 𝑞) can
also be regarded as the score function for item 𝑖 under the query 𝑞
issued by user 𝑢 under personalized product search situation.

However, the vanilla translation method, which embeds each
entity and relation into one vector, is ineffective for some relations.
In the KG built for personalized product search, we can categorize
relations into static ones and dynamic ones. Static relations refer to
relations irrelevant to search context such as an item belonging to

a brand. These static relations are similar to the relations in other
KG and can be directly optimized in the original single embedding
way. Dynamic ones refer to the search&purchase relations between
users and items whose content should be determined by the issued
query. We argue that existing translation methods cannot fit in
this kind of relations. Firstly, the relation embedding should be
context-aware, which means it should be a dynamic embedding
𝒓 (𝒒) according to the search context instead of a static relation
representation 𝒓 . Secondly, as we discussed in Section 1, a user 𝑢
can have multiple interests in different categories, and the purchase
of item 𝑖 through query 𝑞 may be only affected by some of them. If
we still use the vanilla way to directly maximize the single vector
similarity between 𝑖 and 𝑇 (𝑢, 𝑞), all user interests will be forced to
surround 𝑖 , where the irrelevant preferences are not helpful and
may introduce noise in the optimization process.

To overcome the above problem, we embed user profile into
𝐾 preference vectors [𝒖1, 𝒖2, · · · , 𝒖𝑲 ] instead of a single vector.
To capture which interests cause a certain search, we also con-
struct the corresponding category representation for𝐾 user profiles
([𝒄𝒖1 , 𝒄𝒖2 , · · · , 𝒄𝒖𝑲 ]), items (𝒄 𝒊) and queries (𝒄𝒒). We need to argue
that these user-specific category representations [𝒄𝒖1 , 𝒄𝒖2 , · · · , 𝒄𝒖𝑲 ]
indicating category distributions of corresponding interests are vir-
tual and automatically learnt from scratch using relations in KG.
They may not direct to an exact category in dataset but are mixture
of them. Furthermore, different users can have their different distri-
butions of interests as the categories of products they purchased are
different. For the score or similarity function 𝑆 (𝑖 |𝑢, 𝑞) of dynamic
relations, we aggregate the multiple preferences of users by the
category attention with query and item to calculate it. Furthermore,
we also introduce homogenization regularization to avoid the re-
dundancy between different interest vectors. The overall structure
of the CAMI is shown in Figure 1.

3.2 Static Relation
Static relations refer to the relations which are independent to
the search context. The representation of relation in this catego-
rization holds static in spite of the head and tail entity and the
search context. As it is consistent with the original KG, we use
the vanilla translation method to optimize these relations. For a
certain static relation ⟨𝑥, 𝑟,𝑦⟩, we use dot product to measure the
similarity 𝑆 (𝑦 |𝑥, 𝑟 ) between the tail entity 𝑦 and translation entity
𝑇 (𝑥, 𝑟 ) = 𝑥 + 𝑟 .

𝑆 (𝑦 |𝑥, 𝑟 ) = 𝒚⊤ · (𝒙 + 𝒓), (1)

where 𝒙, 𝒓,𝒚 ∈ R𝑑 denote the embedding for 𝑥, 𝑟,𝑦 with 𝑑 dimen-
sions. Following embedding-based generativemodel such as [1, 3, 4],
we can estimate the probability of a relation and maximize them of
observed ones in KG to optimize the embedding representations.
In our model, the probability of relation ⟨𝑥, 𝑟,𝑦⟩ is calculated by
softmax function:

𝑃 (𝑦 |𝑥, 𝑟 ) = exp(𝑆 (𝑦 |𝑥, 𝑟 ))∑
𝑦′∈𝑌 exp(𝑆 (𝑦′ |𝑥, 𝑟 )) ,

where 𝑌 denotes the set of all entities with the same type as 𝑦.
However, as the size of 𝑌 can be very large, the computation cost is
too huge to practice. To estimate it more effectively, following [2–4],
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Figure 1: The main structure of Category-Aware Multi-Interest model CAMI for personalized product search. We use brand to
represent user preference in Alice’s user representation for convenience.

we adopt negative sampling to approximate the log probability:

log 𝑃 (𝑦 |𝑥, 𝑟 ) = log𝜎 (𝑆 (𝑦 |𝑥, 𝑟 ))+𝑛 ·E𝑦′∼𝑌 [log𝜎 (−𝑆 (𝑦′ |𝑥, 𝑟 ))], (2)
where 𝑛 is the size of negative samples.

Finally, we optimize our model through maximizing the log
likelihood of all the ground-truth static triplets ⟨𝑥, 𝑟,𝑦⟩ in KG:
LS = −

∑︁
⟨𝑥,𝑟,𝑦⟩∈S⟨𝑥,𝑟,𝑦⟩

log𝑃 (𝑦 |𝑥, 𝑟 )

= −
∑︁

⟨𝑥,𝑟,𝑦⟩∈S⟨𝑥,𝑟,𝑦⟩

log𝜎 (𝑆 (𝑦 |𝑥, 𝑟 )) + 𝑛 · E𝑦′∼𝑌 [log𝜎 (−𝑆 (𝑦′ |𝑥, 𝑟 )) ] .

(3)

3.3 Dynamic Relation
As we discussed before, the original knowledge embedding strategy
cannot fit the dynamic relations in the personalized product search
KG. To adapt and improve the simple translation method, we will
introduce how to leverage multiple vectors encoding user interests
into the knowledge graph, exactly, the search&purchase relations
in the following part.

First, different from the static relation such as bought_together,
the relation vector in dynamic relation should be determined by
the search context. For example, the relation vector for query “cell-
phones” should be different from the query “computers”. In order to
measure the meaning of a certain relation, we need to calculate the
relation vector 𝒓 (𝒒) in the online stage according to the content of
the query 𝑞. Following previous work [2–4], we use the non-linear
projection of the average word embedding to represent it:

𝒓 (𝒒) = 𝑓 (𝑞) = tanh(𝑊 ·
∑
𝑤∈𝑞 𝒘

|𝑞 | + 𝑏), (4)

where𝑊 ∈ R𝑑×𝑑 , 𝑏 ∈ R𝑑 are trainable parameters,𝒘 is the corre-
sponding embedding of word𝑤 in KG.

Second, as we introduced in Section 1, we enhance the category
information from the metadata to help capture user interests. To
aggregate and separate the multiple preferences of users, we need
to specify the category representation of current query (i.e. 𝒄𝒒) and
scored item (i.e. 𝒄 𝒊). Only after capturing them, we can determine
which categories this purchase behaviour focuses on. For 𝒄𝒒 , we
directly use the same representation 𝒓 (𝒒) in Eq. (4). For 𝒄 𝒊 , we can

use the entity embeddings of corresponding categories in KG, but
these embeddings are automatically learnt from the observed rela-
tions without any semantic information. By this means, there will
exist representation mismatches between the word-based category
embedding for 𝑞 and the relation-based category embedding for
𝑖 . To solve this mismatch problem, we choose to use the words in
item 𝑖’s category label 𝑐𝑖 to calculate 𝒄 𝒊 in the same way in Eq. (4):

𝒄𝒒 = 𝒓 (𝒒) 𝒄 𝒊 = 𝑓 (𝑐𝑖 ) = tanh(𝑊 ·
∑
𝑤∈𝑐𝑖 𝒘

|𝑐𝑖 |
+ 𝑏), (5)

Please note that after the training process, we can store 𝒄 𝒊 for each
item and don’t need to calculate repeatedly while testing.

So far, we have already captured the content and category in-
formation of query and item. As we introduced before, we pro-
pose to model a user 𝑢’s interests in 𝐾 vectors ([𝒖1, 𝒖2, · · · , 𝒖𝑲 ],
where each interest has a corresponding category indication vector
([𝒄𝒖1 , 𝒄𝒖2 , · · · , 𝒄𝒖𝑲 ]). We will introduce the score function 𝑆 (𝑖 |𝑢, 𝑞)
for triplet ⟨𝑢, 𝑞, 𝑖⟩ based on the multiple preference vectors in the
following part.

For a certain triplet ⟨𝑢, 𝑞, 𝑖⟩, we can score the item 𝑖 , or in other
words, measure the similarity between 𝑖 and the translation entity,
using following equation:

𝑆 (𝑖 |𝑢, 𝑞) = 𝜆𝑢 · ( 𝒊⊤ · (
∑︁
𝑘

𝑤𝑘 · 𝒖𝒌 + 𝒓 (𝒒))) + (1 − 𝜆𝑢 ) · 𝑝𝑖

= 𝜆𝑢 ·
∑︁
𝑘

𝑤𝑘 · ( 𝒊⊤ · (𝒖𝒌 + 𝒓 (𝒒))) + (1 − 𝜆𝑢 ) · 𝑝𝑖 ,
(6)

where 𝒖𝒌 , 𝒊 is the embedding for user 𝑢’s 𝑘-th preference and item,
𝒓 (𝒒) is the relation vector calculated in Eq. (4). 𝑤𝑘 denotes the
combining weight for the preference 𝑢𝑘 . The combining weight can
also infer which interests affect this purchase. 𝒖 =

∑
𝑘 𝑤𝑘𝒖𝒌 is the

weighted combination interest of 𝐾 preferences and we use it to
calculate the matching score with item 𝑖 . 𝑝𝑖 denotes the trainable
popularity of product 𝑖 , which can be considered as global interests.
𝜆𝑢 denotes the trainable user-specific combining weight between
personal and global interests. We introduce these two variables
into model to imitate what users consider before purchases. For
example, some people tend to purchase the products with high sales
while others mainly consider their own interests. Furthermore, this



equation can also be regarded as a combination of 𝐾 matching
scores between the product and preference vectors of user as the
second line. From this perspective, our model actually represents
user as 𝐾 profiles instead of one single vector as it in existing
methods.

The key point of the CAMI is the combining weight 𝑤𝑘 . Intu-
itively, it should be determined by the query category embedding
𝑐𝑞 and the indication embedding 𝑐𝑢𝑘 of preference 𝑢𝑘 . The closer
these two representations are, the chances that this query is related
to this interest are bigger. So we need to measure the similarity
between 𝑐𝑢𝑘 and 𝑐𝑞 . Furthermore, the model should also take the
category information of products into consideration. The category
of the purchased product 𝑖 should align with the categories of the
interests related to the query 𝑞. Following the above discussions,
we implement𝑤𝑘 as follows:

𝑤𝑘 =
exp((𝒄⊤𝒖𝒌

· 𝒄 𝒊) · (𝒄⊤𝒖𝒌
· 𝒄𝒒)/𝜏)∑𝐾

𝑗=1 exp((𝒄⊤𝒖𝒋
· 𝒄 𝒊) · (𝒄⊤𝒖𝒋

· 𝒄𝒒)/𝜏)
, (7)

where 𝜏 infers the temperature for softmax function. For 𝜏 , we ex-
plore two different implementations in our experiments. In the first
manner, we consider 𝜏 as a hyper-parameter dynamically changing
in the training process. Following [10], 𝜏 should gradually decrease
andmake the distribution after softmax become sharper and sharper.
In the second way, we regard 𝜏 as trainable parameters and should
be various among users (so it should be written as 𝜏 (𝑢) in this way).
The reason is that different users can have different purchasing
strategies. Some users may buy products just because the products
match one of their interests, while others make a purchase only
after deep consideration and comparison.

After scoring the tail entity of each search&purchase relation, we
use the softmax function to estimate the probability of the observed
triplet ⟨𝑢, 𝑞, 𝑖⟩:

𝑃 (𝑖 |𝑢, 𝑞) = exp(𝑆 (𝑖 |𝑢, 𝑞))∑
𝑖′∈𝐼 exp(𝑆 (𝑖 ′ |𝑢, 𝑞))

, (8)

where 𝐼 is the set of all items. Then, similar to the static relations and
existing methods [2–4], we adopt the negative sampling strategy
to approximate the probability:

log 𝑃 (𝑖 |𝑢, 𝑞) = log𝜎 (𝑆 (𝑖 |𝑢, 𝑞)) + 𝑛 · E𝑖′∼𝐼 [log𝜎 (−𝑆 (𝑖 ′ |𝑢, 𝑞))] . (9)

Finally, similar to the static part again, the loss function for the
dynamic part is to maximize the log likelihood of the observed
triplets in the dynamic relation set D⟨𝑢,𝑞,𝑖 ⟩ :

LD = −
∑︁

⟨𝑢,𝑞,𝑖⟩∈D⟨𝑢,𝑞,𝑖⟩

log𝑃 (𝑖 |𝑢,𝑞)

= −
∑︁

⟨𝑢,𝑞,𝑖⟩∈D⟨𝑢,𝑞,𝑖⟩

log𝜎 (𝑆 (𝑖 |𝑢,𝑞)) + 𝑛 · E𝑖′∼𝐼 [log𝜎 (−𝑆 (𝑖′ |𝑢,𝑞)) ] .

(10)

Discussion. In our model, we do not force the whole of user in-
terests needs to align with the product 𝑖 (𝑢 + 𝑞 ∼ 𝑖), which may
introduce noises to irrelevant preferences. Otherwise, we only re-
quire some of her preferences 𝑢𝑘 whose weight𝑤𝑘 is high need to
be near to 𝑖 (𝑢𝑘 + 𝑞 ∼ 𝑖). The choices of these interests are decided
by the similarities of category indication representations among
the user interests, the current query, and the scored item.

3.4 Homogenization and Redundancy
In CAMI, we construct different representations for different prefer-
ences of users. However, these representations can be very similar
in the training process because we do not explicitly measure their
diversity in our model. In this way, thoughwe build multiple vectors
and indicators for users, the diverse preferences may still integrate
together in each vector. Thus the model will fail to separate mul-
tiple interests in different categories and degrade to the original
single interest model. To prevent this homogenization phenomenon,
we add a disagreement loss into our model following [9]. Existing
approaches mainly directly maximize the distances between the
preference vectors. This may introduce some bias into the model
because some users can be passionate fans of a company and only
buy the products belonging to it. If we still require the model to dis-
tinguish between these similar preferences, the model will become
inaccurate. Thus, we maximize the margins between the indication
representations of interests instead, because most users will buy
products belonging to different categories. By this means, we can
explicitly measure the diversity between user interests in our model.
The loss for homogenization is as follows:

LH =
∑︁
𝑢

∑︁
1≤𝑖< 𝑗≤𝐾

|𝒄⊤𝒖𝒊
· 𝒄𝒖𝒋 |𝒄𝒖𝒊

 · 𝒄𝒖𝒋  , (11)

wherewe use the cosine similarity to represent the distance between
category indication embeddings because it fits the dot product
method in our model.

Finally, we integrate all the losses in Eq. (3), Eq. (10) and Eq. (11)
into a unified one via linear combination:

L = (1 − 𝜆)LS + 𝜆LD + 𝜇LH, (12)

where 𝜆 and 𝜇 are hyper-parameters.

3.5 Online Service
In the online running time, when a user 𝑢 issues a query 𝑞, the
model calculates the score 𝑆 (𝑖 |𝑢, 𝑞) for each candidate item 𝑖 and
ranks them in decreasing order. To optimize the computation cost,
we implement 𝑆 (𝑖 |𝑢, 𝑞) as the second line in Eq. (6), which first
calculates 𝐾 matching scores and then aggregates them. As a re-
sult, this method is only constant (𝐾 ) times slower than the query-
independent approaches. This coefficient can be accelerated by GPU
parallel computing. Furthermore, as we can store𝐾 user preferences
and indication embeddings contiguously, we can capture them
through one reading operation. However, in the query-dependent
approaches, user historical interacted items are stored separately
and the model needs to obtain them through multiple reading or
selection operations, which takes lots of I/O time. As a result, our
method is more efficient than approaches building dynamic profiles
while online serving. Besides, as it can calculate and store 𝐾 user
profiles in advance, CAMI model can also perform the first-stage re-
trieval task through approximate nearest neighbour technique [16].
We can regard the union set of nearest neighbourhoods of each pref-
erence as the retrieved candidates. In contrast, query-dependent
approaches need to access each interacted item to aggregate user
interest, which makes them hard to apply in the first-stage retrieval.



4 EXPERIMENTAL SETUP
4.1 Datasets
As there are no large-scale datasets in the personalized product
search area, we use Amazon dataset1 as our experiment corpus,
consistent with existing approaches [2–4]. To construct reliable
user profiles, we use the 5-core data, the dense sub-dataset of the
whole corpus, where each user and each item has at least 5 associ-
ated reviews. The experiments are conducted on four categories,
Clothing, Shoes & Jewelry, Toys & Games, CDs & Vinyl, Electronics.
These datasets both contain several categories so that users may
have different interests. The first two categories are in a small scale,
we use them to verify the effectiveness of the proposed CAMImodel
in limited data.

4.2 Query Construction
As the Amazon dataset is collected for the recommendation orig-
inally, it only consists of information about users and items. To
construct queries from the dataset, we apply a two-step strategy
following existing approaches [3, 14]. This strategy utilizes the
hierarchical category marks of products to label queries. First, we
extract the multi-level class information from the metadata to form
category lists for products. Then, we remove the duplicated words
and stopwords in one category list and concatenate terms in it to
a string. This string is considered as a query submitted by users
which leads to the purchase of the corresponding product.

4.3 Evaluation
To evaluate the performance of models, we split each dataset into a
training set and a test set. For each user, we select 70% purchase
behaviour (each purchase corresponds to a review) to form the
training set. The rest purchase can be regarded as the judgements
in the testing phase. After constructing the labels in the test set, we
need to build the query set. First, we randomly select 30% queries
in the query corpus as the initial test query set. Then, if all queries
of an item are in the test query set, we put a random one of them
back to the training query set, which guarantees that each item has
at least one query in the training data. In the evaluation process,
the personalized product search is a ranking problem basically, so
we use the metrics of ranking problems to evaluate the models,
including MRR, NDCG, MAP. We also conduct two-tailed t-test to
measure the significant differences between results.

4.4 Entities and Relationships
In this work, we introduce five entities and seven relationships
into the knowledge graph to calculate the representations for users
and items following [4]. The entities include users, items, words,
brands, and categories. As the category information for products
is hierarchical, we split the𝑚-level hierarchy into𝑚 independent
entities. The relationships we used in our model include:

Write: Word𝑤 is occurred under the review for item 𝑖 (𝑖 → 𝑤 )
or is written by user 𝑢 (𝑢 → 𝑤 ). For 𝑢 → 𝑤 relations, we average
𝐾 interests to represent the head entity in the score function in
Eq. (1).

Is_brand: Item 𝑖 belongs to brand 𝑏 (𝑖 → 𝑏).
1http://jmcauley.ucsd.edu/data/amazon/

Is_category: Item 𝑖 belongs to category 𝑐 (𝑖 → 𝑐).
Also_bought: Item 𝑖1 and 𝑖2 have been purchased by the same

user(s) (𝑖1 → 𝑖2).
Bought_together : Item 𝑖1 and 𝑖2 have been purchased under the

single transaction (𝑖1 → 𝑖2).
Also_viewed: Item 𝑖1 and 𝑖2 have been viewed by the same user(s)

(𝑖1 → 𝑖2).
Search&Purchase: User 𝑢 issues a query 𝑞 and then purchases an

item 𝑖 (𝑢 + 𝑞 → 𝑖).

4.5 Baselines
LSE: LSE [14] is a non-personalized product search model. It

learns the vectors of words and items via generative model and
calculates the scores using the similarity between queries and items.

HEM: HEM [3] is a personalized product search model. It ap-
plies latent space model and argues that each word in reviews is
generated by the latent vector of the corresponding user and item.

AEM: AEM [2] is an attention-based personalized product search
model and constructs dynamic user profiles by aggregating users’
historical interacted items by the attention weight with query.

ZAM: ZAM [2] is the extension version of AEM. It concatenates
the purchased item list with a zero vector. The model can adjust the
personalization extent by attending the query to the zero vector.

TEM: TEM [5] replaces the attention network in ZAM with
transformer [26] structure to construct query-dependent user rep-
resentations.

DREM, DREM-m: DREM [4] is a KG-based personalized prod-
uct search model. It embeds each entity into one single vector and
uses generative model to calculate the embeddings. Furthermore,
to verify the improvement of the proposed model is not caused by
the enlargement of embedding size 𝑑 , we multiple the embedding
size with 𝐾 in DREM and denote this model as DREM-m.

CAMI-p, CAMI-h, CAMI-r: The proposed category-aware
multi-interest model. CAMI-p refers to the implementation regard-
ing 𝜏 as parameters while CAMI-h regards 𝜏 as a hyper-parameter.
For CAMI-r model, we remove relationships except Write and
Search&Purchase from the KG in CAMI-h. We design this model to
align with the configuration of query-dependent baselines, which
only use the review information in the dataset.

4.6 Parameter Settings
For CAMI, we tune the hyper-parameters including 𝜆 and 𝜇 from
0.01 to 0.1 and 0.1 to 0.9 respectively to obtain the best performance.
The embedding size𝑑 for all models is 200. We set the multiple inter-
est’s size 𝐾 = 4 as it gets the best performance in our experiments
2 , which is consistent with [9, 17]. we use the last and smallest
caetgory in the category hierarchy as the category 𝑐𝑖 for item 𝑖 . The
negative samples for all the relations is set to 5. For the temperature
𝜏 in the score function Eq. (7) in CAMI-h and CAMI-r, we use linear
annealing where 𝜏 = 𝜏max − 𝑡

𝑇
∗ (𝜏max − 𝜏min). We set 𝜏max = 3.0

and 𝜏min = 0.05. For CAMI-p, we set the initial value 𝜏init = 1.0 for
each user. To avoid overfitting, we add L2 regularizations to the
representation of all entities and set the coefficient 𝛾 as 0.005. Our
codes can be found at https://github.com/rucliujn/CAMI.

2In our experiments, the performance maintain stable regardless of 𝐾 while 𝐾 ≥ 4.



Table 1: Overall performances of models. “†” indicates the model outperforms all baselines significantly with paired t-test at
p < 0.05 level. “‡” indicates the model outperforms all baselines except DREM and DREM-m significantly with paired t-test at
p < 0.05 level. The best results are shown in bold.

Dataset Clothing, Shoes & Jewelry Toys & Games CDs & Vinyl Electronics
Model MRR NDCG MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG MAP

Non-personalized LSE 0.023 0.024 0.022 0.079 0.080 0.079 0.003 0.003 0.003 0.181 0.234 0.180

personalized

Query-dependent methods
AEM 0.022 0.026 0.022 0.063 0.069 0.062 0.038 0.037 0.032 0.265 0.290 0.265
ZAM 0.022 0.024 0.022 0.088 0.128 0.087 0.035 0.035 0.030 0.287 0.314 0.286
TEM 0.023 0.027 0.023 0.129 0.186 0.127 0.036 0.038 0.033 0.196 0.222 0.196
Query-independent methods
HEM 0.021 0.022 0.021 0.088 0.098 0.085 0.019 0.018 0.015 0.263 0.283 0.262
DREM 0.078 0.093 0.077 0.210 0.274 0.206 0.078 0.079 0.067 0.330 0.358 0.329
DREM-m 0.081 0.094 0.081 0.249 0.298 0.246 0.083 0.086 0.073 0.352 0.376 0.351
Our methods
CAMI-r 0.037‡ 0.045‡ 0.037‡ 0.164‡ 0.195 0.159‡ 0.037 0.036 0.032 0.310‡ 0.334‡ 0.310‡
CAMI-p 0.089† 0.104† 0.087† 0.239‡ 0.276‡ 0.236‡ 0.087‡ 0.092‡ 0.077‡ 0.374† 0.405† 0.374†
CAMI-h 0.093† 0.109† 0.092† 0.280† 0.316† 0.277† 0.090† 0.095† 0.080† 0.383† 0.416† 0.382†

5 EXPERIMENTAL RESULTS
5.1 Overall Results
The whole results are shown in Table 1 and we can find that:

(1) Query-dependentmethods outperformquery-independent
methods under the same settings. Besides the DREM model
utilizing additional meta information in the dataset, approaches
building dynamic profiles including AEM, ZAM, TEM outperform
the query-independent approach HEM in most datasets. This result
infers that it is necessary and effective to capture interests relevant
to the current query rather than interests containing all histories.

(2) Comparedwith query-independentmethods, ourmodel
achieves significant improvements as our model can disen-
tangle diverse interests for users. The relative improvement in
terms of NDCG@10 over the DREM model is 15.9%, 14.5%, 20.2%,
16.2% respectively in four datasets. We can observe that the im-
provements in larger datasets (CDs & Vinyl and Electronics) are
bigger. The reason may be that our model can disentangle user
interests more precisely when the data is rich. Furthermore, we can
find that DREM-m only obtains a marginal improvement compared
with DREM, which infers that simply enlarging embedding size
does little to the improvement of performance and our model gets
improvement mainly through separating multiple preferences into
different vectors for users.

(3) Our model outperforms all query-dependent methods
as we leverage the meta information in the knowledge graph,
especially the category for interests. The reason why our model
is better than these methods may be the additional relations we
modeled in KG. This may inspire us to try to integrate extra mes-
sages into query-dependent approaches to improve performances.
Furthermore, though only using the review data, the CAMI-r model
can still achieve comparable or better performance over TEM. The
reason may be that we explicitly capture the category information
of query and item to help aggregate user interests.

(4) CAMI-h outperforms CAMI-p in all datasets in our
experiments. The reason may be tuning 𝜏 for each user is difficult
for the KG embedding model. To verify this hypothesis, we analyze
the values of 𝜏 after training for CAMI-h and find that most of them

Table 2: Performance of ablation models in Electronics

Model MRR NDCG MAP

CAMI-h 0.383 0.416 0.382

w/o hom 0.368 (-3.92%) 0.400 (-3.85%) 0.367 (-3.93%)
w/o qattn 0.353 (-7.83%) 0.380 (-8.65%) 0.353 (-7.59%)
w/o cate 0.347 (-9.40%) 0.376 (-9.62%) 0.346 (-9.42%)
w/o cate + hom 0.363 (-5.22%) 0.392 (-5.88%) 0.362 (-5.24%)
hard selection 0.361 (-5.74%) 0.390 (-6.25%) 0.360 (-5.76%)
cate entity emb 0.365 (-4.70%) 0.394 (-5.29%) 0.364 (-4.71%)

gather into the initial value, which is unexplainable. To overcome
this problem, we may explore a more explicit way to model user’s
different strategies in combining interests in future work.

5.2 Ablation Study
In this section, we conduct an ablation study of the main parts in
CAMI. These models are shown as follows:

w/o. hom.We remove the homogenization regularization LH
from the unified loss function in Eq. (12).

w/o. qattn.We remove the query attention term 𝒄⊤𝒖𝒌
· 𝒄𝒒 from

the weight calculation in Eq. (7).
w/o. cate.We remove the category indication embeddings for

users, items, and queries from our model. The combining weight in
this model is calculated by the dot similarity between 𝒖𝒌 and 𝒊.

w/o. cate + hom.We add the redundancy regularization mod-
elling the distances between user preference embeddings 𝒖𝒌 into
the w/o. cate. model.

hard selection. We use the max selection method to aggregate
user’s multiple interests instead of the softmax function in 6. The
score function for dynamic relation in this model is as follows:

𝑆 (𝑖 |𝑢, 𝑞) = 𝜆𝑢 · 𝒊⊤ · (𝒖𝒌opt + 𝒓 (𝒒)) + (1 − 𝜆𝑢 ) · 𝑝𝑖
𝑘opt = argmax

𝑘

(𝒄⊤𝒖𝒌
· 𝒄 𝒊) · (𝒄⊤𝒖𝒌

· 𝒄𝒒).

cate entity emb. We replace the 𝒄 𝒊 = 𝑓 (𝑐𝑖 ) with the entity
embedding of the smallest category of item 𝑖 .



The results of the ablation study are shown in Table 2. We can
find all these ablation models underperform CAMI. The decrease of
removing the homogenization regularization infers the redundancy
between interests does harm to the performance. However, as we
also explicitly measure the category indication for each preference
to help separate user interests, the decline is subtle. The models
w/o. cate. and w/o. qattn. without modelling the category infor-
mation both cause the decline of performance. This result reveals
that leveraging additional attributes such as categories can help the
disentanglement of user diverse interests. The low result of w/o.
cate. infers that directly using the embedding representations of
products and users leads to inaccuracy. We need to capture other
information to aggregate interests. However, the improvement of
w/o. cate + hom. over w/o. cate. shows that it is useful to add dis-
agreement loss to help separate user interests if we have no external
information such as categories. The result of w/o. qattn. shows
that it is beneficial to enhance query information into the score
function. The hard selection. method only calculates the item’s
matching score with the closest user preference. The performance
decrease compared with CAMI may be due to that some purchases
are not caused by only one interest but some of them. However,
It still outperforms the DREM because the model can separate in-
terests and keep them independent of each other while training
and test. The result of cate entity emb. method illustrates that the
mismatch between relation-based and word-based representations
does cause the decline of performances.

5.3 Case Study
Figure 2 shows the coefficients between the category indication rep-
resentations of two user interests and several category embeddings
for items in dataset Toys & Games. The coefficients are calculated
in the same way as the weight in Eq. (7). The lighter a grid is, the
corresponding row interest and the corresponding column category
are more related. From the figure, we can infer that these diverse
preference vectors model preferences in different categories. For
example, user A’s first interest mainly focuses on the “Board Games”
category and her fourth interest mainly aims at the “Building Sets”.
Our model separates them into different vectors to avoid disorga-
nized integration in previous models.

Besides, we can also observe that the disentangled interests are
different between users. The fourth interest of user A focuses on
the “Building Sets” and that of user B embeds the preferences on
“Dolls & Accessories”. We can also find that the interest of “Building
Sets” doesn’t fall into any of user B’s preferences exactly, which
may indicate that neither of these multiple vectors models it. It is
reasonable because the interacted items are diverse between users
and user B may never interact with items belonging to the “Building
Sets” category, so the constructed user profiles should be different.

5.4 Query Latency Analysis
In this section, we compare the average running time on each
query to represent query latency between DREM, TEM, CAMI.
DREM and TEM are representatives of query-independent and
query-dependent approaches respectively. The results are shown
in Table. 3. We can observe that TEM is much slower than DREM
since it needs to process the whole user history. However, the query
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Figure 2: The coefficients between the category indications of
two users and several categories in Toys &Games. We conduct
softmax function on the row direction.

Table 3: Average test time per query in millisecond(ms)

Model Clothing, Shoes &
Jewelry

Toys &
Games

CDs &
Vinyl

Electronics

DREM 19.7ms 14.1ms 59.8ms 59.7ms
TEM 53.5ms 31.9ms 239.4ms 183.2ms
CAMI 20.6ms 18.6ms 60.9ms 63.9ms

latency of CAMI is very close to the single embedding model DREM
because it only needs to aggregate 𝐾 user preferences and this can
be accelerated by the GPU parallel computing. The results accord
with the qualitative analysis in section 3.5 and show that our model
is more efficient than query-dependent approaches.

6 CONCLUSION
In this work, we propose a category-aware multi-interest model
CAMI for personalized product search to represent user diverse
preferences in different categories by learning entity and relation
embedding in KG. In our model, we replace the single vector for
users in original KG with 𝐾 multiple vectors with their correspond-
ing category indication vectors. To score items, we aggregate user
multiple preferences through category-attention considering query
and items into a combined representation. Furthermore, we intro-
duce a homogenization regularization term to avoid redundancy
between the multiple interests. Experimental results show that our
model can significantly outperform all existing models and is more
efficient than query-dependent approaches. In future work, we plan
to further explore the implementation of different user strategies
and to utilize the relations in datasets more explicitly.
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