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ABSTRACT

Selecting reliable negative training instances is the challenging task
in the implicit feedback-based recommendation, which is optimized
by pairwise learning on user feedback data. The existing methods
usually exploit various negative samplers (i.e., heuristic-based or
GAN-based sampling) on user feedback data to improve the quality
of negative samples. However, these methods usually focused on
maintaining the hard negative samples with a high gradient for
training, causing the false negative samples to be selected preferen-
tially. The limitation of the false negative noise amplification may
lead to overfitting and further poor generalization of the model. To
address this issue, we propose a Gain-Tuning Dynamic Negative
Sampling GDNS to make the recommendation more robust and
effective. Our proposed model designs an expectational gain sam-
pler, concerning the expectation of user’ preference gap between
the positive and negative samples in training, to guide the negative
selection dynamically. This gain-tuning negative sampler can ef-
fectively identify the false negative samples and further diminish
the risk of introducing false negative instances. Moreover, for im-
proving the training efficiency, we construct positive and negative
groups for each user in each iteration, and develop a group-wise
optimizer to optimize them in a cross manner. Experiments on two
real-world datasets show our approach significantly outperforms
state-of-the-art negative sampling baselines.

CCS CONCEPTS

« Information systems — Collaborative filtering; « Comput-
ing methodologies — Learning from implicit feedback.
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1 INTRODUCTION

Recommendation system plays an important role to alleviate in-
formation overload problem and can help users to obtain useful
information [7, 14, 17, 18, 20-22, 32]. Collaborative filtering (CF),
as the core technique of the recommendation system, aims to learn
user’s potential preference from the observed user-item interactions
and recommend items for users [9, 15, 23, 27]. Today’s observed
user-item interactions are much easier to collect from the implicit
user feedback, such as purchasing, clicking, browsing, and watching
etc. Each observed interaction normally indicates a user’s interest
in an item, which is regarded as the positive sample in recommenda-
tion. With such positive interactions, the CF model usually selects
a few instances from the unobserved data as negative samples,
and optimizes the positive instances with high scores and negative
instances with low scores for learning user’s potential preference.

Obviously, selecting reliable negative instances from user’s im-
plicit feedback plays a critical role in training recommender models.
The common approach [4, 27] is to uniformly sample negative in-
stances from the unobserved data. This uniform sampling is widely
used in CF methods because of its simple and easy extension, but it
suffers from the vanishing gradient as the gap between positive and
negative samples is too large to provide valuable information for the
latter training. To overcome the vanishing gradient problem, many
methods focusing on hard negative sampling are proposed, aiming
at mining the hard negative samples that have a high probability of
being positive. The main idea of these methods is to design another
sampling distribution to replace the uniform sampling distribution
for obtaining the high-quality negative samples. For example, the
typical heuristic-based methods [26, 34, 35] generate hard negative
instances by item attribution (i.e., popularity, frequency) during the
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Figure 1: Illustration of the user-item interactions. The blue
solid lines are the observed interactions and the red dotted
lines are the unobserved interactions.

training, and the GAN-based methods [1, 24, 30] use complicate
structures to generate the adversarial negative instances.

All methods mentioned above focus on finding the hard negative
samples and overlook the risk of introducing false negative in-
stances in the training stage. Factually, the false negative instances
are not necessarily the user’s dislike. On the contrary, they may be
the user’s potential interest. Given an example in Figure 1, under the
collaborative assumption that users with similar interaction histo-
ries share the similar interest, the user uy has the larger probability
to like the unobserved item iz. While, the above negative sampling
methods are prone to select the unobserved instance (ug, i) as the
hard negative sample because it is difficult for learning. Forcibly
optimizing these false negative samples usually leads to overfitting
and makes the model lose its generalization ability. Recently, state-
of-the-art method SRNS [11] leverages the low variance of the false
negative samples, and adds their historical variance of iterations
to loss term for preventing sampling from the false negative sam-
ples. However, the simple addition combination is not enough to
distinguish the false negative samples because the loss of the false
negative samples is too large to be covered by the variance.

To address this issue, we propose a novel gain-tuning dynamic
negative sampling model GDNS for recommendation, which can
perform negative sampling efficiently and robustly. GDNS devel-
ops a gain-aware negative sampler to prefer real negative samples
dynamically, and group-wise optimizer to boost performance by
organizing the training instances in group formal. Specifically, in
t-th iteration, the gain-aware negative sampler first obtain the ex-
pectation of the score gap between positive and negative samples,
and then uses the expectational gain between t — 1-th and ¢-th iter-
ation as an indicator to distinguish the false negative sample from
candidate negative samples. After selecting the real-like negative
samples, the group-wise optimizer constructs positive and negative
groups for each user in each epoch, and optimize them in a cross
manner to improve the training efficiency. We empirically conduct
extensible experiments on two real-world datasets Movielens-1m
and Pinterest. The comparison results of the various measures on
the two datasets show that our model achieves State-of-the-Art
performance.

In summary, the contributions of this paper are as follows:

e We propose a gain-tuning dynamic negative sampling model
GDNS for recommendation, which can select the reliable
negative samples for training dynamically.

e We develop expectation gain driven indicator to efficiently
distinguish the false negative samples with the goal of im-
proving the generalization and robustness.
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Optimization | Robustness | Indicator
ENMF | NonSampling X -
Uniform Pair-wise X Uniform
NNCF Pair-wise X Hard-Based
AOBPR Pair-wise X Hard-Based
IRGAN Pair-wise X Hard-Based
RNS-AS Pair-wise X Hard-Based
AdvIR Pair-wise X Hard-Based
SRNS Pair-wise v Hard-Var.
Ours Group-wise v Gain-Based

Table 1: Model comparison with baselines.

e We design a group-aware optimization by constructing pos-
itive and negative groups for each user in each iteration,
which can enhance training efficiency.

2 PRELIMINARY

Collaborative filtering based recommendation focuses on learning
users’ preference from the observed user-item interactions. Today,
the observed user-item interactions are much easier to collect from
implicit user feedback, which is prevalent in boosting the develop-
ment of recommender systems.

For the implicit CF methods, we denote the user set as U, item
set as 7, and the exposure user-item data X as

1, if (u,i) is observed.
wi = {O, otherwise. )
where X;,; = 1 represents that there is an observed interaction
between user u and item i, which is regarded as a positive instance
that the user u is interested in the item i. Otherwise, Xj, ; = 0 is the
unobserved interaction between the user u and item i, which does
not necessarily imply the user dislike the item i. It can be considered
as the user ignored the item because of its displayed position or
form. Formally, the goal of the CF methods is to learn a matching
function U X I — X to calculate the relevance between user
u € U and item i € 7. Typically, a generalized matrix factorization
framework GMF [16] is used as the basic model, whose matching
function on the given pair of user v and item i is:

d
rui=W' (P, ©Qi) = Z Wk - Puk * ik (2)
k=1

where W is a learnable parameter vector, P, and Q; are embed-
ding representations of users and items, © represents element-wise
multiplication between two vectors. Also, there exist other strong
models like [28, 29, 36] that have significantly achieved promising
recommendation performance.

To learn an implicit CF model, a marginal hinge loss [33] is
proposed, which assigns positive samples with higher scores and
negative ones with lower scores. The learning objective can be
formulated as minimizing following loss function, i.e.,

L(U, I, ]) = |ru,j — Tyt Y|+ (3)

where ||+ = max(x, 0) means to get the maximum number between
0 and x, y is a hyperparameter indicating the expectational margin
between the negative and positive samples. r,,; and r, j are the
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Figure 2: The model architecture of GDNS.

relevance scores of the positive instance (u, i) and negative instance
(u, j), respectively. For the user u, the positive instance i is randomly
chosen from the observed interaction Cy, = {i |Xy,; = 1}, and the
negative sample j is generated from the negative sampler ¢ (-|u)
based on the unobserved interaction C, = {j |Xy,; = 0} of the
user u. During the training process, the implicit CF methods can
benefit more from the negative instances with better quality. In the
previous work, the uniform distribution [27] is the most widely used
negative sampler, suffering from low quality of negative samples.
To address the problem, many menthods [11, 25] attempt to sample
much harder instances, containing more information to minimize
the loss function in equation (3). Nevertheless, these menthods
have not enough robustness to handle false negative instances in
training. Compared with the existing negative sampling methods,
we focus on developing a robust negative sampler to generate
reliable hard negative instances, which can provide more valuable
gradient information in training stage and help to perform better on
modeling user preference. In this paper, we summary the previous
works of negative sampling in Table 1, which discussed the inherent
difference between our model and these works.

3 METHODOLOGY

To improve the robustness and efficiency for negative sampling in
implicit CF, under the deep understanding of the characteristics of
the negative instances, we develop a gain-aware negative sampler
to make the sampling more efficient and robust, and employ a
novel group-wise optimizer to improve the training efficiency. The
framework of our model is illustrated in Figure 2.

3.1 Gain-aware Negative Sampler

Given the risk of introducing false negative instances, the quality
of negative samples needs to be measured in a more reliable way.

In this section, we design a negative sampler that aims to learn a
negative sampling distribution for generating reliable hard nega-
tive instances. Intuitively, it is reasonable to generate real negative
instances from exposure data, as it records whether a user inter-
acted with an item. Thus, we devise an exposure-aware function
to measure negative signals in the exposure data. Specifically, for
a user u with his interacted item set A, C C,, the probability of
the non-interacted item j in exposure data being a real negative
sample is:

H' (u, j) = Eiep,0(ruj — rui) 4)

where ¢ represents the ¢-th iteration in the training stage and o is
sigmoid function. In this way, the generated negative samples are
given higher prediction scores, getting close with those of positive
instances, which can effectively provide larger gradients and more
information during training.

Importantly, we empirically find that negative instances with
large prediction scores are important for the model’s learning but
generally rare, i.e., following a skewed distribution. A more novel
finding is that the false negative instances always have high ex-
pectation gap over many iterations of training (analyzed in section
4.6), which provides a new angle on tackling false negative problem
remained in the existing approaches. Thus, compared with the ex-
pectation of the score difference between the negative and positive
samples in equation (4), the expectational gain between two itera-
tions is a more sensitive signal to monitor the difference between
the negative sample and the positive item set. Correspondingly, we
develop a gain-aware function to calculate the probability of item j
being a real negative sample, i.e.,

t-1 _ t

t _ t—1 u,j u,j

wj =4 w*“‘“)"’(W) ®)
u,j
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where « is a smoothing hyperparameter to make the training stable,
€ is a small number to prevent the situation that is (Hli ;=0 Ac-
cording to the gain-tuning sampler, the unobserved interactions of
a given user with higher Q:; ; are selected as the negative samples
for model’s optimization. This is because that the false negative
samples usually have the lower G 15 _; than the true negative samples
as discussed in section 4.6. Hence, our model tends to leverage this
high-gap expectation based criterion to reliably measure the quality
of negative samples, i.e., selecting the candidate negative samples
with higher G as the negative samples in training stage. This way
can reduce the risk of introducing the false negative instances ef-
fectively.

3.2 Group-wise Optimizer

Previous works usually optimize the pair-wise margin-based loss
as equation (3) to assign high scores to the positive instances and
low scores to the negative instances. Considering (1) there is a high
probability that the negative item j may be reused with the positive
items of the user u in training, and (2) it is inefficient to optimize the
recommendation model on a pair of positive and negative samples,
we develop a group-wise optimizer to make the optimization more
efficient. The group-wise ranking loss is defined as follows:

LA M) = Y > ruy = rui+ vl ©)

i€y jeA),

where the matching score r,,; and r,, ; are calculated by typical
GMF [16] as equation (2), A, and AJ, are positive and negative
groups for each user constructed at the beginning of each itera-
tion. As Algorithm 1 described, given a user u € U, the positive
group Ay = {i1,...iN} are constructed by sampling N times inde-
pendently from C, while the negative group A;, = {j1,...jN} is
constructed by selecting more reliable negative samples from C,,.
As the space of negative sampling is extremely huge or unknown
in the real world, for each user in t-th iteration, we first construct a
subset § = {j1,... jym} € Cy each epoch by randomly selecting M
negative samples from the whole negative sample space in step 9
of Algorithm 1. Then we use the gain-tuning negative sampler to
select the top N ones for building A], according to their lel By

filtering out samples with high Qli_jl, our model is expected to re-
duce the effect of false negative samples and further improve the
performance.

Having established the group-wise ranking loss, users’ prefer-
ences can be caught more effectively by the group-aware positive
and negative samples than the single pairwise samples. Finally,
we formulate the learning objective as minimizing following loss
function, i.e.,

L= ) Luwdud) ™)
uel

Although our model assigns a group of positive and negative items
for each user in the training stage, we still use the same evaluation
protocol as baselines in the test stage. Concretely, for each user-
item pair and its candidate negative items in the test set, we feed
them into our model to obtain their ranking scores, and further sort
all items in descending order for evaluating the performance based
on the recommendation metrics.
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Algorithm 1 GDNS Sampling Algorithm

Input: User set U, Item set 7, interaction matrix X, Group size N,
embedding dimension d, n = |U|, m = |I|
Output: P,Q, W
1 Initializate P € R™*4 Q0 € R"™d W ¢ R4
2: Initializate H° = 1™¥", g0 = 10
3. Construct C, and C,, for each user u based on the interaction
matrix X.

4 fort < 1to T epochs do
5 sample a mini-batch of users B from U
6: for each u € B do
7: L — 0
8: Ay «—{i1,...,iN}, i drawn from Cy,
9 6 — {jt,-.->jm}, j drawn from C,
10: Al’l<—{jl,...,jN},jistopNoféongli’jl
11: calculate ry,; = WT (P, © Q),i € Ay
12: calculate ry, j = W' (P, © Qj), j € A,
t .
13: Wu’j<—0,]eA,’4
14: for each (i, j) € Ay x A/, do
15: L —L+L(uij)
16: My, — Hyy j+ o (ruj = rui)
17: for each j € A}, do
HA !
b el el e -w o M)
uj
19: Backward £ to update the P, Q and W by Backward

Propagation algorithm
20: return P, Q, W

Why the Group-wise optimizer works? Essentially, different
from isolated gradient information in the pair-wise approach, the
group-wise optimizer shares the gradient information among all
samples in the same group. For example, the item i; in the right
of Figure 3 can acquire necessary gradient by the cross operation
in the same groupfor improving the embedding in our model. On
the contrary, the item i1 in the left of Figure 3 can only obtain the
gradient information from the pair ry, ;; — ry, j, on the pair-wise
approaches. Moreover, the group-wise organization can boost the
training efficiency with reducing computation operation, which is
analyzed in following two aspects:

o This group-wise ranking loss can be easily reduce the con-
sumption of feature encoding in the popular recommender
works [8], which is restricted by feature encoding on the
large volume of users and items. Taking the Movielens-1m
dataset described in section 4 as an example, for the tra-
ditional pair-wise approach, the model has to encode rep-
resentations of 563186 users and 563186 * 2 negative and
positive items for all 563186 training instances in each it-
eration. While with the group-wise optimizer, our model
only needs to encode small representations of 6028 user and
6028 = N x* 2 items, where N is the group size and is set as
32 experimentally.

o Unlike the pair-wise ranking loss that constructs negative
samples for each observed interaction in C, our group-wise
ranking loss constructs the group of positive and negative
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Figure 3: Comparision between pair-wise and group-wise op-
timization.

samples for each user. Such two loss make the construction
operation as |C| and || x N2. In the real dataset, the num-
ber of observed interactions |C| is much greater than the
number of users |U|. For example, there is about 93 times in
Movielens-1M and 25 times in Pinterest. By sampled group
Ay and A/, instead of the whole space C and C, the group-
wise organization can significantly reduce computational
cost to achieve convergence.

4 EXPERIMENT

In this section, we study and evaluate our approach on the Top-K
recommendation task with two real-world datasets. Further, we give
a deep insight into experimental results, and conduct controlled
experiments with synthetic noise, so as to investigate GDNS’s ro-
bustness to distinguish the false negative instances (section 4.6).

4.1 Dataset

Following the typical baselines, we evaluate our model on two
popular real-world datasets in recommendation field.

e Movielens-1m. It contains the user’s rating information on
movies obtained from IMDB and Movie DataBase!. In our
experiments, the user’s ratings on movies are converted to
implicit feedback data. Concretely, records with 4-rated and
5-rated are treated as positive labels while low-rated and
unobserved items as negative labels [25, 31].

e Pinterest. It is an image sharing and social media service 2.
The Pinterest dataset contains more than 1 million images
associated with users who have “pinned” them. In our exper-
iments, user’s “pinned” interactions on images are treated
as positive labels while others as negative labels.

To make the comparison fair, we follow the same preprocessing
settings as baselines [11] to process the datasets. First, we filter out
the users or items with less than 4 records. This is a common way
to alleviate the high sparsity problem of rating datasets. Second, for
each user, we choose one item for validation and test respectively,
and the remaining as the positive items for training. The basic
statistic of datasets is shown in table 2.

https://grouplens.org/datasets/movielens/1m
Zhttps://sites.google.com/site/xueatalphabeta/academic-projects
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Dataset | Movielens-1m | Pinterest
#User 6,028 55,187
#Item 3,533 9,916
#Train 563,186 1,390,435
#Valid 6,028 55,187
#Test 6,028 55,187

Table 2: Dataset statistics.

4.2 Baselines

To evaluate the performance of our model, we select eight typical
negative sampling models as our baselines in table 1, including:

e NNCF [5], BPR [27], AOBPR [26]. Those methods generate
samples with a fixed negative sampling distribution.

e ENMF [3]. This method directly treats all non-observed in-
stances as negative samples. Due to computing all negative
samples in each epoch, it is a highly competitive baseline for
item recommendation.

e RGAN [31], RNS-AS [10], AdvIR [25]. Those GAN-based
approaches are able to generate hard negative samples by
training a external GAN module to capture the negative
sampling distribution.

e SRNS [11]. This approach caches the hard negative samples
each epoch to be reused. To avoid oversampling hard nega-
tive instances, SRNS considered the historical score variance
of candidates negative samples during sampling.

4.3 Evaluation Protocol

In the testing phase, the recommendation methods trained with
different negative samplers are asked to rank a given item list for
each user. As the space of negative sampling is extremely huge or
unknown in the real world, for each one positive sample in the
test set, we fix the number of its relevant negative items as 100
followed by baselines [11, 16, 19]. Here, the test set provided by
SRNS [11] is used to make the comparison fair. Concretely, the
scoring function in equation (2) is used to calculate the scores
of each test user-item pair (u,i) and its relevant negative user-
item pairs {(u, ji), k € [1,100]}. Then these scores are ranked in
descending order to obtain the rank of the positive test sample
(u, i). Finally, two metrics are employed to compare our model
with baselines: (1) Recall@K. It is the proportion of correct items
ranked in the top K. (2) NDCG@K. It is the Normalized Discounted
Cumulative Gain in the top K. Here, we evaluate our method on
metrics Recall@K and NDCG@K with K = {1, 3}. In this paper, we
just report the results of NDCG@1, NDCG@3, and Recall@3 as
NDCG@1 and Recall@1 are equivalent mathematically.

4.4 Settings

In training stage, we select the learning rate y € {0.01, 0.03, 0.09,
0.3, 1.0}, the margin y € {0, 1, 2}, the smoothing hyperparameter
a €{0.1,0.2,0.5, 0.7, 0.9}, the group size N € {4, 8, 16, 32, 64, 128}.
Specifically, the hyperparameter configuration for best-performing
are selected based on NDCG@3 by grid search with early stop trick
as follows: the learning rate y is 0.09, the margin y is 1, the smooth-
ing hyperparameter « is 0.2, and the group size N is 32. The batch
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Method Movielens-1m Pinterest
NDCG@1 | NDCG@3 | Recall@3 | NDCG@1 | NDCG@3 | Recall@3

ENMF (3] 0.1846 0.3021 0.3882 0.2594 0.4144 0.5284
Uniform [27] 0.1744 0.2846 0.3663 0.2586 0.4136 0.5276
NNCF [5] 0.0829 0.1478 0.1971 0.2292 0.3699 0.4735
AOBPR [26] 0.1802 0.2905 0.3728 0.2596 0.4165 0.5319
IRGAN [31] 0.1755 0.2877 0.3708 0.2587 0.4143 0.5282
RNS-AS [10] 0.1823 0.2932 0.3754 0.2690 0.4233 0.5359
AdvIR [25] 0.1790 0.2941 0.3792 0.2689 0.4235 0.5363
SRNS [11] 0.1933 0.3070 0.3912 0.2891 0.4391 0.5486
Ours 0.1936 0.3101 0.4007 0.2902 0.4522 0.5721

Table 3: Performance comparison on two datasets.

size b is 1024 for Movielens-1m and 4096 for Pinterest to fit the mem-
ory size of our device. In particular, the dimension of embedding is
fixed as 32 to make sure our model gains not just because of the
dimension. We employ AdaGrad [12] to optimize the model’s hy-
perparameters on Movielens-1m and Pinterest. Training our model
on a machine with one Telsa-V100 graphics card takes about 1 and
12 hours on average. For a fair comparison, we mainly use GMF
as the scoring function, and carefully tuned hyper-parameters of
GDNS and baselines according to validation performance. More-
over, our model can easily generalize to other CF methods since the
gain-aware negative sampler is built on the expectational gain of
the score gap of user-item pairs during iterations, where the scores
can be calculated by the matching function of various CF methods.

4.5 TopK Recommendation

Our paper aims to distinguish the false negative samples and gener-
ate the reliable negative samples dynamically during training, and
further improve the performance of our model. In order to verify the
efficiency of our model, we conduct experiments on Movielens-1m
and Pinterest and report NDCG@1{1, 3} and Recall@3 in Table 3.
Table 3 gives the convincing results of Top-K recommenda-
tion on Movielens-1m and Pinterest. From the table 3, we can
observe that our model consistently outperforms all baselines on
two datasets with all metrics. This indicates that GDNS can sam-
ple high-quality negative instances and thus help to learn a better
CF model that ranks items more accurately. More specifically, for
Movielens-1m, our model achieves 0.1936 on NDCG@1, 0.3101
on NDCG@3, and 0.4007 on Recall@3, which are higher perfor-
mance than baseline methods. Similarly, for Pinterest, our model
achieves 0.2902 gain on NDCG@1, 0.4522 on NDCG@3, and 0.5721
on Recall@3 compared with baselines. Besides, we have follow-
ing four observations. First, hard negative sampling approaches
perform more competitively among all baselines. By considering
the expectational gain G of negative instances during iterations,
our GDNS can distinguish the false negative samples from the true
negative samples, since the false negative samples usually have
the lower G than the true negative samples. Second, the fixed sam-
pling approaches perform poorly, especially NNCF that directly
adopts a power distribution based on item popularity. Third, the
sampling-based approaches can be more effective than the non-
sampling counterpart by improving sample quality. For example,

0.20
0.15 4
el
&
O 0.10 1
[a)
=4
0.05 - — GDNS
GDNS without ¢
—— GDNS without Group-Wise
0.00 +— T T T T
0 50 100 150 200
epoch

Figure 4: NDCG@1 performance comparison of our model’s
variants in the training process.

ENMF performs worse than RNS-AS and AdvIR on two datasets.
Fourth, compared with the margin-based pairwise ranking loss, our
group-wise ranking loss constructs group-aware training samples
for each user in each iteration, which can reduce the calculation cost
by reusing the negative samples for all user’s positive interactions.
Besides the effectiveness of our model, we also qualitatively
analyze the effectiveness of different components in our model, and
evaluate the performance of the following variants of our model:

¢ GDNS without Group-Wise. This variant directly uses the
pair-wise marginal ranking loss in equation (2) instead of
our group-wise ranking loss in equation (6) to optimize the
recommendation model.

e GDNS without G. This variant does not take into account
the gain factor G in negative sampler, which means that this
variant makes (Hli ;as the indicator to generate negative
samples.

From figure 4, we can observe that: (1) Our model achieves better
performance than these variants. It suggests that the developed
components, i.e., gain-aware negative sampler and group-wise op-
timization, are indeed useful to boost the model’s performance. (2)
Without considering the gain-tuning factor G, the performance of
the variant is sharply increasing in the early stage but then drops
quickly in the later stage. It is mainly because that variant without
G tends to favor the negative samples with high scoring expecta-
tions, which may be lead to overfitting and diminish the robustness
of our model. (3) Compared with the pair-wise ranking loss, our
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Figure 5: H and G comparison between false negative and true negative samples.

group-wise ranking loss has remarkable performance during the
training process. It indicates that our group-wise ranking loss can
avoid convergence to a poor local optimum, and does help to train
the model more efficiently. In general, we attribute the superiority
of our model to its two advantages: (1) our model can efficiently
leverage the gain-tuning indicator to guide the generation of the
reliable negative samples dynamically. (2) our model successfully
constructs positive and negative groups for each user and uses
group-wise optimization to boost training efficiency.

4.6 False Negative Analysis

In this section, we mainly to investigate whether the gain-aware
negative sampler can indeed distinguishe false negative samples and
further identify true negative instances. As described in previous
work [11, 16, 31], the false negative sample is more likely to reflect
the user’s potential preferences. For a rigorous experiment, we ran-
domly select a positive item of each user as the negative to simulate
the false negative samples in the training stage. For Movielens-
1m/Pinterest datasets, we randomly select 6,028 and 55,187 positive
items as negative items for training. In the experiment, the con-
structed Movielens-1m/Pinterest datasets have 557,158/1,335,248
training samples, and the unchanged valid/test sets. To investigate
whether GDNS can identify false negative samples, we track GDNS
on H and G during training to analyze how these false negative
samples changes. The results are shown in figure 5, which can be
observed that: (1) With the density distribution of H, it is confirmed
that H of false negative samples is relatively larger than that of
common true negative samples. Previous hard negative sampling

methods are prone to select samples with larger H as negative
samples, which would suffer from introducing the false negative
samples and lead to overfitting even though high gradients can
be obtained. (2) As the density distribution of G shown, the false
negative samples exhibit a lower G than the common true negative
samples because the false negative samples are usually difficult to
be optimized and H changes slowly between two iterations. These
phenomenon empirically prove that the false negative instances
always have high expectation gap over many iterations of training,
which can provide a new angle on tackling false negative problem
remained in existing approaches. Thus, our gain-aware negative
sampler on G can effectivelly mitigate the risk of introducing false
negative samples and maintain the model’s robustness.

4.7 Parameter Sensitivity

In this section, we mainly explore the effect of different parameter
on the performance. In this experiment, expect for the parameter
being tested, all other parameters are set as optimal configuration.

Group size. This section studies the model performance under
different group size N settings. The experimental results in figure 6
show that: (1) Our model’s performance improves with the increas-
ing of group size. The performance with larger N is better than
that with lower N. It tells that a larger N can share more gradient
information between more pairs of positive and negative, which
makes the optimization more efficient. (2) When the group size N
is bigger than 32, enlarging the group size is hard to obtain a signif-
icant performance improvement. This is mainly because the larger
group size introduces more not relatively difficult negative samples,
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Figure 6: Performance on different group size N settings.

which can not provide more gradient information to improve the
performance. (3) As computation complexity analysis shows, the
consumption of computing resources is also increasing with the
increase of group size. Therefore, we choose 32 as the best trade-off
between performance and computation.

Smoothing Parameter. In our model, the smoothing param-
eter o is used to make model stable on training stage. We select
the smoothing parameter « from [0, 1] with interval 0.1. Figure 7
gives the convinced results, which are (1) Our model achieves best
performance at & = 0.2 setting, indicating that such setting can best
express the importance of expectational gain during iterations, and
help make more stable training. (2) The performance first increases
and then drops with the growth of a. It is because that too low « has
insufficient capability of providing the information of expectational
gain for training, too large @ may introduce unnecessary noise and
reduces generalization ability.

5 RELATED WORK

With the explosive growth of information in Al era, making per-
sonalized recommendation based on the user’s interaction has been
extensively investigated in research community and industry. In
recent years, a variety of personalized recommendation [9, 15, 23]
have been proposed. These methods usually use various unstruc-
tured information (e.g. textual reviews, visual images), and various
implicit or explicit feedbacks to make personalized recommenda-
tion. As the core technique of the recommendation system, col-
laborative filtering based methods are important, and have been
widely used in industry. This paper mainly focuses on the implicit
collaborative filtering (CF) where sampling false negatives can be a
severe problem. In the implicit CF problem, true negative instances
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are hidden inside the massive unlabeled data, along with false neg-
ative instances. Thus negative sampling for implicit CF expects an
unbiased estimator that correctly identifies true negative instances
during training process.

Negative sampling is the basic technique of training collaborative
filtering [16] methods. Here, we classify the relative literature into
three categories: (1) Fixed Sampling approaches [3, 27] are widely
used in training collaborative filtering because of their simplicity
and extensibility [27]. It randomly picks an unobserved sample as
the negative, which ignores the changes over the negative sample
distribution and easily fails into the vanishing gradient problem.
The typical method [3] provides non-sampling way to train the neu-
ral matrix factorization model by directly using all samples in the
negative sample space. (2) GAN-based Sampling approaches in-
troduce Generative Adversarial Network [13] for negative sampling.
Typically, it contains two additional components: a generator and
a discriminator. In the scene of negative sampling, the generator is
expected to produce a better negative sample distribution which the
discriminator is hard to distinguish from the truth ground instance
distribution [10, 25, 31]. (3) Cache-based Sampling approaches
[2, 6, 11, 35] cache N hardest samples for each user. Each time it
updates and samples from the cache pool to reuse the hard nega-
tive samples [35]. Although the cache hard negative samples can
bring a big margin between positive and negative pairs to avoid the
vanishing gradient problem, it also suffers from the false negative
samples. SRNS [11] introduces a variance-based sampler to sample
negative samples, which is state-of-the-art to avoid false negative
problem.

6 CONCLUSION

This paper proposes a novel gain-tuning dynamic negative sam-
pling model GDNS, containing a gain-ware negative sampler and
a group-wise optimizer, to perform negative sampling in an effi-
cient and robust way. In the gain-ware negative sampler, GDNS
introduces a novel measure to select the reliable negative samples
for training dynamically. In the group-wise optimizer, GDNS con-
structs positive and negative groups for each user in each iteration,
which can improve training efficiency. We empirically conduct ex-
tensible experiments on two real-world datasets Movielens-1m and
Pinterest and surpass State-of-the-Art models.
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