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ABSTRACT
Contextual information in search sessions is important for captur-
ing users’ search intents. Various approaches have been proposed
to model user behavior sequences to improve document ranking in
a session. Typically, training samples of (search context, document)
pairs are sampled randomly in each training epoch. In reality, the dif-
ficulty to understand user’s search intent and to judge document’s
relevance varies greatly from one search context to another. Mixing
up training samples of different difficulties may confuse the model’s
optimization process. In this work, we propose a curriculum learn-
ing framework for context-aware document ranking, in which the
ranking model learns matching signals between the search context
and the candidate document in an easy-to-hard manner. In so doing,
we aim to guide the model gradually toward a global optimum. To
leverage both positive and negative examples, two curricula are
designed. Experiments on two real query log datasets show that
our proposed framework can improve the performance of several
existing methods significantly, demonstrating the effectiveness of
curriculum learning for context-aware document ranking.
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1 INTRODUCTION
Users’ search behaviors have evolved from one-shot queries to
multiple interactions with search engines [1]. To fulfill a complex
information retrieval task, users may issue a series of queries, ex-
amine and interact with some results. Many studies have shown
that historical user behavior or search activities can be leveraged
to improve document ranking, especially when users’ search intent
is ambiguous [3, 5, 18, 31, 64, 66].

Previous studies have exploited user search behaviors for un-
derstanding user intent and improving document ranking within a
session [5, 8, 52]. Earlier research explored query expansion and
learning-to-rank techniques [5, 8, 21, 50]. More recently, many
neural architectures have been developed to model user behavior
sequences and capture user search intent [2, 3, 46, 52, 65]. For ex-
ample, a hierarchical RNN with attention mechanism was used to
model the historical queries and the corresponding clicked docu-
ments, leading to better document ranking [2, 52]. Researchers also
discovered that learning query suggestion as a supplementary task
is also beneficial for document ranking [3]. Recently, pre-trained
language models have also been used to capture search intent from
user behavior sequences [46, 65].

Although the approaches proposed are different, they all rely on
the information extracted from previous search logs, for example,
(search context, document) pairs that are considered as positive
or negative samples. The search context usually aggregates the
current query and the previous queries (and interacted documents
in some cases). All positive pairs are assumed to be samples of equal
importance that reflect relevance, and are put together in the same
pool for sampling a training batch. The same for negative pairs
that reflect irrelevance. While it is true that positive and negative
examples are generally useful for training a good ranking model, it
is not true that they are equally useful at different training stages.
In some cases, the relevance (or irrelevance) relation in a pair of
(search context, document) is obvious, while in other cases, it is
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more subtle. Let us illustrate this by some examples. In the left
part of Figure 1, we show two search contexts (sessions) containing
queries and the documents clicked by the user. Let us try to under-
stand the search intent in each of the search context. In the first
case, the relevance relation between the search context formed by
𝑞1 and the clicked document 𝑑+1 is clear because both are about the
singer “Clay Aiken”. In comparison, in the second case, the relation
between the search context formed by [𝑞1, 𝑑+1 , 𝑞2] and the clicked
document 𝑑+2 is more difficult to capture. The underlying intent is
“Chanel’s designer handbags”, which can only be understood with
the help of the historical query 𝑞1 and the clicked document 𝑑+1 . If
a human is asked to learn from these two samples, the relevance
signal in the first one is much easier to capture than in the second.
For a training process, the situation is similar: These pairs represent
different levels of difficulty for a training process to digest. When
a human learner is presented with samples of mixed difficulties,
he/she can be confused because signals from different samples may
appear inconsistent, or they do not have sufficient knowledge to
understand difficult samples. Recent studies in machine learning
also showed that learning with a batch of samples of mixed difficul-
ties may disturb the optimization, especially when the network is
deep [4]. In this case, curriculum learning, i.e., learning from easy
samples before hard samples, becomes particularly useful.

A similar problem occurs when negative samples are considered.
As can be seen in the right side of Figure 1, for the second search
context, the negative candidate 𝑑−2,1 contains information about “de-
signer handbags”. Compared with 𝑑−2,3, we can see that 𝑑−2,1 is much
harder than 𝑑−2,3 to be recognized as a negative sample. Therefore,
it is also desirable to learn from easy negative samples before hard
ones. If we compare 𝑑−2,1 with the positive document 𝑑+2 , we can
learn that “chanel” is an important term reflecting the user’s real
intent. Such comparison/contrast is also common and critical for
human learning, especially for discriminating similar concepts [13].

Motivated by the observations above, we propose a novel train-
ing framework that takes into account the levels of difficulty in the
training samples. Our framework is inspired by both curriculum
learning [22, 44] and contrastive learning [11, 17, 54, 55]. Curricu-
lum learning simulates the human recognition process, i.e., learning
with easier samples first and more difficult samples later. It has
achieved great performance on various tasks, such as image classi-
fication [19, 22], natural language understanding [61], and ad-hoc
retrieval [44]. Contrastive learning aims at learning representations
such that similar samples stay close to each other, while dissimilar
ones are far apart. By comparing similar and dissimilar samples,
the model can be better optimized to capture their differences.

Concretely, we treat the search context and the candidate doc-
ument as a pair and optimize the model by contrasting positive
pairs (with clicked documents) and negative pairs (with unclicked
documents). We design a dual curriculum learning framework in-
corporating two complementary curricula for positive and negative
pairs, respectively. In the curriculum for positive pairs, sampling is
restricted to easy pairs in early steps, and then extended gradually
to the whole set of samples, so that hard pairs can also be learned.
In the curriculum for negative pairs, we do the opposite: sampling
from all pairs in early steps, then restricting gradually to hard pairs

in late steps. These strategies are inspired by similar human learn-
ing: we select learning (positive) examples from easy to hard, but
want to contrast them with all the negative examples at the be-
ginning to have a better idea of the general differences between
the positives and negatives. Toward the end of the learning, as the
obvious differences have been learned, the easy negatives cannot
provide effective learning signals, so we focus on distinguishing
hard negative examples (these hard ones are demonstrated to be
beneficial for model optimization [60, 62]). Our two curricula intend
to follow the same principle during the training process.

The curriculum strategy can be used in any existing approach.
We integrate it into three state-of-the-art approaches for context-
aware document ranking. We conduct experiments on two large-
scale search log datasets (AOL [42] and Tiangong-ST [10]). Experi-
mental results show that our curriculum learning method signifi-
cantly improves three strong baselines. The consistent performance
gains demonstrate the effectiveness and wide applicability of our
approach. Our further experiments show that both positive and
negative curricula are beneficial to the ranking effectiveness.

Our contributions are three-fold:
(1)We propose a novel curriculum learning framework for context-

aware document ranking, in which the difficulty of training samples
is taken into account.

(2) We devise two complementary curricula for learning user
intent from positive and negative pairs of (search context, candi-
date document). By learning them in an easy-to-hard manner, the
model’s performance can be improved gradually.

(3) Experimental results on two large-scale benchmark datasets
show significant improvements. The experiments also confirm the
broad applicability, flexibility, and high robustness of our method.

2 RELATEDWORK
2.1 Context-Aware Document Ranking
Context information in sessions has shown to be beneficial in mod-
eling user search intent [5, 18, 31]. Early research focused on charac-
terizing users’ search intent by extracting contextual features from
their search behaviors [50, 56, 58]. However, because these methods
are built on handcrafted rules or manually collected features, they
can only be used for a limited number of retrieval tasks. Researchers
also developed predictive models for users’ search intent or future
behavior [6], but the learning of complex user-system interactions
is limited by the predefined features.

The recent development of deep neural networks has triggered
new approaches to context-aware document ranking. For exam-
ple, researchers exploited hierarchical RNN-based architectures to
model the sequence of historical queries [27, 52, 57]. These archi-
tectures were further enhanced by attention mechanism to better
capture search behaviors [12]. It is also found that learning query
suggestion and document ranking jointly can boost the perfor-
mance on both tasks [2]. Besides, historical clicked documents are
also reported to be helpful in predicting user search behaviors [3].

Recently, pre-trained language models, such as BERT [14], have
achieved promising results on several NLP and IR tasks [33, 34,
37, 38]. Some researchers proposed concatenating all historical
queries and candidate documents into a long sequence to compute
a sequence representation using BERT, based on which the ranking
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Figure 1: Illustration of DCL’s utilization of samples. The left side shows positive pairs of different difficulties. In the early
training steps, the model can only learn from easy pairs (e.g., the first pair). Then, as the training progresses, harder pairs (e.g.,
the second pair) are added. The right side is the curriculum of negative pairs. All negative candidates (𝑑−1,1, 𝑑

−
1,2, and 𝑑

−
1,3) of easy

cases are used for training in the early steps, while only hard negatives (𝑑−2,1) are used in later steps.

score is determined [46]. Furthermore, contrastive learning has
shown to be beneficial for optimizing the BERT encoder in context-
aware document ranking [65].

Different from the studies above, we focus on improving the
model optimization process by curriculum learning rather than
designing new architectures or supplementary tasks for context-
aware document ranking. Our work is orthogonal to the above
approaches and can be combined with them. In fact, in most ex-
isting approaches, sampling of training data is necessary in the
optimization process. This is typically done by random sampling
or by selecting hard samples. Our work will show that selecting
samples by curriculum from easy to hard can better optimize the
existing models.

2.2 Curriculum Learning for IR
In the context of human learning, it is common to follow a curricu-
lum that regulates the ordering and content of the education materi-
als [35, 43, 51]. With this strategy, students can leverage previously
learned concepts to help them learn new and more difficult ones.
Inspired by research in cognitive science [49], researchers proposed
machine learning algorithms based on a curriculum [4, 15]. The
core idea is to train the model using easy samples first and increase
the difficulty along the training process. Such a curriculum learn-
ing (CL) strategy has achieved great performance on several tasks,
such as image classification [19, 22], machine translation [45, 63],
dialogue generation [53], and natural language understanding [61].

In the area of IR, CL research is still in its early stage. The first
attempt applied CL to learning-to-rank (LTR) [16], however, with-
out much success. Later, researchers found that manually collected
features in LTR can be a source of noise, and the CL strategy is
more suitable for neural ranking models [44]. More recently, sev-
eral heuristics have been proposed to determine the difficulty of
different answers, based on which a CL-based method is used. This
led to improved performance in answer ranking [39].

All existing CL-based methods for IR tasks are designed for or-
ganizing positive samples, but the influence of negative samples is
neglected. We notice that some studies have focused on selecting
hard negative samples for IR tasks [36, 47, 62], but they did not use
CL. In this paper, we propose two complementary and contrastive
curricula to enhance the model’s learning using both positive and
negative context-document pairs. Our experiments show that regu-
lating the learning pace of both positive and negative samples is
very effective.

3 METHODOLOGY
The goal of context-aware document ranking is to rank a list of
candidate documents using the search context. In this work, we
propose a Dual Curriculum Learning (DCL) framework for this task.
As shown in Figure 1, our framework consists of two complemen-
tary curricula for learning positive and negative context-document
pairs. In each curriculum, the pairs are sorted according to their
difficulty so that the model can learn them from easy to hard.

3.1 Notations and Task Definition
We first define some important concepts and notations before intro-
ducing our framework. A user’s search behavior is represented as
a sequence of 𝑛 interactions 𝐻𝑛 = [𝑞1, 𝑑+1 · · · , 𝑞𝑛, 𝑑+𝑛 ], where each
query 𝑞𝑖 is associated with a corresponding clicked document 𝑑+

𝑖
.

If there are several clicked documents, each of them is associated
with the query to form a separate pair in the sequence. Each query
𝑞𝑖 is represented by the original text string submitted to the search
engine, while each clicked document 𝑑𝑖 is represented by its text
content. All queries are ordered according to the timestamps. For
convenience, we further denote 𝐶 = [𝑞1, 𝑑+1 , · · · , 𝑞𝑛] as a search
context when 𝑞𝑛 is submitted after a series of queries and inter-
acted documents. When training a ranking model, for each positive
clicked document, a set of𝑚 unclicked documents are selected as
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Figure 2: The training process of our framework. For the curriculum of positive pairs, only easy samples are used at the
beginning (𝑡1). Along the training process, the positive sampling space is gradually extended to the whole positive pairs (𝑡3).
For the curriculum of negative pairs, the sampling space is shrinking from all samples (𝑡1) to only hard samples (𝑡3).

negative candidates.1 As a result, the candidate document set for
the search context 𝐶 is represented as 𝐷 = {𝑑+𝑛 , 𝑑−1 , · · · 𝑑

−
𝑚} (the

subscript 𝑛 in 𝑑+𝑛 will be omitted).
With the above notations, the task of context-aware document

ranking can be defined as: ranking the candidate document set 𝐷
based on the search context 𝐶 so as to rank the clicked document
𝑑+ as high as possible.

To make it clear, henceforth, we will call the pair (𝐶,𝑑+) a posi-
tive pair, whereas the pairs (𝐶,𝑑−

𝑖
)𝑚
𝑖=1 are𝑚 negative pairs.

Notice that in this paper, we leverage user logs to learn a ranking
model because user clicks can serve as a good proxy of relevance
feedback [3, 28, 29, 46]. However, the same method can be used
with human relevance judgments if available.

3.2 Overview
Our framework consists of two complementary curricula as follows:

(1) Curriculum of Positive Pairs. As shown in the left side of
Figure 1, our first curriculum is designed for positive pairs. The
target is to teach the model how to understand users’ intent by
capturing matching clues between search context and clicked doc-
uments. To achieve this goal, we first sort all positive pairs in the
training set according to their difficulty and then let the model
learn from easy ones to hard ones. By this means, the model can
gradually increase its ability to capture matching signals.

(2) Curriculum of Negative Pairs. We also design a curricu-
lum for negative pairs (right side of Figure 1) to enhance the model’s
ability to identify the mismatching information between search
context and negative documents. Specifically, we progressively
increase the difficulty of the negative candidate documents asso-
ciated with each selected positive pair in the training set. In
this way, the model is encouraged to gradually distinguish more
subtle mismatching signals between search context and negative
documents.

The principles used in the two curricula have some differences.
The learning from positive pairs aims at identifying the relevance
signals. In the curriculum, the model can gradually capture signals
from shallow and easy matching (such as similar terms) to deep
and hard matching (such as semantic information). On the contrary,

1Different selection strategies of negative candidates can be used in different datasets.

a group of negative documents is associated with a specific posi-
tive pair, so they provide supplementary mismatching signals. As
the curriculum progresses, the negative document becomes more
similar to the positive document, so the model has to capture more
fine-grained clues to distinguish them. Overall, we train the model
with the two complementary curricula simultaneously so that its
capability of modeling users’ intent can be gradually enhanced. The
whole process is shown in Figure 2.

It is worth noting that our DCL is a general training framework
that works by organizing the learning order of the training samples.
Therefore, it can be applied to various base models to improve their
performance (this will be shown in our experiments).

3.3 Dual Curriculum Learning Framework
The implementation of our approach involves several key concepts,
which we examine below.

How does curriculum learning work? When training neural net-
works, a mini-batch of training samples is usually randomly (i.e.,
uniformly – every sample is selected with the same likelihood)
sampled from the training set and used for optimizing the model at
a step. Curriculum learning, on the other hand, aims at adjusting
the order of the samples so that they are learned according to a pre-
defined pace rather than at random. In our framework, we design
two curricula for learning positive pairs and negative pairs from
easy to hard, respectively. Following the paradigm of curriculum
learning [22, 44], each curriculum is defined by two functions:

• A difficulty function determines the difficulty of samples so
that the samples can be sorted according to their difficulty.

• A pacing function controls the learning pace. Essentially, it
adjusts the sampling space to control the difficulty of the training
samples at each step.

The curricula and their combination are described below.

3.3.1 Curriculum of Positive Pairs. The green part of Figure 2 il-
lustrates the curriculum of positive pairs. Positive pairs are sorted
from easy to hard according to a difficulty function. Thereafter, we
gradually enlarge the sampling space so that more difficult posi-
tive samples will be included. The key is to define an appropriate
difficulty function.

Difficulty Function. Different heuristics can be used to deter-
mine the difficulty of documents for a query [7, 39]. We consider
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Figure 3: Pacing functions used in both curricula.

two factors for measuring the difficulty of each positive training
pair (𝐶,𝑑+): (1) The first factor is the ranking score𝑀 (·, ·) between
𝐶 and 𝑑+ (see details in Section 3.3.4): A higher𝑀 (𝐶,𝑑+) indicates
that it is easier to select 𝑑+ based on 𝐶 . (2) We also consider the po-
sition of the clicked document in the ranked list: A higher position
indicates that it is easier to select it out of all documents. Formally,
the difficulty for (𝐶,𝑑+) is computed as follows:

𝑑𝑝 (𝐶,𝑑+) = rank𝐶 (𝑑+)︸       ︷︷       ︸
∈[1, |D |]

+
(
1 − 𝑀 (𝐶,𝑑+)

max(𝐶𝑖 ,𝑑
+
𝑖
) ∈D 𝑀 (𝐶𝑖 , 𝑑+𝑖 )

)
︸                                   ︷︷                                   ︸

∈(0,1]

, (1)

where D is the training set. The first term is the ranking position
of 𝑑+ under the search context𝐶 ; the second term is the normalized
ranking score of (𝐶,𝑑+). In this function, the difficulty is dominated
by the position of the clicked document (the first term), while
the normalized ranking score (the second term) makes an effect
only when different (𝐶,𝑑+) pairs are ranked at the same position.
This particular definition of difficulty leads to good experimental
performance among different alternatives we tested.

Pacing Function. The pacing function determines how the
training process transitions from easy to hard pairs. Following
previous studies on curriculum learning [22, 44], we define the
pacing function 𝑓𝑝 (𝑡) with respect to the training step 𝑡 . The value
of 𝑓𝑝 (𝑡) is a proportion, and only the first 𝑓𝑝 (𝑡) × |D| positive pairs
can be used at the training step 𝑡 . 𝑓𝑝 (𝑡) is defined as follows:

𝑓𝑝 (𝑡) = min ©­«1.0,
(
𝑡 · 1 − 𝛿𝑘

𝛼𝑇
+ 𝛿𝑘

) 1
𝑘 ª®¬ , (2)

where 𝑇 is the total number of training steps, 𝛼, 𝛿 ∈ (0, 1) and
𝑘 ∈ [1, +∞) are hyperparameters. As shown by the green line in
Figure 3, this function has the following properties: (1) the initial
value 𝑓𝑝 (0) is 𝛿 , so that the model can only use some easy pairs in
the first training step; (2) it increases monotonically so that harder
pairs are added to the training set gradually; (3) when it reaches 𝛼𝑇
steps (𝑓𝑝 (𝛼𝑇 ) = 1), all pairs in the corpus can be used for training.

3.3.2 Curriculum of Negative Pairs. Negative samples are also very
important for learning a ranking model [62]. By comparing positive
and negative pairs, the model can learn what matching signals are
vital in a contrastive manner.

The orange part of Figure 2 shows the curriculum of negative
pairs. Similar to positive pairs, the negative pairs are also arranged

according to their difficulties (more details later). By gradually
constraining the sampling space, the model will focus on more
difficult samples in later steps.

Difficulty Function. Similar to the positive curriculum, we use
the relevance between the search context and the negative candidate
as the difficulty of the negative pair. A negative candidate with a
high ranking score to the search context is deemed to be hard to
distinguish. For a negative pair (𝐶,𝑑−

𝑖
), its difficulty is defined as:

𝑑𝑛 (𝐶,𝑑−𝑖 ) = 𝑀 (𝐶,𝑑−𝑖 ), (3)

where𝑀 (·, ·) is a scoring model similar to that used in the curricu-
lum of positive pairs. Different from the difficulty function 𝑓𝑝 (𝑡) in
Equation 2, it is unnecessary to introduce the ranking position and
normalization operation, because all negative candidates are asso-
ciated with the same query; their ranking positions are determined
by the ranking scores.

It is worth noting that we follow previous studies [3] to select
negative candidates: the unclicked documents ranked around the
clicked document (within a window) are considered as negative
samples. By this means, we can avoid using too trivial or too hard
negative documents. The obtained list of negative pairs is denoted
as L, in which all pairs are sorted according to their difficulties
descendingly.

Pacing Function.The pacing function 𝑓𝑛 (𝑡) for negative pairs is
designed in a similar way to that for positive pairs. 𝑓𝑛 (𝑡) adjusts the
sampling space from which the negative sequences are sampled. It
decreases with 𝑡 . At time step 𝑡 , we sample from the first 𝑓𝑛 (𝑡) × |L|
negative pairs for training. 𝑓𝑛 (𝑡) is defined as:

𝑓𝑛 (𝑡) = max ©­«𝜂, 1 + 𝜂 −
(
𝑡 · 1 − 𝜂𝑘

𝛽𝑇
+ 𝜂𝑘

) 1
𝑘 ª®¬ , (4)

where 𝛽, 𝜂 ∈ (0, 1) are hyperparameters. As shown by the organce
line in Figure 3, this function is similar to 𝑓𝑝 (𝑡), but makes opposite
effect (i.e., decreasing rather than increasing) along with 𝑡 .

Remark. As shown in Figure 2 and Figure 3, we design the cur-
riculum of negative pairs in a manner opposite to that of positive
pairs, namely we gradually focus on only hard negative pairs. This
is because: (1) All positive pairs are collected from human click data,
which are very valuable for learning the real user intent. So, we
choose to enlarge the positive sampling space and use all positive
pairs in the end. (2) The negative pairs are sampled from the repos-
itory for facilitating the learning of the associating positive pairs.
When the training progresses, too easy samples cannot provide
enough “contrast effect”, thus we discard them and only focus on
hard samples. This strategy can lead to a more robust optimization
in retrieval performance [62].

3.3.3 Combination of Two Curricula. DCL trains ranking models
with the two curricula simultaneously. Specifically, for a training
step 𝑡 , we build a batch of training data as follows: First, we select a
batch of positive pairs (𝐶,𝑑+) according to the pacing function 𝑓𝑝 (𝑡).
Then, for each search context 𝐶 in the positive pairs, we sample𝑚
negative candidate documents based on the pacing function 𝑓𝑛 (𝑡).
The process is summarized in Algorithm 1.

The whole training process of our framework naturally simulates
two learning paradigms of human beings. On the one hand, the
learning material is organized from easy to hard, which has been
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Algorithm 1 Training in DCL

1: Input: the dataset D; the ranking model; difficulty functions 𝑑𝑝 ( ·, ·)
and 𝑑𝑛 ( ·, ·) ; pacing functions 𝑓𝑝 ( ·) and 𝑓𝑛 ( ·) ; the number of negative
pairs𝑚.

2: Score all positive pairs by 𝑑𝑝 (𝐶,𝑑+) and sort them ascendingly;
3: for each training step 𝑡 do
4: Collect the first 𝑓𝑝 (𝑡 ) · |D | positive pairs as a subset P;
5: Uniformly sample a batch of positive pairs B𝑡 from P;
6: for [𝐶𝑖 , 𝑑

+
𝑖
] in B𝑡 do

7: Score all negative pairs by 𝑑𝑛 (𝐶𝑖 , 𝑑
−
𝑗
) , get a list of negative pairs

L by the heuristic rule, and sort them descendingly;
8: Collect the first 𝑓𝑛 (𝑡 ) · |L | negative pairs as a subset N;
9: Uniformly sample𝑚 pairs 𝐷−

𝑖
from N;

10: end for
11: Optimize the ranking model on the data {𝐶𝑖 , 𝑑

+
𝑖
, 𝐷−

𝑖
} |B𝑡 |
𝑖=1 ;

12: end for
13: Output: Trained ranking model.

demonstrated to be effective for both animal training and human
learning. In our case, such a training process is beneficial for model
optimization. On the other hand, in cognitive science, learning
through comparison is also an effective way to understand new
concepts [23]. In our framework, the model can learn by contrasting
positive and negative candidate documents.

3.3.4 Selection of Scoring Model. In Equation (1) and (3), DCL ap-
plies a scoring model𝑀 (·, ·) to measure the ranking score between
the search context and the candidate document. In our experiments,
we use two different methods for 𝑀 (·, ·): (1) BM25 [48] and (2) a
BERT-based score commonly used in dense retrieval [32, 34]. Since
we need to compute the ranking score between a search context
and all documents in the training set, we apply dot-product based
on BERT representations for fast computation:

𝑀 (𝐶,𝑑) = BERT(𝐶) [CLS] · BERT(𝑑) [CLS] . (5)

To achieve better performance, we fine-tune BERT encoders on
positive sequences with in-batch negatives [32]. Then, we can ob-
tain the representations of all the search contexts and documents.
Afterwards, we use FAISS [30] to compute𝑀 (𝐶,𝑑) efficiently.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Following previous work [3, 9, 46, 65], we conduct experiments on
two public datasets: AOL search log data [42] and Tiangong-ST
query log data [10].2 Another possibility is the MS MARCO Con-
versational Search dataset [41], but the sessions in it are artificially
constructed rather than derived from real search logs and the cor-
responding clicked documents are unavailable. Therefore, we do
not use the MS MARCO dataset in experiments.

We use the AOL dataset constructed by Ahmad et al. [3]. The
dataset contains a large number of sessions, each of which consists
of several queries. Each query in the training and validation sets has
five candidate documents. The test set uses 50 documents retrieved
by BM25 [48] as candidates for each query. All queries have at least
one satisfied click in this dataset.
2We understand that the AOL dataset should normally not be used in experiments. We
still use it because there are not many datasets available that fit our experiments well.

Table 1: The statistics of the datasets. The number in
paretheses is the average number of relevant documents.

AOL Training Validation Test

# Sessions 219,748 34,090 29,369
# Queries 566,967 88,021 76,159
Avg. # Query per Session 2.58 2.58 2.59
Avg. # Document per Query 5 5 50
Avg. Query Len 2.86 2.85 2.9
Avg. Document Len 7.27 7.29 7.08
Avg. # Clicks per Query 1.08 1.08 1.11

Tiangong-ST Training Validation Test

# Sessions 143,155 2,000 2,000
# Queries 344,806 5,026 6,420
Avg. # Query per Session 2.41 2.51 3.21
Avg. # Document per Query 10 10 10
Avg. Query Len 2.89 1.83 3.46
Avg. Document Len 8.25 6.99 9.18
Avg. # Clicks per Query 0.94 0.53 (3.65)

Tiangong-ST dataset is collected from a Chinese commercial
search engine. It contains web search session data extracted from
an 18-day search log. Each query in the dataset has ten candidate
documents. In the training and validation sets, we use the clicked
documents as the satisfied clicks. For queries with no satisfied clicks,
we use a special token “[Empty]” for padding. In the test set, the
candidate documents for the last query of each session have been
manually annotated with relevance scores from from 0 to 4, which
are used for evaluation. More details can be found in [10].

The statistics of both datasets are shown in Table 1. In Tiangong-
ST test set, the relevance scores are provided instead of click labels,
so we report the average number of documents with positive rel-
evance scores (≥ 1). Following previous studies [3, 25, 26, 65], to
reduce memory requirements and speed up training, we only use
the document title as its content.

Evaluation Metrics. Similar to previous studies [3, 46, 65],
we use Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), and Normalized Discounted Cumulative Gain at position
𝑘 (NDCG@𝑘 , 𝑘 = {1, 3, 5, 10}) as evaluation metrics. In AOL, as
clicked documents are used instead of manually judged documents,
these measures reflect the capability of a model to rank clicked doc-
uments high. All evaluation results are obtained using the TREC’s
standard evaluation tool (trec_eval) [20].

4.2 Baseline
We compare our method with several baseline methods, including
those for (1) ad-hoc ranking and (2) context-aware ranking.

(1) Ad-hoc ranking methods only use the current query with-
out context information (historical queries and documents) for
document ranking.
▶ ARC-I [24] is a representation-based approach. Query and doc-

ument representations are generated by CNNs. The ranking score is
determined by a multi-layer perceptron (MLP). ▶ ARC-II [24] is an
interaction-based method. A matching map is constructed from the
query and document, from which CNNs extract matching features.
The score is also computed by an MLP. ▶ KNRM [59] constructs a
matching matrix by performing fine-grained interaction between
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Table 2: Experimental results on two datasets. All results using our framework (X+DCL) outperforms the original results (X)
significantly at 𝑝-value < 0.01 with Bonferroni correction in paired t-test.

AOL Tiangong-ST

Model MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

ARC-I 0.3361 0.3475 0.1988 0.3108 0.3489 0.3953 0.8580 0.9159 0.7088 0.7087 0.7317 0.8691
ARC-II 0.3834 0.3951 0.2428 0.3564 0.4026 0.4486 0.8611 0.9227 0.7131 0.7237 0.7379 0.8732
KNRM 0.4038 0.4133 0.2397 0.3868 0.4322 0.4761 0.8709 0.9261 0.7473 0.7505 0.7624 0.8891
Duet 0.4008 0.4111 0.2492 0.3822 0.4246 0.4675 0.8663 0.9273 0.7577 0.7354 0.7548 0.8829
M-NSRF 0.4217 0.4326 0.2737 0.4025 0.4458 0.4886 0.8517 0.9084 0.7124 0.7308 0.7489 0.8795
M-Match 0.4459 0.4572 0.3020 0.4301 0.4697 0.5103 0.8529 0.9211 0.7311 0.7233 0.7427 0.8801
CARS 0.4297 0.4408 0.2816 0.4117 0.4542 0.4971 0.8556 0.9268 0.7385 0.7386 0.7512 0.8837

HBA 0.5281 0.5384 0.3773 0.5241 0.5624 0.5951 0.8615 0.9316 0.7612 0.7518 0.7639 0.8896
HBA+DCL 0.5599 0.5693 0.4074 0.5626 0.5961 0.6242 0.8986 0.9538 0.8069 0.7985 0.8130 0.9122
Improv. +6.02% +5.74% +7.98% +7.35% +5.99% +4.89% +4.31% +2.38% +6.00% +6.21% +6.43% +2.54%

RICR 0.5338 0.5450 0.3894 0.5267 0.5648 0.5971 0.8147 0.8937 0.7670 0.7636 0.7740 0.8934
RICR+DCL 0.5630 0.5742 0.4219 0.5589 0.5943 0.6257 0.8963 0.9498 0.7995 0.7925 0.8078 0.9089
Improv. +5.47% +5.36% +8.35% +6.11% +5.22% +4.79% +10.02% +6.28% +4.24% +3.78% +4.37% +1.73%

COCA 0.5500 0.5601 0.4024 0.5478 0.5849 0.6160 0.8623 0.9382 0.7769 0.7576 0.7703 0.8932
COCA+DCL 0.5794 0.5888 0.4281 0.5841 0.6167 0.6432 0.8990 0.9501 0.7936 0.7922 0.8077 0.9088
Improv. +5.35% +5.12% +6.38% +6.63% +5.44% +4.42% +3.21% +1.27% +2.15% +4.57% +4.86% +1.75%

the query and documents. The ranking features and scores are com-
puted via kernel pooling. ▶ Duet [40] uses both interaction- and
representation-based features of the query and document extracted
by CNNs and MLPs to compute ranking scores.

(2) Context-aware ranking methods utilize both context in-
formation and the current query to rank candidate documents.
▶ M-NSRF [2] is a multi-task model that jointly predicts the next

query and ranks corresponding documents. An RNN encodes a
session’s historical queries. The ranking score is calculated based
on the representation of the query, the history, and the document.
▶ M-Match-Tensor [2] (henceforth denoted as M-Match) is similar
to M-NSRF, but learns a contextual representation for each word
in the queries and documents. The ranking score is calculated by
word-level representation. ▶ CARS [3] also learns query suggestion
and document ranking simultaneously. An attention mechanism is
applied to compute representations for each query and document.
The final ranking score is computed using the representation of
historical queries, clicked documents, current query, and candi-
date documents.3 ▶ HBA-Transformer [46] (henceforth denoted
as HBA) concatenates historical queries, clicked documents, and
unclicked documents into a long sequence and applies BERT [14]
to encode them into representations. A higher-level transformer
structure with behavior embedding and relative position embedding
enhances the representation. Finally, the ranking score is computed
based on the representation of the “[CLS]” token. ▶ RICR [9] is a
unified context-aware document ranking model which takes full
advantage of both representation and interaction. The session his-
tory is encoded into a latent representation and used to enhance
the current query and the candidate document. Several matching
components are applied to capture the interaction between the
enhanced query and candidate documents. This model is based on

3We will notice some slight discrepancies between our results and those of the original
paper of CARS. This is due to different tie-breaking strategies in evaluation. Follow-
ing [46, 65], we use trec_eval while the authors of CARS use their own implementation.

RNNs and attention mechanism. ▶ COCA [65] uses contrastive learn-
ing to improve a BERT’s representation of user behavior sequences.
By distinguishing similar user behavior sequences with dissimilar
ones, the encoder can generate more robust representation. Then,
the encoder is further used in context-aware document ranking.
This is the current state-of-the-art document ranking method based
on user behavior sequence.

Due to the limited space, the implementation details are pro-
vided in our code repository.4

4.3 Experimental Results
Experimental results are shown in Table 2.We choose three recently
proposed methods (i.e., HBA, RICR, and COCA) as the base model and
train them with our proposed DCL framework. The corresponding
results are reported as “X+DCL”. To avoid the influence of random-
ness, we set three different random seeds and report the average
performance. The standard deviation is less than 1e-3 for all re-
sults, which is omitted in the table. In general, our DCL significantly
improves the performance of three base models in terms of all eval-
uation metrics on both datasets. This result clearly demonstrates
DCL’s superiority. We also have the following observations.

(1) The context-aware document ranking models generally per-
form better than ad-hoc ranking methods. For instance, on the AOL
dataset, the weak contextualized model M-NSRF can still outper-
form the strong ad-hoc ranking model KNRM. This indicates that
modeling user historical behavior is beneficial for understanding
the user intent and determining the desired documents. For the
three strong context-aware models, DCL can further improve their
performance greatly, showing its effective utilization of training
samples via curriculum learning.

(2) Compared with RNN-based methods (such as RICR and CARS),
BERT-based methods (COCA and HBA) perform better. It is noticeable

4https://github.com/DaoD/DCL

https://github.com/DaoD/DCL
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Table 3: Ablation study of COCA+DCL. Mark “✓” and “×” indi-
cate whether a curriculum is used or not. “Easy” or “hard”
means only easy/hard samples are used for training.

Pos. Neg. MAP MRR NDCG@1 NDCG@3 NDCG@10

× × 0.5500 0.5601 0.4024 0.5478 0.6160
✓ × 0.5750 0.5843 0.4222 0.5811 0.6391
× ✓ 0.5740 0.5843 0.4231 0.5791 0.6381
✓ ✓ 0.5794 0.5888 0.4281 0.5841 0.6432

× Easy 0.5240 0.5350 0.3677 0.5200 0.5939
× Hard 0.5698 0.5792 0.4173 0.5741 0.6339

that DCL can bring improvements for both kinds of methods. Specif-
ically, it improves the results by more than 4.7% and 1.2% in terms
of all metrics on AOL and Tiangong-ST, respectively. This result
demonstrates the wide applicability of our method to different base
models and reflects the evident advantage of learning samples from
easy to hard in context-aware document ranking.

(3) COCA is the state-of-the-art approach to context-aware docu-
ment ranking. It involves a contrastive learning pre-training stage
to help the BERT encoder learn more robust representations for
user behavior sequences. In comparison, our DCL is a general train-
ing framework without a specific pre-training step, making it more
efficient in practice.5 In addition, COCA trained with DCL achieves
a new state-of-the-art performance in context-aware document
ranking task, showing the usefulness to combine both curriculum
learning and contrastive learning.

4.4 Discussion
We further discuss several aspects of our proposed DCL. These
analyses are based on the results on the AOL dataset, while we
have similar findings on the Tiangong-ST dataset.

4.4.1 Impact of Both Curricula. As we propose two curricula for
learning on positive and negative pairs, to validate their effective-
ness, we conduct an ablation study by disabling each of them from
COCA+DCL (i.e., the sampling is done among all samples). The results
are shown in Table 3. We can observe:

First, we can see that both curricula are useful. Applying any
of them leads to performance improvement. When no curriculum
learning is used, we observe large drops in performance. This di-
rectly validates our assumption in this paper that learning from
easy to hard samples can guide the model in a good learning direc-
tion. Second, the curriculum of positive pairs brings slightly higher
improvement than that of negative pairs. This suggests that the
ability to capture positive matching signals is more critical than
being able to discard negative signals. A possible explanation is
that positive signals are more focused while the negative ones are
diffuse.

Furthermore, to investigate the influence of samples’ difficulty
changes during the training, we replace the curriculum of negative
pairs by only using easy or hard pairs, and the curriculum of positive
pairs is disabled to avoid additional influence. The experimental
results are shown in the bottom of Table 3.

5Compared to the pre-training step in COCA, DCL takes only around 1/3 time for training
a BERT scorer, and this cost can be further reduced if BM25 scorer is applied.

Table 4: Performance with different difficulty scorers.

Pos. Neg. MAP MRR NDCG@1 NDCG@3 NDCG@10

None None 0.5500 0.5601 0.4024 0.5478 0.6160

BM25 BM25 0.5661 0.5763 0.4159 0.5697 0.6293
BM25 BERT 0.5600 0.5701 0.4081 0.5632 0.6244
BERT BM25 0.5794 0.5888 0.4281 0.5841 0.6432
BERT BERT 0.5652 0.5755 0.4152 0.5684 0.6290
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Figure 4: Performance with different hyperparameters.

As can be seen, training with only hard negatives is even better
than using all negatives (first row in the table). This finding is con-
sistent with existing studies on using hard negatives to facilitate the
optimization of dense retrievers [47, 60, 62]. However, only using
easy samples for training makes the performance drop sharply. This
is because the easy negatives cannot provide sufficient “contrastive
signals” for learning the matching between search context and can-
didate documents. This is also why we design our curriculum of
negative pairs as gradually shrinking to only hard negatives (details
are presented in Section 3.3.2). Finally, dynamically adjusting the
learning difficulty through curriculum is beneficial for model train-
ing (e.g., MAP is improved from 0.5698 to 0.5740). This demonstrates
again the effectiveness of applying currciulum learning.

4.4.2 Influence of Scoring Models. We proposed two scoring mod-
els for𝑀 (·, ·) – BM25 and BERT. We investigate their impact, and
Table 4 shows the results of COCA+DCL.

We can observe the following: (1) Despite the differences in per-
formance, DCL combined with each of the scoring methods can
consistently bring improvements over training without curricu-
lum. This shows that both scoring functions can help determine
the difficulty of pairs. (2) BERT scores work better on the positive
pair curriculum, while BM25 scores are better on the negative pair
curriculum. The potential reasons could be: (a) The negative candi-
dates provided in the test set are also selected by BM25. As a result,
the distribution of negative pairs selected by BM25 on the training
set is closer to that on the test set, allowing the model to perform
better. (b) Negative pairs are used for learning mismatching signals.
Compared with BERT, BM25 can identify negative candidates con-
taining similar terms. As term-level matching signals are critical in
IR, such negative candidates can provide more useful information
on term-level dissimilarity.

4.4.3 Influence of Hyperparameters. In DCL, 𝛿 (in Equation 2) and
𝜂 (in Equation 4) are two hyperparameters that control the degree
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Figure 5: (Left) Performance on different lengths of sessions on AOL. (Right) Performance at different query positions in short
(S1-S2), medium (M1-M4), and long sessions (L1-L7). The number after “S”, “M”, or “L” indicates the query index in the session.

of difficulty in the initial set of positive pairs and in the set of final
negative pairs. They are determined according to the validation set.
We show their impact in Figure 4.

As we can see, when 𝛿 is small (< 0.4, i.e., using very easy posi-
tive pairs at beginning), the performance is high. When 𝛿 becomes
large (i.e., including more difficult positive pairs at beginning), the
performance drops. This confirms our hypothesis that the optimiza-
tion process can be confused with more difficult pairs at beginning.
When 𝛿 = 1.0, the curriculum of positive pairs is disabled, so all
positive pairs are learned in a random order. We can see that this
common strategy used in the previous studies is suboptimal.

For negative pairs, when 𝜂 is too small, we end the training
process with a very small subset of the training data consisting
of highly-ranked negative documents. In this case, the sampled
documents may contain false negatives. The best performance is
obtained with 𝜂 = 0.7, i.e., some mixture of easy and hard negative
pairs is used at the end. However, when 𝜂 is too large (i.e., 1.0), all
negative pairs are randomly sampled during the whole training,
the model’s performance also decreases because of the disabled
curriculum effect. These observations confirm the impact of both
curricula and suggest that the right degree of difficulty in the initial
and final pools of samples may influence the effectiveness of DCL.

4.4.4 Performance on Sessions with Different Lengths. To under-
stand the impact of the session length on the final ranking perfor-
mance, we categorize the sessions in the test set into three bins:

(1) Short sessions (with 1-2 queries) - 77.13% of the test set;
(2) Medium sessions (with 3-4 queries) - 18.19% of the test set;
(3) Long sessions (with 5+ queries) - 4.69% of the test set.
We compare COCA+DCLwith Duet, HBA, RICR, and COCA and show

the results regarding MAP and NDCG@3 in the left side of Figure 5.
First, COCA+DCL improves the performance of COCA across all three
session bins. This shows DCL’s high robustness for different kinds
of search context. Second, we can see the ad-hoc ranking method
Duet performs worse than other context-aware ranking methods.
This highlights once again that modeling historical user behavior
is essential for improving document ranking performance. Third,
COCA+DCL performs better on short sessions than on long ones.
We hypothesize that those longer sessions are inherently more
difficult to understand, and a similar trend in baseline methods may
corroborate this. This can be due to the fact that a long session may
contain more diverse intents or exploratory search.

4.4.5 Effect of Modeling User Behavior Progression. It is impor-
tant to study how the modeled search context contributes to docu-
ment ranking as a search session progresses. We compare COCA+DCL
with HBA, RICR, and COCA at individual query positions in short (S),
medium (M), and long (L) sessions. The results are presented in the
right side of Figure 5. Due to space limitations, long sessions with
more than seven queries are omitted.

We can see that the ranking performance generally improves
when the short andmedium sessions progress (e.g., S2 is higher than
S1) because more search context information becomes available for
predicting the next click. It benefits COCA+DCL and two baselines
(COCA and HBA), while COCA+DCL improves more rapidly by better
exploiting the context. One interesting observation is that, when
the search sessions become longer (e.g., from L4 to L7), the gain
of DCL decreases. We attribute this to the noisier nature of long
sessions.

5 CONCLUSION AND FUTUREWORK
In this work, we proposed a novel curriculum learning framework
for context-aware document ranking. Two complementary cur-
ricula were designed for learning positive and negative context-
document pairs in an easy-to-hard manner. With these curricula,
themodel’s capability of capturingmatching signals and identifying
mismatching signals is gradually enhanced. We conducted exper-
iments with three recently proposed methods on two large-scale
datasets. The results clearly demonstrate the effectiveness and wide
applicability of our framework. Besides, we also investigated the
influence of different settings on applying curriculum learning to
context-aware document ranking. Our work is an early attempt to
apply curriculum learning to IR, and there is still much space to be
explored. For example, it may be useful to mine the most valuable
negative candidate documents. Considering query and document
weighting in computing the difficulty is also a future direction.
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