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ABSTRACT
Users’ search tasks have become increasingly complicated, requir-
ingmultiple queries and interactionswith the results. Recent studies
have demonstrated that modeling the historical user behaviors in
a session can help understand the current search intent. Existing
context-aware ranking models primarily encode the current session
sequence (from the first behavior to the current query) and compute
the ranking score using the high-level representations. However,
there is usually some noise in the current session sequence (useless
behaviors for inferring the search intent) that may affect the quality
of the encoded representations. To help the encoding of the current
user behavior sequence, we propose to use a decoder and the infor-
mation of future sequences and a supplemental query. Specifically,
we design three generative tasks that can help the encoder to infer
the actual search intent: (1) predicting future queries, (2) predicting
future clicked documents, and (3) predicting a supplemental query.
We jointly learn the ranking task with these generative tasks using
an encoder-decoder structured approach. Extensive experiments on
two public search logs demonstrate that our model outperforms all
existing baselines, and the designed generative tasks can actually
help the ranking task. Besides, additional experiments also show
that our approach can be easily applied to various Transformer-
based encoder-decoder models and improve their performance.
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Figure 1: An example of session context that contains noise.
The queries and documents that we believe can help infer
the user’s search intent are marked with the color red.
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1 INTRODUCTION
With the development of search engines, users’ information needs
have become increasingly complex. A user usually issues several
queries and examines some documents to complete a search task.
These user behaviors (e.g., issued queries and clicked documents)
that occur during a relatively brief period are referred to as a search
session [2, 14, 32, 36]. Modeling the session context has been demon-
strated to be beneficial for understanding search intent [2, 36].

Several early studies have attempted to model session context
based on statistical techniques, which inevitably neglect some valu-
able features [3, 12, 30, 33]. With the emergence of deep learn-
ing, many neural context-aware ranking models have been pro-
posed [1, 2, 6, 25, 35]. They use recurrent neural networks (RNNs)
to encode user behaviors into latent representation [1, 2, 6], or
pre-trained language models (PLMs), such as BERT [10], to get
a context-aware representation of the session sequence [25, 36].
This representation is used to compute ranking scores. However,
the current session sequence (from the beginning to the current
query) may contain some useless information (i.e., noise) that could
cause the encoders (e.g., BERT or RNNs) to misinterpret the real
user intent. Figure 1 illustrates an example where a user has issued
several queries and examined some documents. The current query
is “Hulu”, and the user is trying to download the iOS version of
the Hulu application. Evidently, the previous query “NBA live” is
useless for inferring the current search intent, and simply encoding
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such noise may degrade the sequence’s representation. Unfortu-
nately, the quality of the session representation, i.e., whether the
real user intent has been encoded, has received little attention in
existing studies.

A straightforward way to tackle this issue is to apply the auto-
encoder technique. Auto-encoder has an encoder-decoder structure,
where the decoder is used to recover the input sequence based on
the representation computed by the encoder. The encoder is thereby
trained to capture the most important information from the input
sequence. However, applying auto-encoder to session search is non-
trivial in three aspects: (1) Generating the whole session sequence
is challenging. Typically, a session consists of many queries and doc-
uments, which are too long for the decoder to recover. Besides, most
auto-regressive decoders, including those pre-trained on large-scale
corpora (e.g., GPT [26]), are incapable of modeling the relevance be-
tween queries and documents [20]. (2) There is noise in the session
sequence. As indicated above, a session sequence usually contains
user behaviors irrelevant to the current information need. Thus, the
decoder should not generate all behaviors in the session sequence
without differentiation. (3) The user behaviors that represent the
real search intent may be implicit in the current session sequence. A
user’s current information need is often complicated and cannot be
described clearly by the user (or understood by the search engine).
For example, the behavior reflecting the user’s information need
may be a future query in the session or a similar query issued by a
different user in another session (i.e., another user can successfully
address the same information need while this user cannot). Under
this circumstance, simply recovering the current session sequence
is ineffective.

To address these problems, we employ an encoder-decoder struc-
ture and design several generative tasks specifically for session
search to assist the encoder in inferring the search intent more
accurately. Specifically, we design three generative tasks:

Task 1: Predicting future queries. As the session progresses, the
user becomes more explicit about their actual information need.
Thus, subsequent queries within the same session can more accu-
rately reflect the search intent.

Task 2: Predicting future clicked documents. In addition to fu-
ture queries, we also consider future user clicks because the doc-
uments usually contain more detailed information than keyword-
based queries.

Task 3: Predicting a supplemental query. As explained in the
third problem above, some queries in other users’ sessions may be
helpful in understanding the current search intent.

All of these generative targets are more accurate (or supplemen-
tal) descriptions of the current search intent. Therefore, only if the
encoder has successfully encoded the user’s search intent into the
representation can the decoder predict these sequences using the
representation of the current user behavior sequence. Besides, our
designed generative tasks can address the three aforementioned
challenges as follows: For the first problem, Task 1&2 attempt to
generate the future queries and documents separately, so avoiding
generating long sequences or modeling relevance between queries
and documents, making the generation easier. For the second prob-
lem, we explore many potential generation targets and propose
these three tasks that can actually help the encoder infer actual

search intent. Our experiments in Section 5.3 will show the effec-
tiveness of these generative tasks. For the third problem, all these
tasks try to predict future sequences (or a supplemental query), i.e.,
information that is not in the current sequence.

We propose to jointly learn the ranking and generative tasks by
an encoder-decoder structured approach. Specifically, we attempt
to use future sequences and a supplemental query as generation
targets to enhance the encoder’s ability to represent session context.
We call our model ASE – Auto-Session-Encoder, which is based
on a pre-trained BART [16]. Experimental results on two public
search logs (AOL [24] and Tiangong-ST [7]) show that ASE out-
performs existing methods, which demonstrates its effectiveness.
Moreover, the consistent performance improvements on top of dif-
ferent Transformer-based encoder-decoder models demonstrate
our approach’s effectiveness and wide applicability.

To summarize, the contributions of this work are as follows:
(1) We propose Auto-Session-Encoder, which employs several

generative tasks to explicitly enhance the ability to encode a user
behavior sequence under an encoder-decoder framework.

(2) We design three generative tasks to utilize the future se-
quences and a supplemental query to train a better representation
of the current session sequence. Experimental results demonstrate
the effectiveness of the generative tasks.

(3) We demonstrate that our model can be easily adapted to
various Transformer-based encoder-decoder models other than
BART, indicating its wide applicability.

2 RELATEDWORK
2.1 Session Search
There are already some traditional approaches that utilize session
context to infer search intent [3, 4, 12, 30, 33]. Specifically, Shen et
al. [30] used statistical language models to combine session context
and the current query for better ranking performance. Van Gysel
et al. [12] explored lexical query modeling for session search. They
found that specialized session search methods are more suitable for
modeling long sessions than naive term weighting methods.

With the emergence of deep learning, researchers have focused
on designing neural context-aware ranking models [1, 2, 6, 25, 36,
37]. Specifically, Ahmad et al. [1, 2] encoded queries and documents
using RNNs and attention mechanism. Then they jointly learned
the ranking task and query suggestion task. Qu et al. [25] con-
catenated the current session sequence and put them into a BERT
encoder. Then they applied a hierarchical behavior-aware attention
module over the BERT encoder to get high-level representations for
ranking. Zuo et al. [37] modeled multi-granularity historical query
change. They obtained multi-level representations of the session
using Transformer-based encoders. Chen et al. [6] integrated repre-
sentation and interaction. They encoded the session history into a
latent representation and used it to enhance the current query and
the candidate document. Then they captured the interaction-based
information between the enhanced query and the candidate doc-
ument. Zhu et al. [36] utilized data augmentation and contrastive
learning to pre-train a BERT encoder that can represent the session
sequence better. Most existing models use an encoder to model
the current session sequence and obtain high-level representations
of the sequence to compute ranking scores. However, because of
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noise in the session, the representations may fail to encode the
user’s actual search intent. Our model aims to enhance user behav-
ior sequence modeling by multiple designed generative tasks that
attempt to utilize future sequences and a supplemental query. By
this, we attempt to explicitly ensure the actual search intent has
been encoded into the high-level representations.

2.2 Generative Tasks for IR
There are already some works trying to utilize generative tasks to
improve retrieval performance [1, 2, 9, 18, 21]. Liu et al. [18] demon-
strated that generative tasks can make retrieval modeling more
generalized. Mao et al. [21] showed that generating heuristically
discovered relevant contexts for queries can improve their retrieval
and QA results. Cheng et al. [9] utilized the next query prediction
task to help personalized re-ranking. Ahmad et al. [1, 2] illustrated
that the query suggestion task could improve the ranking quality
of session search. Though they have already demonstrated the ef-
fectiveness of predicting the next query, there are more generation
targets to be explored. Specifically, we find that predicting future
queries (not only the next query), predicting future clicked docu-
ments, and predicting a supplemental query can all help model user
behavior sequences. After exploring various potential generative
targets, we design multiple generative tasks specifically for session
search (Section 3.4) to help model the current session context.

3 AUTO-SESSION-ENCODER
Session search aims to utilize the user behavior sequence to rank
candidate documents. Most existingmodels use an encoder tomodel
session context and get high-level representations of the sequence
to compute ranking scores. However, the representations may lack
the information of the user’s actual search intent because of noisy
user behaviors. Ourmodel aims to enhance the ability of the encoder
with three designed generative tasks that attempt to utilize the
information of future sequences and a supplemental query. By this,
we try to help the encoder to encode the actual search intent into
the high-dimensional representations of the session sequence.

3.1 Problem Definition
Before shedding light on our proposed model, we will state some
notations about session search. Suppose a query 𝑞𝑖 has𝑀 clicked
documents 𝐷𝑖 = {𝑑𝑖,1, 𝑑𝑖,2, · · · , 𝑑𝑖,𝑀 }. Following [25, 36, 37], we
keep the first clicked document for each historical query to con-
struct the sequence. Then the current session sequence 𝑆 when the
user is issuing the 𝑛-th query 𝑞𝑛 can be denoted as:

𝑆 = {(𝑞1, 𝑑1), (𝑞2, 𝑑2), · · · , (𝑞𝑛)}.

The goal of session search (or context-aware document ranking)
is to model the contextual information to obtain the ranking scores
of the candidate documents 𝐷𝑐 and rank them accordingly. We
will focus on how to get the score of a candidate document (𝑑𝑐 )
in the rest of the paper. Note that the current session sequence
𝑆 only contains the historical and present user behaviors when a
user is issuing 𝑞𝑛 . However, we will utilize future sequences and a
supplemental query as generation targets while training.

3.2 Overall Structure
In this part, we will introduce the overall structure of ASE. ASE
jointly learns the ranking task and the generative tasks as follows:

(1) Ranking. As shown in the left part of Figure 2, we attempt
to compute the ranking score of the candidate document 𝑑𝑐 for the
ranking task. To model the session context, ASE first concatenates
the session sequence 𝑆 with 𝑑𝑐 and puts it into the encoder. Then
ASE gets the output of the “[CLS]” token as the high-dimensional
representation. Finally, we apply a linear projection on this repre-
sentation to get the ranking score of 𝑑𝑐 (Section 3.3).

(2) Generation. As shown in Figure 3 and the right part of
Figure 2, we aim to enhance the ability of the encoder using the
decoder and three generative tasks (Section 3.4). These generative
tasks are comprised of (i) predicting future queries, (ii) predicting
future clicked documents, and (iii) predicting a supplemental query.

Finally, by jointly learning the ranking task and the generative
tasks (Section 3.5), the encoder can model user behavior sequences
better and learn representations that contain actual search intent.
Note that these generative task are only used in the training stage,
for enhancing the representation ability of the encoder. At infer-
ence time, we will only use the enhanced encoder to score
the candidate documents.

In this work, we choose the pre-trained languagemodel BART [16]
as ASE’s backbone because: (1) BART is a Transformer-based [31]
encoder-decoder model with a bidirectional (BERT-like) encoder
and an autoregressive (GPT-like) decoder. We can naturally imple-
ment our ranking and designed generative tasks on this model. (2)
BART utilizes self-supervised pre-training, which makes it perform
very well on many generative tasks and do not reduce performance
on discriminative tasks [16]. (3) BART-base model uses six layers
in the encoder and decoder, respectively, which makes it contain
the comparable number of parameters as BERT-base model (twelve
layers in the encoder). Besides, the number of training steps and
the data used for pre-training BART is the same as BERT. Thus,
we choose BART as ASE’s backbone for fair comparisons with
BERT-based baseline models [25, 36]. In addition, as demonstrated
in Section 5.5, we can easily apply ASE to other Transformer-based
encoder-decoder models.

3.3 Modeling the Current Session Sequence
In this section, we will illustrate how ASE uses the encoder to
model session context. As shown in the left part of Figure 2, ASE
first puts the concatenated sequence into the encoder and gets a
high-level representation from the “[CLS]” token. Then ASE makes
it go through a linear projection to get the ranking score.

Following previous works [25, 36], we treat the ranking task
as a sequence pair classification problem. Given the session se-
quence 𝑆 , we consider the current user behaviors as one sequence
{𝑞1, 𝑑1, 𝑞2, 𝑑2, ..., 𝑞𝑛}, and the candidate document to be scored as
another sequence {𝑑𝑐 }. After adding some special tokens, the con-
structed input sequence is as follows:

𝐼 = [CLS]𝑞1[EOS]𝑑1[EOS] · · ·𝑞𝑛[EOS][SEP]𝑑𝑐[EOS][SEP],

where “[CLS]” is the classification token, “[EOS]” is used to identify
the end of each query and document, “[SEP]” is used to separate
the sequence pair for classification.
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Figure 3: The three generative tasks designed for session
search. They are only used when training. We take a session
that has five query-document pairs as an example. Suppose
𝑞3 is the current query, then our goal is to utilize the infor-
mation of future sequences and a supplemental query to
model the current user behavior sequence. The queries and
documents that we believe can help infer the user’s current
search intent are marked with the color red.

Then ASE makes 𝐼 go through the encoder and takes the output
of “[CLS]” token as the high-level representation:

R = Encoder(𝐼 )[CLS] . (1)

Finally, we use a multi-layer perceptron (MLP) on this representa-
tion to get the ranking score:

Score(𝑑𝑐 ) = MLP(R) . (2)

3.4 Enhancing Encoder with Generative Tasks
As stated in Section 1, the current session sequence 𝑆 may contain
some noise that is irrelevant to the current search intent, which
may affect the quality of the session representation R. Thus, we
propose to enhance the encoder’s ability with a decoder and three
generative tasks that are designed for session search. Specifically,
we attempt to utilize the information of future sequences and a
supplemental query. This can help the encoder to encode the actual
search intent into R.

As presented in Figure 3, we take a session that has five query-
document pairs as an example to illustrate the three designed gener-
ative tasks. Suppose during training, 𝑞3 “Hulu” is the current query,
and there are some candidate documents to be ranked. Then the
current user behavior sequence is {𝑞1, 𝑑1, 𝑞2, 𝑑2, 𝑞3}. Let us suppose
that the user is trying to download the application Hulu from App
Store. However, the current sequence has some noise (queries and
documents that are not marked red). For example, 𝑞1 “NBA Live”
may mislead the search system to infer that the user is trying to
watch live NBA games on the Hulu website.

Since the current session is noisy, the encoder may have trouble
encoding the actual search intent into R. We propose to utilize
generative tasks to help the encoding of the current sequence 𝑆
during training. Specifically, we design three generative tasks for
session search as follows:

(1) Predicting Future Queries. The user often tries to issue a
new query when the current one does not satisfy her information
need. Besides, as the searching progresses, the user has a more ex-
plicit understanding of the search task, and the quality of the queries
they issue is also getting higher. Thus, the subsequent queries in
the session can often represent the search intent better than the
current query. For example, if ASE can predict 𝑞4 “How to use
Hulu App” given the information of 𝑆 , then we believe the encoder
has encoded the user’s search intent (download the Application
Hulu from App Store) into the high-level representations. To utilize
the information of the future queries, we concatenate them as a
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generation target of the decoder as follows:

𝐺𝑇1 = 𝑞𝑛+1[SEP]𝑞𝑛+2[SEP] · · ·𝑞𝑛+𝑤[SEP],
where 𝑤 is the prediction window size that controls how many
subsequent behaviors of 𝑞𝑛 we want to generate.

(2) Predicting Future Clicked Documents. Similar to the rea-
sons above, the future clicked documents (especially the current
query’s click, which we also consider a future clicked document)
often contain valuable information about the user’s search interest.
Besides, we can usually get more detailed information from doc-
uments than queries since many queries contain only keywords.
For example, 𝑑3 “Hulu iOS Download” is obviously a more specific
and accurate version of 𝑞3. It would be great if the decoder could
predict this information from the high-dimensional representations
of 𝑆 . Thus, we believe the future clicked documents can also help
the encoder infer the search intent, and we utilize their information
as follows:

𝐺𝑇2 = 𝑑𝑛[SEP]𝑑𝑛+1[SEP] · · ·𝑑𝑛+𝑤−1[SEP].

We will notice that the generation starts at the current clicked
document 𝑑𝑛 since it is considered a future sequence.

(3) Predicting a Supplemental Query. Many queries contain
only keywords, making them hard to be understood, especially
when the session sequence is noisy. Besides, if the user fails to
address her search task, then the user behavior that can represent
her search intentmay be implicit in the current session. For example,
the query from another session𝑞′3 “Hulu App Store” can supplement
our model’s understanding of 𝑆 . Following previous works [6, 19],
we attempt to find a query to supplement the information of the
current query, which can make our model more robust. We treat
the training data as the query database, and for each query, we
mine one query that we believe contains supplemental information
from the database. We use the equation suggested by Chen et al. [6]
to measure the supplemental rate of the query we choose:

sup(𝑞′𝑛, 𝑞𝑛) = spe(𝑞′𝑛, 𝑞𝑛) + sim(𝑞′𝑛, 𝑞𝑛), (3)

where 𝑞′𝑛 is the candidate query in the database, sup(𝑞′𝑛, 𝑞𝑛) is its
supplemental rate; spe(𝑞′𝑛, 𝑞𝑛) =

len(𝑞′𝑛)−len(𝑞𝑛)
len(𝑞𝑛) when every word

of 𝑞𝑛 appear in 𝑞′𝑛 , otherwise it is 0. This component computes
the specificity between 𝑞′𝑛 and 𝑞𝑛 ; sim(𝑞′𝑛, 𝑞𝑛) is the similarity
between 𝑞′𝑛 and 𝑞𝑛 , which is computed by the python class Se-
quenceMatcher.1

We choose the query 𝑞′𝑛 that has the highest supplemental rate
to be our last generation target:

𝐺𝑇3 = 𝑞′𝑛[SEP].

Different from 𝐺𝑇1 and 𝐺𝑇2, we only use one sequence here as the
generation target. This is because the queries mined from other
sessions often represent different information needs, and we do not
want to confuse our model with too many different topics.

For those queries and documents in𝐺𝑇1 and𝐺𝑇2 that are empty
(lacking future information or recording error in the datasets), we
use “[empty_q]” and “[empty_d]” to pad them respectively.

With these generation targets ready, we treat them as different
generative tasks and train the decoder to generate them separately
during training. If the decoder could predict these targets from the
1https://docs.python.org/3/library/difflib.html

Table 1: Statistics of AOL and Tiangong-ST.

AOL Training Validation Test

# Session 219,748 34,090 29,369
# Query 566,967 88,021 76,159
Average Session Length 2.58 2.58 2.59
# Candidate per Query 5 5 50
Average Query Length 2.86 2.85 2.9
Average Document Length 7.27 7.29 7.08
Average # Click per Query 1.08 1.08 1.11

Tiangong-ST Training Validation Test

# Session 143,155 2,000 2,000
# Query 344,806 5,026 6,420
Average Session Length 2.41 2.51 3.21
# Candidate per Query 10 10 10
Average Query Length 2.89 1.83 3.46
Average Document Length 8.25 6.99 9.18
Average # Click per Query 0.94 0.53 3.65

high-dimensional representations, we believe the encoder has suc-
cessfully encoded the actual search intent. Extensive experiments
in Section 5.3 show the effectiveness of the generative tasks.

3.5 Optimizing Ranking and Generation Jointly
In this part, we will learn the above tasks jointly by a multi-task
technique. Following [18], in order to automatically balance the
importance of these tasks, we apply a variation [17] of the Uncer-
tainty [15] technique to learn the weights:

L =
L𝑅

2𝜏2𝑟
+ log(𝜏2𝑟 + 1) +

∑︁
𝑔∈𝐺

(
L𝑔

2𝜏2𝑔
+ log(𝜏2𝑔 + 1)

)
, (4)

where L𝑅 is the ranking loss, L𝑔 is one of the generation losses, 𝜏s
are tunable parameters that represent the uncertainty.

The intuition here is that if the value of a loss is too high, then
its corresponding uncertainty will also increase to reduce its contri-
bution to the main loss. More details of this technique can be found
in its original paper [15].

To implement the ranking loss of 𝑞𝑛 (L𝑅 (𝑞𝑛)), we apply a pair-
wise ranking function hinge loss as follows:

L𝑅 (𝑞𝑛) =
∑︁

(𝑑+
𝑐 ,𝑑

−
𝑐 ) ∈𝐷𝑐

max
(
0, 𝛼 − 𝑆𝑐𝑜𝑟𝑒 (𝑑+𝑐 ) + 𝑆𝑐𝑜𝑟𝑒 (𝑑−𝑐 )

)
, (5)

where 𝛼 is a hyperparameter of margin, which is set as 1 for binary
classification task, 𝐷𝑐 is the candidate documents of 𝑞𝑛 , 𝑑+𝑐 is a
clicked document, and 𝑑−𝑐 is a skipped document. We attempt to
use this loss to train ASE to re-rank relevant documents higher
than irrelevant ones.

For each generation target 𝐺𝑇 , its generation loss (L𝑔 (𝐺𝑇 )) is
implemented as the negative log-likelihood of predicting 𝐺𝑇 based
on 𝑆 and 𝑑𝑐 :

L𝑔 (𝐺𝑇 ) = −
|𝐺𝑇 |∑︁
𝑗=1

log(𝑃𝑟 (𝑤 𝑗 |𝑤1:𝑗−1, 𝑆, 𝑑𝑐 )) . (6)
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4 EXPERIMENTAL SETUP
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. We conduct our experiments onAOL search log [24]
and Tiangong-ST search log [7]. They are both public large-scale
search logs. We have also considered MS MARCO Conversational
Search dataset.2 However, the sessions of this dataset are artificial,
and we want to study actual user behaviors from real-world search
logs. Therefore, we do not use this dataset and stick to AOL and
Tinagong-ST which are widely used in existing works.

We process the AOL search log following Ahmad et al. [2]. Each
query of the training and validation sets contains five candidate
documents, and each one of the test set contains 50 candidates that
are retrieved by the BM25 algorithm [28].

Tiangong-ST [7] is collected from a Chinese commercial search
engine. For the last query of each in the test set, its candidate
documents have human-annotated relevance labels (0 to 4). As
suggested by the original paper of this dataset [7], we will use the
queries that have relevance labels when testing. For more details
on this dataset, please refer to [7].

Following previous works [2, 6, 25, 36, 37], we only use the title
of each document as its content. The statistics of these two datasets
are presented in Table 1.

4.1.2 Evaluation Metrics. Following previous works [2, 6, 25, 36,
37], we use Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), and Normalized Discounted Cumulative Gain (NDCG) at
position 𝑘 (NDCG@𝑘 , 𝑘 = 1, 3, 5, 10) as metrics. We use TREC’s
evaluation tool (trec_eval) [11] to compute all evaluation results.

4.2 Baselines
Following previous works [6, 36, 37], we compare ASE with two
kinds of baselines:

(1) Ad-hoc ranking models only use the information of 𝑞𝑛 and
𝑑𝑐 to get the ranking score.

• BM25 [28] is a traditional ranking algorithm based on the prob-
abilistic retrieval framework. It treats the relevance between 𝑞𝑛 and
𝑑𝑐 as a probability problem. • ARC-I [13] obtains the representa-
tions of 𝑞𝑛 and 𝑑𝑐 by convolutional neural networks (CNNs) and
treats the semantic similarity as 𝑑𝑐 ’s relevance to 𝑞𝑛 . •ARC-II [13]
obtains the word-level interaction-based information of 𝑞𝑛 and 𝑑𝑐
using 2D-CNNs. • KNRM [34] utilizes soft matching signals by
kernel pooling on the interaction matrix of 𝑞𝑛 and 𝑑𝑐 . • Duet [22]
integrates both interaction-based and representation-based features
to score 𝑑𝑐 .

(2) Context-aware ranking models attempt to understand the
search intent by modeling session context.

• CARS [2] uses RNNs and the attention mechanism to encode
user behaviors and sequential information of session history into
latent representations. It computes the ranking score and jointly
suggests useful queries to the user based on these representations.
• HBA-Transformers [25] concatenates 𝑆 with 𝑑𝑐 and puts them
into a BERT encoder. Then it applies a hierarchical behavior-aware
attentionmodule over the BERT encoder tomodel interaction-based
information at different levels. • HQCN [37] attempts to model
multi-granularity historical query change. It also introduces the
2https://github.com/microsoft/MSMARCO-Conversational-Search

query change classification task to help rank candidates. •RICR [6]
integrates representation and interaction. Instead of making every
two behaviors interact with each other, it first uses the represen-
tation of session history to enhance 𝑞𝑛 and 𝑑𝑐 . Then it makes the
enhanced 𝑞𝑛 and 𝑑𝑐 interact on the word level. • BERT [10] and
BART [16] are the vanilla versions of BERT-base and BART-base.
We include these two as baselines to demonstrate that it is fair (Sec-
tion 3.2) to compare our BART-based model ASE to BERT-based
baselines (HBA, COCA). When fine-tuning these two models, we
simply concatenate 𝑆 with 𝑑𝑐 and put it into the encoder (we do
not use the decoder of BART). Then we make the output of [CLS]
go through an MLP to get the ranking score. • COCA [36] utilizes
data augmentation and contrastive learning to pre-train a BERT
encoder that can represent the session sequence better. It is the
state-of-the-art model which has been demonstrated effective in
NTCIR-16 Session Search Track [5, 8].

4.3 Implementation Details
For AOL, we use the BART-base model provided by the authors
of [16] on Huggingface.3 For Tiangong-ST, we use the Chinese
BART-base model provided by the authors of [29] on Huggingface.4
Following T5 [27], we use a unique task identifier at the beginning of
the input sequence for each task. Following previous works [25, 36],
we truncate the sequence from the head if its length exceeds the
maximum length.

For details of the instantiations, one can refer to our code.5

5 RESULTS AND ANALYSIS
5.1 Overall Results
The overall performances of all models are presented in Table 2.
The results show that context-aware ranking models generally
perform better than ad-hoc ones, which indicates the effectiveness
of modeling session context. Besides, we can further obtain the
following observations:

(1) ASE outperforms all baselines in terms of all metrics
on both datasets. Specifically, ASE outperforms COCA, a strong
baseline that utilizes pre-training and data augmentation strategies.
It demonstrates the effectiveness of utilizing our generative tasks
to model the current search intent. In future work, we will try to
incorporate pre-training techniques (e.g., contrastive learning) and
data augmentation strategies (e.g., curriculum learning) into ASE
to further improve its performance. Besides, we will notice that
the improvements of ASE on AOL are more significant than those
on Tiangong-ST. The potential reasons are as follows: (i) The base
performances on Tiangong-ST are already very high because there
are more than 77.4% candidate documents with relevance scores
that are larger than 1 in the test set. Specifically, even the BM25
algorithm can achieve 0.8541 in terms of NDCG@10 on this dataset.
Therefore, it is more difficult for ASE to improve its performance
on Tiangong than AOL. This phenomenon has also been noticed by
Zhu et al. [36]. (ii) As suggested by the authors of this dataset [7],
we use the queries that have human-annotated relevance labels
when testing, and all of them are the last ones in their sessions.

3https://huggingface.co/facebook/bart-base
4https://huggingface.co/fnlp/bart-base-chinese
5https://github.com/haon-chen/ASE-Official
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Table 2: Overall results on AOL and Tiangong-ST. “†” and “‡”
denote the result is significantly worse than our ASE in t-test
with 𝑝-value < 0.01 and 𝑝-value < 0.05 respectively. The best
performance is in bold.

AOL
Model NDCG@1 @3 @5 @10 MAP MRR

Ad-hoc Ranking Models

BM25 0.1195† 0.1862† 0.2136† 0.2481† 0.2200† 0.2271†
ARC-I 0.1988† 0.3108† 0.3489† 0.3953† 0.3361† 0.3475†
ARC-II 0.2428† 0.3564† 0.4026† 0.4486† 0.3834† 0.3951†
KNRM 0.2397† 0.3868† 0.4322† 0.4761† 0.4038† 0.4133†
Duet 0.2492† 0.3822† 0.4246† 0.4675† 0.4008† 0.4111†

Context-aware Ranking Models

CARS 0.2816† 0.4117† 0.4542† 0.4971† 0.4297† 0.4408†
HBA 0.3773† 0.5241† 0.5624† 0.5951† 0.5281† 0.5384†
RICR 0.3894† 0.5267† 0.5648† 0.5971† 0.5338† 0.5450†
HQCN 0.3990† 0.5441† 0.5783† 0.6070† 0.5448† 0.5549†
BART 0.3908† 0.5414† 0.5797† 0.6108† 0.5450† 0.5551†
BERT 0.3990† 0.5440† 0.5818† 0.6123† 0.5471† 0.5572†
COCA 0.4024† 0.5478† 0.5849† 0.6160† 0.5500† 0.5601†
ASE 0.4144 0.5682 0.6007 0.6283 0.5650 0.5752

Tiangong-ST
Model NDCG@1 @3 @5 @10 MAP MRR

Ad-hoc Ranking Models

BM25 0.6029† 0.6646† 0.7072† 0.8541† 0.7837† 0.8225†
ARC-I 0.7088† 0.7087† 0.7317† 0.8691† 0.8580‡ 0.9159†
ARC-II 0.7131† 0.7237† 0.7379† 0.8732† 0.8611‡ 0.9227†
KNRM 0.7198† 0.7421† 0.7660† 0.8857‡ 0.8683 0.9130†
Duet 0.7577‡ 0.7354† 0.7548† 0.8829‡ 0.8663 0.9273‡

Context-aware Ranking Models

CARS 0.7385† 0.7386† 0.7512† 0.8837‡ 0.8556‡ 0.9268‡
HBA 0.7612‡ 0.7518† 0.7639† 0.8896‡ 0.8615 0.9316‡
RICR 0.7670‡ 0.7636‡ 0.7740‡ 0.8934‡ 0.8147† 0.8937†
HQCN 0.7739‡ 0.7682 0.7783 0.8976 0.8659 0.9328‡
BART 0.7380† 0.7464† 0.7574† 0.8853‡ 0.8585‡ 0.9294‡
BERT 0.7488† 0.7541‡ 0.7651† 0.8890‡ 0.8653 0.9316‡
COCA 0.7769 0.7576‡ 0.7703‡ 0.8932‡ 0.8623 0.9382
ASE 0.7884 0.7727 0.7839 0.8996 0.8701 0.9482

However, as we find in Section 5.6, ASE can give more considerable
improvements on the queries with fewer histories. This is because
ASE utilizes future sequences and a supplemental query to train
the encoder to predict the actual search intent.

(2) The vanilla version of the BART model underperforms
that of BERT. For example, BERT and BART achieve about 0.3990
and 0.3908 in terms of NDCG@1 on AOL dataset, respectively.
This demonstrates that the original encoder of BART performs
worse than BERT’s encoder, which makes the comparisons of ASE
and BERT-based baselines (HBA, COCA) fair (as illustrated in Sec-
tion 3.2). We believe the reason is that BERT-base has 12 layers,
whereas the encoder of BART-base only has 6 layers. However, ASE
can still outperform the BERT-based baselines based on a worse
backbone than BERT (for the encoder), which further demonstrates
its effectiveness.

Table 3: Performances of ablated models on AOL dataset.

Metric w/o. PFQ w/o. PCD w/o. PSQ ASE

NDCG@1 0.4100 -1.06% 0.4036 -2.61% 0.4102 -1.01% 0.4144
NDCG@3 0.5580 -1.80% 0.5570 -1.97% 0.5636 -0.81% 0.5682
NDCG@5 0.5933 -1.23% 0.5895 -1.86% 0.5957 -0.83% 0.6007
NDCG@10 0.6205 -1.24% 0.6180 -1.64% 0.6246 -0.59% 0.6283
MAP 0.5579 -1.26% 0.5546 -1.84% 0.5608 -0.74% 0.5650
MRR 0.5691 -1.06% 0.5650 -1.77% 0.5707 -0.78% 0.5752

5.2 Ablation Studies
To demonstrate the effectiveness of the generative tasks for helping
the ranking task, we design several variants of ASE. Specifically,
we conduct ablation experiments on AOL dataset as follows:

• ASE w/o. PFQ. We remove the task of Predicting Future
Queries (PFQ).

• ASE w/o. PCD. We discard the task of Predicting future
Clicked Documents (PCD).

• ASE w/o. PSQ. We abandon the task of Predicting a Supple-
mental Query (PSQ).

The performances are presented in Table 3. All the ablated mod-
els perform worse than the full ASE, which demonstrates the effec-
tiveness of utilizing our generative tasks to model current search
intent. Specifically, we can draw these conclusions:

(1) Predicting future queries is effective for inferring the
actual search intent. In Section 3.4, we propose to treat future
queries as a generation target because they have higher quality
than the current one. After removing this task, ASE’s performance
drops. Specifically, it drops about 1.80% in terms of NDCG@3. This
demonstrates the effectiveness of this task.

(2) Predicting future clicked documents can help the rank-
ing task. In Section 3.4, we propose to treat future clicked docu-
ments as another generation target because they are more accurate
representations of search intent. After discarding this task, ASE’s
performance decreases. Specifically, it decreases about 2.61% in
terms of NDCG@1. This indicates that utilizing the information of
future clicked documents can help the ranking task.

(3) Predicting a supplemental query can make our model
more robust. In Section 3.4, we attempt to mine a supplemental
query from other sessions to supplement our understanding of the
current query. After abandoning this task, ASE’s performance de-
clines. For example, it declines by about 1.01% in terms of NDCG@1.
This shows that this task can make our model more robust.

5.3 Performances of Various Generative Targets
Given the current sequence 𝑆 = {𝑞1, 𝑑1, 𝑞2, 𝑑2, · · · , 𝑞𝑛}, we explore
extensive possibilities of generation targets, e.g., preceding queries,
the current query, subsequent queries, historical clicked documents,
future clicked documents, and a supplemental query. We will treat
each of them as the only generative task here and jointly learn
to generate it with the ranking task. The performances of these
generative targets on AOL dataset are presented in Table 4. Note
that we only use one sequence per 𝐺𝑇 to get a straightforward
view of its effectiveness. In the following section, we will study
the length of 𝐺𝑇 s (i.e., the prediction window size𝑤 ). From these
results, we can draw the following conclusions:
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Table 4: Performances of different generative targets on
AOL dataset. Suppose the current session sequence is 𝑆 =

{𝑞1, 𝑑1, 𝑞2, 𝑑2, · · · , 𝑞𝑛}.

𝐺𝑇 NDCG@1 NDCG@10 MAP

- (BART) 0.3882 0.6124 0.5450

𝑞𝑛−1 0.3849 -0.85% 0.6103 -0.34% 0.5427 -0.42%

𝑞𝑛 0.3928 +1.84% 0.6077 -0.77% 0.5442 -0.15%

𝑞𝑛+1 0.4004 +3.14% 0.6150 +0.42% 0.5516 +1.21%

𝑑𝑛−1 0.3922 +1.03% 0.6104 -0.33% 0.5464 +0.26%

𝑑𝑛 0.4022 +3.61% 0.6212 +1.44% 0.5548 +1.80%

𝑑𝑛+1 0.4044 +4.17% 0.6206 +1.34% 0.5565 +2.11%

𝑞′𝑛 0.3990 +2.78% 0.6151 +0.44% 0.5509 +1.08%

(1) Predicting the future sequences are more effective than
simply recovering the historical ones. As explained in Sec-
tion 3.4, the future queries and documents can represent the search
intent. As presented in Table 4, we can notice that predicting the
future behaviors achieves more considerable improvement over the
ranking task than recovering the historical behaviors. Specifically,
predicting the following query 𝑞𝑛+1 increases the performance of
the ranking task by about 1.21% in terms of MAP on AOL, whereas
recovering the previous query 𝑞𝑛−1 makes the performance drop
by about 0.42% in terms of MAP.

(2) It is generally more helpful to predict the information
of clicked documents than predict queries. As stated in Sec-
tion 3.4, the clicked documents can often represent the search intent
more accurately. As shown in Table 4, treating the clicked docu-
ments as generative targets perform better than queries. Specifically,
predicting the current clicked document𝑑𝑛 , and the following query
𝑞𝑛+1 increase the performance of BART by about 3.61% and 3.14%
in terms of NDCG@1 on AOL, respectively. We compare the results
of 𝑑𝑛 and 𝑞𝑛+1 because they are considered the first behaviors in
the subsequent sequences of 𝑆 .

(3) Predicting a supplemental query can help the ranking
task. As illustrated in Section 3.4, a supplemental query can sup-
plement the understanding of the search intent. As shown in the
last line of Table 4, predicting a supplemental query 𝑞′𝑛 increases
the performance by about 1.08% in terms of MAP on AOL. This
indicates that our third generative task can help the ranking task.

5.4 Effect of Prediction Window Size
In Section 3.4, we try to utilize the information of future sequences
to help encode the current sequence. Specifically, we treat the future
queries and clicked documents as generation targets in Task 1 and
Task 2. We use a prediction window size𝑤 to control the number
of subsequent behaviors to generate. To determine the value of
𝑤 , we finetune a variant of ASE (BART with 𝐺𝑇1 and 𝐺𝑇2) under
different settings of 𝑤 on the validation sets. We do not include
Task 3 (𝐺𝑇3) in this variant because we want to directly estimate
𝑤 ’s influence on the ranking task without the effect of𝐺𝑇3. We find
that our model performs best when𝑤 is 2 on the validation sets. In
Figure 4, we show the performances of this variant under different

0 1 2 3 4
Prediction Window Size

0.54

0.545

0.55

0.555

0.56

0.565
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Figure 4: Performances of the variant of ASE (BART with
𝐺𝑇1 and 𝐺𝑇2) with different values of𝑤 on AOL dataset.

Table 5: The performances of the basemodels and themodels
with our generative tasks (+𝐺𝑇 s) onAOL dataset. “†” indicates
the result is significantly worse than the model with 𝐺𝑇 s in
t-test with 𝑝-value < 0.01.

Model MAP MRR NDCG@3 NDCG@10

T5-small 0.5142† 0.5257† 0.5102† 0.5803†
T5-small +𝐺𝑇 s 0.5246 0.5363 0.5232 0.5911
Improv. +2.02% +2.02% +2.55% +1.86%

BlenderBot-small 0.5465† 0.5570† 0.5470† 0.6108†
BlenderBot-small +𝐺𝑇 s 0.5580 0.5685 0.5601 0.6220
Improv. +2.10% +2.06% +2.39% +1.83%

𝑤 on the test set of AOL. Note that we show the results of the test
set only for consistency with previous experiments’ results. 𝑤 is
tuned based on performances on the validation sets.

From Figure 4, we can find the performance increases from 0 to
2 and slowly decreases from 2 to 4. We believe there is a trade-off. If
𝑤 is too small (0,1), the encoder can not actually encode the search
intent into the high-level representations. And if𝑤 is too large (3,4),
the generation target may become too hard to generate. Besides,
the average session lengths are about 2.5 for both datasets (Table 1),
so there will be many empty sequences in the 𝐺𝑇 s if𝑤 is too large.

5.5 Application to Other Transformer-based
Encoder-Decoder Models

As illustrated in Section 3.2, we choose BART as our model’s back-
bone mainly for fair comparisons with BERT-based baselines (HBA,
COCA). However, our approach can be easily applied to other
Transformer-based encoder-decoder structured models. In this sec-
tion, we choose two seq2seq models (T5 [27] and BlenderBot [23])
as the base models. For T5, we use the small version provided by
Huggingface.6 For BlenderBot, we use the small version provided
by Facebook on Huggingface.7 They are fine-tuned with the rank-
ing task that is the same as BERT’s and BART’s strategy introduced

6https://huggingface.co/t5-small
7https://huggingface.co/facebook/blenderbot_small-90M
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Figure 5: The left part presents the performance comparison of HBA, COCA, and ASE on sessions with different lengths on
AOL dataset. The right part shows the performance comparison of Duet, HBA, COCA, and ASE at different query positions in
short (S1-S2), medium (M1-M4), and long sessions (L1-L7). The number after “S”, “M”, or “L” indicates the query index in a task.

in Section 4.2. We also train them with our designed generative
tasks, and the corresponding results are reported as “X+𝐺𝑇 s”.

As presented in Table 5, the models with our designed generative
tasks outperform their base models significantly on AOL dataset,
respectively. Specifically, T5-small model with 𝐺𝑇 s improves T5-
small by more than 2.02% in terms of MAP. This indicates that
utilizing our generative tasks to enhance session context modeling
is effective under different backbones, and our approach can be eas-
ily applied to other Transformer-based encoder-decoder structured
models than BART.

5.6 Performance on Different Query Positions
and Sessions with Different Lengths

Following previous works [2, 6, 36, 37], in order to study ASE’s
performance on sessions with different lengths, we split the test
dataset of AOL as follows:

• Short sessions (with 2 queries) - 66.5% of the test set.
• Medium sessions (with 3-4 queries) - 27.24% of the test set.
• Long sessions (with 5+ queries) - 6.26% of the test set.
We compare ASE with Duet, HBA, and COCA on these different

sessions. The results are presented in the left part of Figure 5.We can
find that: (1) The ad-hoc ranking model Duet performs worse than
context-aware models, which indicates the importance of modeling
session context. (2) ASE outperforms other models on all lengths
of sessions, which demonstrates the effectiveness of utilizing our
generative tasks to model session context. (3) ASE performs worse
on long sessions than on short sessions. As explained in [2, 36],
long sessions are intrinsically more difficult. The similar declining
trends of other models also demonstrate this idea.

To study ASE’s performance of modeling task progression, we
also compare it with HBA and COCA on different query positions.
The results are shown in the right part of Figure 5. We can find that
the performances most increase as the session progresses because
there is more session context to model. However, compared to
COCA, ASE has a relatively slower speed for improvement (or
performs better on queries that lack context). This is because ASE
utilizes our generative tasks during training, which can help its
encoder predict the search intent even with few historical behaviors.
Besides, it is interesting that all models’ performances decrease from

L4 to L7. We believe these long sessions often represent complex
or exploratory search tasks, which are hard to complete.

6 CONCLUSIONS AND FUTUREWORK
In this work, we attempt to utilize generative tasks to model session
context. An encoder-decoder structure and three generative tasks
are used to enhance the ability of the encoder.With these generative
tasks, we aim to train our model to predict future queries, future
clicked documents, and a supplemental query. We believe that if our
model could predict these sequences, then the actual search intent
has been successfully encoded into the high-level representations
of the current session sequence. Rich experiments on two public
search logs demonstrate the effectiveness and broad applicability
of our approach.

Nevertheless, our work still has some limitations that we plan
to address in future work: (1) Though ASE outperforms COCA
without pre-training and data augmentation strategies, ASE still
has potential variants that incorporate pre-training techniques. In
future work, we will try to incorporate pre-training techniques
(e.g., contrastive learning) and data augmentation strategies (e.g.,
curriculum learning) into ASE to further improve its performance.
(2) The method of mining a supplemental query from the database
is relatively naive. We plan to use more sophisticated algorithms
or models (e.g., Sentence Transformer) to find a query with higher
quality. (3) In order to further denoise the current session, the
historical behaviors may be treated with distinction. For example,
we could first extract or generate keywords from the behaviors
before putting them into the encoder.
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