
Generating ClarifyingQuestions with Web Search Results
Ziliang Zhao
Zhicheng Dou
Jiaxin Mao

zhaoziliang@ruc.edu.cn
dou@ruc.edu.cn

Gaoling School of Artificial Intelligence
Renmin University of China

Beijing, China

Ji-Rong Wen
jrwen@ruc.edu.cn

Beijing Key Laboratory of Big Data Management and
Analysis Methods
Beijing, China

Key Laboratory of Data Engineering and Knowledge
Engineering, MOE
Beijing, China

ABSTRACT
Asking clarifying questions is an interactive way to effectively clar-
ify user intent. When a user submits a query, the search engine
will return a clarifying question with several clickable items of sub-
intents for clarification. According to the existing definition, the
key to asking high-quality questions is to generate good descrip-
tions for submitted queries and provided items. However, existing
methods mainly based on static knowledge bases are difficult to find
descriptions for many queries because of the lack of entities within
these queries and their corresponding items. For such a query, it is
unable to generate an informative question. To alleviate this prob-
lem, we propose leveraging top search results of the query to help
generate better descriptions because we deem that the top retrieved
documents contain rich and relevant contexts of the query. Specifi-
cally, we first design a rule-based algorithm to extract description
candidates from search results and rank them by various human-
designed features. Then, we apply an learning-to-rank model and
another generative model for generalization and further improve
the quality of clarifying questions. Experimental results show that
our proposed methods can generate more readable and informative
questions compared with existing methods. The results prove that
search results can be utilized to improve users’ search experience
for search clarification in conversational search systems.

CCS CONCEPTS
• Information systems → Search interfaces.

KEYWORDS
Clarifying Question, Search Clarification, Conversational Search

ACM Reference Format:
Ziliang Zhao, Zhicheng Dou, Jiaxin Mao, and Ji-Rong Wen. 2022. Gener-
ating Clarifying Questions with Web Search Results. In Proceedings of the
45th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3477495.3531981

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531981

1 INTRODUCTION

Figure 1: Search clarification in a conversational search sys-
tem. In this paper, we focus on generating better clarifying
questions (the text underlined), other than generating items.

User’s queries can be ambiguous or faceted [6], making search
engines difficult to understand the user’s information needs. For
example, the ambiguous query “apple” could indicate Apple com-
pany or a kind of fruit, and the faceted query “lost” has various
aspects like seasons and characters. In this circumstance, users
often need to scan results one by one or reformulate a new query to
retrieve a new result list. Without any information guidance, this
time-consuming process greatly impacts users’ search experience.

Currently, several methods in Information Retrieval (IR) can
help users articulate their information needs, like search result di-
versification [34], query suggestion and refinement [2], and query
facets mining [10]. With the development of natural language pro-
cessing, the search engine could clarify a user’s intent by asking
clarifying questions [6] proactively and conversationally. Compared
with other approaches, asking clarifying questions is considered a
more convenient and satisfying way to obtain a user’s ambiguous
or faceted search intent [26, 32], and is particularly effective in
conversational search systems for limited-bandwidth devices.

Figure 1 illustrates how the search engine asks and how the
user responds for clarification. After the user submits a multi-facet
query 𝑞 “headaches”, the system asks a question (underlined) and
provides several optional items 𝑆 (i.e., “symptom”, “treatment”, etc.)
to understand the user’s intent. If the user clicks an item (such
as “treatment”), the query will be refined according to the selec-
tion (“headaches treatment” in this case) and search results will be
updated. The question is important to improve user experience.

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

234

https://doi.org/10.1145/3477495.3531981
https://doi.org/10.1145/3477495.3531981

Table 1: Clarifying question templates.

N. Template
T1 What do you want to know about QUERY?
T2 What do you want to know about this QUERY_DESC?
T3 Which ITEMS_DESC are you looking for?
T4 Who are you shopping for?
T5 What do you want to do with QUERY?
T6 Which QUERY do you mean?

Recently, template-based methods have been applied to clarify-
ing questions generation in conversational search systems. Table 1
shows six common question templates in existing studies [37–39].
The system will scan inversely from T6 to T1 to select a template.
Among them, T6, T5, and T4 are three separately-treated cases for
ambiguous queries, users’ different actions, and queries for shop-
ping respectively. When these cases do not occur, T3 and T2 will
be used when the descriptions for the items (DESC_ITEMS) and the
queries (DESC_QUERY) can be found respectively. As templates
are pre-defined manually, the key to asking high-quality questions
based on template T2 or T3 is to generate a good description for a
query or its items. For instance in Figure 1, “medical condition” is
a good description of query “headaches”, and “type of headaches”
also greatly describes items “[migraine, tension, cluster, hormone]”.
If these descriptions cannot be found, the systemwill show a generic
questions like T1 which reduces user experience [39]. Due to the
diversity of web queries and their items, it is challenging to find
good descriptions for them in IR systems. Therefore, it brings a
large number of generic questions that are not satisfying enough.

In this situation, generating good descriptions is vital for improv-
ing the quality and satisfaction of clarifying questions. Existing
methods for generating descriptions for queries and items often rely
on a static knowledge base. Zamani et al. [37] collected “IsA”-like
entity type relations from web texts to form a database. Given a
query 𝑞 and its items 𝑆 , they used 𝑞 and 𝑆 to find the common type
from this database and used this type as the description. Similar re-
sults can also be generated using well known knowledge bases like
WebIsA [29], ConceptGraph [35, 36], and Wikidata [31]. However,
the knowledge-based approach has two limitations. First, these
knowledge bases only contain entities and their descriptions, but
many user queries and items are not entities. For example, neither
query “google chrome exe” nor any of its items “[32 bit, 64 bit]” is
an entity, so descriptions for the query and these two items cannot
be found from the knowledge bases. For this case, the system can
only ask a generic question, like “Select one to refine your search”,
which gives almost no information and no sense of intelligence to
users. Second, it does not consider the impact of query 𝑞 while gen-
erating descriptions for items 𝑆 , and this may make the descriptions
for items less specific. For example, for query “Olympics” and items
“[Beijing, Tokyo, Paris]”, existingmethods are easy to generate “city”
as a description of items. However, “host city” is more specific and
brings a better user experience to be exhibited.

To overcome these two limitations, we propose retrieving the top
search results of the query to help find better descriptions because
we deem that top results contain abundant and relevant contextual
information. To prove this, we make statistical analysis in Section 3,

showing that top results contain more descriptions of queries and
items compared with existing “IsA”-like knowledge bases. Accord-
ing to the statistics, we design three Search Result-based Question
Generation (SRQG) algorithms. Specifically, we first design a rule-
based algorithm SRQG-Rulewhich extracts description candidates
from top search results and ranks them by various human-designed
features. We then train an ensemble learning-to-rank algorithm
SRQG-LTR to integrate various machine learning models to rank
the candidates automatically according to their features. Further-
more, we use data generated by the previous two methods as weak
supervision signals to train a neural generative model SRQG-Gen
and generate questions in an end-to-end way.

We evaluate our proposed methods based on the MIMICS [38]
dataset. As descriptions of queries or items are incomplete in this
dataset, we further employ three annotators who understand our
task well to judge the quality of generated descriptions and ques-
tions in a pool-based manner. Experimental results show that
our proposed models significantly outperform existing methods
in terms of the quality of generated descriptions and questions.
SRQG-Rule consistently generates better questions for most queries
compared with existing methods, which confirms the usefulness
of top results. SRQG-LTR can further improve the generalization
ability of SRQG-Rule and generate descriptions and questions with
higher quality. SRQG-Gen using top results as input outperforms
baseline models with the same structure using “IsA”-like relations
as input. The experimental results demonstrate the effectiveness
of top results for search clarification. In order to further confirm
our conclusion, we make an ablation study to show the importance
of each feature used in SRQG-Rule. We also make a case study to
intuitively compare the results generated by different algorithms.

In our study, we do not research on obtaining items correspond-
ing to a query. We assume that items are given for a query and we
focus on generating questions with higher quality. We do not train
a large-scale pre-trained model because we focus on comparing the
effectiveness of top search results and knowledge bases for generat-
ing clarifying questions. For the coverage of our proposed methods,
they are suitable for ambiguous or multi-faceted queries from all
topic types whose user intents are usually difficult to understand.
On the other hand, they are especially suitable for transactional and
informational queries in web search [15] because items of a query
are usually potential transactional or informational user intents.

2 RELATEDWORK
Asking Open-domain Clarifying Questions. Aliannejadi et

al. first proposed asking clarifying questions in conversational
search [5, 6, 13, 20]. They focus on selecting questions from a closed
set instead of generating them. However, queries in IR are complex
and diverse, making selecting cannot satisfy users’ needs. Zamani
et al. first emphasized the importance of clarification in IR [39].
They proposed MIMICS [38] dataset, which includes three sub-
sets: MIMICS-Click, -Explore, and -Manual. Each data in MIMICS
consists of a query, several items, and a question. In this paper,
other than exploring a better method for generating items, we fo-
cus on improving the quality of the “question” displayed to users.
In existing work, Zamani et al. [37] proposed RTC to collect “IsA”-
like relations from web texts, then match descriptions based on

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

235

extracted relations to generate questions. They also proposed a
Seq2Seq model QLM for generating questions using data gener-
ated by RTC as weak-supervised signals. However, both RTC and
QLM use a knowledge base as the only information source, so they
tend to generate numerous generic questions. Wang and Li [33]
applied a multi-task learning framework to template selecting and
slot filling jointly. However, all of these works do not consider the
completeness and specificity of existing descriptions.

Asking Close-domain Clarifying Questions. Close-domain
search clarification is often deemed easier to be implemented than
open-domain scenarios because its topics focus on limited areas
and it has more available data. Braslavski et al. [7] analyzed a
large number of questions and identified common patterns of ques-
tions, proving that templates are important for clarifying questions.
Rao and Daumé [27] trained a neural network to rank clarifying
questions. After that, they tried to generate questions [28] by a
generative adversarial network, inspiring us that generative models
can improve the generalization of clarifying questions.

Other Relevant Studies. There are some other studies that are
related to search clarification. For example, query suggestion uti-
lizes a user’s current query to recommend relevant queries [2, 3, 14,
23]. For search clarification, query suggestion is a feasible way to ob-
tain optional items 𝑆 for query𝑞 [37]. Besides, search result diversifi-
cation [17, 21, 25, 34] and query facets mining [10–12, 16, 18, 19] are
also effective ways to clarify user intent, and they can replace query
suggestion to obtain corresponding items 𝑆 for query 𝑞. Different
from these relevant studies focusing on finding aspect items, we
aim to improve the informativeness and readability of clari-
fying questions to improve user experience, assuming that the
items corresponding to a query are given.

3 ANALYSIS OF CLARIFYING QUESTIONS
In this section, we analyze the composition of a clarifying question,
and then carry out two statistical analyses explaining the reason
for using top search results to generate clarifying questions.

Generating fluent and informative clarifying questions is chal-
lenging due to the lack of data. Recently, Zamani et al. [37] de-
fined several question templates shown in Table 1, like “What
do you want to know about this QUERY_DESC?” and “Which
ITEMS_DESC are you looking for?”. The most important part
of a question is the description of query 𝑞 or items 𝑆 , namely
“QUERY_DESC” and “ITEMS_DESC”. One way to obtain the de-
scriptions is to build a static offline knowledge base of “IsA”-like
entity type relations [37], then match descriptions of queries and
items from the knowledge base. For example, given a piece of text
“earth is a planet”, then “planet” is a description of “earth”. However,
we deem that this kind of knowledge base can just cover descrip-
tions for entity-like queries or items, and only a limited number of
queries can match this kind of description. For a large range of
queries, the system may fail to find a proper description and hence
use a generic pre-defined question like “What do you want to know
about QUERY?” or “Select one to refine your search” instead.

To alleviate this problem, we propose using the top search re-
sults of the query as a complementary data source and finding good
descriptions from the results. We argue that top results contain rich

Table 2: Statistics on MIMICS dataset: proportion of descrip-
tions extracted from existing “IsA”-like database that can be
found in top search results.

Dataset Click ClickExplore Manual
Description 𝑑 (𝑞) 𝑑 (𝑆) 𝑑 (𝑞) 𝑑 (𝑆) 𝑑 (𝑞) 𝑑 (𝑆)
𝑞 top 5 0.580 0.255 0.675 0.205 0.480 0.200
𝑞 top 10 0.755 0.345 0.760 0.300 0.600 0.250
𝑞 top 20 0.975 0.570 0.950 0.645 0.910 0.420
𝑞 top 50 1.000 0.740 1.000 0.790 1.000 0.730
(𝑞, 𝑆) top 5 0.535 0.345 0.450 0.310 0.420 0.310
(𝑞, 𝑆) top 10 0.685 0.450 0.705 0.465 0.540 0.340
(𝑞, 𝑆) top 20 0.895 0.720 0.870 0.715 0.810 0.550
(𝑞, 𝑆) top 50 1.000 0.860 0.990 0.870 0.920 0.750

Table 3: Statistics on MIMICS dataset: proportion compari-
son of query and items that can be found from top search
results, WebIsA and Concept Graph (CG).

Bing Top Search Results
Proportion 𝑜 (𝑞) 𝑜 (𝑆)50% 𝑜 (𝑆)70% 𝑜 (𝑆)80% 𝑜 (𝑆)100%
𝑞 top 5 0.657 0.504 0.445 0.440 0.270
𝑞 top 10 0.726 0.551 0.512 0.503 0.295
𝑞 top 20 0.782 0.615 0.559 0.534 0.341
𝑞 top 50 0.843 0.722 0.613 0.606 0.362
(𝑞, 𝑆) top 5 0.548 0.683 0.599 0.573 0.446
(𝑞, 𝑆) top 10 0.586 0.751 0.646 0.624 0.505
(𝑞, 𝑆) top 20 0.653 0.812 0.732 0.688 0.558
(𝑞, 𝑆) top 50 0.691 0.850 0.793 0.750 0.631

Existing “IsA”-like Knowledge Bases
Proportion 𝑜 (𝑞) 𝑜 (𝑆)50% 𝑜 (𝑆)70% 𝑜 (𝑆)80% 𝑜 (𝑆)100%
WebIsA 0.301 0.537 0.424 0.390 0.322

CG 0.263 0.546 0.437 0.378 0.331

relevant and contextualized information which are superior to static
“IsA”-like knowledge bases. To prove the effectiveness of top results,
we make a statistical analysis to survey whether top results can
cover more queries, items, and their descriptions compared with
existing “IsA”-like knowledge bases. To achieve this, we first sam-
ple 400, 400, and 200 non-generic clarifying questions from three
subsets of MIMICS [38] mentioned in Section 2 respectively. In each
part of the data, half of the questions contain a description of the
query, and the other half of the questions contain a description of
items. These descriptions are extracted from “IsA”-like knowledge
bases using existing methods [37]. We extract descriptions from
these questions and find them in the top results. Specifically, we
find descriptions of query 𝑑 (𝑞) in top results of query 𝑞, and find
descriptions of items 𝑑 (𝑆) in top results of the concatenation of
𝑞 and 𝑆 , recorded as (𝑞, 𝑆). For example, suppose 𝑞 is “headaches”
and 𝑆 is “[symptom, treatment, causes, diagnosis]”, then (𝑞, 𝑆) is
“headaches symptom treatment causes diagnosis”. We design this
combined query to better obtain descriptions of items 𝑆 since top
results can integrate more co-occurrence information of 𝑞 and 𝑆 .
Table 2 shows the statistical results. In the first column, 𝑞 top 𝑥

means top 𝑥 result pages of 𝑞, and (𝑞, 𝑆) top 𝑥 means top 𝑥 result
pages of (𝑞, 𝑆). Each value indicates the rate of 𝑑 (𝑞) or 𝑑 (𝑆) that
can be found from top 𝑥 results of 𝑞 or (𝑞, 𝑆).

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

236

Table 2 shows that, with the increasing number of returned top
search results, more descriptions extracted from “IsA”-like relations
can be found. In three subsets of MIMICS, we can find descriptions
of all queries (bold in the fourth line) and about 85% descrip-
tions of items (bold in the eighth line) averagely within top 50
results. Besides, if only using original query 𝑞 to submit (the upper
four lines), we can findmore descriptions of query in top results.
If we concatenate query and items as a combined query (𝑞, 𝑆) (the
lower four lines) to submit, we can find more descriptions of
items. It indicates that the combined query (𝑞, 𝑆) can obtain abun-
dant contextual information of the query 𝑞 and its corresponding
items 𝑆 , thereby more descriptions of 𝑆 can be found.

To further illustrate the advantage of top search results over
“IsA”-like data resources, we then compare the proportion of queries
and items occurring in top results with existing “IsA”-like databases.
We randomly sample 1,000 data fromMIMICS and find these queries
and items from top results, WebIsA knowledge base, and Concept
Graph for comparison. Table 3 shows the results. In this table, 𝑜 (𝑞)
means the percentage of query 𝑞 that can be found, and 𝑜 (𝑆)𝑥%
means the percentage of 𝑥% of items that can be found. It illustrates
that compared with the “IsA”-like knowledge bases, top re-
sults contain more queries and items, thus it has a higher prob-
ability to find descriptions. Similar to Table 2, Table 3 also proves
that, proportion of query will be higher in top results of 𝑞,
and proportion of items will be higher in top results of (𝑞, 𝑆).

4 METHODS
Based on the statistics in Section 3, we aim to use top results of 𝑞
to extract descriptions of the query, and use top results of (𝑞, 𝑆) to
extract descriptions of the items. We propose a framework com-
posed of three Search Result-based Question Generation al-
gorithms (SRQG-Rule, SRQG-LTR, and SRQG-Gen) shown in
Figure 2. In SRQG-Rule, we first retrieve top-𝑛 results of 𝑞 and (𝑞, 𝑆)
respectively, then extract all plain texts and list structures from the
results, which contain important information in HTML. After that,
we use a rule-based extractor to get a set of description candidates
(luxury watch, man, brand, etc. in Figure 2) from extracted texts
and lists, and further score and rank all these candidates based on
various human-designed features. Since a candidate 𝑐 can describe
a query 𝑞 or its items 𝑆 , we select two candidates with the highest
score for query and items as 𝑐𝑞 and 𝑐𝑆 from the results of 𝑞 and
(𝑞, 𝑆) respectively, and then choose the one with a higher score to
combine with template T2 or T3 shown in Table 1 to form a ques-
tion. We further label the ranked list for training a ranking model
SRQG-LTR and use data generated by the above two algorithms as
weak supervision signals to train a generative model SRQG-Gen.

4.1 SRQG-Rule
SRQG-Rule aims to obtain description candidates for the query and
items from the extracted texts and lists in top search results, then
calculate the value of various human-designed features for each
candidate to select optimal candidate(s). It is composed of Lists and
Texts Extractor, Candidates Extractor and Candidates Ranker.

4.1.1 Lists and Texts Extractor. In one HTML document of the
search results, important contents usually exist in plain texts and
list structures [10]. Plain texts are long paragraphs that contain

Figure 2: An overview of our proposed methods with an ex-
ample of finding descriptions for items.

unstructured natural language information. List structures that
frequently appear in HTML usually illustrate parallel information,
like attributes of goods on e-commerce websites, and tables on
encyclopedia websites. These two resources are significant to obtain
most of the information from top results. Therefore, we first extract
HTML paragraphs with more than 60 characters as text set 𝑇 =

[𝑇𝑖 , 1 ⩽ 𝑖 ⩽ |𝑇 |]. We further implement an effective and efficient
algorithm [10] to extract parallel structures from HTML tags, plain
texts, and repeat regions. We simultaneously extract contents from
the context of each extracted parallel structure, because the context
may include a description of the parallel structure. We combine
parallel structures with their contexts as list set 𝐿 = [(𝐿𝐶

𝑖
, 𝐿𝑆

𝑖
), 1 ⩽

𝑖 ⩽ |𝐿 |], where 𝐿𝑆
𝑖
denotes a parallel structure, and 𝐿𝐶

𝑖
denotes the

corresponding context of list 𝐿𝑆
𝑖
.

4.1.2 Candidates Extractor. It is challenging to directly extract de-
scriptions from texts or lists. Therefore, we aim to use some rules to
build a candidate set of descriptions, then we just need to find the
best candidate in this set. Based on our observations, for a query 𝑞,
its descriptions are highly possible to appear in “IsA”-like relations.
Thus we first use 59 templates [29] to obtain “IsA”-like patterns
including hyponyms and hypernyms from top search results, then
obtain nouns and noun phrases in hypernyms as query description
candidates. For example, for the text “supernoobs is a Canadian
flash animated series produced by ...”, we can obtain “series” and
“Canadian flash animated series”, as description candidates of the
query “supernoobs”. For items 𝑆 , their descriptions are highly possi-
ble to appear in the list contexts and the neighbors of 𝑆 in plain texts,
so we extract nouns and noun phrases from these parts as items
description candidates. We apply CoreNLP [22] part-of-speech mod-
ule to extract nouns and constituency parsing module to extract
noun phrases. Besides, we also extract candidate descriptions from
WebIsA [29] and Concept Graph [35, 36] as supplement. Using the
above rules, we obtain an average of 34.4 description candidates
for query 𝑞 and 41.7 description candidates for items 𝑆 .

4.1.3 Candidates Ranker. To rank candidates based on compre-
hensive considerations like statistical information and semantic

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

237

Table 4: Notations in our approaches.

N. Explanation N. Explanation
𝑞 Query C𝑞 Candidate set of 𝑞
𝑆 Items C𝑆 Candidate set of 𝑆
𝑐 Candidate 𝜏 Threshold
𝑘 Adjustment coefficient 𝑝 Importance coefficient
𝐿𝑖 Extracted 𝑖th list 𝑇𝑖 Extracted 𝑖th text

similarity etc., we design various features for each candidate 𝑐 ,
including list statistical feature 𝑓𝐿 , text statistical features 𝑓𝑇 , se-
mantic feature 𝑓𝑆 , entity feature 𝑓𝐸 and inhibition feature 𝑓𝐼 . Each
feature scores a candidate from a sole and different perspective. All
features are added together as the total score of a candidate 𝑐:

score(𝑐) = 𝑓𝐿 (𝑐) + 𝑓𝑇 (𝑐) + 𝑓𝑆 (𝑐) + 𝑓𝐸 (𝑐) + 𝑓𝐼 (𝑐) . (1)

We rank all description candidates based on their scores and
select two candidates with the highest score for query 𝑞 and items
𝑆 as 𝑐𝑞 and 𝑐𝑆 respectively. To determine whether to return a de-
scription for query or for items, we set two thresholds 𝜏𝑞 and 𝜏𝑆 . If
score(𝑐𝑆) ≥ max(score(𝑐𝑞), 𝜏𝑆), we set 𝑐𝑆 as items description. Else,
if score(𝑐𝑞) ≥ max(score(𝑐𝑆), 𝜏𝑞), we set 𝑐𝑞 as query description.
Else, candidates ranker return None, ensuring that when candidate
scores are all low and candidates are likely to be wrong, the system
can generate a generic question instead of a wrong question.

For the rest of this section, we will introduce features used by
SRQG-Rule one by one. All notations in equations are shown in
Table 4. For each feature, we manually set an adjustment coefficient
𝑘 and an importance coefficient 𝑝 to determine the importance of
each feature, and use the tanh function for feature normalization
by controlling the value range of each feature. For each feature
𝑓 and each coefficient 𝑘 and 𝑝 , we use subscript to indicate the
feature name and use superscript to indicate whether the feature is
calculated for a query or its corresponding items.

1. List Statistical Feature 𝑓𝐿 . A list 𝐿𝑖 extracted from HTML
can be formalized as (𝐿𝐶

𝑖
, 𝐿𝑆

𝑖
), where 𝐿𝑆

𝑖
is parallel structure and 𝐿𝐶

𝑖

is list context which may include description for 𝐿𝑆
𝑖
. The structure

is corresponding to aspect items 𝑆 and their description 𝑑 (𝑆). There-
fore, list structures are naturally suitable for finding descriptions
of items 𝑆 . Intuitively, the more a candidate 𝑐 appears in 𝐿𝐶

𝑖
, and

the more items appear in 𝐿𝑆
𝑖
, the higher probability will be that the

𝑐 is a good description of aspect items 𝑆 . Thus we have:

𝑓
𝑞

𝐿
(𝑐) = 0; 𝑓 𝑆𝐿 (𝑐) = 𝑝𝑆𝐿 · tanh(𝑘𝑆𝐿

∑
𝑖

𝐼 (𝑐, 𝐿𝐶𝑖) ·
|𝑆 ∩ 𝐿𝑆

𝑖
|

|𝑆 |), (2)

where 𝐼 (𝑎, 𝑏) is indicator function. If 𝑎 occurs in 𝑏, 𝐼 (𝑎, 𝑏) = 1, else
𝐼 (𝑎, 𝑏) = 0.

2. Text Statistical Features 𝑓𝑇 . Besides list structures, plain
texts also contain abundant information which may include good
descriptions for 𝑞 and 𝑆 . Therefore, we design several text statis-
tical features 𝑓𝑇 to capture statistical information of candidates
in plain texts. We divide 𝑓𝑇 into pattern feature, distance feature,
co-occurrence feature, frequency feature, and inclusion feature. We
add these five features together as text statistical features 𝑓𝑇 :

𝑓𝑇 (𝑐) = 𝑓𝑝 (𝑐) + 𝑓𝑑 (𝑐) + 𝑓𝑐 (𝑐) + 𝑓𝑓 (𝑐) + 𝑓𝑖 (𝑐) . (3)

- Pattern Feature 𝑓𝑝 . Patterns are important to extract descrip-
tions explicitly from plain texts. For example, in the sentence “pro-
gramming language such as Java, Python, and C”, “programming
language” is the hypernym, “java”, “Python” and “C” are hyponyms.
The hypernym is a good description for hyponyms. For query 𝑞, if a
candidate 𝑐 appears in hypernym and 𝑞 appears in hyponyms, 𝑐 has
a high probability to be a description of 𝑞, thus we assign a higher
score to 𝑐 for 𝑞. For items 𝑆 , if a candidate 𝑐 appears in hypernym
and more items appear in hyponyms, 𝑐 has a higher probability to
be a description of 𝑆 , thus we assign a higher score to 𝑐 for 𝑆 . In
summary, we calculate 𝑓𝑝 as follows:

𝑓
𝑞
𝑝 (𝑐) = 𝑝

𝑞
𝑝 · tanh(𝑘𝑞𝑝

∑
𝑖

𝐼 (𝑐, 𝑃𝐻𝑖) · 𝐼 (𝑞, 𝑃𝑇𝑖)),

𝑓 𝑆𝑝 (𝑐) = 𝑝𝑆𝑝 · tanh(𝑘𝑆𝑝
∑
𝑖

𝐼 (𝑐, 𝑃𝐻𝑖) ·
|𝑆 ∩ 𝑃𝑇

𝑖
|

|𝑆 |),
(4)

where 𝑃𝐻 is the set of hypernyms and 𝑃𝑇 is the set of hyponyms
corresponding to 𝑃𝐻 .

- Distance Feature 𝑓𝑑 . Intuitively, the closer candidate 𝑐 is to
query 𝑞 or items 𝑆 , the more likely it is to be a good description
of the query or the items. Therefore, we set a distance function to
calculate distance between candidate 𝑐 and items or query, then
calculate distance feature 𝑓𝑑 based on this distance function:

𝑓
𝑞

𝑑
(𝑐) = 𝑝

𝑞

𝑑
· tanh(𝑘𝑑

∑
𝑖

𝑑 (𝑐, 𝑆,𝑇𝑖)),

𝑓 𝑆
𝑑
(𝑐) = 𝑝𝑆

𝑑
· tanh(𝑘𝑑

∑
𝑖

𝑑 (𝑐, 𝑞,𝑇𝑖)).
(5)

Here 𝑑 () is defined as reciprocal of the sum of distances:

𝑑 (𝑐, 𝑞,𝑇𝑖) =
∑
𝑗

1
dist(𝑐, 𝑞𝑖 𝑗)

, 𝑑 (𝑐, 𝑆,𝑇𝑖) =
∑
𝑗

1
dist(𝑐, 𝑆𝑖 𝑗)

, (6)

where 𝑞𝑖 𝑗 indicates each query occur in 𝑇𝑖 , 𝑆𝑖 𝑗 indicates each item
in 𝑆 occur in 𝑇𝑖 . The distance function dist(𝑎, 𝑏) is defined as:

dist(𝑎, 𝑏) =
{
|pos(𝑎) − pos(𝑏) | if |pos(𝑎) − pos(𝑏) | ⩽ 50;
+∞ for else.

(7)

Here pos(𝑥) returns position of 𝑥 in a paragraph. If the distance
between 𝑎 and 𝑏 is longer than 50 characters, we deem there is no
strong connection between them anymore.

- Co-occurrence Feature 𝑓𝑐 . We also capture co-occurrence in-
formation between candidate 𝑐 and 𝑞 or 𝑆 . Naturally, candidate 𝑐
appears in the same sentence with query 𝑞 or items 𝑆 are more
likely to be their good description. Therefore, the co-occurrence
feature 𝑓𝑐 is defined as follows:

𝑓
𝑞
𝑐 (𝑐) = 𝑝

𝑞
𝑐 · tanh(𝑘𝑞𝑐

∑
𝑖

∑
𝑗

occ(𝑐, 𝑞,𝑇𝑖 𝑗)),

𝑓 𝑆𝑐 (𝑐) = 𝑝𝑆𝑐 · tanh(𝑘𝑆𝑐
∑
𝑖

∑
𝑗

∑
𝑙

occ(𝑐, 𝑆𝑙 ,𝑇𝑖 𝑗)) .
(8)

For function occ(𝑎, 𝑏, 𝑐), if 𝑎 and 𝑏 occur in 𝑐 simultaneously,
occ(𝑎, 𝑏, 𝑐) = 1, else occ(𝑎, 𝑏, 𝑐) = 0. 𝑇𝑖 𝑗 indicates the 𝑗th sentence
in 𝑇𝑖 , 𝑆𝑙 denotes the 𝑙th item in 𝑆 .

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

238

- Frequency Feature 𝑓𝑓 . Phrases with higher frequency in texts
are likely to have a strong correlation with a query and items.
Therefore, we count candidate 𝑐 in top results as frequency feature:

𝑓
𝑞

𝑓
(𝑐) = 𝑝

𝑞

𝑓
· tanh(𝑘𝑞

𝑓

∑
𝑖

𝑁𝑇𝑖 (𝑐)),

𝑓 𝑆
𝑓
(𝑐) = 𝑝𝑆

𝑓
· tanh(𝑘𝑆

𝑓

∑
𝑖

𝑁𝑇𝑖 (𝑐)),
(9)

where 𝑁𝑇𝑖 (𝑐) indicates the frequency that 𝑐 occurs in text 𝑇𝑖 .

- Inclusion Feature 𝑓𝑖 . If a candidate 𝑐 contains other candi-
date(s) as sub-string(s), it is likely to be a more specific description.
For example, as a description of items “[64 bit, 32 bit]”, version is
not as specific as bit version or bit version of google chrome. There-
fore, we need to increase score of these specific descriptions. For
candidate 𝑐 , we calculate inclusion feature 𝑓𝑖 as follows:

𝑓
𝑞

𝑖
(𝑐) = 𝑝

𝑞

𝑖
· tanh(𝑘𝑞

𝑖

∑
𝑗

𝐼 (C𝑗≠𝑐𝑎𝑟𝑔 , 𝑐) × score′(𝐶 𝑗≠𝑐𝑎𝑟𝑔)),

𝑓 𝑆𝑖 (𝑐) = 𝑝𝑆𝑖 · tanh(𝑘𝑆𝑖
∑
𝑗

𝐼 (C𝑗≠𝑐𝑎𝑟𝑔 , 𝑐) × score′(𝐶 𝑗≠𝑐𝑎𝑟𝑔)),
(10)

where C𝑗 is the 𝑗th candidate in candidate set C, 𝑐𝑎𝑟𝑔 is the index
of candidate 𝑐 . score′(𝐶 𝑗≠𝑐𝑎𝑟𝑔) indicates scores of other candidate
without 𝑐 , therefore, including candidates with higher score in other
features will increase value of 𝑓𝑖 of candidate 𝑐 .

3. Semantic Feature 𝑓𝑆 . The list statistical feature and text sta-
tistical features can only obtain statistical or lexical information
from HTML files. To improve algorithm performance, we introduce
semantic feature 𝑓𝑆 to integrate semantic information. In detail, we
calculate semantic similarity between candidate 𝑐 and query, or
between 𝑐 and items as semantic features. We apply BERT [9], a
pre-trained language model, to encode candidate 𝑐 , query 𝑞, and
each item 𝑆𝑖 . In order to fuse contextual information, we obtain
context T of candidate 𝑐 , query 𝑞, and each item 𝑆𝑖 from top search
results as T𝑐 , T𝑞 , and T𝑆𝑖 respectively. We first calculate repre-
sentations of 𝑐 , 𝑞, and 𝑆 by BERT as: 𝑅𝑐 = 1

𝑙𝑐

∑𝑙𝑐
𝑗=1 BERT(𝑐 𝑗 ,T𝑐),

𝑅𝑞 = 1
𝑙𝑞

∑𝑙𝑞
𝑗=1 BERT(𝑞 𝑗 ,T𝑞), and 𝑅𝑆𝑖 =

1
𝑙𝑆𝑖

∑𝑙𝑆𝑖
𝑗=1 BERT(𝑆𝑖 𝑗 ,T𝑆𝑖). We

then calculate cosine similarity between representations of 𝑐 and 𝑞,
𝑆 encoded by BERT as semantic feature 𝑓𝑆 :

𝑓
𝑞

𝑆
(𝑐) = 𝑝

𝑞

𝑆
· tanh(𝑘𝑞

𝑆
· cosine(𝑅𝑐 , 𝑅𝑞),)

𝑓 𝑆𝑆 (𝑐) = 𝑝𝑆𝑆 · tanh(𝑘𝑆𝑆 · 1
𝑙𝑆

∑
𝑖

cosine(𝑅𝑐 , 𝑅𝑆𝑖)) .
(11)

4. Entity Feature 𝑓𝐸 . For ensuring that descriptions of entities
can be found, we use WebIsA [29] and Concept Graph [35, 36] as
supplementary resources to find descriptions of entities:

𝑓𝐸 (𝑐) = 𝑝𝐸 · tanh(𝑘𝐸 (𝑁𝑤 (𝑐) + 𝑁𝑐 (𝑐))), (12)

where 𝑁𝑤 (𝑐) and 𝑁𝑐 (𝑐) are frequencies of 𝑐 that occurs in WebIsA
and Concept Graph respectively.

5. Inhibition Feature 𝑓𝐼 . Some items sets corresponding to
some queries have small consistency and large coverage [39], so
it is not necessary to generate a clarifying question for them. For
example, the items corresponding to the query “headaches” are
“[symptom, treatment, diagnosis, causes]” shown in Figure 1. In

Algorithm 1: SRQG-Rule
Input: Query 𝑞, Items Set 𝑆
Output: Clarifying Question Q

1 Judge if query 𝑞 is an ambiguous query or a faceted query;
2 For ambiguous query, use template T6;
3 For faceted query:
4 if items set 𝑆 are all actions:
5 use template T5.
6 else if 𝑆 are related to people and 𝑞 is related to a product:
7 use template T4.
8 else if candidates extractor and ranker returns a description:
9 use template T3 or T2.

10 else if ITEMS_DESC can be found from “IsA”-like database:
11 use template T3.
12 else if QUERY_DESC can be found from “IsA”-like database:
13 use template T2.
14 else
15 use template T1.

this circumstance, even humans cannot make a good description of
these items, thereby candidates extracted from top search results
are probably wrong. We aim to reduce errors in this case. Therefore,
we want to reduce scores for this kind of items. Specifically, we
first calculate the average semantic similarity between each item
as 𝑠𝑆 using BERT, then define feature 𝑓𝐼 as:

𝑓 𝑆𝐼 =

{
0 if 𝑠𝑆 ⩾ 𝜏𝑖𝑠 ,

−𝑝𝐼 (𝜏𝑖𝑠 − 𝑠𝑆) if 𝑠𝑆 < 𝜏𝑖𝑠 .
(13)

Where 𝜏𝑖𝑠 is a manually set threshold. We apply the inhibition
feature 𝑓𝐼 to all description candidates.

4.1.4 Algorithm Flow. Since SRQG-Rule is a rule-based algorithm
depending on templates, we first gather existing clarifying ques-
tion templates [37, 39] to get a unified set of templates shown in
Table 1. Among them, template T6 is for ambiguous queries, T5
is for cases where items are all actions, and T4 is used when the
query is a commodity and items are related to people. The above
three are special and frequent cases in MIMICS dataset, so they are
handled separately by rules. T3 and T2 describe items and queries
respectively which we focus on, while T1 is a pre-defined generic
clarifying question that is equivalent to “Select one to refine your
search”. The algorithm flow of SRQG-Rule is shown in Algorithm 1.
Among them, lines 8 and 9 are our improvements that leverage top
results compared with the previous rule-based algorithm RTC [37].

4.2 SRQG-LTR
SRQG-Rule ranks description candidates based on human-designed
rules and thresholds, which could be sub-optimal in some cases.
Manually tuning the weights of features is also time-consuming.We
hope theweights of features can be determined automatically, so the
system can select good descriptions more effectively and efficiently.
Therefore, we further design SRQG-LTR, an ensemble learning-to-
rank model, to automatically rank candidates according to the
extracted features. Formally, we aim to build a pairwise learning-to-
rank model 𝑓 (𝑦 |𝑥1, 𝑥2). The input vector 𝑥1 and 𝑥2 are features of

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

239

two description candidates and the output𝑦 is a class label denoting
whether 𝑥1 should be ranked higher than 𝑥2. To build a training set
for SRQG-LTR, we randomly sample 500 pieces of data of query
and corresponding items from MIMICS, run SRQG-Rule to get
description candidates, then ask trained annotators to label some
of these candidates as supervised data. The labeling criteria will
be declared in Section 5.1. We expect the model to learn patterns
from the training data to automatically weight features and
improve the quality of clarifying questions by generalizing
SRQG-Rule. Besides features mentioned in Section 4.1, we also add
the length and word number of all queries, items, and description
candidates as supplementary features.

4.3 SRQG-Gen
To further demonstrate the effectiveness of using top search results
in generating clarifying questions, we devise a Seq2Seq genera-
tive model SRQG-Gen to generalize SRQG-Rule and SRQG-LTR to
improve the quality of clarifying questions. To achieve this, the
structure of SRQG-Gen remains basically consistent with QLM [37],
an encoder-decoder network, which receives a query, several items,
and their corresponding descriptions as inputs, and outputs a gen-
erated clarifying question. Based on QLM as a baseline model, we
replace the description of a query or items extracted from “IsA”-like
databases with that extracted from top results as weak-supervision
training data. Our purpose is to prove that, with the same network
structure with QLM, descriptions of query and items obtained
from top search results are better than those obtained from
“IsA”-like database, so they can better train a neural model
as weak supervision signals. Therefore, we do not focus on de-
signing novel network structures. The network can be simply re-
placed by some other structures like convolutional network [4],
transformer [30], or pre-training based models [9].

5 EXPERIMENTS
5.1 Human Labeling for Evaluation
We apply human annotation to evaluate generated descriptions
and clarifying questions. Evaluation metrics, annotation process,
and amount of evaluation data will be basically consistent with the
existing work [37–39] as far as possible. Specifically, we hire three
annotators with compensation who have a Master’s degree, then
explain our task explicitly until they totally understand and are able
to restate the task completely. An online meeting with a host will
be held for detailed communication. The three annotators choose
a score form {0, 1, 2, 3} according to the criteria of descriptions or
questions shown in Table 5. The criteria focus on both correctness
and specificity of descriptions and clarifying questions. For
each piece of data, each annotator selects a score individually and
the final score is based on amajority vote among three annotators.
If three annotations for one piece of data are totally different from
each other (like 0, 1, and 2), the three annotators launch a quick
online meeting and discuss with each other in turn to determine
the final score, then it will be recorded by the host. This situation
of lacking agreement accounts for less than 5% of all annotations,
indicating that the three annotators have a high degree of agree-
ment. The overall Fleiss’ kappa among three annotators is 71.36%,
which also means that the three annotators annotate consistently.

5.2 Implementation Details
For SRQG-Rule, we obtain top results retrieved by Bing Search API
v7 1. For each query, we get top 50 results for the original query 𝑞
and the combined query (𝑞, 𝑆) respectively. Illegal and unsafe web-
sites will be deleted manually by some keywords. To determine the
optimal combination of parameters in SRQG-Rule, we implement
all features, then empirically tune thresholds 𝜏 , adjustment coeffi-
cient 𝑘 , and importance coefficient 𝑝 of each feature mentioned in
Section 4.1.3 by grid search with a step of 0.1 in the range of (0, 1].

We use Scikit-Learn [8, 24] to implement SRQG-LTR by the en-
semble of six machine learning models, including K-Nearest Neigh-
bors, SVM with a Gaussian kernel, Logistic Regression, Decision
Tree, Random Forest, and Gradient Boosting Decision Tree. All
of these models use default parameters in Scikit-Learn. They are
trained by pairwise approach and are then tested on evaluation
data based on the majority vote. We apply TensorFlow 2.0 [1] to im-
plement the network structures of QLM (baseline) and SRQG-Gen.
Since we design SRQG-Gen to further illustrate that descriptions
extracted from top results are of higher quality than that extracted
from “IsA”-like databases, all parameters of SRQG-Gen, including
the network structure, optimizer, learning rate, batch size, division
of training data and validation data, are totally consistent with the
implementation of QLM [37] for comparison2.

5.3 Data
We fail to obtain the “IsA”-like knowledge base used in the existing
study [37] because of its inaccessibility. Alternatively, we use the
WebIsA [29] and ConceptGraph [35, 36] knowledge bases which
are similar and competitive in structure and scale with [37] for
obtaining descriptions of entities. As for training data, we randomly
sample 500 pieces of data from MIMICS for training SRQG-LTR,
and 100k pieces of data from MIMICS3 for training QLM and SRQG-
Gen. We ask three annotators to manually label data for SRQG-LTR
according to criteria in Section 5.1, resulting in about 200k pieces of
pairwise data to train two ranking models for ranking descriptions
of queries and items respectively. Following [37], we first reproduce
RTC to generate weak supervision data, then use these data to train
QLM. Similarly, in our proposed methods, we first run SRQG-Rule
to get an original ranked list of description candidates, then apply
SRQG-LTR to refine the list, and finally select the top-1 description
to generate a clarifying question. We use all these questions as weak
supervision data to train SRQG-Gen.

Since user queries are complex and diverse, their corresponding
items can be derived from different data resources. We consider the
following three datasets for evaluation, representing three differ-
ent situations: (1) Sampling 100 queries with “overall good” label
extracted from MIMICS-Manual: MIMICS-Manual is a part of
MIMICS containing manual labels. In this situation, most queries
are head queries sampled from query logs, and their items are of
high consistency. (2) Sampling 100 queries from MIMICS-Click:
MIMICS-Click contains many tail queries randomly sampled from
query logs, and their corresponding items sometimes have little con-
sistency, making it more difficult to find descriptions. (3) Sampling

1Bing Search API: https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
2Implementation details are available at https://github.com/zillion-zhao/SRQG
3MIMICS Dataset: https://github.com/microsoft/MIMICS

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

240

Table 5: Criteria of scoring clarifying questions and descriptions for a query and its corresponding items.

Score Criteria
0 Wrong or illogical clarifying question. Question is irrelevant to query and items, or description of query or items is wrong.
1 Generic clarifying question like “What do you want to know about QUERY?” and ”Select one to refine your search.”
2 Correct clarifying question whose description for query or items is not specific enough, but still acceptable to users.
3 Correct and specific clarifying question which can give users a sense of intelligence and provide better user experience.

Examples
Query: Olympics, Items: [Beijing, Tokyo, Paris, Rome] Query: google chrome exe, Items: [32 bit, 64 bit]
0 Which software are you looking for? 0 Which information are you looking for?
1 What do you want to know about Olympics? 1 What do you want to know about google chrome exe?
2 Which city are you looking for? 2 Which version are you looking for?
3 Which host city are you looking for? 3 Which bit version of chrome are you looking for?

Table 6: Evaluation results for query and items descriptions, description candidate lists and clarifying questions. ‡ and †
denotes significant improvement compared with the best baseline with 𝑝-value < 0.01 and 𝑝-value < 0.05 respectively.

Evaluation Query and Items Descriptions Description Candidate List Clarifying Questions
Overall Good 3 2 1 0 linear exp NDCG@3 MRR P@1 3 2 1 0 linear exp
RTC 0.31 0.19 0.34 0.16 1.65 3.08 0.468 1.372 0.50 0.35 0.17 0.30 0.18 1.69 3.26
QLM - - - - - - - - - 0.32 0.24 0.31 0.13 1.75 3.27
SRQG-Rule 0.57 0.21 0.07 0.15 2.20‡ 4.69‡ 0.725‡ 2.102‡ 0.78‡ 0.61 0.18 0.07 0.14 2.26‡ 4.88‡

SRQG-LTR 0.55 0.29 0.05 0.11 2.28‡ 4.77‡ 0.774‡ 2.499‡ 0.84‡ 0.59 0.27 0.04 0.12 2.35‡ 4.98‡
SRQG-Gen - - - - - - - - - 0.60 0.18 0.07 0.15 2.23‡ 4.81‡
Query Log 3 2 1 0 linear exp NDCG@3 MRR P@1 3 2 1 0 linear exp
RTC 0.25 0.06 0.62 0.06 1.49 2.55 0.302 0.778 0.31 0.27 0.06 0.59 0.07 1.52 2.66
QLM - - - - - - - - - 0.22 0.15 0.52 0.11 1.48 2.51
SRQG-Rule 0.46 0.07 0.28 0.19 1.80† 3.71† 0.584‡ 1.755‡ 0.53† 0.50 0.07 0.24 0.19 1.88† 3.95†

SRQG-LTR 0.45 0.15 0.29 0.11 1.94‡ 3.89‡ 0.601‡ 1.835‡ 0.60‡ 0.48 0.15 0.27 0.10 2.01‡ 4.08‡

SRQG-Gen - - - - - - - - - 0.51 0.14 0.23 0.12 2.04‡ 4.22‡
Q-Dim 3 2 1 0 linear exp NDCG@3 MRR P@1 3 2 1 0 linear exp
RTC 0.15 0.25 0.52 0.08 1.47 2.32 0.362 0.949 0.40 0.15 0.25 0.52 0.08 1.47 2.32
QLM - - - - - - - - - 0.11 0.27 0.51 0.11 1.38 2.09
SRQG-Rule 0.41 0.20 0.25 0.14 1.88† 3.72† 0.598† 1.673† 0.61‡ 0.41 0.20 0.25 0.14 1.88† 3.72†

SRQG-LTR 0.43 0.25 0.23 0.09 2.02‡ 3.99‡ 0.617‡ 1.669† 0.68‡ 0.43 0.25 0.23 0.09 2.02‡ 3.99‡
SRQG-Gen - - - - - - - - - 0.38 0.21 0.22 0.20 1.78 3.51

100 queries where items 𝑆 are extracted from top results of query 𝑞:
In the first two cases, items are obtained from query logs. We hope
that when the items come from different sources, our proposed
methods can also generate good clarifying questions. Therefore,
we randomly sample data from UserQ and RandQ [10], two pub-
licly available datasets for finding query dimensions. In these two
datasets, items are extracted from the query’s top results. For the
evaluation dataset scale, we try to stay consistent with previous
work to ensure the preciseness of the experiment. All evaluation re-
sults are presented in Table 6. We briefly denote the results on three
datasets as Overall Good, Query Log and Q-Dim respectively.

5.4 Evaluating Descriptions of Query and Items
Since our approaches focus on finding descriptions for query 𝑞

and items 𝑆 , we first evaluate generated descriptions independent
of questions. As each generated description is scored by a 4-level
scale (0, 1, 2, 3) shown in Table 5, we report the distribution of
the scores and calculate a linear score and an exponential score

proposed by [37] for each algorithm. The results are shown in
the left part of Table 6. Since QLM and SRQG-Gen are generative
models and cannot generate independent descriptions, we only
report the results for RTC, SRQG-Rule, and SRQG-LTR.

Overall in all three situations, SRQG-Rule outperforms RTC
significantly, and SRQG-LTR further improves the overall quality
of descriptions. We observe that SRQG-LTR achieves the highest
linear score and exponential score in all three situations. SRQG-
Rule can generate more descriptions scored by 3 or 2 and fewer
descriptions scored by 1 (generic descriptions). It indicates that top
search results contain more appropriate and specific descriptions
for a query and items. The number of 3-score results generated
by SRQG-LTR is about the same as that generated by SRQG-Rule,
but SRQG-LTR has an obvious improvement in the number of 2-
score results. However, in “Query Log” and “Q-Dim” evaluation
datasets, SRQG-Rule is prone to generate more wrong or illogical
descriptions scored by 0, with 19% and 14% respectively. It manifests
that rule-basedmethods sometimes extract wrong descriptions from

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

241

Table 7: Ablation study for each feature in SRQG-Rule.

Data Overall Good Query Log Q-Dim
Feature D-l NDCG D-l NDCG D-l NDCG
w/o. 𝑓𝐿 2.13 0.697 1.77 0.571 1.52 0.517
w/o. 𝑓𝑝 2.18 0.714 1.78 0.571 1.75 0.567
w/o. 𝑓𝑑 2.04 0.633 1.66 0.556 1.68 0.551
w/o. 𝑓𝑐 2.13 0.708 1.78 0.562 1.84 0.584
w/o. 𝑓𝑓 2.07 0.635 1.70 0.558 1.53 0.529
w/o. 𝑓𝑖 2.10 0.629 1.75 0.523 1.75 0.562
w/o. 𝑓𝑆 2.16 0.717 1.79 0.580 1.82 0.577
w/o. 𝑓𝐸 1.99 0.648 1.61 0.547 1.60 0.535
w/o. 𝑓𝐼 2.18 0.722 1.77 0.581 1.67 0.580
S-Rule 2.20 0.725 1.80 0.584 1.88 0.598

top search results. On the other hand, SRQG-LTR can re-rank the
description candidate lists returned by SRQG-Rule and reduce the
proportions of 0-score descriptions in “Query Log” and “Q-Dim” to
11% and 9% respectively. This is because, with supervised learning,
the model can automatically learn the weight of each feature, and
thereby many candidates that fall behind in the ranking of SRQG-
Rule can be improved in the ranking of SRQG-LTR.

5.5 Evaluating Description Candidate Lists
Usually, a query or several items can be well described by multi-
ple descriptions. For instance, items “[Windows 7, Windows 10,
Windows xp]” can be described as “operating system” or “version of
Windows”. Multiple descriptions can also improve the diversity of
questions, for example, the conversational search system can ran-
domly select different descriptions in top-3 candidates in different
sessions to improve the diversity of clarifying questions. Therefore,
we also evaluate the description candidates list returned by each
method, with various ranking metrics including NDCG@3, MRR
and P@1. In order to calculate metrics like NDCG and MRR, we
select the top-3 candidates returned by each algorithm to form a
pool, then compute ranking metrics for each algorithm based on the
pooled descriptions. The results are shown in the middle of Table 6.
According to the results, SRQG-LTR outperforms SRQG-Rule which
performs better than RTC in returned descriptions. The results con-
firm that top search results not only return a single good description,
but can also bring a list of high-quality descriptions where the top-
𝑛 elements in the list can provide a comprehensive and specific
description for queries or items. In three evaluation datasets, SRQG-
Rule shows significant improvement in all three metrics. Compared
with SRQG-Rule, SRQG-LTR improves NDCG@3 and MRR slightly
and improves P@1 by an average of 6.67%.

5.6 Evaluating Clarifying Questions
Our final purpose is to generate high-quality clarifying questions.
Therefore, we also apply the criteria in Table 5 to evaluate ques-
tions displayed to users. Automatic metrics such as ROUGE and
BLEU are poorly correlated with user satisfaction and clarification
quality [38], so they are not used for evaluation. The evaluation
results are shown on the right side of Table 6. Compared with RTC,
SRQG-Rule can consistently generate more high-quality clarifying
questions by finding better descriptions from top search results.
SRQG-LTR further improves SRQG-Rule by re-ranking returned

Table 8: Four example outputs of different algorithms.

Query google chrome exe Items [64 bit, 32 bit]
RTC What do you want to know about google chrome exe?
QLM What do you want to know about google chrome exe?
S-Rule Which bit version of chrome are you looking for?
S-LTR Which bit version of google chrome are you looking for?
S-Gen Which bit version of chrome are you looking for?
Query quiet riot Items [song, member, album]
RTC What do you want to know about this band?
QLM What do you want to know about this band?
S-Rule What do you want to know about this heavy metal band?
S-LTR What do you want to know about this heavy metal band?
S-Gen What do you want to know about this metal band?
Query facial tingling Items [left side, right side]
RTC What do you want to know about facial tingling?
QLM What do you want to know about this disease?
S-Rule Which side are you looking for?
S-LTR Which side of the body are you looking for?
S-Gen Which side of your head are you looking for?
Query cabins in asheville nc Items [for rent, for sale]
RTC What do you want to know about cabins in asheville nc?
QLM What do you want to know about this county?
S-Rule Which owner are you looking for?
S-LTR Which single family home are you looking for?
S-Gen Which owner for home are you looking for?

description candidate list. SRQG-Gen gets the best result in the
“Query Log” case, but it does not perform as well as SRQG-Rule and
SRQG-LTR in the other two situations. All proposed SRQG models
outperform baselines significantly.

Specifically, the evaluation results of RTC, SRQG-Rule, and SRQG-
LTR are similar to the results of descriptions but with higher scores
in general, because some questions are generated by templates T4,
T5, and T6 which do not consider descriptions for some queries,
especially for “Overall Good” and “Query Log” situations. For the
“Q-Dim” situation, there are no questions generated by T4, T5, and
T6, thus results of RTC, SRQG-Rule, and SRQG-LTR for descriptions
and questions are identical. For generative models, QLM improves
RTC in the “Overall Good” situation slightly, which is consistent
with previous study [37]. SRQG-Gen significantly outperforms all
baselines and even performs better than SRQG-LTR in “Query
Log” data, confirming descriptions extracted from top results are of
higher quality than descriptions extracted from “IsA”-like relation
knowledge bases. However, both QLM and SRQG-Gen perform
badly in “Q-dim” data. This is because training data of QLM and
SRQG-Gen are sampled fromMIMICS dataset, and items in MIMICS
are obtained from query logs, while items in the “Q-dim” data are
extracted from the top results of the query. This leads to a different
distribution between training data and evaluation data, therefore
generative models cannot perform well in this situation. A way to
alleviate this problem is to extract items from top results to replace
items extracted from query logs for generative models.

5.7 Ablation Study
In our proposed three algorithms, one of our main conclusions is
that the features used in SRQG-Rule are important to obtain high-
quality descriptions of queries and items, therefore SRQG-Rule can

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

242

generate better clarifying questions compared with existing rule-
based baseline RTC. The descriptions and questions generated by
SRQG-Rule can be further utilized in SRQG-LTR and SRQG-Gen
to improve clarification quality. In the above conclusion, features
play an important role. To prove the effectiveness of each feature
for extracting high-quality descriptions for queries and items from
top search results, we conduct an ablation study by removing one
feature at a time to compare the performance. Similar to our evalu-
ation in Table 6, we evaluate the results in three datasets: Overall
Good, Query Log, and Query Dimension. In each situation, we
re-evaluate the linear score of description (D-l for brief in Table
7), and the NDCG@3 of description candidate list (NDCG for
brief in Table 7). The ablation results are shown in Table 7, where
bold values indicate the most significant decline. It can be seen
that, in all three situations, the results of ablation models under-
perform SRQG-Rule model with all features, confirming that every
feature used in SRQG-Rule is necessary for extracting high-quality
descriptions. Specifically, in “Overall Good” and “Query Log” sit-
uations, 𝑓𝐸 is most important for finding top-1 description, and 𝑓𝑖
is most important for extracting description candidate list. In fact,
there are more queries and items in “Overall Good” and “Query
Log” data that can be found in “IsA”-like relation knowledge bases,
compared with “Query Dimension” data. Therefore, entity feature
𝑓𝐸 plays a more important role in the linear score of the top-1 re-
turned description. Besides, inclusion feature 𝑓𝑖 is helpful to find
more specific descriptions by improving their scores and bringing
them to the front of returned description list, therefore it is vital for
improving NDCG@3 of description candidate lists. In the “Query
Dimension” situation, list feature 𝑓𝐿 is most important for both the
top-1 description and description candidate list. This is because
items corresponding to a query in the “Query Dimension” situation
are extracted from list structures in HTML, thus 𝑓𝐿 has a greater
impact on the results. Besides, distance feature 𝑓𝑑 and frequency
feature 𝑓𝑓 also play an important role in all three situations for
improving the quality of extracted descriptions.

5.8 Case Study
To intuitively compare different methods mentioned in this paper,
we select four queries in MIMICS dataset and generate correspond-
ing clarifying questions with different algorithms. Table 8 shows
some example outputs of each algorithm, where RTC and QLM are
two baselines, and S- indicates our proposed SRQG- algorithms for
brief. For the query “google chrome exe”, RTC and QLM cannot
give a description of the query and items but all of our algorithms
can extract a correct description for items from top results, like
“bit version of chrome”. For the second “quiet riot”, both RTC and
QLM generate “band” as a description of the query, but it is still
not specific enough. By comparison, “metal band” or “heavy metal
band” is more specific for the query “quiet riot” generated by our
proposed algorithms. For the third example query “facial tingling”,
QLM generalizes RTC by generating a description “disease” for the
query, and SRQG-LTR and SRQG-Gen generalize SRQG-Rule by
selecting more specific descriptions for items. For the last tail query
“cabins in asheville nc”, RTC gives a generic clarifying question,
but our proposed three algorithms all give wrong descriptions for
query or items. This is because words or phrases like “owner” and

“family home” are likely to appear frequently nearby the query or
its corresponding items on many housing rental websites.

5.9 Discussion
In this paper, we use template-based clarifying questions as the
basis. This is because existing conversational search scenarios lack
manually written questions for training. In this circumstance, the
benefit of template-based questions is that they have strong ro-
bustness and are easy to be applied to online systems. However, it
has one obvious limitation: the template-based methods determine
that we can only focus on the slots that need to be filled in one
template (such as QUERY_DESC and ITEMS_DESC). However, a
clarifying question can also be improved from the parts other than
these slots. For example, for the query “GTA game” and the items
“[Windows 7, Windows 8, Windows 10, Windows XP, Windows
Vista]”, existing methods will generate “Which operating system
are you looking for?” as the question. However, if someone were
asked to write this question manually, we will naturally think of
playing the game, so the question may be written as “Which op-
erating system do you want to play GTA on?”. The enrichment of
the other parts other than the slot also improves the readability
and informativeness of clarifying questions, which is restricted by
template-based approaches in this paper. One possible solution is
to explicitly incorporate a user’s potential intent into a question,
such as “play the game” in the above example.

6 CONCLUSION
In this paper, we utilize top search results to generate more accurate
and specific descriptions for a query and its corresponding items,
thereby generating clarifying questions with higher quality for con-
versational search systems. We first design a rule-based unsuper-
vised algorithm SRQG-Rule to select candidates for query and items
from top result pages, then we design an ensemble ranking model
SRQG-LTR and a neural model SRQG-Gen to generalize SRQG-
Rule and further improve the quality of clarifying questions. We
ask three trained annotators to evaluate descriptions and clarifying
questions generated by our proposed methods. The experimental
results prove that top search results are useful to find descriptions
of queries and items because they contain abundant contextual
information, therefore the quality of questions can be improved
based on found descriptions. In the future, we aim to extract or
generate items corresponding to a query from top search results
and to generate a clarifying question simultaneously. In this way,
clarifying questions can better help users filter top results, and
finally find their intents in conversational search systems.

ACKNOWLEDGMENTS
Zhicheng Dou is the corresponding author. This work was sup-
ported by the National Natural Science Foundation of China No.
61872370 and No. 61832017, Beijing Outstanding Young Scientist
Program NO. BJJWZYJH012019100020098, and Intelligent Social
Governance Platform, Major Innovation & Planning Interdisci-
plinary Platform for the “Double-First Class” Initiative, Renmin
University of China. We also acknowledge the support provided
and contribution made by the Public Policy and Decision-making
Research Lab of Renmin University of China.

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

243

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, et al. 2016. Tensorflow: A system for

large-scale machine learning. In 12th {USENIX} symposium on operating systems
design and implementation ({OSDI} 16). 265–283.

[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Multi-task
learning for document ranking and query suggestion. In International Conference
on Learning Representations.

[3] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context At-
tentive Document Ranking and Query Suggestion. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 385–394.

[4] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. Understanding
of a convolutional neural network. In 2017 international conference on engineering
and technology (ICET). Ieee, 1–6.

[5] Mohammad Aliannejadi, Julia Kiseleva, Aleksandr Chuklin, et al. 2020. ConvAI3:
Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ).
arXiv preprint arXiv:2009.11352 (2020).

[6] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, et al. 2019. Asking clar-
ifying questions in open-domain information-seeking conversations. In Proceed-
ings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval. 475–484.

[7] Pavel Braslavski, Denis Savenkov, Eugene Agichtein, et al. 2017. What do you
mean exactly? Analyzing clarification questions in CQA. In Proceedings of the 2017
Conference on Conference Human Information Interaction and Retrieval. 345–348.

[8] Lars Buitinck, Gilles Louppe, Mathieu Blondel, et al. 2013. API design for machine
learning software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning. 108–122.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, et al. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). 4171–4186.

[10] Zhicheng Dou, Sha Hu, Yulong Luo, et al. 2011. Finding dimensions for queries. In
Proceedings of the 20th ACM international conference on Information and knowledge
management. 1311–1320.

[11] Zhicheng Dou, Zhengbao Jiang, Sha Hu, et al. 2015. Automatically mining facets
for queries from their search results. IEEE Transactions on knowledge and data
engineering 28, 2 (2015), 385–397.

[12] Zhicheng Dou, Zhengbao Jiang, Jinxiu Li, et al. 2017. A method of mining query
facets based on term graph analysis. Chines Journal of Computers 40, 3 (2017),
556–569.

[13] Helia Hashemi, Hamed Zamani, and W Bruce Croft. 2020. Guided Transformer:
Leveraging Multiple External Sources for Representation Learning in Conversa-
tional Search. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1131–1140.

[14] Ayyoob Imani, Amir Vakili, Ali Montazer, et al. 2019. Deep neural networks for
query expansion using word embeddings. In European Conference on Information
Retrieval. Springer, 203–210.

[15] Bernard J Jansen, Danielle L Booth, and Amanda Spink. 2008. Determining the
informational, navigational, and transactional intent of Web queries. Information
Processing & Management 44, 3 (2008), 1251–1266.

[16] Zhengbao Jiang, Zhicheng Dou, and Ji-Rong Wen. 2016. Generating query facets
using knowledge bases. IEEE Transactions on Knowledge and Data Engineering
29, 2 (2016), 315–329.

[17] Zhengbao Jiang, Zhicheng Dou, Wayne Xin Zhao, et al. 2018. Supervised search
result diversification via subtopic attention. IEEE Transactions on Knowledge and
Data Engineering 30, 10 (2018), 1971–1984.

[18] Weize Kong and James Allan. 2013. Extracting query facets from search results.
In Proceedings of the 36th international ACM SIGIR conference on Research and
development in information retrieval. 93–102.

[19] Weize Kong and James Allan. 2014. Extending faceted search to the general
web. In Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management. 839–848.

[20] Antonios Minas Krasakis, Mohammad Aliannejadi, Nikos Voskarides, et al. 2020.
Analysing the Effect of Clarifying Questions on Document Ranking in Conversa-
tional Search. In Proceedings of the 2020 ACM SIGIR on International Conference
on Theory of Information Retrieval. 129–132.

[21] Jiongnan Liu, Zhicheng Dou, Xiaojie Wang, et al. 2020. DVGAN: A Minimax
Game for Search Result Diversification Combining Explicit and Implicit Features.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 479–488.

[22] Christopher D Manning, Mihai Surdeanu, John Bauer, et al. 2014. The Stanford
CoreNLP natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations.
55–60.

[23] Agnès Mustar, Sylvain Lamprier, and Benjamin Piwowarski. 2020. Using BERT
and BART for Query Suggestion. In Joint Conference of the Information Retrieval
Communities in Europe, Vol. 2621. CEUR-WS. org.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[25] Xubo Qin, Zhicheng Dou, and Ji-Rong Wen. 2020. Diversifying Search Results
using Self-Attention Network. In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management. 1265–1274.

[26] Filip Radlinski and Nick Craswell. 2017. A theoretical framework for conversa-
tional search. In Proceedings of the 2017 conference on conference human informa-
tion interaction and retrieval. 117–126.

[27] Sudha Rao and Hal Daumé III. 2018. Learning to Ask Good Questions: Ranking
Clarification Questions using Neural Expected Value of Perfect Information.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2737–2746.

[28] Sudha Rao and Hal Daumé III. 2019. Answer-based Adversarial Training for
Generating Clarification Questions. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). 143–155.

[29] Julian Seitner, Christian Bizer, Kai Eckert, et al. 2016. A Large DataBase of Hyper-
nymy Relations Extracted from the Web.. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16). 360–367.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. 2017. Attention is all you
need. Advances in neural information processing systems 30 (2017), 5998–6008.

[31] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[32] Alexandra Vtyurina, Denis Savenkov, Eugene Agichtein, et al. 2017. Exploring
conversational search with humans, assistants, and wizards. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems.
2187–2193.

[33] Jian Wang and Wenjie Li. 2021. Template-guided Clarifying Question Genera-
tion for Web Search Clarification. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 3468–3472.

[34] Xiaojie Wang, Ji-Rong Wen, Zhicheng Dou, et al. 2017. Search result diversity
evaluation based on intent hierarchies. IEEE Transactions on Knowledge and Data
Engineering 30, 1 (2017), 156–169.

[35] ZhongyuanWang, HaixunWang, Ji-RongWen, et al. 2015. An inference approach
to basic level of categorization. In Proceedings of the 24th acm international on
conference on information and knowledge management. 653–662.

[36] Wentao Wu, Hongsong Li, Haixun Wang, et al. 2012. Probase: A probabilis-
tic taxonomy for text understanding. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 481–492.

[37] Hamed Zamani, Susan Dumais, Nick Craswell, et al. 2020. Generating clarifying
questions for information retrieval. In Proceedings of The Web Conference 2020.
418–428.

[38] Hamed Zamani, Gord Lueck, Everest Chen, et al. 2020. Mimics: A large-scale data
collection for search clarification. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 3189–3196.

[39] Hamed Zamani, Bhaskar Mitra, Everest Chen, et al. 2020. Analyzing and Learn-
ing from User Interactions for Search Clarification. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1181–1190.

Topic 3: Conversational IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

244

	Abstract
	1 Introduction
	2 Related Work
	3 Analysis of Clarifying Questions
	4 Methods
	4.1 SRQG-Rule
	4.2 SRQG-LTR
	4.3 SRQG-Gen

	5 Experiments
	5.1 Human Labeling for Evaluation
	5.2 Implementation Details
	5.3 Data
	5.4 Evaluating Descriptions of Query and Items
	5.5 Evaluating Description Candidate Lists
	5.6 Evaluating Clarifying Questions
	5.7 Ablation Study
	5.8 Case Study
	5.9 Discussion

	6 Conclusion
	Acknowledgments
	References

