
Webformer: Pre-training with Web Pages for Information
Retrieval

Yu Guo∗
Zhengyi Ma
Jiaxin Mao

Hongjin Qian
yu_guo@ruc.edu.cn

Gaoling School of Artificial
Intelligence

Renmin University of China
Beijing, China

Xinyu Zhang
Hao Jiang
Zhao Cao

Distributed and Parallel Software
Lab, Huawei

Zhicheng Dou†
Gaoling School of Artificial

Intelligence
Renmin University of China

Beijing, China
Beijing Key Laboratory of Big Data
Management and Analysis Methods

Beijing, China
dou@ruc.edu.cn

ABSTRACT
Pre-trained language models (PLMs) have achieved great success
in the area of Information Retrieval. Studies show that applying
these models to ad-hoc document ranking can achieve better re-
trieval effectiveness. However, on the Web, most information is
organized in the form of HTML web pages. In addition to the pure
text content, the structure of the content organized by HTML tags
is also an important part of the information delivered on a web
page. Currently, such structured information is totally ignored by
pre-trained models which are trained solely based on text con-
tent. In this paper, we propose to leverage large-scale web pages
and their DOM (Document Object Model) tree structures to pre-
train models for information retrieval. We argue that using the
hierarchical structure contained in web pages, we can get richer
contextual information for training better language models. To ex-
ploit this kind of information, we devise four pre-training objec-
tives based on the structure of web pages, then pre-train a Trans-
former model towards these tasks jointly with traditional masked
language model objective. Experimental results on two authori-
tative ad-hoc retrieval datasets prove that our model can signif-
icantly improve ranking performance compared to existing pre-
trained models.

CCS CONCEPTS
• Information systems → Retrieval models and ranking.

KEYWORDS
Ad-hoc Retrieval, Pre-training, Web Page, DOM Tree

∗This work was done when Yu Guo was an intern at Huawei.
†Zhicheng Dou is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07…$15.00
https://doi.org/10.1145/3477495.3532086

ACM Reference Format:
Yu Guo, Zhengyi Ma, Jiaxin Mao, Hongjin Qian, Xinyu Zhang, Hao Jiang,
Zhao Cao, and Zhicheng Dou. 2022. Webformer: Pre-training with Web
Pages for Information Retrieval. In Proceedings of the 45th International
ACMSIGIR Conference on Research andDevelopment in Information Retrieval
(SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3477495.3532086

1 INTRODUCTION
In recent years, because of the powerful semantic representation
and context modelling ability, pre-trained language models [7, 11,
28, 29] have been widely applied in the area of information re-
trieval [6, 18, 25, 38, 39, 46]. Recent studies have shown that ap-
plying these pre-trained language models (e.g., BERT) can bene-
fit the document ranking task and achieve better retrieval effec-
tiveness [12, 24, 25, 39]. Furthermore, there have been some pio-
neer studies on designing the pre-training objectives tailored for
IR [6, 17–20, 45]. For example, Ma et al. [18] proposed sampling
word sets as pseudo queries based on a statistical language model.
The pseudo queries are then used to construct query-document
pairs which can fine-tune the PLMs dedicated for Information Re-
trieval. Lee et al. [17] and Chang et al. [6] proposed ICT, which
sample a sentence in a paragraph as a pseudo query and regard
the remaining paragraph as its corresponding document because
of their strong correlation.

Although current IR-oriented PLMs have led promising improve-
ments compared to using vanilla PLMs solely, there is still a large
space for exploring better pre-training models for IR. In this paper,
we reveal that there is a common problem in existing IR-oriented
PLMs: they are trained with plain text and have ignored the use-
ful structural information contained in large scale web pages. We
argue that incorporating the structural information of web pages
into PLMs would capture incremental semantic signals that can
benefit the retrieval performance in IR. We think it is essential to
investigate this problem because of the following reasons. On the
one hand, there are a large amount of HTML web pages on the
Web.They contain rich structural information organized by HTML
tags together with plain text. For example, the texts in “title” tags

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1502

https://doi.org/10.1145/3477495.3532086
https://doi.org/10.1145/3477495.3532086

Figure 1: Illustration of structural information contained
in a web page https://www.tripadvisor.com/Restaurants-
g60878-zfp10954-Seattle_Washington.html. There are three
similar content blocks in the web page. In each block, there
are a title in bold and some descriptions to the restaurant,
including location, comments and etc..

are often the summarization of the document, and the parallel el-
ements under the same parent tag usually share semantic relat-
edness with each other. Besides, web pages usually have regular
shapes, as shown in Figure 1, we can see that the web page can be
divided into 3 parts, and all the parts share the same structure with
a restaurant name in bold and some descriptions to the restaurant
in their fixed position, including location, comments and etc.. If
we directly extract all the inner text, we will lose the information
provided by the structure and have difficulty in understanding the
texts’ correlations. Intuitively, it is beneficial to consider the con-
tent structure of the HTML web pages for pre-training language
models.On the other hand, the length limit of most PLMs are set
as 512 tokens [11]. During pre-training, because the input is flat-
tened text, they are unable to encode the whole web page at the
same time thus simply truncate the texts or divide documents into
passages. This will inevitably lose some important information for
understanding the overall semantic information of the entire web
page. Utilizing a new representation model that can naturally fit
the hierarchical structure of web pages is hence essential.

Inspired by the two observations, we rethink the design of train-
ing objectives tailored for IR. In this paper, we propose to pre-
train languagemodels with both the plain text and the struc-
tural information of web pages. Integrating the two kinds of
complementary information, the PLMs can learn semantics
from both the natural-language and the structure perspec-
tives. Leveraging structural information contained in HTML web
pages has several advantages: (1) Since web pages are organized
as HTML elements by HTML tags, language models can leverage
the contextual information between HTML elements, thus build
more accurate representations for texts and the whole document.
(2) HTML elements usually containmultiple content blocks for spe-
cific information needs. Thus, they can reflect more precise and

stable semantic information compared to fix-length text segments
or chunks [9]. Leveraging HTML elements to split page content
into passages is hence expected to enhance the quality of the pre-
trained model. (3) HTML elements are organized as a DOM tree1
in a hierarchical manner. Based on this structure, the model can
learn long document text layer by layer instead of being limited to
512-token length. In this way, the language model can incorporate
and preserve more information of one document while being able
to model long documents naturally. (4) There are a huge number
of pages on the Web, so data is sufficient if we want our model to
scale up to billions of web documents.

In this paper, we propose a pre-training framework namelyWeb-
former. We firstly construct a hierarchical model based on the
structure of the DOM tree, and pre-train a language representa-
tion model with the supervised signals among structured HTML
elements, then fine-tune the model parameters according to the
downstream ad-hoc retrieval tasks. Considering the noise in orig-
inal HTML text, we first remove uninformative text such as self-
close tags, comments. Then, following Blohm [5]Mirończuk [21],
we remove the internal attributes of the tags and treat every tag
as a token. However, there are many non-leaf nodes in the web
page’s DOM tree that have only one child, which greatly increases
the depth of the tree while little information is given. To address
the huge overhead brought by the complex DOM tree structure, we
compress the DOM tree to a definite depth. Specifically, if a non-
leaf node has only one child node, its child node will be spliced to
its parent node, and this non-leaf node will be deleted. After that, if
the DOM tree’s depth still exceeds maximum depth, the exceeded
parts will be merged into its parent nodes. For example, if the max-
imum depth is 3, the “p” elements of the third layer in Figure 2 will
become “<p>textD</p>” and become a leaf node. We encode the
remaining nodes with two kinds of Transformer encoders namely
Text Encoder and Node Encoder, where Text Encoder is used to
encode leaf nodes and Node Encoder is used to encode non-leaf
nodes. Because there are tag tokens in the leaf node, we pre-train a
BERT-Basemodel from scratchwith the HTML text usingMLMob-
jective to initialize Text Encoder. With such an approach, a whole
web page can be naturally encoded by our model.

On the basis of the hierarchical model architecture, we design
four self-supervised pre-training objectives for modeling the se-
mantic correlations between HTML texts and hierarchical HTML
elements in different views: (1) Masked Node Prediction (MNP).
Inspired by the Masked Language Model (MLM), we treat all the
child nodes of one node as a sequence, and predict the masked
node’s representation through the fine-grained information pro-
vided by its surrounding elements. (2) Parent-child Node Model-
ing (PNM).We use a non-leaf node as an anchor, and distinguish its
child nodes from other irrelevant nodes, aiming to capture the cor-
relation between parent node and its child nodes. (3) Sibling Node
Modeling (SNM). Similar to PNM,we also distinguish sibling nodes
from other irrelevant nodes, to model the parallel information in
the web pages. (4) Children Order Prediction (COP). Similar to nat-
ural language sequence, the child nodes of one node also have a
specific order. In order for the model to understand the relative
order among nodes, we shuffle the child nodes’ order and try to

1DOM Standard, https://dom.spec.whatwg.org/

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1503

https://www.tripadvisor.com/Restaurants-g60878-zfp10954-Seattle_Washington.html
https://www.tripadvisor.com/Restaurants-g60878-zfp10954-Seattle_Washington.html
https://dom.spec.whatwg.org/

predict the original order. Based on the four proposed tasks, we
pre-train the Transformer model towards the supervised signals
jointly with MLM objective. Via such a pre-trained method, Web-
former can effectively fuse the structural and textual information
in web pages, and learn context-aware language representations.

The pre-training dataset we use is English Wikipedia, which
contains millions of well-formedWikipedia web pages. At the fine-
tuning stage, we use our pre-trained Text Encoder to initialize the
ranking model, and evaluate its performance on two authorita-
tive ad-hoc retrieval datasets, including theMSMARCODocument
Ranking dataset [23] and the Trec 2019 Deep Learning dataset[8].
Experimental results show that Webformer trained on Wikipedia
can outperform competitive state-of-the-art document rankingmod-
els. And we believe a larger corpus can release more potential
power of Webformer in the future.

Our contributions are three-fold:
(1)We are the first to introduce structural information contained

in web pages into pre-training for IR.
(2) We design a hierarchical Transformer model to encode long

web pages, to capture the semantic correlations between HTML
elements.

(3) We design four self-supervised pre-training objectives in-
cluding Masked Nodes Prediction, Parent-Child Modeling, Sibling
NodesModeling andChildrenOrder Prediction, to exploit the struc-
tural information as supervised signals.

2 RELATED WORK
2.1 Pre-trained Language Models
Recent years have witnessed the great development of pre-trained
language models. These context-aware representation models pre-
trained on a massive amount of unlabeled data with deep neural
networks have dominated a wide range of NLP tasks [11, 26, 41,
47]. Because of the powerful ability to aggregate context of fully-
connected self-attention layers, Transformer [33] has become the
main architecture of these pre-trained models. Devlin et al. [11]
proposed BERT, a bi-directional Transformer model pre-trained
with MLM and Next Sentence Prediction (NSP) to obtain contex-
tual language representations and sentence-pair representations.
Following BERT, many pre-training methods with different objec-
tives have been designed, such as probabilistic language model-
ing [28, 40], permuted language modeling [41], sentence order pre-
diction [16], and replaced token detection [7]. In order to encode
long documents, some researchers explored how to increase the
maximum length of the pre-trained model while preserving the its
comprehension ability of textual information, and achieved excel-
lent results [4, 15, 34, 42, 44]. The success of pre-trained models
in NLP has also attracted much attention in the IR community. By
feeding the concatenated query-document pair into BERT and sim-
ply adding anMLP layer to obtain a relevance score, manymethods
have achieved remarkable performance in fine-tuning for ad-hoc
retrieval task [10, 12, 24, 25, 27, 32, 35, 39].

2.2 Pre-training Tasks for IR
In addition to general pre-training tasks, researchers found that
adding good pre-training tasks that resemble the downstream tasks
can obtain better performance at the fine-tuning stage [6]. And

html

head body

title

textA

div

textB div

h1

textC

Transformer Encoder

Node Encoder

Transformer Encoder

…

Text Encoder

Node Encoder

Text Encoder

div

p

textD

𝑣!"# 𝑣$%&' ℎ&()* ℎ+,-+. ℎ&()/

ℎ$%&'

[CLS] I prefer banana

ℎ+,-+0

Figure 2: The structure of Webformer. A blue node repre-
sents the Node Encoder that encodes the information of a
non-leaf node, whereas a white node represents the Text En-
coder that encodes the HTML text of a leaf node.

the existing pre-training tasks such as MLM and NSP mostly fo-
cus on modeling the general contextual dependency or sentence
coherence, not on measuring the query-document relevance, this
inspired researchers to design pre-training objectives towards ad-
hoc retrieval and collect corresponding pseudo query-document
pairs. Lee et al. [17] and Chang et al. [6] firstly explored to pre-
train the Transformer with Inverse Cloze Task(ICT) in dense re-
trieval task, where they treated the passages as the documents and
the inner sentences as queries . Following ICT, Chang et al. [6] pro-
posed Body First Selection (BFS) and Wiki Link Prediction (WLP)
to model the inner page and inter-page semantic correlations. Ma
et al. [18] proposed PROP with the Representation Words Predic-
tion (ROP) task for ad-hoc retrieval. They sampled the word sets
as pseudo queries based on a statistical language model, and as-
sumed the query with a higher likelihood is more representative.
After pre-training the Transformer model with ROP, they achieved
state-of-the-art performance.

Different from the above approaches, we propose using the struc-
ture information contained in web pages comprised of HTML tags
and elements as supervised signals for pre-training language mod-
els. HTML tags and elements have been leveraged in various ex-
isting works, including name entity recognition[3], zero-shot text
summarization [1], document retrieval [2, 14], and information ex-
traction [5, 21?]. However, none of the existing methods proposes
to use HTML structural information to design pre-training objec-
tives for IR. Since HTML is the source form of web pages and can
provide stable complementary information to pure text, we believe
they can bring more reliable supervised signals for pre-training,
and further enhance the downstream IR task.

3 METHODOLOGY
In recent years, the PLMs have reformed the paradigm of the IR
domain. However, most current PLMs are trained with plain text
with general objectives (e.g.the MLM objective). In this paper, we
seek to train the PLMs by leveraging the DOM trees of large-scale
web pages and designing training objectives tailored for ad-hoc re-
trieval. We think the PLMs trained with our method would benefit

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1504

from the structural and hierarchical semantics of the web pages
and therefore improve the performance of downstream tasks.

To achieve this, we design a model named Webformer. We train
the Webformer via two stages: (1) pre-training stage and (2) fine-
tuning stage. In the first stage, we use the DOM tree of the web
pages to train the PLMs which is optimized with our designed
objective functions. In the second stage, we fine-tune the PLMs
obtained from the first stage with retrieval-task data (e.g.query-
document pairs) to obtain the ranking model.

In this section, we will first provide an overview of our pro-
posed model Webformer in Section 3.1, consisting of two stages
of pre-training and fine-tuning. Then, we will give the details of
the pre-training stage based on web pages in Section 3.2, and the
fine-tuning stage for document ranking in Section 3.3.

3.1 Overview
We briefly introduce the two-stage framework of our proposed
Webformer as follows.

3.1.1 Pre-training Stage. In the pre-training stage, we seek to train
a transformer-based languagemodel on theDOM tree ofweb pages.
As shown in Figure 2, the DOM tree can be seen as a tree structure
in which the HTML elements and text elements are the nodes of
the tree.

Suppose that C is a large corpus of web pages, one web page
𝑃 ∈ C comprises of two kinds of nodes: non-leaf nodes 𝐸 and leaf
nodes 𝐿, i.e., 𝑃 = (𝐸, 𝐿). The non-leaf nodes 𝐸 = (𝐸1, 𝐸2, · · · , 𝐸𝑛)
represent the collection of HTML elements, and the leaf nodes
𝐿 = (𝐿1, 𝐿2, · · · , 𝐿𝑚) represent the collection of text elements. For
the 𝑖-th HTML element 𝐸𝑖 , it might contain both HTML elements
and text elements as the child nodes. For example, in Figure 2, the
“body” element has three children including two “div” elements
and one text node “TextC”. For such a non-leaf node, we formu-
late the parent node and all of its child nodes into a heterogeneous
sequence, i.e., 𝐸body = (𝐸div1, 𝐿TextC, 𝐸div2).

Besides, as mentioned in Section 1, in order to limit the model
size, we set a maximum layer depth 𝑘 of the DOM tree. If the depth
of the DOM tree exceeds 𝑘 , the parts exceeding layer 𝑘 will be
merged into the 𝑘-th layer. Based on the dataset C, we train a Node
Encoder M𝑇 and a Text Encoder M on this corpus.

Since the structural information in the web page is organized
as DOM trees, we design a hierarchical framework to model the
text and HTML elements of the web page. Specifically, as shown
in Figure 2, We first expand each HTML file into a DOM tree, and
then use two kinds of transformer encoders, i.e., Text Encoder and
Node Encoder, to encode the text and HTML element of the web
page, respectively. For each node, we use the output of [CLS] of its
corresponding encoder as its overall representation, and pass the
vector to its parent node as a token of its parent’s sequence. In this
way, a piece of data starts from the leaf node, passes its semantic
information step by step to the upper layer, and finally complete
the modeling of the entire DOM tree.

To thoroughly capture the structural information of the DOM
tree, we design four pre-training tasks from different perspectives
of the HTML structural information of the web pages. Each pre-
training task has a corresponding training objective. OurWebformer
is trained based on the joint of the four pre-training tasks together

with theMLMobjective. Trainingwith such amechanism,we think
the encoders can learn the structural information of web pages
such as hierarchy and parallel, which facilitate the encoder to un-
derstand the semantics of web text better. Thus, it can achieve bet-
ter performance when applied to the downstream task fine-tuning.

3.1.2 Fine-tuning Stage. To evaluate the effectiveness of our pro-
posedWebformer, we fine-tuneWebformer on the document rank-
ing task. Specifically, for an ad-hoc query-document pair (𝑞, 𝑑), we
seek to learn a scoring model s(𝑞, 𝑑) that measure the matching
degree between the query 𝑞 and the document 𝑑 . We use the pre-
trainedWebformer as the backbone of the scoring model s(·, ·). We
concatenate the document 𝑑 and the query 𝑞 into a long sequence
[CLS]𝑑 [SEP]𝑞 [SEP], and feed the sequence into theWebformer
to obtain its hidden states. We use the representation of the [CLS]
token to represent the whole sequence.The relevance score is com-
puted by feeding the hidden states of the [CLS] token into a multi-
layer perception (MLP).

3.2 Pre-training based on Web Pages
As we have introduced in Section 1, the information of web page is
mostly organized as DOM tree in a hierarchical manner. However,
the DOM tree of a web page contains both the HTML tag nodes
and the text nodes, which have different semantic space. This het-
erogeneity inspires us to use two different Transformer encoders
to encode the HTML tags and page texts, respectively. After gen-
erating the tag representations and text representations, we can
leverage the supervised signals brought by HTML structural infor-
mation to build reliable pre-training samples. To achieve this, we
design four pre-training tasks based on HTML structural informa-
tion to construct different loss functions. The architecture of the
four pre-training tasks is shown in Figure 3. These four tasks try
to learn the correlation between HTML tags and texts in differ-
ent views. Thus, the focus of each task is how to build the pre-
training sample. In the following, we will first present our hier-
archical model for encoding the HTML tags and page texts, then
introduce the proposed four pre-training tasks in detail.

The architecture for encoding the HTML elements and page
texts is shown in Figure 2. We maintain a Text Encoder to en-
code the page texts in the web page, and use a Node Encoder to
encode the HTML tags. Both the Encoders are Transformer en-
coders with the same architecture as BERT [11]. For the page texts
𝑆 = (𝑤1,𝑤2, · · · ,𝑤𝑛) in the web page, we get its contextual rep-
resentations by feeding the word sequence into the Text Encoder,
and use the representation of the [CLS] token ℎ𝑆 as the text repre-
sentation of 𝑆 :

ℎ𝑆 = CLS (TextEncoder ([CLS],w1,w2, · · · ,wn)) . (1)

For the HTML tags containing plain texts, the representation of the
inner texts is treated as this tag’s representation, where inner texts
is all the text included by this tag token. For the HTML tag contain-
ing multiple texts and tags, we use the Node Encoder to aggregate
the children representations, and use the [CLS] representation as
the tag representation. Specifically, for the tag containing multiple
children 𝑇 = (𝑡1, 𝑡2, · · · , 𝑡𝑛), we calculate its representation ℎ𝑇 as:

ℎ𝑇 = CLS (NodeEncoder (𝑣CLS, 𝑡0, 𝑡1, 𝑡2, · · · , 𝑡𝑛)) , (2)

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1505

Cosine Distance

HTML Element

HTML Element

[CLS] <div> textB [MASK] [SEP]

[CLS] <div> [SEP]

(1) Masked Nodes Prediction (2) Parent-Child Modeling

textB <div>

Transformer Encoder

Transformer Encoder

HTML Element

[CLS] <div> [SEP]textB <div>

HTML Element
[CLS] <div> textB [MASK] [SEP]

Transformer Encoder

Pair-wise Loss

Transformer Encoder

Positive

N
egative

(3) Brother Nodes Modeling

HTML Element

[CLS] <div> [SEP]textB <div>

HTML Element
[CLS] <div> textB <div> [SEP]

Transformer Encoder

Pair-wise Loss

Transformer Encoder

Positive

N
egative

(4) Children Order Recovering

HTML element

[CLS] <div> [SEP]textB <div>

Shuffled HTML Element
[CLS] textB <div> <div> [SEP]

KL-Diverse Losssh
uf
fle
d

Transformer Encoder

MLP

Original Order Normalization

Figure 3: The proposed four pre-training tasks based on structural information in web pages: (1) Masked Nodes Prediction, (2)
Parent-Child Modeling, (3) Sibling Nodes modeling and (4) Children Order Prediction

where 𝑣CLS is the word embedding of [CLS] token and 𝑡0 is the em-
bedding of the tag token. In this way, we can calculate the represen-
tation of all nodes on the DOM tree, including the HTML tag rep-
resentations and text representations. Since every representation
is calculated based on its children, we can model and capture the
structural information of the web pagewith the hierarchical model.
After getting the encodings, we need to design specific pre-training
tasks to optimize the encodermodels for supervised training. In the
following, we will present our proposed four pre-training tasks in
detail.

3.2.1 Masked Node Prediction (MNP). In the DOM tree of a web
page, the non-leaf HTML tags usually havemultiple children nodes
as their representation. For each child tag or child text, the sur-
rounding elements can provide fine-grained information about it.
Therefore, our first idea is to fuse the context elements through
modeling the node correlations. In this way, it is expected to inject
useful node correlations into tag representations and text repre-
sentations. Inspired by the masked language model like BERT, we
propose to model the context information in a node sequence by a
cloze task, and try to approximate the masked node from the input
sequence.

However, the MLM task has a specific label, which is the word
that is masked. For a high-dimensional vector, we cannot provide
an accurate supervision signal. In this regard, we reconstructed
a new label, that is, we do not perform the masking operation
on the input first, but after completing the bottom-up process of
the model, we record the output of each step corresponds to the
masked token as supervision signal. We hope to minimize the dis-
tance between the output of the masked position and the original
output as much as possible.

Specifically, given a non-leaf node𝑇 = (𝑣CLS, 𝑡0, 𝑡1, · · · , 𝑡𝑛), we
firstly use the Node Encoder to update its children’s representa-
tions as ℎ𝑇 = (ℎ1, · · · , ℎ𝑛). This representation is treated as the

context-aware child nodes representations, since it is generated
based on the bi-directional context of each nodes. Then, for the
original 𝑇 = (𝑣CLS, 𝑡0, 𝑡1, · · · , 𝑡𝑛), we randomly mask the 𝑗-th
node 𝑡 𝑗 , and treat the rest sequence 𝑇mask = (𝑣CLS, 𝑡0, 𝑡1, 𝑣mask,
· · · , 𝑡𝑛) as the surrounding context for 𝑡 𝑗 . We feed the surrounding
context sequence 𝑇mask into the Node Encoder, and calculate the
hidden state of the 𝑡 𝑗 , then we extract the original context-aware
representation of ℎ 𝑗 in ℎ𝑇 , :

ℎmask
𝑗 = MASK (NodeEncoder (𝑇mask)) , (3)

ℎ 𝑗 = MASK (NodeEncoder (𝑇)) , (4)
whereℎmask

𝑗 is treated as the predicted representation based on its
contexts, and MASK(·) is used to get the output of the [MASK]
token. We formulate the objective of the Masked Node Prediction
task by a cosine similarity-based loss. We minimize the cosine sim-
ilarity between the predicted representation and the source repre-
sentation of the masked node 𝑡 𝑗 as:

𝐿mnp = 1 −
ℎmask
𝑗 · ℎ 𝑗

| |ℎmask
𝑗 | | · | |ℎ 𝑗 | |

. (5)

3.2.2 Parent-ChildModeling (PCM). In theHTMLDOM tree,most
of the texts under the two nodes that construct parent-child rela-
tionship have obvious logical connections, since the information
of the parent node is composed of all its children. Therefore, We
hope to use such kind of relationship in the DOM tree to learn
the containment relationship of the corresponding text. As men-
tioned above, in our model, we can use the aggregation result of
child nodes to represent a non-leaf node, thus we can represent
parent node and child node through dense vectors separately. We
train the model to predict the true child node with the semantic
information of the parent node, thus can learn the ability to distin-
guish containment relationships in pre-training. However, cause

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1506

we use the interaction results of all child nodes to represent the
tag, there will be a problem of information leakage. Thus, after we
select a child node, this child node is first removed from the DOM
tree, and the representation of the parent node aggregated by the
rest of the sequence is used to calculate the matching score with
the original child node. In detail, for the input vector of a non-leaf
node 𝑇 = (𝑣CLS, 𝑡0, 𝑡1, 𝑡2, · · · , 𝑡𝑛), we randomly mask out the 𝑗-
th vector and get 𝑇𝑚𝑎𝑠𝑘 = (𝑣CLS, 𝑡0, 𝑡1, 𝑣mask, · · · , 𝑡𝑛) and pass it
through the Node Encoder. The hidden state of the [CLS] repre-
sents the entire masked sequence, which is expressed as:

ℎparent = CLS (NodeEncoder (𝑇mask)) , (6)

where CLS(·) is a function to take the output of the [CLS] token.
We use ℎparent as the representation of the parent node, and the
child node is the original masked vector 𝑡 𝑗 . After that, we randomly
select a vector 𝑡sample of another node representation in the same
batch as a disturbance. We use (ℎparent, 𝑡 𝑗) as a positive example
and (ℎparent, 𝑡sample) as a negative example to construct a pair-
wise loss, which is expressed as:

𝐿pcm = max
(
0, 1 − P

(
ℎparent |𝑡 𝑗

)
+ P

(
ℎparent |𝑡sample

))
, (7)

where P(𝑥 |𝑦) is a score function,which can be expressed as:

P (x|y) = MLP ([𝑥 ;𝑦]) , (8)

where [;] is a concatenation operation.

3.2.3 Sibling Nodes Modeling (SNM). Different from the contain-
ment relationship of parent-child nodes, sibling nodes containmore
of a parallel relationship. It not only refers to the parallelism at the
word level, but also includes parallelism between different areas of
the web page. For example, the repeat regions on Figure 1 are all
under the same “<table>” tag, and share the same content struc-
ture. In our model, two nodes with a parallel relationship are vec-
tors that input to the same non-leaf node, thus we propose to use
the representations to predict the true sibling node of one sampled
node, thus can learn the ability to distinguish the parallel relation-
ship between texts in pre-training. Specifically, for the input vector
of a non-leaf node𝑇 = (𝑣CLS, 𝑡0, 𝑡1, 𝑡2, · · · , 𝑡𝑛), we first sample the
𝑗1-th and 𝑗2-th vector which is denoted as 𝑡 𝑗1 and 𝑡 𝑗2 separately,
then, we randomly select a node representation 𝑡sample of another
piece of training data in the same batch. Finally, we use (𝑡 𝑗1 , 𝑡 𝑗2)
as a positive example and (𝑡 𝑗1 , 𝑡sample) as a negative example to
construct a pair-wise loss, which is expressed as:

𝐿snm = max
(
0, 1 − P

(
𝑡 𝑗1 |𝑡 𝑗2

)
+ P

(
𝑡 𝑗1 |𝑡sample

))
, (9)

where P(𝑥 |𝑦) is the same as Equation (8).

3.2.4 Children Order Prediction (COP). In the text sequence, the
relative order of tokens has strict requirements. Nevertheless, we
want to argue that the relative order of regions of a web page
also has strict requirements. Due to the length limitation of the
previous pre-trained models, none of them can model multiple re-
gions simultaneously, thus having difficulty in modeling the rel-
ative order among multiple regions. However, in our model, the
child nodes of a non-leaf node represent areas that do not overlap
each other, the deeper the node represents the larger the area. In-
spired by this, we train the model to predict the original order of all
the children of a non-leaf node, thus our model can recognize the

relative order of different parts of a web page and have a clear un-
derstanding of their logical connections. Detailedly, for the input
vector of a non-leaf node𝑇 = (𝑣CLS, 𝑡0, 𝑡1, 𝑡2, · · · , 𝑡𝑛), we keep the
positions of 𝑣CLS and 𝑡0 unchanged, randomly shuffling the order
of its rest child nodes and get𝑇shuffle = (𝑣𝐶𝐿𝑆 , 𝑡0, 𝑡𝑚1 , 𝑡𝑚2 , · · · , 𝑡𝑚𝑛)
, where (𝑚1,𝑚2, · · · ,𝑚𝑛) is the original order of the child vector,
the final after that, we pass the [CLS]’s output to an MLP to get a
d-dimensional vector,then use softmax function to normalize the
vector,which can be expressed as:

𝑂 = softmax (MLP (CLS(𝑇shuffle))) = (𝑜1, 𝑜2, · · · , 𝑜𝑑) , (10)

where d is the max length of children nodes. At the same time, the
original order is expanded to d-dimension as 𝑀 = (𝑚1,𝑚2, · · · ,
𝑚𝑛, · · · , 𝑑), where d is the maximum length of Node Encoder. We
also normalize the vector as:

𝑊 =
𝑀∑𝑑

𝑖=1𝑚𝑖

. (11)

Finally, we use the KL divergence of these two distributions as the
loss function of COP, expressed as:

𝐿cop = DKL (𝑂 | |𝑊) =
𝑑∑
𝑖=1

𝑜𝑖 · log
𝑜𝑖
𝑤𝑖

. (12)

3.2.5 Final Training Objective. While pre-training theWebformer,
we also need to maintain the ability of context understanding of
the Text Encoder. Therefore, we still add MLM loss to the Text En-
coder and denote it as 𝐿MLM. The implementation process is the
same as BERT [11]. We add these five parts of the loss together as
the overall loss of the model:

𝐿 = 𝐿mnp + 𝐿pcm + 𝐿snm + 𝐿cop + 𝐿mlm . (13)

3.3 Fine-tuning stage of downstream tasks
In this stage, we evaluate the effectiveness of our approach Web-
former in downstream document ranking task.

We follow previous approaches of utilizing pre-trained models
for ad-hoc document ranking [24, 25, 27]. Specifically, for a query
𝑞 and a candidate document 𝑑 , we firstly add special tokens and
concatenate them as 𝑌 = ([CLS];𝑞; [SEP];𝑑; SEP]), where [;]
is the concatenation operation. [CLS] token is used to summarize
the whole sequence for special needs of downstream tasks. [SEP]
token is used to mark the end of the query and document. Then,
we feed the sequence 𝑌 to Webformer, and use the representation
of [CLS] to get the matching score:

s(q, d) = MLP(hcls), hcls = CLS(Webformer(Y)) . (14)

We use cross-entropy loss as the objective:

𝐿dr =
1

𝑁

𝑁∑
𝑖=1

𝑦𝑖 log s(q, d) + (1 − 𝑦𝑖) log(1 − s(q, d)), (15)

where N is the number of samples in training set.

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1507

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Pre-training Corpus. In the pre-training phase ofWebformer,
we use WikiExtractor2 to extract the data in Wikidump3 and keep
the HTML tags. To guarantee enough structural information and
remove noise data, we do the following data cleaning: (1) We re-
move self-closing tags and script tags. We remove the self-closing
tagswhich are used for standardizing the page structure and do not
contain text information, such as “<meta>” and “<input>” tags. (2)
We remove the page comments which are not related to the page
content, such as the texts between “<!—” and “—>” in HTML text.
(3) Following [5, 21], we remove the internal attributes of the tags.
We treat a tag as a single token, thus we standardize all tags into
the format of “<tag_name>”. (4) We remove the page whose total
length is less than 512, since it can be directly put into a BERT struc-
ture. Finally, we obtain 2,975,354 web pages with HTML sources
for pre-training.

Note that we use Wikipedia as our pre-training corpus, because
it is widely used in previous work [7, 11, 16, 28, 40]and makes our
work comparable to existing methods. Pre-training with a larger
corpus, such as CommonCrawl 4 or WebText [30], is definitively
valuable to industry, but we do not have enough computation re-
sources.We are looking forward to collaborating with our partners
on this task in the future.

4.1.2 Fine-tuning Datasets. To evaluate our proposed model Web-
former, we conduct fine-tuning experiments on two authoritative
ad-hoc retrieval datasets.
• MS MARCO Document Ranking (MS MARCO)5 [23]: MS

MARCO is a large-scale benchmark dataset on document rank-
ing. It consists of 3.2 million documents with 367 thousand train-
ing queries, 5 thousand development queries, and 5 thousand
test queries. The relevance is measured in 0/1.

• TREC 2019 Deep Learning Track (TREC DL)6 [8]: Its train-
ing set is the same as MS MARCO, but use a novel test set which
has more comprehensive notations. It has 43 test queries, and
the relevance is scored in 0/1/2/3.

4.1.3 EvaluationMetrics. WeuseMRR@100 andMRR@10 tomea-
sure the top-ranking performance inMSMARCO, and use nDCG@10
and nDCG@100 to measure the ranking performance in TREC-DL.

4.2 Baselines
We evaluate the performance of our approach by comparing it with
three groups of highly related and strong baseline models:

(1) Traditional models. QL [43] is based on the Dirichlet lan-
guage model and is one of the best retrieval algorithms.BM25 [31]
is another excellent retrieval algorithm. It generates themorpheme
of the query, calculates and sums the correlation score of each mor-
pheme with the candidate document to get the final score.

(2)Neural models. DRMM [13] is a typical interactive model. It
first calculates the similarity between each query word and the

2https://github.com/attardi/wikiextractor
3https://dumps.wikimedia.org/enwiki/
4https://commoncrawl.org/
5https://github.com/microsoft/MSMARCO-Document-Ranking
6https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html

document, counts a similarity histogram for each word, and then
sends the similarity histogram for each word to a neural network
to get a score, and all the scores are finally added together as the
final score. DUET [22] is a hybrid method that combines signals
from local models for correlation matching and distributed models
for semantic matching. KNRM [37] uses kernel pooling functions
to get the matching score of the query and corresponding docu-
ments. Conv-KNRM [37] adds a convolutional layer for model-
ing n-gram soft matches and fuse the contextual information of
surrounding words for matching.

(3) Pre-trainedModels.BERT [11] is a bi-directional Transformer
pre-trained with Masked Language Modeling and Next Sentence
Prediction tasks. ICT [6] is a pre-training taskwhich predictswhether
a batch of sentences is the context of the given query. PROP [18]
use Representative Words Prediction task to learn the correlations
between sampled word sets, and achieve the state-of-the-art per-
formance.PROP𝑊𝑖𝑘𝑖 andPROP𝑀𝐴𝑅𝐶𝑂 represent the PROPmodel
trained on Wikipedia and MS MARCO, respectively

4.3 Implementation details
4.3.1 Model Architecture. In our model Webformer7, we have two
Transformers, namely Text Encoder and Node Encoder. For Text
Encoder, in order to facilitate the comparison with BERT[11], we
use the same Transformer encoder architecture as BERT − Base.
The hidden size is 768, the number of transformer layers is 12, and
the number of self-attention heads is 12. Besides, since Text En-
coder needs to encode HTML text, and the semantic space of the
tag tokens contained in it is different from that of the plain text, we
firstly add all the tag tokens to the vocabulary, and add a tag em-
bedding on the basis of Transformer’s original embeddings. Specif-
ically, we mark text token, start tag token and close tag token as
0/1/2 separately. For Node Encoder, we use the same configura-
tion as above except that the number of Transformer layers is 1.
We use the HuggingFace’s Transformers for the model implemen-
tation [36].

4.3.2 Pre-training Stage. Due to the limitation of computing re-
sources, we have adopted a variety of schemes to estimate the size
of the model and the cost of calculation:

(1) Set a maximum layer depth k. After the page compression,
the first k-1 layers of a DOM tree are kept as they are, and the parts
below the k layer are merged into the bottom k layer. We counted
the proportion that the sequence length of leaf nodes is less than
512, which is the maximum sequence length that BERT can encode.
When the number of layers is 4, the ratio is 81.3%, when it is 5, it
reaches 98.6%, and when it is 6, it reaches 99.5%. Therefore, for the
consideration of efficiency and information integrity, the number
of layers was set to 5.

(2) Share encoder parameters. Since each layer of the same type
of Encoder has the same function, we shared the parameters of all
Text Encoders in 5 layers and shared the parameters of all Node
Encoders in 5 layers.

(3) Set a maximum length. The number of children of a non-
leaf node is limited, most non-leaf nodes only have single digits.
To indicate it, We counted the number of child nodes under each

7https://github.com/xrr233/Webformer

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1508

https://github.com/attardi/wikiextractor
https://dumps.wikimedia.org/enwiki/
https://commoncrawl.org/
https://github.com/microsoft/MSMARCO-Document-Ranking
https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html

Table 1: Evaluation results on MS MARCO and TREC-DL. “*” denotes the result is significantly worse than our method Web-
former in t-test with 𝑝 < 0.05 level. The best results are in bold.

Model
Type

Model
MS MARCO TREC-DL 2019

ANCE OFFCIAL ANCE OFFCIAL
MRR@100 MRR@10 MRR@100 MRR@10 ndcg@100 ndcg@10 ndcg@100 ndcg@10

Traditional
Models

QL .2457∗ .2295∗ .2103∗ .1977∗ .4644∗ .5370∗ .4694∗ .4354∗

BM25 .2538∗ .2383∗ .2379∗ .2260∗ .4692∗ .5411∗ .4819∗ .4681∗

Neural
Models

DRMM .1146∗ .0943∗ .1211∗ .1047∗ .3812∗ .3085∗ .4099∗ .3000∗

DUET .2287∗ .2102∗ .1445∗ .1278∗ .3912∗ .3595∗ .4213∗ .3432∗

KNRM .2816∗ .2740∗ .2128∗ .1992∗ .4671∗ .5491∗ .4727∗ .4319∗

Conv-KNRM .3182∗ .3054∗ .2850∗ .2744∗ .4876∗ .5990∗ .5221∗ .5899∗

Pre-trained
Models

BERT-Base .4199∗ .4108∗ .3768∗ .3709∗ .4907 .6054∗ .5289 .6358∗

ICT .4196∗ .4108∗ .3827∗ .3770∗ .4943 .6143 .5300 .6386∗

PROP𝑊𝑖𝑘𝑖 .4188∗ .4092∗ .3818∗ .3759∗ .4882∗ .6050∗ .5251∗ .6224∗

PROP𝑀𝑎𝑟𝑐𝑜 .4253∗ .4166∗ .3890∗ .3837∗ .4894 .6166 .5242∗ .6208∗

Webformer (Ours) .4422 .4340 .4036 .3984 .4967 .6200 .5335 .6479

Table 2: Ablation study results. “*” denotes the result is sig-
nificantly worse than our method Webformer in t-test with
𝑝 < 0.05 level. The best results are in bold.

Dataset MS MARCO

Model Name
ANCE OFFICIAL

MRR@100 MRR@10 MRR@100 MRR@10

Webformer .4422 .4340 .4036 .3984
w/o BERT .4345∗ .4259∗ .3884∗ .3829∗

w/o MNP .4350∗ .4267∗ .3992 .3938
w/o PCM .4342∗ .4252∗ .3971∗ .3921∗

w/o SNM .4336∗ .4250∗ .3943∗ .3890∗

w/o COP .4350∗ .4267∗ .3980 .3928

node. 78.4% of child nodes are less than 5, 96.0% are less than 10,
and 98.5% are less than 20. In addition, in a node with more than
10 child nodes, the content of most of its child nodes tends to be
homogenized, such as a reference list. Therefore, for the consider-
ation of the limitation of machine resources, we set the maximum
length of Node Encoder to 10. In order to ensure the amount of in-
formation, when sampling the leaf nodes, we keep the top 10 nodes
with the longest inner HTML text length and keep their relative or-
der.

For the MLM objective, we follow the settings in BERT, where
we randomly use [MASK] token to drop the token in the sentence
with a probability of 15%, and the masked token has an 80% chance
of being replaced with [MASK], 10% probability of being replaced
with a random token, and 10% probability remains unchanged. We
use the Adam optimizer with a learning rate of 5e-5 for 2 epochs,
where the batch size is set as 64.

4.3.3 Fine-tuning Stage. The Transformer model used in the fine-
tuning stage is the Text Encoder that has been pre-trained. And

we test the rerank results of our model in document ranking. The
result of each data set comes from two candidate sets, namely ance
and official. The former is a candidate set based on the ance [38]
retrieval model, and the latter is an official candidate set. In the
process of fine-tuning, we spliced the query, url and body of the
document together. When the total length exceeds 512, the body
content will be cropped. Besides, since the downstream task is a
plain text task, we mark all tag embedding as 0. Each of our models
has been fine-tuned for two epochs, and the learning rate is set to
1e-5 with a warm-up portion 0.1.

4.4 Experimental Results
The results of our experiment are reported in Table 1, we can ob-
serve that:

(1)Our model Webformer achieves the best results in all
indicators on both datasets. On theMSMARCO dataset (ANCE),
Webformer significantly outperforms previous state-of-the-art base-
line PROPMARCO by 4.0% regarding MRR@100. On the TREC-
DL dataset (ANCE), Webformer outperforms PROPMARCO by
1.5% regarding nDCG@100. This finding also verifies that explor-
ing the structural information (e.g.parent-child relationship, paral-
lel relationship, etc.) between web texts can bring orthogonal ef-
fective signals to the IR model.

(2) Generally speaking, the effect of the pre-trained IR
models is better than that of the neural model, and the neu-
ral model is better than the traditional IR model. We can see
that the effects of BM25 and QL are higher than those of DRMM
and DUET, indicating that the traditional retrieval model is actu-
ally a powerful baseline and has always had good results on re-
trieval tasks. Secondly, Conv-KNRM outperforms traditional re-
trieval models in all indicators, which proves that using distributed
vectors to represent query and document and automatically learn
the relationship between them can improve the quality of the re-
trieval model. In addition, we can see that the pre-training models
outperform the neural models and the traditional models, which

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1509

proves that pre-training on large-scale unlabeled data and fine-
tuning on specific downstream tasks can also significantly improve
the effect of the retrieval model.

(3) Among the pre-training models, designing new tasks
for IR rather than directly using pre-trained models have a
better performance. Compared with BERT, both ICT task and
PROP have a better performance in ad-hoc retrieval, proving that
even with the pre-trained model, more specific and related task
design for IR can make it perform better on downstream tasks.
Besides, the PROP𝑤𝑖𝑘𝑖 and PROP𝑚𝑎𝑟𝑐𝑜 are the previous state-of-
the-art baselines, confirming that RepresentativeWords Prediction
task have excellent effects on downstream IR tasks. Our proposed
method Webformer, which designs four pre-training tasks on the
basis of the DOM tree structure to help the pre-trained model un-
derstand the structural information in web pages, also get better
effects for ad-hoc retrieval. Even if we do not use the whole hierar-
chical model but the Text Encoder to encode pure text, Webformer
achieves significant improvements comparedwith the existing pre-
trained methods.

4.5 Further Analysis
We further analyze the influence of different tasks we proposed
in ablation study (Section 4.5.1), the performance under different
fine-tuning queries (Section 4.5.2), the effect of extra tokens (Sec-
tion 4.5.3),and the effect of parallel information through a case
study (Section 4.5.4).

4.5.1 Ablation Study. To better verify the effectiveness of each
module and each self-supervised task in Webformer, we conduct
ablation experiments on the MS MARCO data set, and the results
are shown in Table 2. First, we seek to explore the benefit brought
by the pre-trained language model. Specifically, instead of initial-
izing the model with pre-trained parameters, we train the Text En-
coder from scratch. The results show that removing pre-trained
language model would lead to a performance drop, proving that
the semantic prior knowledge of pre-trained language model plays
an important role in the model.

Second, we explore the effects of the four self-supervised tasks.
We find that removing any of the four tasks would lead to a per-
formance drop across various evaluation indicators, demonstrat-
ing that each of the four self-supervised tasks is able to capture
effective semantic signals and therefore improves the model per-
formance. Specifically, removing the SNM task leads to the largest
drop, which proves that the parallel information between the texts
plays a vital role in understanding the document. Removing the
MNP task has the least impact on the model, we guess that this is
because the previous language model built less parallel relations
and more semantic aspects. Despite this, it still causes a drop of
more than 1% on eachmetric, showing that the ability of text under-
standing of Node Encoder can improve the ranking ability of our
model in the pre-training phase. Removing PCM and COP tasks
also cause a large amount of effect loss of the model, proving that
the parent-child relationship and the relative order between the
text can promote the pre-training model’s understanding of the
entire web page.

Figure 4: The effect of fine-tuning queries of Webformer on
MS MARCO ANCE set.

Table 3: Evaluation results on BERT-Base and HTML-BERT,
where HTML-BERT is a model that we use the same train-
ing strategy with BERT but the training data is HTML text
of English Wikipedia pages. “*” denotes the result is signifi-
cantly worse than our method Webformer in t-test with 𝑝 <
0.05 level. The best results are in bold.

Dataset MS MARCO

Model Name
ANCE OFFICIAL

MRR@100 MRR@10 MRR@100 MRR@10
Webformer .4422 .4340 .4036 .3984
BERT-Base .4199∗ .4108∗ .3768∗ .3709∗

HTML-BERT .4218∗ .4135∗ .3849∗ .3799∗

4.5.2 Effect of Fine-tuning Queries. To better show the effective-
ness of our pre-trained model on downstream ranking tasks, we
fine-tune ourmodelwith a varying number of queries (i.e., 50K,100K,
150K,200K).We report MRR@100 to evaluate the performance. Fig-
ure 4 presents the results of MS MARCO ANCE Top100. We can
find that: (1) with the number of fine-tuning queries increasing, our
Webformer consistently obtains incremental improvements, which
implies the great model capacity and generalization ability of Web-
former. (2) in 50k steps, Webformer performs worse than PROP
(wiki).The potential reasonmight be thatWebformer is pre-trained
with a hierarchical model structure that requires more data to fit.
After 50k steps, the performance of Webformer steadily increases
and outperforms baseline models by a large margin, which indi-
cates that utilizing structure information ofweb pages indeed brings
orthogonal structural semantics that plain text fails to provide.

4.5.3 Effect of extra tokens. In order to better understand the role
of our model structure and extra HTML tag tokens, we conduct an
experiment to compare the performance of BERT-Base and HTML-
BERT, where HTML-BERT is trained on the same dataset of our
proposed Webformer, but use the flatten HTML text.

Specifically, for each piece of HTML text data, we first construct
it into a tree structure based on HTML tags, and then perform a
depth-first search on its nodes. If the length of the inner HTML
text of the node is less than 512, we will use it as a piece of training

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1510

data, otherwise continue to search downwards. In this way, we
can better maintain the integrity of semantic information. Besides,
in order to model short texts and the connection between parent
and child nodes, when we generate a piece of training data of the
parent node, there is a 20% probability of extracting HTML text
from its child node again as a new piece of training data. Following
the above method, we traverse a DOM tree and generate multiple
Bert training data. Based on this, we obtained a total of 89,232,208
training data.

We train the HTML-BERT model with the MLM objective for
two epochs, the settings are the same as BERT, then apply it to
downstream document ranking task on MS MARCO dataset. The
results are shown in Table 3, we can see that although Webformer
have the same amount of data with HTML-BERT, it outperforms
theHTML-BERTmodel in all metrics, proving that ourmodel struc-
ture and the pre-training tasks play an important role on the per-
formance improvement on downstream IR tasks. Besides, HTML-
BERT’s performance is slightly better than BERT-Base, especially
in MS MARCO official dataset, indicating that extra tokens (i.e.,
HTML tag tokens) have an opposite effect to corresponding down-
stream tasks, but still have much room for improvement.

4.5.4 Effect of Parallel information. Since the parallel structure is
the most easily overlooked information in traditional pre-training
models, we conduct a case study to study the model’s ability to
understand parallel information. Detailedly, in the navigation bar
at the top of the main page of English Wikipedia, there is a list of
options that classify the content of all Wikipedia pages and these
options are semantically parallel, including arts, biology, mathe-
matics, etc.. In addition, we have added the word “apple” as an in-
terference item.

We pass the sequence composed of these options to BERT-Base
and Webformer respectively, and use attention weight to study its
parallel information understanding ability. The result is shown in
Figure 5, it can be seen that (1) In the results of BERT-Base, apple’s
attention weight still accounts for a large proportion, even if it has
no connection with other information. Besides, the attention distri-
bution of each word is similar. This shows that the model cannot
capture the parallelism of other tokens, so it equates apple with
other tokens. (2) In our model, except for itself, apple’s attention
weight has very lowweights, which proves that the model believes
that apple and other tokens are not in the same semantic space. On
top of this, the corresponding words such as “science” and “tech-
nology” has a high weight, indicating that our model has learned
the semantic connection between parallel words.

5 CONCLUSION AND FUTURE WORK
In this paper, we propose a new pre-training model framework
Webformer. Compared with existing work, we incorporate the rich
structural information in the HTML text data of web pages into the
pre-trained model. We first build a hierarchical model architecture
by imitating the structure of the DOM tree, and design two kinds of
Transformers to encoder leaf nodes and non-leaf nodes separately.
Then, we initialize the Text Encoder using a pre-trained model.
Based on this architecture, we design four pre-training tasks to
help the model capture the structural information in web pages
in different views. In the fine-tuning stage, we use the pre-trained

Figure 5: Webformer’s and BERT’s attention weights of the
sequence composed of parallel words

model to test the effect of the downstream document ranking task.
The results in MS MARCO and TREC-DL 2019 prove the effective-
ness of our model.

However, the pre-training HTML dataset we use is well-formed
Wikipedia, and we will continue our work on more general HTML
datasets such as ClueWeb098. Besides, due to the lack of authorita-
tive HTML-formatted ad-hoc retrieval datasets, we only use Text
Encoder for downstream tasks in this paper, and we will explore
whether the tags can also be used to learn better web page rep-
resentations when the corresponding HTML source code is also
available.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China No. 61872370, Beijing Outstanding Young Scien-
tist Program NO. BJJWZYJH012019100020098, China Unicom In-
novation Ecological Cooperation Plan, Beijing Academy of Arti-
ficial Intelligence(BAAI), and Intelligent Social Governance Plat-
form, Major Innovation & Planning Interdisciplinary Platform for
the “Double-First Class” Initiative, Renmin University of China.
The work was partially done at Key Laboratory of Data Engineer-
ing and Knowledge Engineering, MOE. We also acknowledge the
support provided and contribution made by the Public Policy and
Decision-making Research Lab of RUC.

REFERENCES
[1] Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi

Ghosh, and Luke Zettlemoyer. 2021. HTLM: Hyper-Text Pre-Training and
Prompting of Language Models. CoRR abs/2107.06955 (2021). arXiv:2107.06955
https://arxiv.org/abs/2107.06955

[2] Ammar Al-Dallal and Rasha S Abdul-Wahab. 2011. Achieving high recall and
precision with HTLM documents: an innovation approach in information re-
trieval. In Proceedings of the World Congress on Engineering, Vol. 3.

[3] Colin Ashby and David Weir. 2020. Leveraging HTML in Free Text Web Named
Entity Recognition. In Proceedings of the 28th International Conference on Com-
putational Linguistics. 407–413.

[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. CoRR abs/2004.05150 (2020). arXiv:2004.05150 https:
//arxiv.org/abs/2004.05150

[5] Sebastian Blohm. 2011. Large-scale pattern-based information extraction from the
world wide web. KIT Scientific Publishing.

[6] Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
2020. Pre-training Tasks for Embedding-based Large-scale Retrieval. In ICLR
2020. OpenReview.net.

8https://lemurproject.org/clueweb09/

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1511

https://arxiv.org/abs/2107.06955
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150

[7] Kevin Clark, Minh-Thang Luong,Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Genera-
tors. In ICLR 2020. OpenReview.net.

[8] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2020. Overview of the TREC 2019 deep learning track. (2020).

[9] Michal Cutler, Yungming Shih, and Weiyi Meng. 1997. Using the Structure of
HTMLDocuments to Improve Retrieval.. InUSENIX Symposium on Internet Tech-
nologies and Systems. 241–252.

[10] Zhuyun Dai and Jamie Callan. 2019. Deeper Text Understanding for IR with
Contextual Neural Language Modeling. In SIGIR 2019. ACM, 985–988.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the NAACL 2019. ACL, 4171–4186.

[12] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink Training of BERT
Rerankers in Multi-stage Retrieval Pipeline. In ECIR 2021. Springer, 280–286.

[13] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. 2016. A Deep Rele-
vance Matching Model for Ad-hoc Retrieval. In CIKM 2016. ACM, 55–64.

[14] Sun Kim and Byoung-Tak Zhang. 2003. Genetic mining of HTML structures for
effective web-document retrieval. Applied Intelligence 18, 3 (2003), 243–256.

[15] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Effi-
cient Transformer. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:
//openreview.net/forum?id=rkgNKkHtvB

[16] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net. https://openreview.net/forum?id=H1eA7AEtvS

[17] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent Retrieval
for Weakly Supervised Open DomainQuestion Answering. In Proceedings of the
ACL 2019. ACL, 6086–6096.

[18] Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Xiang Ji, and Xueqi Cheng.
2021. PROP: Pre-Training with Representative Words Prediction for Ad-Hoc
Retrieval. In Proceedings of the WSDM 2021 (WSDM ’21). ACM, 283–291.

[19] Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Yingyan Li, and Xueqi
Cheng. 2021. B-PROP: Bootstrapped Pre-training with Representative Words
Prediction for Ad-hoc Retrieval. In SIGIR ’21: The 44th International ACM SI-
GIR Conference on Research and Development in Information Retrieval, Virtual
Event, Canada, July 11-15, 2021, Fernando Diaz, Chirag Shah, Torsten Suel,
Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, 1318–1327. https:
//doi.org/10.1145/3404835.3462869

[20] Zhengyi Ma, Zhicheng Dou, Wei Xu, Xinyu Zhang, Hao Jiang, Zhao Cao, and
Ji-Rong Wen. 2021. Pre-training for Ad-hoc Retrieval: Hyperlink is Also You
Need. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. 1212–1221.

[21] Marcin Michał Mirończuk. 2018. The BigGrams: the semi-supervised informa-
tion extraction system from HTML: an improvement in the wrapper induction.
Knowledge and Information Systems 54, 3 (2018), 711–776.

[22] BhaskarMitra, FernandoDiaz, andNick Craswell. 2017. Learning toMatch using
Local and Distributed Representations of Text for Web Search. In WWW 2017.

[23] Tri Nguyen, Mir Rosenberg, Xia Song, et al. 2016. MS MARCO: A Human Gen-
erated MAchine Reading COmprehension Dataset. In NIPS 2016.

[24] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
CoRR abs/1901.04085 (2019).

[25] Rodrigo Nogueira,Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage
Document Ranking with BERT. CoRR abs/1910.14424 (2019).

[26] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word
Representations. In Proceedings of the NAACL 2018. ACL, 2227–2237.

[27] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Under-
standing the Behaviors of BERT in Ranking. CoRR abs/1904.07531 (2019).
arXiv:1904.07531 http://arxiv.org/abs/1904.07531

[28] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. In Proceedings of
Techinical re-port, OpenAI.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2018. LanguageModels are Unsupervised Multitask Learners. (2018).

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[31] Stephen E. Robertson and SteveWalker. 1994. Some Simple Effective Approxima-
tions to the 2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings
of the SIGIR 1994. ACM/Springer, 232–241.

[32] Zhan Su, Zhicheng Dou, Yutao Zhu, Xubo Qin, and Ji-RongWen. 2021. Modeling
Intent Graph for Search Result Diversification. In Proceedings of the SIGIR 2021.
ACM, 736–746. https://doi.org/10.1145/3404835.3462872

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS 2017. 5998–6008.

[34] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-Attention with Linear Complexity. CoRR abs/2006.04768 (2020).
arXiv:2006.04768 https://arxiv.org/abs/2006.04768

[35] Mengxi Wei, Yifan He, and Qiong Zhang. 2020. Robust Layout-aware IE for
Visually Rich Documents with Pre-trained Language Models. In SIGIR 2020.

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natu-
ral Language Processing. CoRR abs/1910.03771 (2019). arXiv:1910.03771 http:
//arxiv.org/abs/1910.03771

[37] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
2017. End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In SIGIR 2017.
55–64.

[38] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, et al. 2020. Ap-
proximate Nearest Neighbor Negative Contrastive Learning for Dense Text Re-
trieval. CoRR abs/2007.00808 (2020).

[39] Wei Yang, Haotian Zhang, and Jimmy Lin. 2019. Simple Applications of BERT
for Ad Hoc Document Retrieval. CoRR abs/1903.10972 (2019).

[40] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
andQuoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[41] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NIPS 2019. 5754–5764.

[42] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big Bird: Transformers for Longer Sequences.. In NeurIPS.

[43] Chengxiang Zhai and John D. Lafferty. 2017. A Study of Smoothing Methods for
Language Models Applied to Ad Hoc Information Retrieval. SIGIR Forum 51, 2
(2017), 268–276.

[44] Yujia Zhou, Zhicheng Dou, Huaying Yuan, and Zhengyi Ma. 2022. Social-
former: Social Network Inspired Long Document Modeling for Document Rank-
ing. CoRR abs/2202.10870 (2022).

[45] Yujia Zhou, Zhicheng Dou, Yutao Zhu, and Ji-Rong Wen. 2021. PSSL: Self-
supervised Learning for Personalized Search with Contrastive Sampling. In
CIKM. ACM, 2749–2758.

[46] Yutao Zhu, Jian-Yun Nie, Zhicheng Dou, Zhengyi Ma, Xinyu Zhang, Pan Du,
Xiaochen Zuo, and Hao Jiang. 2021. Contrastive Learning of User Behavior Se-
quence for Context-Aware Document Ranking. In CIKM ’21: The 30th ACM Inter-
national Conference on Information and Knowledge Management, Virtual Event,
Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuc-
con, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 2780–2791.
https://doi.org/10.1145/3459637.3482243

[47] Yutao Zhu, Kun Zhou, Jian-Yun Nie, Shengchao Liu, and Zhicheng Dou. 2021.
Neural Sentence Ordering Based on Constraint Graphs. In AAAI 2021. AAAI
Press, 14656–14664. https://ojs.aaai.org/index.php/AAAI/article/view/17722

Topic 19: Search and Ranking SIGIR ’22, July 11–15, 2022, Madrid, Spain

1512

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1145/3404835.3462869
https://doi.org/10.1145/3404835.3462869
http://arxiv.org/abs/1904.07531
https://doi.org/10.1145/3404835.3462872
https://arxiv.org/abs/2006.04768
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1145/3459637.3482243
https://ojs.aaai.org/index.php/AAAI/article/view/17722

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pre-trained Language Models
	2.2 Pre-training Tasks for IR

	3 Methodology
	3.1 Overview
	3.2 Pre-training based on Web Pages
	3.3 Fine-tuning stage of downstream tasks

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Baselines
	4.3 Implementation details
	4.4 Experimental Results
	4.5 Further Analysis

	5 Conclusion and Future Work
	Acknowledgments
	References

