
Vol.:(0123456789)

Information Retrieval Journal (2023) 26:9
https://doi.org/10.1007/s10791-023-09427-0

1 3

DeepQFM: a deep learning based query facets mining
method

Zhirui Deng1,2 · Zhicheng Dou1,2 · Ji‑Rong Wen1,2

Received: 10 October 2023 / Accepted: 12 October 2023 / Published online: 30 October 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Search results from the search engine may be not enough to satisfy users’ search intent
when the issued query is broad or ambiguous. In such cases, presenting to the user query
facets, which include common query reformulations, may help disambiguate the current
query, save the effort of query reformulation, and improve the user’s search experience.
Existing approaches for mining query facets are mainly based on rule-based statistical
features, but ignore the deep semantic information which can measure the relationship
between items in facets more precisely and find more potential facet items. In this paper,
we introduce a deep learning model with contrastive learning for query facets mining—
DeepQFM. We first extract items from search result documents, form lists containing items
having a parallel structure, and weight these lists based on their importance. Then, we clus-
ter the weighted lists based on their semantic distance. Finally, we train an item encoder
with contrastive sampling and rank the facets and the facet items based on their semantic
representation. Experimental results show that our deep query facets mining model outper-
forms the state-of-the-art approach QDMiner in almost all evaluation metrics, especially
for the recall and rp-nDCG, suggesting that DeepQFM can effectively mine more facet
items from search result documents.

Keywords Query facets mining · Clustering · Contrastive learning · Deep learning

 * Zhirui Deng
 zrdeng@ruc.edu.cn

 Zhicheng Dou
 dou@ruc.edu.cn

 Ji-Rong Wen
 jrwen@ruc.edu.cn

1 Gaoling School of Artificial Intelligence, Renmin University of China, Beijing 100872,
People’s Republic of China

2 Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing 100872,
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-023-09427-0&domain=pdf

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 2 of 24

1 Introduction

Search engines return web links related to an issued query. Usually, the user’s query is
short and ambiguous (Silverstein et al., 1999; Dou et al., 2007; Jansen et al., 2000; Song
et al., 2007), leading to the user being dissatisfied with the search results (Shum, 2011;
Niccolai, 2009). For example, when the user’s query is watches, she may not only want to
know information about watch brands, but also watch materials or watch colors. Besides,
users’ search queries are usually consistent in a search session. Users tend to search related
topics after a search behavior. For example, a user prefers to search man’s watch, sports
watch, etc. after searching watches. Query facets mining aims to tackle these problems. A
query facet is a category of a query’s attributes. For example, for the second query watches
in Table 1, it has three query facets which describe brands, color and material and one of
its query facets is {cartier, baume mercier, tag heuer, rolex} which describes brands. There
are several facet items in each query facet. For the above query watches, cartier, baume
mercier, etc. are called the facet item. When a user’s query is too broad, such as watches,
she will often reformulate it to a more specific query, such as cartier watches. Query fac-
ets provided in search engine shortcut the reformulation process, by inferring what a user
might be interested in when the query is broad and ambiguous, saving the cognitive load of
coming up with the reformulation.

Existing supervised and unsupervised query facets mining approaches (Dou et al.,
2011, 2015; Jiang et al., 2016) are primarily based on statistical features. Dou et al. (2011)
first proposed query dimensions that have the same meaning as query facets. The model
proposed by Dou et al. solely used statistical features such as IDF, rank, word intersect
count, etc. to obtain the weight of the extracted lists and then modified cluster algorithm
QT as WQT to get the final query facets. Kong proposed two supervised models: QF-I and
QF-J (Kong & Allan, 2013). Both models used a Bayesian network to judge whether an
item was a facet item and whether two facet items were in one query facet. The item repre-
sentation constructed in QF-I and QF-J was also based on statistical features. Jiang et al.
(2016) used items extracted from the knowledge base additionally and followed QDMin-
er’s routine to cluster the items and rank query facets.

Previous studies about query facets mining have proved that statistical features, such
as TF, IDF, rank, etc. could be used to improve the performance of query facets mining
models. However, these statistical features based methods ignore the importance of deep

Table 1 Examples of query
facets

Query Query facets

Mobile phones Samsung galaxy s, Iphone 4, Nokia n97,...
Nokia, Blackberry, Motorola, Apple,...
Memory card reader, mp3, alarms,...

Watches Cartier, baume mercier, tag heuer, rolex,...
Black and white, pink, army green, silver,...
Precious metal, brass, amber, ruby,...

Chinese restaurants Sichuanese cuisine, peking restaurant,...
In seattle redmond Capitol hill, ballard, university district,...

American, Asian, Japanese, Italian,...
US universities Harvard University, Princeton University,...

Business, design, law, engineering,...
Sat, toefl, gmat, gre, ielts,...

Information Retrieval Journal (2023) 26:9

1 3

Page 3 of 24 9

semantic information among items. Factually, the deep semantic information among items
is prominent for query facets mining. For example, Rolex air king rarely appears in search
results, thus its statistical features may be the same as unimportant items such as Wisconsin
and solely using statistical features is hard to select it. Combined with deep semantic infor-
mation, it is close to the query watches in semantic space and can be extracted as a facet
item. Recently, pre-trained language models have proved effective for various downstream
tasks. Inspired by these, in this paper, we leverage both deep semantic features and statis-
tical features to better measure the semantic information of an item and the relationship
between items in order to help recall more facet items from a candidate item set. Moreover,
we will focus on utilizing contrastive learning to optimize deep semantic features and mine
query facets from search result documents without introducing other knowledge bases.

We propose a Deep Query Facets Miner (DeepQFM) to mine query facets. Our model is
a pipeline framework with contrastive learning. Except for statistical features, we leverage
deep semantic features to further understand the item’s semantic information. We adopt
contrastive learning to enhance data representation, so that our model can better measure
the relationship between items and recall more facet items from the candidate item set.
More specifically, our model consists of four steps. First, because items in a query facet
have a parallel structure, we extract lists containing items with a parallel structure from
search result documents. Then, we weigh these extracted lists based on their relevance to
the query. Second, we design an item-contrastive sampling that constructs item pairs to
generate self-supervised signals. The contrastive learning task is designed to pretrain the
item encoder and learn better item representation. Moreover, we also devise a list-contras-
tive sampling to provide an ablation study with our list encoder based on BERT. Third,
a single list does not contain all facet items, so we design WQTDeep algorithm to cluster
similar lists based on the BERT representation of these lists. Finally, we rank facets and
facet items based on their importance score, which consists of statistical features and deep
semantic features, and discard unimportant items to obtain the final query facets.

Experimental results show that our model outperforms existing approaches in 10 out
of 12 metrics, especially the recall of facet items. This demonstrate that our deep learning
method can better measure the semantic meaning of an item and the relevance between
items.

In summary, the major contributions are three-fold:

• We propose a deep learning pipeline framework with contrastive learning to mine
query facets. As far as we know, this is the first time that deep semantic features have
been applied to query facets mining.

• We design a self-supervised learning task to learn a better representation of items.
Based on the representation, we can measure the relationship between items in deep
semantic space more accurately, so that we can recall more facet items from search
result documents. Besides, we also propose a list-contrastive sampling approach to per-
form an ablation study with our list encoder based on BERT.

• We combine deep semantic features with rule-based statistical features to provide a bet-
ter semantic matching score so that similar items can be grouped together.

The rest of this paper is organized as follows. Section 2 discusses the related work. In
Sect. 3, we introduce our model DeepQFM. Section 4 describes the dataset and the
evaluation metrics we used. Experimental results are shown in Sect. 5. Section 6 is the
conclusion.

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 4 of 24

2 Related work

There are many fields related to query facets mining. In this section, we will briefly intro-
duce works in these fields and summarize the relationship between DeepQFM and them.

2.1 Query facets mining and faceted search

Query facets mining is to mine groups of facet items from search result documents. Each
group of facet items describes an aspect of the query. These facet items can provide users
with more information and they can also be used in search result diversification (Hu et al.,
2015) and clarifying question generation (Aliannejadi et al., 2019). Dou et al. (2011), Dou
et al. (2015) first proposed QDMiner to mine query facets from search result documents.
QDMiner was an unsupervised method and it extracted item lists from search result docu-
ments and used statistical features contained in lists such as IDF and document ranking to
weight lists. After this, they proposed WQT (Quality Threshold with Weighted data points)
for clustering and finally ranked facets and facet items. QF-I/QF-J (Kong & Allan, 2013)
was a supervised method. Kong et al. used a Bayesian network to classify whether an item
was a facet item and whether two items should be grouped together. With the help of the
above two labels, Kong et al. clustered and ranked the items to get the final query facets.
Both above two methods only used statistical features such as TF, IDF, rank, etc. to model
the importance of the item and the relationship between items while the representation and
the similarity of items in semantic space play an important role in query facets mining.
Therefore, some deep semantic features should be leveraged to improve the performance of
the model.

Query facets mining is to generating facets in open-domain while some traditional fac-
eted search methods are domain specific, such as product search (Dakka et al., 2005, 2006;
Stoica et al., 2007; Basu Roy et al., 2008; Dakka & Ipeirotis, 2008; Dash et al., 2008;
Ben-Yitzhak et al., 2008; Diao et al., 2010; Li et al., 2010; Latha et al., 2010; Pound et al.,
2011). For example, Dakka and Ipeirotis (2008) automatically mined facets with an unsu-
pervised technique that was used to browse text databases. Facetedpedia (Li et al., 2010)
extracted and generated facets from Wikipedia which was a specific knowledge database.

2.2 Query recommendation

Query recommendation is to suggest queries for users when sometimes the query is ambig-
uous or broad. It can help users find information more precisely. Existing methods for
query recommendation were to generate queries that were similar to the original query in
semantic meanings (Mitra et al., 1998; Anick, 2003; Baeza-Yates et al., 2004; Zhang &
Nasraoui, 2006; Riezler et al., 2008; Huang & Efthimiadis, 2009; Herdagdelen et al., 2010;
Szpektor et al., 2011; Xue & Croft, 2013; Li et al., 2013; Bing et al., 2015). Users could
select one of the generated queries to get better search results. Different from query recom-
mendation, query facets mining aims to mine facet items that describe different aspects of
the query instead of finding information related to the query. Besides, facets mined by the
query facets mining model are structural and describe different topics of the query. Some-
times, the results can be used for query recommendation.

Information Retrieval Journal (2023) 26:9

1 3

Page 5 of 24 9

2.3 Query‑based summarization

Summarization of text is a basic task in natural language processing. Existing works
about text summarization can be classified into different types according to summary
construction methods (abstractive/extractive), number of document sources (single/
multiple documents), and information types in the summary (indicative/informa-
tive) (Gholamrezazadeh et al., 2009; Damova & Koychev, 2010; Maxwell et al.,
2017). Recently, researchers proposed to leverage query aspects to summarize search
results (Sarwar et al., 2021; Surya et al., 2021). Although query facets are also a sum-
marization of search result documents, there are two differences between them. First,
text summarization uses sentences from search result documents while query facets
mining uses lists extracted from search result documents. Besides, the result of text
summarization is a flat list of sentences, while the results of query facets mining are sets
of semantically related items.

2.4 Query subtopics mining

Query subtopics mining identifies subtopics of queries in search engine interaction
logs (Jones & Klinkner, 2008; Strohmaier et al., 2009; Hu et al., 2012) or search result
documents (Radlinski et al., 2010; Liu et al., 2015). Different from query facets, subtop-
ics usually do not have a hierarchical structure, and solely consist of several items, where
similar items are not grouped together. For example, the query apple has subtopics apple
fruit and apple company. Query facets are similar to query subtopics, but they are hierar-
chical. For example, the query apple has facets such as [green apple, apple tree] and [ipad,
iphone] associated with subtopics of the query. Both query facets mining and query sub-
topics mining can be applied to search result diversification (Sarwar et al., 2020; Hu et al.,
2015). However, query facets have a hierarchical structure and can better diversify search
results than query subtopics (Hu et al., 2015).

2.5 Semantic representation

Representing a word as a semantic embedding has been adopted by many deep learning
models (Mikolov et al., 2013a, b). Therefore, it is particularly important to get a good word
embedding which needs to contain as much useful information as possible, for example,
the contextual information of the word, and the knowledge related to the word (Devlin
et al., 2018; Li et al., 2015; Melamud et al., 2016; Sun et al., 2020; Zhao et al., 2017).
Context2vec used LSTM to force word embedding containing the contextual information
of the word (Melamud et al., 2016). Ngram2vec introduced ngram into four representation
methods and learned improved word representations that could better reflect their semantic
meanings (Zhao et al., 2017). BERT utilized the transformer as the main framework to
train a pretrained model on a large corpus (Devlin et al., 2018) and the model achieved
state-of-the-art results on eleven NLP tasks. CoLAKE added knowledge to the word repre-
sentation based on BERT (Sun et al., 2020).

In query facets mining, we combine the semantic representation with the statistical fea-
tures to get a better representation of the item. Then, we use this representation for subse-
quent clustering and ranking.

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 6 of 24

3 Model

In this section, we will restate the problem, present the structure of our model DeepQFM,
and show how we use DeepQFM to mine query facets.

Problem Definition Query facets mining is to mine query facets F from top k search
result documents for a given query q. A query facet f ∈ F is a set of facet items
{i1, i2,… , in} which describe an aspect of the query. For example: for query mobile
phones shown in Table 1, there are three query facets, one of them is {nokia, black-
berry, motorola, apple} and blackberry, samsung galaxy s, etc. are facet items.

Our model follows four steps: list extraction and weighting, deep semantic encoders, list
clustering, and facet and item ranking. The overall architecture of DeepQFM is shown in
Fig. 1. In this paper, we mainly focus on deep semantic encoders, list clustering, and item
ranking which integrate deep semantic features to mine query facets.

• List Extraction Items in a query facet have a parallel structure. Therefore, we first
extract items with a parallel structure from the search result documents to form lists.
For example, .albert einstein, anne frank, aristotle,... will be extracted as lists for the
query quotes and sayings. Besides, we proposed repeat context patterns to extract more
item lists from search result documents.

• List Weighting We weight lists according to their relevance to the query. Follow-
ing Dou et al. (2011), we leverage statistical features to assign low weight to noisy lists
such as [to order email us, monday friday 9, or call us] for query watches.

• Deep Semantic Encoders We encode items and lists with the pretrained model to gener-
ate better data representation. To leverage deep semantic information and provide bet-
ter representation for semantic matching, we design a contrastive sampling method to
train a better item encoder.

• List Clustering A single list is not enough to reflect the whole content about an aspect
of a query. Therefore, lists which have similar semantic meanings are grouped together,
according to their semantic representation distance in semantic space.

Fig. 1 Model architecture

Information Retrieval Journal (2023) 26:9

1 3

Page 7 of 24 9

• Facet Ranking and Item Ranking It is necessary to rank the clusters above based on
their importance to obtain the final query facets. Thus, following Dou et al. (2011),
we rank the cluster according to the weight of the lists in the cluster. Besides, there are
still some noisy items in the query facets. With deep semantic features, we can rank the
items in a facet to remove these noisy items and obtain the final query facets.

3.1 List extraction

As stated above, a query facet consists of items with parallel structures. However, we solely
have the top retrieved documents from the search engine. Following Dou et al. (2011), we
extract lists of items from the search results based on three types of patterns: text patterns,
HTML patterns and repeat region patterns. We add repeat context patterns to extract more
useful lists from the search results.

Text patterns extract text with two regular expression forms: item{, item} (and∣
or) {other} item and {⌃item(:∣ -).+$}+ . Examples of the two patterns are shown below,
wherein the extracted lists is italicized. Example 1 extracts items connected by ,∣and∣ or and
Example 2 extracts parallel items followed by : ∣ -.

Example 1 NOW—Science headline news from all realms of science, including biology,
genetics, medicine, stem cells, evolution, animals, climate change, the environment, phys-
ics, astronomy, and science policy.

Example 2 Computer loads the drives list...Documents: loads user’s documents...Network:
loads a list of all network clients connected...

HTML patterns extract text in four types of HTML tags: <select>, , and
<table>. Items in these four parallel structures are extracted as lists. Examples of the four
HTML patterns are shown below. Items below will be extracted as a list. As for the Type 4,
each row and each column are extracted as a list, respectively. That is, if a table has m rows
and n columns, then we extract at most m+n lists.

Type 1 <select><option>item1 </option>
 <option>item2 </option>...</select>
Type 2 item1 item2 ...
Type 3 item1 item2 ...
Type 4 <table><tr><td>item<td>...</table>

Repeat region patterns contain at least two adjacent or nonadjacent repeat regions in
webpages based on DOM trees. All leaf HTML nodes in repeat regions are extracted and
grouped by tag names and display styles. An example is shown in Fig. 2. It can be found
from the example that the flower’s name, the price, and the type of flower can be extracted
as three lists because items in them have a parallel relationship. Thus, we can extract three
lists: the name of the flower (Harvest Sunflower Basket, Hello Sunshine Bouquet, Light of
My Life Bouquet), the price ($85-$125, $56-$92, $50-$80), and the type of flower (Local
Florist Crafted, Local Florist Crafted, Local Florist Crafted). (Images are out of scope of
this work.)

In addition to the above three patterns, we extract items in the same list which have the
same prefix or suffix, and name them repeat context patterns to mine more lists from search

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 8 of 24

result documents. For example, in list tag heuer watches, movado watches, rotary watches,
wyler watches, glam rock watches, seiko watches, all items have the same suffix watches.
So we extract a new list tag heuer, movado, rotary, wyler, glam rock, seiko. In addition,
lists that have a structure of numbers followed by English or English followed by num-
bers will also be extracted. For example, in the list accessories watches 2, activa watches
75, baume mercier 13, bulova watches 24, caravelle by bulov 8, cartier watches 12, diesel
watches 12, we can extract a new list: accessories watches, activa watches, baume mercier,
bulova watches, caravelle by bulov, cartier watches, diesel watches. Types of repeat con-
text patterns are summarized in Table 2.

We also extract the list’s context which is the tokens before the list. After completing the
above steps, following Dou et al. (2011), we further process by removing useless symbol
characters such as ’[’ and ’]’ and converting uppercase to lowercase. Second, items longer
than 20 words are removed. Finally, lists containing fewer than 2 items or more than 200
items are removed.

3.2 List weighting

There are some noisy lists in the extracted list set, as shown in Table 3. For the query
watches, the first example is non-relevant and the second example is an extraction error
where the number 13 and 8 should not be extracted. In this section, we assign weight to all
lists extracted in Sect. 3.1 according to their importance and assign lower weights to lists
that are not relevant to the query or extraction errors.

In order to measure the importance of lists and remove bad lists, following Dou et al.
(2011), we use the product of document matching weight Sdoc and average inverse docu-
ment frequency Sidf to calculate the score of a list as Sl = Sdoc × Sidf . If a list contains more
items that appear in the higher-ranked documents, it is more important and should be given
a higher score. Thus, the definition of Sdoc is

∑

d∈D

� ∣l∩d∣

∣l∣
×

1
√

rankd

�

 , where D is the search
result document set, ∣ l ∩ d ∣ is the number of items that appear in both list l and document
d, ∣ l ∣ is the number of items in list l, rankd is the rank of document d. Besides, lists con-
taining more common items in a corpus are also less informative and should be assigned
low scores. Based on the above consideration, Sidf is defined as 1

∣l∣
×
∑

i∈l log
N−Ni+0.5

Ni+0.5
 , where

Fig. 2 An example of repeat region pattern

Information Retrieval Journal (2023) 26:9

1 3

Page 9 of 24 9

N is the total number of documents in the corpus, Ni is the total number of documents con-
taining item i . We use ClueWeb09 to calculate N and Ni.

3.3 Deep semantic encoders

To further improve the quality of query facets, it is important to learn better data represen-
tation. However, there are only 190 labeled training examples for query facets mining and
thus data sparsity is a major challenge for most query facets mining models, especially for
neural models. Motivated by this, we first design a contrastive sampling approach for items
and leverage the sampled item pairs to pretrain the item encoder. In addition, for lists, we
leverage the general language model BERT to generate list embeddings.

3.3.1 Contrastive sampling

To provide a better representation for semantic matching and improve the performance of
our model, we design an item-contrastive sampling strategy to generate item pairs. To ver-
ify the effectiveness of self-supervised learning in the lists’ representations, we also design
a list-contrastive sampling approach to perform an ablation study.

Item Pair Items in the same facets tend to have similar semantics while items in differ-
ent facets are more likely to cover different aspects of the query. Therefore, we construct
item-supervised signals to close the representation of items in the same facet and pull away
items in different facets.

There are several facets in the label of query q. For example, for query watches in
Table 1, there are three facets. We regard two items in the same query facet of the label
data such as cartier and rolex as the positive pair and items in the same mini-batch as the
negative samples I− . We use BERT as the initial item encoder because it is pretrained on
a large corpus and other advanced pretrained models can also be used. We fine-tune the
item encoder with item pairs and obtain an item encoder tailored for query facets mining to
learn better item representation, shown in Eqs. (1, 2).

(1)ri1 = BERT[SUM](i1), i1 = [CLS]item1[SEP],

Table 2 Types of repeat context
patterns

Pattern type Extracted list

Prefix item
1
 , prefix item

2
,... Item

1
 , item

2
,...

Item
1
 suffix, item

2
 suffix,... Item

1
 , item

2
,...

Number
1
 item

1
 , number

2
 item

2
,... Item

1
 , item

2
,...

Item
1
 number

1
 , item

2
 number

2
,... Item

1
 , item

2
,...

Table 3 Example of noisy lists
(query: watches)

Type Noisy lists

Non-relevant 60 Items per page,..., 120
items per page

Error Baume mercier 13,..., cara-
velle by bulov 8

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 10 of 24

Formally, the loss function of item augmentation LIP can be defined as:

where the function Sim(⋅) is the cosine similarity which can be replaced by other similarity
measure methods such as the inner product.

List Pair In addition to item-contrastive sampling, it is important to learn a list repre-
sentation that can reflect the meaning of items in the list and better measure the similarity
and differences between different lists. To implement this idea, we design list-contrastive
sampling methods to construct augmented list pairs based on lists extracted in Sect. 3.1.
The representations of augmented list pairs from one list should be closer than augmented
lists from different lists.

Specifically, we design three list augmentation strategies. (1) Item deleting: this strategy
randomly deletes some items from the list to enhance the generalizability of the encoder.
(2) Item reorder: this method randomly swaps two items in a list, as changing the order of
items in the list does not usually affect the overall meaning of the list. (3) Representation
dropout: Following Gao et al. (2021), we pass a list through the same model twice with
two different dropouts and get two different list representations.

For list l, we apply two random augmentation strategies on the list and get two lists l1
and l2 . We concatenate items in the list and use the list encoder to learn the representation
of lists rl1 and rl2 , shown in Eqs. (4, 5). Similar to the item encoder, we use BERT as the
initial list encoder and fine-tune it based on the above list pairs.

rl1 and rl2 is regarded as the positive pair. The augmented lists from other lists in the same
mini-batch are regarded as the negative samples L− . Similarly, the loss function of list aug-
mentation pair LLP for two lists is:

3.3.2 List and item encoding

Through the above contrastive learning, we have pretrained an item encoder which is suit-
able for query facets mining domain. For the list encoder, we use the pretrained model
BERT without self-supervised learning as our main approach. The above list encoder with
contrastive learning is used to perform an ablation study on whether the self-supervised
learning on lists is useful. We embed the lists and items with the item encoder and the list
encoder, respectively and use the vectors as their deep semantic features. We will combine
these deep semantic features with statistical features in the following steps to recall more
facet items from the candidate item set.

(2)ri2 = BERT[SUM](i2), i2 = [CLS]item2[SEP].

(3)LIP = − log
exp(Sim(ri1 , ri2))

exp(Sim(ri1 , ri2)) +
∑

i−∈I− exp(Sim(ri1 , ri−))
,

(4)rl1 = BERT[SUM](l1), l1 = [CLS]item1[SEP]… [SEP]itemn[SEP],

(5)rl2 = BERT[SUM](l2), l2 = [CLS]item1[SEP]… [SEP]itemn[SEP].

(6)LLP = − log
exp(Sim(rl1 , rl2))

exp(Sim(rl1 , rl2)) +
∑

l−∈L− exp(Sim(rl1 , rl−))
.

Information Retrieval Journal (2023) 26:9

1 3

Page 11 of 24 9

3.4 List clustering

A single list cannot be used as a query facet because (1) Lists extracted in Sect. 3.1 are not
complete. Most lists only contain part of the information in a query facet and cannot be
used as a query facet directly. (2) There are some noisy lists and we need to remove these
lists. (3) Some lists contain duplicated items. Due to the above reasons, we need to cluster
similar lists and discard noisy lists. To provide a better representation for semantic match-
ing and recall more facet items, in this section, we integrate deep semantic information into
the list clustering process.

Compared with other clustering algorithms, WQT (Dou et al., 2011) inherits the
strength of QT algorithm which guarantees the quality of clusters and does not need to
specify the number of clusters which is suitable for query facets mining. Besides, WQT
modifies QT algorithm which regards all data as equally important, and suits our scenario
where lists are not equally important. Previous methods (Dou et al., 2011; Kong & Allan,
2013) only use statistical features, such as the number of overlap items in two lists, to cal-
culate the distance between two clusters. However, some lists which have similar seman-
tic meanings but no overlapping items cannot be grouped together. For example, the list:
acer, alcatel, apple, archos, asus and the list: nokia, htc, samsung, google have no identical
items but the items in the two lists are all brands and have same semantic meanings. To
group lists with the same semantic meanings, we modify the WQT algorithm and proposed
a deep version WQTDeep , shown in Algorithm 1.

First, we choose the list l which has the highest weight from the weighted list set TL
obtained in Sect. 3.2, and set it as the initial cluster ci . Then, we need to find the list lmin
which is the closest to cluster ci and their minimum distance dlmin is defined in Eq. (7). The
distance between a list and a cluster dislkci is defined in Eq. (8), that is the maximum dis-
tance between list lk and each list lj in ci.

Because we want to combine statistical features with deep semantic features for more accu-
rate semantic matching, the distance between lists dislklj can be defined as a linear combina-
tion of the semantic distance and the statistical distance, shown in Eq. (9). The semantic
distance semdislklj , shown in Eq. (10), measures the distance between two lists’ representa-
tion in the semantic space, so it is calculated by the cosine distance of listk ’s representation
RLk

 and list j ’s representation RLj
 . We use cosine distance because it is useful and easy to

switch to other distance functions, such as Euclidean distance and Manhattan distance. The
statistical distance, following Dou et al. (2011), shown in Eq. (11), is calculated by the
items’ intersection of two lists.

(7)dlmin = min
lk∈TL

(dislkci),

(8)dislkci = max
lj∈ci

(dislk lj).

(9)dislk lj = (1 − �) × semdislk lj + � × stadislk lj ,

(10)semdislklj =

(

1 −
RLk

⋅ RLj

∣ RLk
∣∣ RLj

∣

)

∕2,

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 12 of 24

If dlmin ≤ Dmax where Dmax is a hyperparameter indicating the maximum diameter, we
add the list lmin to cluster ci . As each list is extracted from a search result document and
has its own website and we set wi=∣site(c i)∣ as the count of different site in cluster ci . If
dlmin > Dmax and wi ≥ Wmin , we save cluster ci , remove all lists in cluster ci from TL and con-
tinue to find cluster ci+1.

3.5 Facet and item ranking

The result of list clustering in Sect. 3.4 is the cluster set C that has not been sorted among
clusters. To help users find the information they need more quickly, in this section, we rank
clusters in the cluster set C based on their importance to generate the final query facets.

Following Dou et al. (2011), we define the importance of each cluster Sc as Eq. (12).
According to Algorithm 1, each cluster c is comprised of several lists and each list

(11)stadislklj = 1 −
∣ lk ∩ lj ∣

min(∣ lk ∣, ∣ lj ∣)
.

Information Retrieval Journal (2023) 26:9

1 3

Page 13 of 24 9

belongs to a website. There are some duplicated lists in each cluster, and most dupli-
cated lists are on the same website. Therefore, for lists from the same website, we only
calculate the list with the highest score. For each cluster, we sum the highest score of
lists on different websites as the cluster score Sc and rank the cluster based on the score.

where site(c) is the set of websites of lists in cluster c and s is a website. l is the list in both
cluster c and site s and Sl is its score according to Sect. 3.2.

Similarly, items in a query facet should also be sorted, because: (1) there are still
some noisy items in the facet and it is crucial to remove them; (2) ranking the items can
satisfy users’ information needs more quickly. Therefore, in this section, we remove the
noisy item which is non-relevant to other items in a facet based on their deep semantic
meanings, and rank the items in the same facet based on their importance.

An item can appear in several lists and items appearing in more lists tend to be more
important. Besides, an item that is different from other items and has low scores in most
lists tends to be a noisy item. Based on these considerations, we score item i in cluster
c as Eq. (13). Because lists from the same website are more likely to be duplicated, we
first average the item’s score in lists from the same website and then sum the average
item’s score in different websites:

where site(c) is the website set of lists in cluster c, s is a website in site(c), ∣ L ∣ is the num-
ber of lists whose website is s and Si∣l is the item i’s score in list l.

Items in a list tend to have a parallel structure and similar semantics. An item that is
not similar to other items in the same list tends to be a noisy item and should be assigned
a lower weight. Therefore, we calculate the average of semantic similarity score of item
i with other items in list l – simij to score item i in list l, denoted as Eq. (14):

where ∣ l ∣ is the number of items in list l.
As for the semantic similarity between two items simij , we use the cosine similarity

of two items’ semantic embedding according to Eq. (15):

where Ri and Rj is the embedding of item i and item j learned in Sect. 3.3, respectively.
After sorting items according to their scores, to remove noisy items, following Dou

et al. (2011), we only keep the items whose score Si∣c > 1.0 and Si∣c >
∣site(c)∣

10
 , where ∣

site(c) ∣ is the number of different websites of lists in cluster c. With above methods, we
can get the final ranked query facets F .

(12)Sc =
∑

s∈site(c)

max
l∈c,l∈s

Sl,

(13)Si∣c =
∑

s∈site(c)

1

∣ L ∣

∑

i∈l,l∈c,l∈s

Si∣l,

(14)Si∣l =
1

∣ l ∣ −1

∣l∣
∑

j=1,j≠i

simij,

(15)simij =
Ri ⋅ Rj

∣ Ri ∣∣ Rj ∣
,

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 14 of 24

4 Evaluation

4.1 Data

Following previous work (Dou et al., 2011), we use two datasets UserQ1 and RandQ.2
UserQ is composed of 83 queries issued by the subjects and RandQ is composed of 105
queries randomly sampled from a commercial search engine’s query log. The top 100
result documents are extracted under each query. Each query has a corresponding manual
label marked by persons who search in the query-related field or have relevant knowledge.
Each label is composed of multiple manually classified query facets. Each facet has a facet
name and a rate. The rate is divided into three types: good/2, fair/1, and bad/0.

The statistics of UserQ and RandQ are shown in Table 4. Both UserQ and RandQ contain
more than 0.4 million items, and the average number of result documents contained in each
query is 99.8 and 99.3. The average number of lists contained in each result document is 17.6
and 14.3, and the average number of items contained in each list is about 8.0 and 8.5. In addi-
tion, in the label data, the average number of good and fair facets contained in each query is
10.3 and 5.1. The average number of facet items contained in each facet is about 38.6 and
35.9, and the average number of facet items contained in each query is 399.9 and 181.7.

4.2 Evaluation metrics

The results of the query facets mining problem can be evaluated from four aspects: accu-
racy of finding items, quality of clustering, accuracy-clustering quality, and ranking effec-
tiveness of query facets.

4.2.1 Accuracy of finding items

An important aspect of evaluating the results of query facets mining models is whether
the model can find facet items that need to be retained from the extracted lists. Therefore,

Table 4 The statistics of UserQ and RandQ

Raw data UserQ RandQ

Queries 83 105
Items 490490 476875
Results per query 99.8 99.3
Lists per document 17.6 14.3
Items per list 8.0 8.5

 Label data UserQ RandQ

Good and fair facets per query 10.3 5.1
Items per facets 38.6 35.9
Items per query 399.9 181.7

1 http:// playb igdata. ruc. edu. cn/ dou/ qdmin er/ UserQ/.
2 http:// playb igdata. ruc. edu. cn/ dou/ qdmin er/ RandQ/.

http://playbigdata.ruc.edu.cn/dou/qdminer/UserQ/
http://playbigdata.ruc.edu.cn/dou/qdminer/RandQ/

Information Retrieval Journal (2023) 26:9

1 3

Page 15 of 24 9

according to Eqs. (16) and (17), we use precision and recall to measure the accuracy of the
model for finding facet items.

where {I} represents the set of items extracted by the model. {Ilab} represents the item set
contained in the label data, that is, the ground truth.

4.2.2 Quality of clustering

Each query facet should only contain facet items reflecting the same aspect of the query. Facet
items that contain similar information should not be divided into different facets. Therefore,
similar to Dou et al. (2011), we use Purity, NMI (Normalized Mutual Information), RI (Ran-
dom Index), and F measure as evaluation metrics to measure the quality of clustering.

4.2.3 Accuracy‑clustering quality

To further evaluate the overall performance of accuracy and clustering of the model, we adopt
PRF and wPRF proposed by Kong and Allan (2013). PRF is the multiplication of precision,
recall, and cluster F1 score and wPRF is the multiplication of weighted precision, weighted
recall, and weighted F1 calculated by weighted precision and weighted recall.

4.2.4 Ranking effectiveness of facets

In the final result, we want to rank good facets (and good facet items) before bad ones. Dou
et al. (2011) proposed a modified version of nDCG: fp-nDCG and rp-nDCG. Based on the
original formula of nDCG, both fp-nDCG and rp-nDCG have added a weight wi . The calcula-
tion formulas of the three measurements are shown in Eq. (18).

where the rating of facet fi is ri.
For fp-nDCG and rp-nDCG, we set:

and wi is calculated as follows:

(16)Precision ∶
∣ {I} ∩ {Ilab} ∣

∣ {I} ∣
,

(17)Recall ∶
∣ {I} ∩ {Ilab} ∣

∣ {Ilab} ∣
,

(18)nDCG =
DCG

IDCG
, DCG =

f
∑

i=1

DGi, DGi =
2ri−1

log2(1 + i)
,

(19)DCG =

f
∑

i=1

wi ∗ DGi,

(20)fp-nDCG ∶ wi =
∣ fi ∩ f label

i
∣

∣ fi ∣
,

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 16 of 24

where fi represents facet generated by the model, and f label
i

 is the facet in label data.

4.3 Baselines

There are several approaches in query facets mining, and we compare our method with
QDMiner (Dou et al., 2011) and QF-I/QF-J (Kong & Allan, 2013).

QDMiner followed four steps. It extracted lists from search result documents. Then
the extracted lists were weighted according to statistical features. The lists were clustered
based on the WQT clustering algorithm (described in Sect. 3.4). Finally, the model ranked
the facets and the facet items based on statistical features.

QF-I/QF-J was a supervised method, starting with lists extracted as with QDMiner. It
then classified whether an item was a facet item and whether two items should be grouped
together based on a Bayesian network. Finally, it clustered and ranked the facet items and
facets.

Note that a related algorithm (QDMKB (Jiang et al., 2016)) employs a knowledge base to
aid in facets mining, but as we focus on search results as the source of query facets, we do
not compare to this work.

4.4 Implementation details

For the baselines, and for the proposed DeepQFM method, we extract lists from the top
100 results of UserQ and RandQ (described in Sect. 4.1). We use five-fold cross-validation
to get more stable results. We tune parameters based on the sum of precision, NMI, nDCG,
fp-nDCG and rp-nDCG, because precision reflects the proportion of real facet items
among recalled facet items, NMI shows the clustering quality, and nDCG, fp-nDCG, and
rp-nDCG measure the ranking quality. We pre-train the item encoder with two epochs and
the learning rate is 5e–5. We set the batch size as eight and the temperature as 0.1. There
are also some hyper-parameters in our model and we set � = 0.1 , Dmax = 0.1 , and Wmin = 3.

5 Experimental results

5.1 Overall result

We compare our model with three baselines: QDMiner, QF-I/QF-J. Experimental results
are shown in Tables 5 and 6.

(1) First, we compare our model with QDMiner for the accuracy evaluation metrics and
the quality of clustering evaluation metrics. As shown in Table 5, our model DeepQFM
outperforms QDMiner on both UserQ and RandQ in recall, purity, RI, F1, and F5. For
the recall score, DeepQFM achieves 0.355 which exceeds QDMiner’s 0.227 by 0.128
on UserQ. For cluster quality evaluation metrics, DeepQFM has achieved results that
surpass QDMiner on all clustering evaluation metrics with a little drop on NMI. These

(21)rp-nDCG ∶ wi =
∣ fi ∩ f label

i
∣

fi

∣ fi ∩ f label
i

∣

∣ f label
i

∣
,

Information Retrieval Journal (2023) 26:9

1 3

Page 17 of 24 9

results demonstrate that the semantic features can better measure the distance between
items in lists. By combining the semantic features and statistical features, our model
can recall more good facet items.

(2) Similar to Dou et al. (2011), we also compare DeepQFM with QDMiner, QF-I/QF-J
on the most important evaluation metrics: nDCG, fp-nDCG, rp-nDCG, PRF, and wPRF
for fair. As shown in Table 6, DeepQFM outperforms QDMiner on all evaluation
metrics on both datasets. More specifically, for the ranking effectiveness evaluation
metrics, nDCG is improved to 0.634 from 0.618, and fp-nDCG is improved to 0.573
from 0.570. DeepQFM has increased rp-nDCG to 0.203 compared to QDMiner’s 0.168
by about 21%. As for the accuracy-clustering quality evaluation metrics, PRF has
achieved 0.425 and wPRF also gets a huge promotion to 0.543. Besides, DeepQFM
also outperforms QF-I/QF-J on all evaluation metrics on both datasets except QF-I for
nDCG on RandQ. On RandQ, rp-nDCG for DeepQFM improves to 0.205 from QF-I’s
0.138 and QF-J’s 0.108. These results indicate that our model can recall more facet
items and achieve better clustering and ranking quality.

(3) Our model achieves a comparable result with QDMiner for NMI on the two datasets.
Although slightly down from QDMiner for NMI, DeepQFM still outperforms QDMiner
on other clustering evaluation metrics. This means that our method still has a good
performance in clustering. Besides, the precision of DeepQFM decreases from 0.528
to 0.466 on UserQ and from 0.439 to 0.378 on RandQ. It should be underlined that
there is a trade-off between precision and recall. The more good items we recall, the
more likely we will recall more bad items. Although slightly inferior in precision to
QDMiner, our model has achieved a significant performance on recall. For fp-nDCG

Table 5 Compared with QDMiner on UserQ and RandQ

The best performance are given in bold

Dataset Metric Pre Rec Purity RI F1 F5 NMI

UserQ QDMiner 0.528 0.227 0.935 0.772 0.444 0.327 0.658
DeepQFM 0.466 0.355 0.941 0.774 0.477 0.357 0.653

RandQ QDMiner 0.439 0.193 0.854 0.677 0.526 0.445 0.504
DeepQFM 0.378 0.340 0.893 0.699 0.578 0.492 0.498

Table 6 Compared with
QDMiner and QF-I/QF-J on
UserQ and RandQ.

The best performance are given in bold

Dataset Metric nDCG fp-nDCG rp-nDCG PRF wPRF

UserQ QDMiner 0.618 0.570 0.168 0.351 0.409
QF-I 0.589 0.334 0.136 0.403 0.431
QF-J 0.533 0.383 0.119 0.315 0.336
DeepQFM 0.634 0.573 0.203 0.425 0.543

RandQ QDMiner 0.544 0.506 0.153 0.321 0.302
QF-I 0.579 0.275 0.138 0.349 0.388
QF-J 0.511 0.318 0.108 0.223 0.251
DeepQFM 0.577 0.525 0.205 0.410 0.430

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 18 of 24

and rp-nDCG, DeepQFM has also got a huge improvement. This means that DeepQFM
can recall as many good items as possible and improve the recall and rp-nDCG with
a little drop in precision and without reducing fp-nDCG. Moreover, DeepQFM gets a
comparable result with QF-I in terms of nDCG which indicates that the ranking qual-
ity of our model is similar to QF-I while the accuracy of finding items and clustering
quality are superior to QF-I.

In the following section, we only show the results on RandQ on account of the space
limitation. We achieve the same results on RandQ and UserQ in most experiments.

5.2 Ablation study

5.2.1 Effects of contrastive samplings

In this section, we conduct an ablation study to verify the necessity of our contrastive
learning tasks. Specifically, we explore the role of item-contrastive sampling (IP) and list-
contrastive sampling (LP) and results are shown in Table 7. The row labeled “w/o IP” is
removing item-contrastive sampling. The row labeled “IP+LP” adopts both item-contras-
tive sampling and list-contrastive sampling.

The removal of task IP affects precision, NMI and rp-nDCG. This indicates that the
item-contrastive sampling task can help the item encoder model the item representation
more accurately. Besides, we also conduct experiments to show the effectiveness of list
self-contrastive learning. Interestingly, only precision has increased with a huge decrease
in other evaluation metrics. Two possible explanations for this are that (1) list-contrastive
sampling is self-supervised without human labels; (2) pretraining list representation on
sampled list pairs may hurt the semantic information originally contained in BERT. In the
future, we plan to design reasonable list-contrastive sampling approaches to learn a better
list representation.

5.2.2 Effects of different types of patterns

We add repeat context patterns in Sect. 3.1, so in this section, we conduct an ablation
study to verify the effectiveness of repeat context patterns. Experimental results are shown
in Table 8, where w/o pattern is the result without repeat context patterns. We use the

Table 7 Performance of different contrastive samplings

The best performance are given in bold

Metric Pre Rec NMI nDCG fp-nDCG rp-nDCG wPRF

DeepQFM 0.378 0.340 0.498 0.577 0.525 0.205 0.430
w/o IP 0.361 0.344 0.485 0.577 0.523 0.202 0.429
IP+LP 0.380 0.282 0.486 0.548 0.488 0.156 0.402

Information Retrieval Journal (2023) 26:9

1 3

Page 19 of 24 9

remaining three patterns to extract lists from search result documents while other steps fol-
low the same routine with DeepQFM.

By analyzing the results, we find that repeat context patterns are useful for query facets
mining because without repeat context patterns, almost all evaluation metrics drop. This
means that repeat context patterns can help us find more facet items from search result
documents and improve the quality of results. Meanwhile, repeat context patterns also
introduce some bad lists and bad items which will lead to lower NMI. For example, for
query watches, we have extracted list: camel active watches, casio watches, citizen watches
and with repeat context patterns, we can obtain list: camel active, casio, citizen. However,
camel active is not a facet item and should be removed.

5.2.3 Effects of different components

We further investigate the effects of the list encoder and item encoder in list clustering
and item ranking, respectively. Results are shown in Table 8. Without the list encoder, we
leverage only the statistical similarity to calculate the distance between lists which harms
the results on all evaluation metrics. This indicates that deep semantic features are impor-
tant to model the relationship between lists. Meanwhile, the removal of the item encoder
also causes an impact on recall and rp-nDCG which shows the use of deep semantic fea-
tures can help our model recall more items and rank facet items higher. It should be noted
that we adopt the item ranking approach in QDMiner to conduct the w/o item encoder
experiment.

5.3 Experiments with clustering distances

We combine deep semantic features and statistical features to provide a better matching
score for list clustering. In this section, we investigate the clustering hyperparameter, � , to
illustrate how the performance changes with the integration of deep semantic features. We
also wonder in what proportion should deep semantic features and statistical features be
combined for the best results. We conduct experiments with the different � , and experimen-
tal results are shown in Fig. 3.

We choose recall, RI, NMI, nDCG, fp-nDCG, rp-nDCG, and PRF to show the influ-
ence of � because they evaluate our model in all aspects. The metrics nDCG, fp-nDCG,
rp-nDCG and PRF, are maximized at � = 0.1 because at this point, we add statistical
information to calculating the clustering distance, compared to � = 0.0 which only uses
semantic features. As for values of � greater than 0.1, with the increase of statistical
information, deep semantic information gradually decreases, leading to a gradual decline

Table 8 Effects of repeat context pattern, list encoder and item encoder

The best performance are given in bold

Metric Pre Rec NMI nDCG fp-nDCG rp-nDCG wPRF

DeepQFM 0.378 0.340 0.498 0.577 0.525 0.205 0.430
w/o pattern 0.365 0.335 0.504 0.572 0.516 0.201 0.423
w/o list encoder 0.359 0.185 0.417 0.422 0.384 0.128 0.285
w/o item encoder 0.387 0.219 0.516 0.575 0.522 0.160 0.326

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 20 of 24

in performance. This indicates that integrating deep semantic information and statistical
information improves results and deep semantic information is important for query fac-
ets mining. Additionally, recall, RI, and NMI obtain the best result at � = 0.0 and as �
increases, the performance gradually deteriorates. This demonstrates that the more seman-
tic information used, the better the results. However, to obtain a more balanced result, we
choose � = 0.1 as the hyper-parameter. In short, deep semantic features carry more infor-
mation, and therefore are helpful to the model.

5.4 Efficiency analysis

In this section, we evaluate the efficiency of our model with QDMiner (Dou et al., 2011).
All experiments are conducted on a single TITAN V GPU.

As shown in Table 9, while the model achieves better results, particularly for recall, it
comes at the cost of a small increase in processing time. The main time increase lies in
the deep semantic encoder and the item ranking, because we need to encode the item and
the list and perform deep semantic matching between different items and different lists. In

Fig. 3 Experiment result with different value of clustering hyperparameter: �

Table 9 Test time per query (s)
of DeepQFM and QDMiner

Steps DeepQFM QDMiner

List extraction 0.220 0.218
List weighting 2.442 2.442
Deep semantic encoder 1.751 –
List clustering 0.766 0.765
Facet ranking and item ranking 0.749 0.005

Information Retrieval Journal (2023) 26:9

1 3

Page 21 of 24 9

an online service, we can store the representation of frequently used items and lists which
would reduce the processing time. Besides, the encoding of items and lists in our model
can be calculated in parallel, so the actual time of our model is further improved.

5.5 Case study

We present the results of DeepQDM and QDMiner on query watches in Table 10 to better
understand why our model performs well. Compared with QDMiner, our method Deep-
QDM leverages deep semantic features which will not cluster items such as rolex and men
together, as they are far away in deep semantic space. Besides, with deep semantic features,
useless items like all, which often appear in the lists, will not be extracted.

6 Conclusion

In this paper, we study the problem of query facet mining. Existing approaches such as
QDMiner, QF-I/QF-J mainly used statistical features to model the representation of lists
and items, while some semantic information is also important for mining more good items.
To shed light on this research question, we proposed DeepQFM which leverages seman-
tic information to obtain better representations for lists and items and promote the perfor-
mance of query facets mining. Specifically, we first extract lists from search result docu-
ments and assign weights to these lists. Then, we cluster these lists based on their deep
semantic representation and statistical features. Finally, we design a contrastive learning
task to pretrain an item encoder and remove unimportant items. Experimental results show
that our method significantly improves the performance of query facets mining, especially
the recall of facet items.

Acknowledgements Zhicheng Dou is the corresponding author. This work was supported by National Natu-
ral Science Foundation of China No. 62272467 and No. 61832017, Beijing Outstanding Young Scientist
Program NO. BJJWZYJH012019100020098, China Unicom Innovation Ecological Cooperation Plan, and
Intelligent Social Governance Platform, Major Innovation & Planning Interdisciplinary Platform for the
“Double-First Class” Initiative, Renmin University of China. We also wish to acknowledge the support pro-
vided and contribution made by Public Policy and Decision-making Research Lab of RUC.

Author contributions Zhirui Deng and Zhicheng Dou develop the research idea, gather the dataset used in
the study, and revise the manuscript. Zhirui Deng designs the research methodology, prepares the experi-
mental datasets, conducts experiments, evaluates the proposed algorithms and drafts the manuscript. J-RW
provides financial support and the experiment environment for the research.

Table 10 Case study on DeepQFM and QDMiner

Query Method Query facets

Watches QDMiner rolex, cartier, breitling, omega, tag heuer,..., men,...
Men, women, unisex, kids, all, children,...

DeepQFM breitling, bvlgari, omega, rolex, christian dior, cellini,...
Women, men, unisex, children, kids,...

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 22 of 24

Data availability The two datasets we use are available on http:// playb igdata. ruc. edu. cn/ dou/ qdmin er/
UserQ/ and http:// playb igdata. ruc. edu. cn/ dou/ qdmin er/ RandQ/.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Aliannejadi, M., Zamani, H., Crestani, F., & Croft, W. B. (2019). Asking clarifying questions in open-
domain information-seeking conversations. In Proceedings of the 42nd international ACM SIGIR con-
ference on research and development in information retrieval (pp. 475–484).

Anick, P. (2003). Using terminological feedback for web search refinement: A log-based study. In Proceed-
ings of the 26th annual international ACM SIGIR conference on research and development in informa-
tion retrieval (pp. 88–95).

Baeza-Yates, R., Hurtado, C., & Mendoza, M. (2004). Query recommendation using query logs in search
engines. International conference on extending database technology (pp. 588–596).

Basu Roy, S.,Wang, H., Das, G., Nambiar, U., & Mohania, M. (2008). Minimumeffort driven dynamic fac-
eted search in structured databases. In Proceedings of the 17th ACM conference on information and
knowledge management (pp. 13–22).

Ben-Yitzhak, O., Golbandi, N., Har’El, N., Lempel, R., Neumann, A., Ofek-Koifman, S., Sheinwald, D.,
Shekita, E., Sznajder, B., & Yogev, S. (2008). Beyond basic faceted search. In Proceedings of the 2008
international conference on web search and data mining (pp. 33–44).

Bing, L., Lam, W., Wong, T.-L., & Jameel, S. (2015). Web query reformulation via joint modeling of latent
topic dependency and term context. ACM Transactions on Information Systems (TOIS), 33(2), 1–38.

Dakka, W., Dayal, R., & Ipeirotis, P. G. (2006). Automatic discovery of useful facet terms. In SIGIR faceted
search workshop (pp. 18–22).

Dakka, W., & Ipeirotis, P. G. (2008). Automatic extraction of useful facet hierarchies from text databases. In
2008 IEEE 24th international conference on data engineering (pp. 466–475).

Dakka, W., Ipeirotis, P. G., & Wood, K. R. (2005). Automatic construction of multifaceted browsing inter-
faces. In Proceedings of the 14th ACM international conference on information and knowledge man-
agement (pp. 768–775).

Damova, M., & Koychev, I. (2010). Query-based summarization: A survey.
Dash, D., Rao, J., Megiddo, N., Ailamaki, A., & Lohman, G. (2008). Dynamic faceted search for discovery-

driven analysis. In Proceedings of the 17th ACM conference on information and knowledge manage-
ment (pp. 3–12).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv: 1810. 04805

Diao, M., Mukherjea, S., Rajput, N., & Srivastava, K. (2010). Faceted search and browsing of audio content
on spoken web. In Proceedings of the 19th ACM international conference on information and knowl-
edge management (pp. 1029–1038).

Dou, Z., Hu, S., Luo, Y., Song, R., & Wen, J.-R. (2011). Finding dimensions for queries. In Proceedings of
the 20th ACM international conference on information and knowledge management (pp. 1311–1320).

Dou, Z., Jiang, Z., Hu, S., Wen, J.-R., & Song, R. (2015). Automatically mining facets for queries from their
search results. IEEE Transactions on Knowledge and Data Engineering, 28(2), 385–397.

Dou, Z., Song, R., & Wen, J. (2007). A large-scale evaluation and analysis of personalized search strategies.
In Williamson, C. L., Zurko, M. E., Patel-Schneider, P. F., & Shenoy, P. J. (eds.) Proceedings of the
16th international conference on world wide web, WWW 2007, Banff, Alberta, Canada, May 8–12,
2007 (pp. 581–590). ACM. Retrieved from https:// doi. org/ 10. 1145/ 12425 72. 12426 51

Gao, T., Yao, X., & Chen, D. (2021). Simcse: Simple contrastive learning of sentence embeddings.
In Moens, M., Huang, X., Specia, L., & Yih, S. W. (eds.) Proceedings of the 2021 conference on
empirical methods in natural language processing, EMNLP 2021, virtual event/Punta Cana, Domini-
can Republic, 7–11 November, 2021 (pp. 6894–6910). Association for Computational Linguistics.
Retrieved from https:// doi. org/ 10. 18653/ v1/ 2021. emnlp- main. 552

Gholamrezazadeh, S., Salehi, M. A., & Gholamzadeh, B. (2009). A comprehensive survey on text summa-
rization systems. In 2009 2nd international conference on computer science and its applications (pp.
1–6).

http://playbigdata.ruc.edu.cn/dou/qdminer/UserQ/
http://playbigdata.ruc.edu.cn/dou/qdminer/UserQ/
http://playbigdata.ruc.edu.cn/dou/qdminer/RandQ/
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/1242572.1242651
https://doi.org/10.18653/v1/2021.emnlp-main.552

Information Retrieval Journal (2023) 26:9

1 3

Page 23 of 24 9

Herdagdelen, A., Ciaramita, M., Mahler, D., Holmqvist, M., Hall, K., Riezler, S., & Alfonseca, E. (2010).
Generalized syntactic and semantic models of query reformulation. In Proceedings of the 33rd inter-
national ACM SIGIR conference on research and development in information retrieval (pp. 283–290).

Hu, S., Dou, Z., Wang, X., Sakai, T., & Wen, J.-R. (2015). Search result diversification based on hierarchi-
cal intents. In Proceedings of the 24th ACM international on conference on information and knowledge
management (pp. 63–72).

Hu, Y., Qian, Y., Li, H., Jiang, D., Pei, J., & Zheng, Q. (2012). Mining query subtopics from search log
data. In Hersh, W. R., Callan, J., Maarek, Y., & Sanderson, M. (eds.) The 35th international ACM
SIGIR conference on research and development in information retrieval, SIGIR ’12, Portland, or, USA,
August 12–16, 2012 (pp. 305–314). ACM. Retrieved from https:// doi. org/ 10. 1145/ 23482 83. 23483 27

Huang, J., & Efthimiadis, E. N. (2009). Analyzing and evaluating query reformulation strategies in web
search logs. In Proceedings of the 18th ACM conference on information and knowledge manage-
ment (pp. 77–86).

Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users, and real needs: A study and analy-
sis of user queries on the web. Information Processing and Management, 36(2), 207–227. https://
doi. org/ 10. 1016/ S0306- 4573(99) 00056-4

Jiang, Z., Dou, Z., & Wen, J.-R. (2016). Generating query facets using knowledge bases. IEEE Transac-
tions on Knowledge and Data Engineering, 29(2), 315–329.

Jones, R., & Klinkner, K. L. (2008). Beyond the session timeout: automatic hierarchical segmentation
of search topics in query logs. In Shanahan, J. G., et al. (eds.) Proceedings of the 17th ACM con-
ference on information and knowledge management, CIKM 2008, Napa Valley, California, USA,
October 26–30, 2008 (pp. 699–708). ACM. Retrieved from https:// doi. org/ 10. 1145/ 14580 82. 14581
76

Kong, W., & Allan, J. (2013). Extracting query facets from search results. In Proceedings of the 36th
international ACM SIGIR conference on research and development in information retrieval (pp.
93–102).

Latha, K., Veni, K. R., & Rajaram, R. (2010). AFGF: An automatic facet generation framework for docu-
ment retrieval. In 2010 International conference on advances in computer engineering (pp. 110–114).

Li, B., Liu, T., Du, X., Zhang, D., & Zhao, Z. (2015). Learning document embeddings by predicting
n-grams for sentiment classification of long movie reviews. arXiv: 1512. 08183

Li, C., Yan, N., Roy, S. B., Lisham, L., & Das, G. (2010). Facetedpedia: dynamic generation of query-
dependent faceted interfaces for wikipedia. In Proceedings of the 19th international conference on
world wide web (pp. 651–660).

Li, L., Zhong, L., Yang, Z., & Kitsuregawa, M. (2013). Qubic: An adaptive approach to query-based
recommendation. Journal of Intelligent Information Systems, 40(3), 555–587.

Liu, L., Xu, W., Song, W., Du, C., et al. (2015). Query subtopic mining by combining multiple seman-
tics. International Journal of Multimedia and Ubiquitous Engineering, 10(12), 341–354.

Maxwell, D., Azzopardi, L., & Moshfeghi, Y. (2017). A study of snippet length and informativeness:
Behaviour, performance and user experience. In Kando, N., Sakai, T., Joho, H., Li, H., de Vries, A.
P., & White, R. W. (eds.) Proceedings of the 40th international ACM SIGIR conference on research
and development in information retrieval, Shinjuku, Tokyo, Japan, August 7–11, 2017 (pp. 135–
144). ACM. Retrieved from https:// doi. org/ 10. 1145/ 30771 36. 30808 24

Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning generic context embedding
with bidirectional LSTM. In Proceedings of the 20th SIGNLL conference on computational natural
language learning (pp. 51–61).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in
vector space. arXiv: 1301. 3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013b). Distributed representations of
words and phrases and their compositionality. arXiv: 1310. 4546

Mitra, M., Singhal, A., & Buckley, C. (1998). Improving automatic query expansion. In Proceedings of
the 21st annual international ACM SIGIR conference on research and development in information
retrieval (pp. 206–214).

Niccolai, J. (2009). Yahoo vows death to the ‘10 blue links’.
Pound, J., Paparizos, S., & Tsaparas, P. (2011). Facet discovery for structured web search: A query-log

mining approach. In Proceedings of the 2011 ACM SIGMOD international conference on manage-
ment of data (pp. 169–180).

Radlinski, F., Szummer, M., & Craswell, N. (2010). Inferring query intent from reformulations and
clicks. In Rappa, M., Jones, P., Freire, J., & Chakrabarti, S. (eds.) Proceedings of the 19th inter-
national conference on world wide web, WWW 2010, Raleigh, North Carolina, USA, April 26–30,
2010 (pp. 1171–1172). ACM. Retrieved from https:// doi. org/ 10. 1145/ 17726 90. 17728 59

https://doi.org/10.1145/2348283.2348327
https://doi.org/10.1016/S0306-4573(99)00056-4
https://doi.org/10.1016/S0306-4573(99)00056-4
https://doi.org/10.1145/1458082.1458176
https://doi.org/10.1145/1458082.1458176
http://arxiv.org/abs/1512.08183
https://doi.org/10.1145/3077136.3080824
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1310.4546
https://doi.org/10.1145/1772690.1772859

 Information Retrieval Journal (2023) 26:9

1 3

9 Page 24 of 24

Riezler, S., Liu, Y., & Vasserman, A. (2008). Translating queries into snippets for improved query
expansion. In Proceedings of the 22nd international conference on computational linguistics (Col-
ing 2008) (pp. 737–744).

Sarwar, S. M., Addanki, R., Montazeralghaem, A., Pal, S., & Allan, J. (2020). Search result diversifica-
tion with guarantee of topic proportionality. In Balog, K., Setty, V., Lioma, C., Liu, Y., Zhang, M.
& Berberich, K. (eds.) ICTIR ’20: The 2020 ACM SIGIR international conference on the theory of
information retrieval, virtual event, Norway, September 14–17, 2020 (pp. 53–60). ACM. Retrieved
from https:// doi. org/ 10. 1145/ 34092 56. 34098 39

Sarwar, S. M., Moraes, F., Jiang, J., & Allan, J. (2021). Utility of missing concepts in query-biased sum-
marization. In Diaz, F., Shah, C., Suel, T., Castells, P., Jones, R., & Sakai, T. (eds.) SIGIR ’21: The
44th international ACM SIGIR conference on research and development in information retrieval,
virtual event, Canada, July 11–15, 2021 (pp. 2056–2060). ACM. Retrieved from https:// doi. org/ 10.
1145/ 34048 35. 34631 21

Shum, H. (2011). Bing dialog model: intent, knowledge and user interaction. In Proceedings of the fourth
ACM international conference on web search and data mining (pp. 115—116).

Silverstein, C., Henzinger, M. R., Marais, H., & Moricz, M. (1999). Analysis of a very large web search
engine query log. SIGIR Forum, 33(1), 6–12. https:// doi. org/ 10. 1145/ 331403. 331405

Song, R., Luo, Z., Wen, J., Yu, Y., & Hon, H. (2007). Identifying ambiguous queries in web search. In Wil-
liamson, C. L., Zurko, M. E., Patel- Schneider, P. F., & Shenoy, P. J. (eds.) Proceedings of the 16th
international conference on world wide web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007
(pp. 1169–1170). ACM. Retrieved from https:// doi. org/ 10. 1145/ 12425 72. 12427 49

Stoica, E., Hearst, M. A., & Richardson, M. (2007). Automating creation of hierarchical faceted metadata
structures. In Human language technologies 2007: The conference of the North American chapter of
the association for computational linguistics; proceedings of the main conference (pp. 244–251).

Strohmaier, M., Kröll, M., & Körner, C. (2009). Intentional query suggestion: making user goals more
explicit during search. In Craswell, N., Jones, R., Dupret, G., & Viegas, E. (eds.) Proceedings of the
2009 workshop on web search click data, wscd@wsdm 2009, Barcelona, Spain, February 9, 2009 (pp.
68–74). ACM. Retrieved from https:// doi. org/ 10. 1145/ 15075 09. 15075 20

Sun, T., Shao, Y., Qiu, X., Guo, Q., Hu, Y., Huang, X., & Zhang, Z. (2020). Colake: Contextualized lan-
guage and knowledge embedding. arXiv: 2010. 00309

Surya, D., Deepak, G., & Santhanavijayan, A. (2021). QFRDBF: Query facet recommendation using knowl-
edge centric DBSCAN and firefly optimization. In International conference on digital technologies
and applications (pp. 801–811).

Szpektor, I., Gionis, A., & Maarek, Y. (2011). Improving recommendation for long-tail queries via tem-
plates. In Proceedings of the 20th international conference on world wide web (pp. 47–56).

Xue, X., & Croft, W. B. (2013). Modeling reformulation using query distributions. ACM Transactions on
Information Systems (TOIS), 31(2), 1–34.

Zhang, Z., & Nasraoui, O. (2006). Mining search engine query logs for query recommendation. In Proceed-
ings of the 15th international conference on world wide web (pp. 1039–1040).

Zhao, Z., Liu, T., Li, S., Li, B., & Du, X. (2017). Ngram2vec: Learning improved word representations from
ngram co-occurrence statistics. In Proceedings of the 2017 conference on empirical methods in natural
language processing (pp. 244–253).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1145/3409256.3409839
https://doi.org/10.1145/3404835.3463121
https://doi.org/10.1145/3404835.3463121
https://doi.org/10.1145/331403.331405
https://doi.org/10.1145/1242572.1242749
https://doi.org/10.1145/1507509.1507520
http://arxiv.org/abs/2010.00309

	DeepQFM: a deep learning based query facets mining method
	Abstract
	1 Introduction
	2 Related work
	2.1 Query facets mining and faceted search
	2.2 Query recommendation
	2.3 Query-based summarization
	2.4 Query subtopics mining
	2.5 Semantic representation

	3 Model
	3.1 List extraction
	3.2 List weighting
	3.3 Deep semantic encoders
	3.3.1 Contrastive sampling
	3.3.2 List and item encoding

	3.4 List clustering
	3.5 Facet and item ranking

	4 Evaluation
	4.1 Data
	4.2 Evaluation metrics
	4.2.1 Accuracy of finding items
	4.2.2 Quality of clustering
	4.2.3 Accuracy-clustering quality
	4.2.4 Ranking effectiveness of facets

	4.3 Baselines
	4.4 Implementation details

	5 Experimental results
	5.1 Overall result
	5.2 Ablation study
	5.2.1 Effects of contrastive samplings
	5.2.2 Effects of different types of patterns
	5.2.3 Effects of different components

	5.3 Experiments with clustering distances
	5.4 Efficiency analysis
	5.5 Case study

	6 Conclusion
	Acknowledgements
	References

