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ABSTRACT
Providing personalization in product search has attracted increas-
ing attention in both industry and research communities. Most
existing personalized product search methods model users’ individ-
ual search interests based on their historical search logs to generate
personalized search results. However, the search logs may be sparse
or noisy in the real scenario, which is difficult for existing methods
to learn accurate and robust user representations. To address this
issue, we propose a contrastive learning framework CoPPS that
aims to learn high-quality user representations for personalized
product search. Specifically, we design three data augmentation and
contrastive learning strategies to construct self-supervision signals
from the original search behaviours. The contrastive learning tasks
utilize an external knowledge graph and exploit the correlations
within and between user sequences, thereby facilitating the discov-
ery of more meaningful search patterns and ultimately enhancing
the quality of personalized search. Experimental results on the
public Amazon datasets verify the effectiveness of our approach.
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1 INTRODUCTION
Product search aims to retrieve a list of products that match the
users’ search intent based on their submitted queries. Therefore,
the quality of product search results directly impacts user satisfac-
tion, as well as e-commerce platforms’ transactions and revenue.
Previous studies on product search have focused on modeling the
correlation between queries and product aspects (e.g., categories
and brands) [17]. However, these studies generally conducted non-
personalized product searches without taking into account users’
search preferences.

Personalized product search systems extensively utilize users’
historical search logs, which contain abundant data on search pref-
erences. Several personalized search methods [2, 4, 6, 29] have
emerged, intending to extract user preferences from these logs for
more precise results. Considering the dynamic nature of user search
interests, these methods typically arrange search logs into chrono-
logical behavior sequences and employ diverse techniques to dis-
cern user search intent from these sequences. For example, Guo et al.
[18] applied a hierarchical RNN to the search sequence to model the
user’s current search preference. Ai et al. [2] utilized query-aware
zero attention mechanism to aggregate historical search sequences,
thereby extracting user search preferences. Bi et al. [6] used trans-
former [37] to mine the correlations between products in the search
sequences for more fine-grained user search interest.

The main challenge in sequential product search is how to ac-
quire high-quality user representations from their historical search
sequences. Based on these user representations, the product search
model can accurately return personalized products to users. While
existing personalized search methods have shown promising perfor-
mance, they typically rely on large amounts of user search data to
infer user search preferences. However, in the real search scenario,
users’ search behaviors are often highly sparse and noisy, which
could easily weaken user representation learning ability of the
personalization model. For example, the search data may involve
rather sparse user-item interactions (e.g., short sequences) and the
user-item interactions in user sequences may not reflect users’ real
interest preferences (e.g., impulse consumption). Inference from
such sparse and noisy search data would generate inaccurate user
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representations and produce less satisfying search results. There-
fore, how to learn real user intentions under the limited and noisy
historical search sequences is still a great challenge.

Recently, self-supervised learning techniques have been applied
to the sequential recommendation to address similar data sparsity
problems [7, 39]. They attempt to exploit the intrinsic correlation
in the user sequences to construct augmentations for the unla-
beled user data. Inspired by these approaches, this paper aims to
use self-supervised learning to model user representations from
search sequences to improve personalized product search. Previous
studies [23, 46] have shown that learning pre-trained sequence
representations adapting to personalized search can benefit the
personalized ranking and improve search quality. To obtain high-
quality user representations, we attempt to apply self-supervised
learning to pre-train a more robust sequence encoder, and fine-tune
the encoder on the ranking task. To achieve this goal, an intuitive
way is to construct data augmentations on the original user search
sequences, and to apply corresponding contrastive losses to en-
hance the encoder’s discrimination ability.

To this end, we propose a contrastive learning framework CoPPS
that learns high-quality user representations for personalized prod-
uct search. Specifically, we first pre-train the sequence encoder
based on the augmented user search sequences in the pre-training
stage, and then fine-tune the encoder with ranking objectives to im-
plement personalized product search. In the pre-training stage, we
adopt a contrastive sampling approach to construct self-supervised
signals from the original search sequences. The contrastive sam-
pling approach constructs augmented sequence pairs by masking,
reordering, replacing, and deleting queries, products, and query-
product pairs. By fully exploiting knowledge bases and the cor-
relation within and outside the search sequences, three data aug-
mentation strategies are considered, including (1) a sequence-based
strategy that augments sequences based on random perturbations
(masking and reordering query-product pairs), (2) a rule-based strat-
egy which uses the intrinsic structure of the behavioral data (i.e.,
product attributes) to replace the products in the sequences. (3)
a graph-based strategy that uses the similarity of corresponding
knowledge embeddings to replace and delete products and queries
in the sequences. With these augmentation strategies, three corre-
sponding contrastive learning tasks are designed to pre-train the
sequence encoder. In the fine-tuning stage, we fine-tune the encoder
with an MLP layer to adaptively learn individual search preferences
and user representations for personalized product search. We ex-
periment with our proposed model on the Amazon datasets [19, 28].
Experimental results show that our model outperforms existing
approaches, indicating that the proposed contrastive learning frame-
work is effective in improving search quality.

To summarize, our main contributions are as follows. (1) We
propose a novel method called CoPPS, which adopts a contrastive
learning framework to improve the quality of user representations
for personalized product search. (2) We design three different data
augmentation approaches, including sequence-based, rule-based,
and graph-based augmentation, to improve user representations
learned from different perspectives. (3) Extensive experiments on
four Amazon datasets demonstrate the effectiveness of our model. It
brings at least 5% performance improvement over existing models.

2 RELATEDWORK
There are three lines of research that are directly related to our
work: product search, personalized web search, and contrastive
learning for information retrieval.

2.1 Product Search
Product search, as a branch of information retrieval, is to retrieve
and return the products to customers with their submitted queries.
Previous studies could be divided into two categories: aspect-based
models and representation-based models. For the first category, Lim
et al. [21] explored the product (e.g., brand, category, context) and re-
trieved items by simply matching queries with the product aspects.
Despite their success, these aspect-based models are not applicable
in the real scenario because they limited the queries to the product
aspects. In addition, many representation-based models [13, 30]
have been proposed, which focused on the representation similari-
ties between queries and items and used semantic information to
retrieve relevant products. The typical method LDA [44] retrieved
products by matching queries and products with their latent repre-
sentations. However, these methods are non-personalized, which
may fail to capture the internal needs of users. With the increasing
complexity of user needs, some researchers have tried to use various
information (e.g., users’ historical interaction sequences, the struc-
tural information of the user-product knowledge graph) to enrich
the representations of the queries and the products. For example,
many transformer-aware models, such as TEM [6], HEM [4], and
ZAM [2], have been proposed to model users’ tastes through histor-
ical purchase sequences. Moreover, some graph-based models, such
as DREM [5] and CAMI [22], extracted structural information of
the products and modeled the relationships between products and
users. Different from the above models, in this paper, we introduce
a pre-training stage with contrastive learning tasks to learn better
user representations, which can improve personalized ranking and
search quality.

2.2 Personalized Web Search
Personalized web search, which aims to find and return web pages
to users based on both their submitted queries and their search his-
tories, is very similar to product search. In personalized web search,
researchers often mine the user’s search intent from sequences
of user behavior, such as browsing or clicking on documents, to
achieve more accurate retrieval results. In these personalized search
methods, web pages are ranked and returned based on the semantic
relevance between the user’s search intent and the textual content
of the document. For example, Dou et al. [12] proposed a click-
based model to enhance personalized ranking results by counting
the number of historical clicks on the same query by a single user.
Recently, numerous studies have been conducted on personalized
web search to improve the quality of search engines [43] [47]. Given
the fundamental difference between documents and products, prod-
uct search techniques can be developed not only based on textual
content but also by incorporating various auxiliary information
such as product attributes, user-product interaction graphs, and
knowledge graphs. Therefore, our approach integrates knowledge
graph auxiliary data into sequential product search methods to
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enhance user sequences, resulting in more robust user representa-
tions.

2.3 Contrastive Learning for IR
Contrastive learning (CL) is a type of self-supervised learning,
which has been widely used in many fields, such as computer vi-
sion [9, 35, 41], natural language processing [14–16] and informa-
tion retrieval [47, 48]. The principle of CL is to train a representation
learning model to automatically distinguish the constructed simi-
lar instances and dissimilar instances, where the similar instances
are closer together while the dissimilar instances are further apart
in the representation space. Focusing on the field of information
retrieval, CL techniques are mainly developed for web search and
item recommendation (e.g., news, products, music, etc.). In order to
enhance the representations of documents or submitted queries in
web search, some CL-based web search methods optimize the rep-
resentations of queries and documents by augmenting the original
data [47]. Besides, many attempts have been made in item recom-
mendation to learn more robust user representations through CL
tasks. For example, CoSeRec [24] attempted to perform data aug-
mentation on user sequences (including query and clicked product)
to learn the user representation. Specifically, they proposed the
method of randomly masking terms in a sequence and reordering
the user sequence at some positions. Inspired by these strategies,
we propose enhanced contrastive learning tasks which not only
involve random operations but also incorporate the external knowl-
edge from graph structures. These informative contrastive learning
tasks enable us to generate higher quality sequences and improve
the user sequence representation.

3 METHODOLOGY
This paper focuses on modeling user representations from user
search sequences for more accurate personalized product search.
To achieve this, we propose a CL-based framework called CoPPS,
which leverages the self-supervised learning technique to pre-train
a more robust sequence encoder and fine-tunes the encoder for
ranking tasks. Since our CoPPS is a general framework, we select
one of the state-of-the-art sequential models, the BERT encoder [11],
as our user backbone representation model. Correspondingly, our
CoPPS consists of two stages: (1) in the pre-training stage, we pre-
train the BERT encoder with three contrastive learning tasks to
learn robust user representations, and (2) in the fine-tuning stage,
we fine-tune the encoder to rank products for personalized product
search. The architecture of our model CoPPS is shown in Figure 1.

3.1 Preliminaries and Notations
In this section, we first introduce the notations used in this paper
and formulate the sequential product search problem. In product
search scenarios, the problem we address in this paper is to return
a ranked product list to the user such that these products can
satisfy the current query (i.e., the user’s search intent). The typical
approach to achieve this is to infer the user’s search preference
with respect to the current query from the user’s historical search
sequence, and to return products by ranking the plausibility of the
current user’s search preference and the products. Assume that the
current query is 𝑞, and the historical search sequence of a user 𝑢 is

𝑆𝑢 = {𝑞1, 𝑝1, 𝑞2, 𝑝2 ..., 𝑞𝑚, 𝑝𝑚}, where 𝑝𝑖 represents the product that
the user 𝑢 purchased after submitting a query 𝑞𝑖 at the 𝑖-th time
with a total times of𝑚. Our proposed model could be formalized as

𝑧 = 𝐹 (𝑝 |𝑆𝑢 , 𝑢, 𝑞), (1)

where 𝐹 is our product search model, 𝑧 determines whether to
return the product 𝑝 to the user 𝑢 based on the historical search
sequence 𝑆𝑢 and the current query 𝑞.

3.2 Data Augmentation in Pre-training
This section aims to introduce our data augmentation module,
which explores augmentation approaches to sequential product
search to obtain a powerful user representation encoder. Specifi-
cally, we design three data augmentation approaches to construct
augmented sequence pairs : (1) a sequence-based strategy that aug-
ments sequences by randomly perturbing (masking and reordering)
the user sequence, (2) a rule-based strategy that uses the data fea-
tures (i.e., product attributes) to make replacements on the user
sequences, (3) a graph-based strategy that uses the structural in-
formation of KG to make replacements and deletions on the user
sequences. We will give the details of the three data augmentation
strategies in the following part.

3.2.1 Sequence-based Data Augmentation. Regarding data augmen-
tation strategies used in self-supervised learning, the most common
type is to randomly generate sequences that resemble the original
ones. In this context, there are many existing attempts, and we refer
to two main random operators [24, 42, 45] in our work to augment
original sequences.

(1) Random Mask of Query or Product (RM) .
Randomly masking a product or a query in a history sequence

is a common strategy in information retrieval (IR) [45]. Inspired by
this strategy, we propose the randommask of query or product (RM)
strategy to randomly mask products or queries in a user sequence
to generate a new sequence that is similar to the original one.

Specifically, we simplify the user historical search sequence
𝑆𝑢 = {𝑞1, 𝑝1, 𝑞2, 𝑝2, ..., 𝑞𝑚, 𝑝𝑚} as 𝑆𝑢 = {𝑖1, 𝑖2, ..., 𝑖𝑁 }, 𝑁 = 2𝑚 for
convenience, then we randomly mask 𝑙 = ⌈𝛾 · 𝑁 ⌉ terms in the
sequence 𝑆𝑢 (𝛾 is the hyper-parameter of mask ratio) and get the
new sequence as:

𝑓 RM (𝑆𝑢 ) =
{̂
𝑖1, · · · , �̂�𝑁

}
,

�̂� 𝑗 =

{
𝑖 𝑗 , 𝑗 ∉ 𝑇𝑆𝑢 ,

[MASK ] , 𝑗 ∈ 𝑇𝑆𝑢 ,

(2)

where 𝑇𝑆𝑢 is the indexes of the terms selected to be masked in 𝑆𝑢 .
In this augmentation strategy RM, the terms (products or queries)
masked in the sequence will be replaced by the token "[MASK]".

(2) User Sequence Reorder (RO).
In the product search scenarios, the order of user-product interac-

tions might be flexible as the users may purchase the same products
at different positions under some situations. Considering this case
as well as inspired by the reordering operation in NLP field [8, 32],
we propose an augmentation strategy named user behavior reorder
(RO) to build the variants of user sequence. For brevity and con-
venience, we treat each query 𝑞𝑘 and its corresponding product
𝑝𝑘 as a behavior sub-sequence 𝑢𝑘 and denote the user sequence as
𝑆𝑢 = {𝑢1, 𝑢2, . . . , 𝑢𝑚 |𝑢𝑘 = (𝑞𝑘 , 𝑝𝑘 ), 𝑘 ∈ [1,𝑚]}. In this RO strategy,
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Figure 1: The structure of CoPPS. (1) At the pre-train stage, we generate two sequences for the query-product sequence 𝑆1 under
two contrastive learning tasks, and they’re regarded as a positive pair. Other contrastive learning tasks are also used in the
same batch. (2) The product ranking stage shares the same encoder with the contrastive learning pre-train stage.

we randomly select two behavior sub-sequences and exchange their
positions, the operation is conducted 𝑙𝑟 = ⌈[ ·𝑚⌉ times, where [
is the hyper-parameter of reordering ratio. Assuming the selected
𝑖-th pairwise positions as (𝑎𝑖 , 𝑏𝑖 ), we switch 𝑢𝑎𝑖 and 𝑢𝑏𝑖 , and the
RO strategy is formulated as 𝑓 RO on 𝑆𝑛 :

𝑓 RO (𝑆𝑢 ) = {𝑢1, · · · , 𝑢𝑚} ,

𝑢 𝑗 =


𝑢 𝑗 , 𝑗 ≠ 𝑎𝑖 and 𝑗 ≠ 𝑏𝑖 ,

𝑢𝑏𝑖 , 𝑗 = 𝑎𝑖 ,

𝑢𝑎𝑖 , 𝑗 = 𝑏𝑖 .

(3)

3.2.2 Rule-based Data Augmentation. Besides the sequence-level
augmentation described in the section 3.2.1, we additionally con-
sider a rule-based strategy to make more fine-grained and convin-
cible augmentation on the user sequence, since random strategies
may introduce too much noise into augmented data. In the real
business scenario of personalized product search, the attribute infor-
mation (e.g., category and brand) is valuable to make high-quality
augmented sequences. The reason is that products with the same
attributes may be similar and replacing items with highly similar
items will introduce less corruption to the original sequence, which
then yields more confident positive pairs. Specifically, the rule-
based replacement (RE) strategy is to replace the items with the
out-of-sequence items that have the same category. This is because
the category is the main feature in the real search scenario, which
can work better than other feature-based replacements. Formally,
for a user behavior sequence 𝑆𝑢 = {𝑢1, 𝑢2, . . . , 𝑢𝑚}, we select ran-
domly a sub-sequence𝑢 𝑗 = (𝑞 𝑗 , 𝑝 𝑗 ) and replace 𝑝 𝑗 with the product
𝑝′
𝑗
belonging to the same category. The replaced sub-sequence is

denoted by𝑢′
𝑗
= (𝑞 𝑗 , 𝑝′𝑗 ) and the operation is conducted 𝑙𝑐 = ⌈𝑎 ·𝑚⌉

times (𝑎 is the hyper-parameter of replacement ratio in RE). Thus,
the strategy is formulated as a function 𝑓 RE on 𝑆 (𝑢) and defined as:

𝑓 RE (𝑆𝑢 ) = {𝑢1, · · · , 𝑢𝑚} ,

𝑢 𝑗 =

{
𝑢 𝑗 , 𝑗 ∉ 𝐼𝑆𝑢 ,

𝑢′ 𝑗 , 𝑗 ∈ 𝐼𝑆𝑢 ,

(4)

where 𝐼𝑆𝑢 is the index of the sub-sequence selected to be replaced
in 𝑆𝑢 .

3.2.3 Graph-based Data Augmentation. However, rule-based data
augmentation cannot cover all circumstanceswhere items or queries
are similar. An optimal way is to use embedding-based methods
to find similar queries and products to augment sequences. It has
shown that the user-query-product KG can integrate the informa-
tion of items’ attributions, user-item interactions and item-item cor-
relations, which could be leveraged to robust the user encoder [3].
Inspired by this, we calculate the KG-based embeddings of users,
products, and queries by the DREM [5] model, and then use these
embeddings in our graph-based data augmentation strategy. Specifi-
cally, we propose two novel graph-based contrastive learning tasks,
which aim at reducing the possible issues caused by augmenta-
tions in the former two augmentation strategies. Before we intro-
duce these methods, it’s necessary to design an effective pattern
for calculating the similarity between items (or queries), as this
strategy needs the correlations among queries or items to aug-
ment sequences. In the vector space learned by DREM, similar
entities tend to have similar attributes. Based on this, we propose a
straightforward method to infer the correlations between items (or
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between queries). It measures the cosine-similarity of their embed-
dings from the graph model DREM. Given the representations of
items or queries 𝑖 and 𝑗 as 𝑒𝑖 and 𝑒𝑖 , the item correlation score is
defined as:

Cor𝑒 (𝑖, 𝑗) = Sim(𝑒𝑖 , 𝑒 𝑗 ), (5)

where the function Sim(·) is implemented by cosine similarity in
this work, and it could be replaced by inner product as well. Hav-
ing introduced the correlation calculation, we will introduce the
augmentation strategies as follows:

(1) Query Deletion (QD)
When considering the search scenario in reality, there may be

queries related to the current query in the user history sequence.
If we delete these historical queries, we will not be able to fully
understand the user’s current interests. Contrarily, queries that are
not related to the current query in the history sequence might be
noise. Deleting such irrelevant queries might not affect modeling
user’s intent or even make the user’s current preference clearer.
Following this thought, we propose to remove the queries irrelevant
to the current queries to conduct data augmentation. In specific, we
first sort the query and its corresponding product chronologically
and then take the latest query as the current query issued by the
user. We then search for the most irrelevant queries and products
according to Eq. (5) and delete the unrelated query-item pairs.

Formally, for a user behavior sequence 𝑆𝑢 = {𝑞1, 𝑝1, · · · , 𝑞𝑚, 𝑝𝑚},
also denoted by 𝑆𝑢 = {𝑢1, 𝑢2, . . . , 𝑢𝑚}, we delete a proportion ` of
sub-sequences 𝑅𝑆𝑢 = {𝑟1, · · · , 𝑟𝐿} according to the relevance scores,
where 𝐿 = ⌊` ·𝑚⌋, and 𝑟𝑖 is the index of the sub-sequence to be
deleted (` ∈ [0, 1] is the deletion ratio, and ⌊ denotes rounding
down). In implementation, we set the last query 𝑞𝑚 as the current
query issued by the user, thenwe select the 𝐿 queries which are least
similar to 𝑞𝑚 in the previous𝑚 − 1 queries, then we drop them and
the corresponding products from the user sequence. Once a query
is deleted, the whole sub-sequence is replaced by a special token
"[DEL]". This augmentation strategy is formulated as a function
𝑓 QD on 𝑆𝑢 and defined as:

𝑓 QD (𝑆𝑢 ) = {𝑢1, · · · , 𝑢𝑚} ,

𝑢 𝑗 =

{
𝑢 𝑗 , 𝑗 ∉ 𝑅𝑆` ,

[DEL], 𝑗 ∈ 𝑅𝑆` .

(6)

(2) Item Replacement (IR)
In the rule-based augmentation, we make the item replacement

according to the similarities based on categories. In this strat-
egy, we change the substitution rule to use the KG embeddings
to measure similarity. Formally, for a user behavior sequence 𝑆𝑢 =

{𝑞1, 𝑝1, 𝑞2, 𝑝2, . . . , 𝑞𝑚, 𝑝𝑚}, also denoted by 𝑆𝑢 = {𝑢1, 𝑢1, . . . , 𝑢𝑚} ,
where 𝑢 𝑗 = {𝑞 𝑗 , 𝑝 𝑗 } . Then we randomly select 𝑘 different indices
𝐼𝑆𝑢 = {idx1, idx2, . . . idx𝑘 } in the sequence 𝑆𝑢 , where 𝑘 = ⌈𝛼 ·𝑚⌉
and idx𝑖 ∈ [1, 2, . . . ,𝑚] (𝛼 ∈ [0, 1] is the substitution ratio).

For each idx𝑗 ∈ 𝐼𝑆𝑢 , assuming the corresponding product of idx𝑗
is 𝑝𝑥 , then we select the product 𝑝𝑦 from product set which is the
most similar to 𝑝𝑥 based on Eq. (5) and does not appear in the cur-
rent sequence. Then we replace 𝑢𝑥 = {𝑝𝑥 , 𝑞𝑥 } with 𝑢′𝑥 = {𝑝𝑦, 𝑞𝑦}
in the user sequence. This augmentation strategy is formulated as

a function 𝑓 IR on 𝑆𝑢 and defined as:

𝑓 IR (𝑆𝑢 ) = {�̃�1, · · · , �̃�𝑛} ,

�̃� 𝑗 =

{
𝑢 𝑗 , 𝑗 ∉ 𝐼𝑆` ,

𝑢′
𝑗
, 𝑗 ∈ 𝐼𝑆` .

(7)

3.3 User Representation with Contrastive Tasks
3.3.1 User Representation Encoder. We train a BERT encoder based
on the augmented sequences to obtain meaningful user representa-
tions. BERT has strong capabilities in sequence representation task,
which has been widely studied in various fields, such as recommen-
dation [20, 38] and NLP [26]. In our work, in terms of sequence
representation, we also adopt BERT and use it to encode the aug-
mented sequences. A user sequence defined in this paper follows
the design schema of the vanilla BERT, i.e., we add special tokens
“CLS” to the head and “SEP” to the tail. In addition, we also need
to add a special token “EOS” at the end of each query and product.
Formally, a user sequence 𝑆 is represented as:

𝑆 = [CLS]𝑞1 [EOS]𝑝1 [EOS] · · ·𝑞𝑛 [EOS]𝑝𝑛 [EOS] [SEP] . (8)

And for each token, the token embedding, positional embedding
and segment embedding are added together and fed into BERT to
obtain the contextual representation of a sequence, we also use the
representation of "CLS" token as the sequence representation ℎ:

𝑉 = BERT(𝑆)[CLS] , and ℎ = 𝑔1 (𝑉 ), (9)

where 𝑉 ∈ R768, and 𝑔1 (·) is a linear projection function.

3.3.2 Contrastive Tasks. At the pretraining stage, we employ a
contrastive learning objective to learn a generalized user sequence
representation. The contrastive learning loss is based on the con-
trastive prediction task. In this work, we augment each sequence
twice in a batch to construct the training set {S}, i.e., we select two
strategies randomly from sequence-based, rule-based and graph-
based strategy. Assume there are 𝑁 sequences in a batch, we could
obtain the set {S} with size 2𝑁 . The augmented two sequences
form the positive pair and all the other sequences from the same
batch would be treated as negative samples. Then following the pre-
vious work in NLP[9, 14, 15, 41], we could construct the contrastive
learning loss for a positive pair as :

𝐿(𝑖, 𝑗) = − log
exp

(
sim

(
ℎ𝑖 , ℎ 𝑗

)
/𝜏
)∑2𝑁

𝑘=1 1𝑘≠𝑖 exp (sim (ℎ𝑖 , ℎ𝑘 ) /𝜏)
, (10)

where ℎ𝑖 , ℎ 𝑗 are from one positive pair of sequences, and 1𝑘≠𝑖 is
the indicator function to judge whether 𝑘 ≠ 𝑖 , and 𝜏 is a hyper-
parameter representing temperature. Formally, the contrastive learn-
ing loss could be defined as all positive pairs’ losses in a batch:

LCL =

2𝑁∑︁
𝑖=1

2𝑁∑︁
𝑗=1

𝐼 (𝑖, 𝑗)𝐿(𝑖, 𝑗), (11)

where 𝐼 (𝑖, 𝑗) = 1 when
(
𝑆𝑖 , 𝑆 𝑗

)
is a positive pair, and 𝐼 (𝑖, 𝑗) = 0

otherwise. The contrastive loss is to automatically differentiate
between the constructed instances that are similar and dissimilar.
In this context, the loss function encourages similar instances to
be positioned closer together in the representation space, while
ensuring that dissimilar instances are located further apart.
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3.4 Ranking Module
As we obtain the optimized BERT encoder under contrastive learn-
ing stage, we next employ this BERT encoder to learn the product
ranking task. Related researches have applied BERT at ranking
stage as a task of sequence pair classification [10, 29, 33, 49]. In this
paper, the ranking stage aims at measuring the relationship among
the user history behaviour sequence, the new query and the candi-
date products, denoted by 𝑆𝑛−1 = {𝑞1, 𝑝1, · · · , 𝑞𝑛−1, 𝑝𝑛−1} , 𝑞𝑛 and
𝑝𝑛,𝑖 respectively. Then 𝑆𝑛−1 ∪𝑞𝑛 is considered as one sequence and
𝑝𝑛,𝑖 as another sequence, so the input sequence 𝑆 is represented as:

𝑆 = [CLS]𝑞1 [EOS]𝑝1 [EOS] · · ·𝑞𝑛 [EOS] [SEP]𝑝𝑛,𝑖 [EOS] [SEP] .

Similarly, the positional embedding and the segment embedding
are added together and then input into BERT. While 𝑆 contains two
sequences, we need to segment them and use 0 and 1 to distinguish
them. We also use the output representation of "[CLS]" to represent
the sequence, and the ranking score could be formulated as:

𝑉 = BERT(𝑆)[CLS] , 𝑘 = 𝑔2 (𝑉 ), (12)

where 𝑉 ∈ R768, and 𝑔2 (·) is a linear projection to map the repre-
sentation into a score.

Learning Objective. Inspired by the previous studies [1, 33],
we derive the cross-entropy loss to optimize this model:

Lrank = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log𝑘𝑖 + (1 − 𝑦𝑖 ) log (1 − 𝑘𝑖 ) , (13)

where 𝑁 is the number of samples in the training set.

4 EXPERIMENT
4.1 Experimental setup
4.1.1 Datasets. We use the public Amazon product dataset1 as
our dataset. This dataset contains product metadata and reviews
from the Amazon website covering millions of reviews ranging
from May, 1996 to July, 2014. It contains 24 product categories. In
this work, we adopted the 5-core dataset provided by McAuley et
al. [27] , in which the users and products have at least 5 reviews.
We then selected 4 categories including Cell Phones & Accessories,
CDs & Vinyl, Clothing, Shoes & Jewelry, Musical instruments in our
experiment. For a fair comparison, we adopt the same strategy in
the baseline methods [2, 6] to generate the train, valid and test data.
The basic statistics of the datasets are shown in Table 2.

Query Extraction. In e-commerce, a user usually uses a pro-
ducer’s name, a brand or a series of product attributes to search [34].
Inspired by the query extraction strategies in baselines [4, 36], we
extract the query of each user transaction based on the product
categories in the transaction. Specifically, we extract the categories
of each product from its metadata, then we concatenate the words
from a single category to formulate a raw query for this product.
Then we remove the stop words, duplicated words and punctuation
from the raw query as the extracted query. Importantly, to retain
more information about the products, we treat categories and sub-
categories differently. For instance, in Musical Instruments dataset,
for Musical Instruments->Electric Guitar, the extracted query can
be "musical instrument electric guitar". Additionally, if there are

1http://jmcauley.ucsd.edu/data/amazon/

multiple queries generated for one product, then we randomly
selected one query for this product.

Table 2: Data Statistics.

Item Cell CDs Cloth Music

#reviews 194,439 1,097,591 278,677 10,261
#users 27,879 75,258 56,770 8,216
#items 10,429 64,443 19,913 3,200
#brands 955 1,414 1,245 117

#categories 206 770 428 94

Train
#queries 134 534 396 42

#(u,q) pairs 114,177 1,287,214 244,595 1,374

Test
#queries 31 160 92 14

#(u,q) pairs 655 45,490 2,704 203

4.1.2 Baselines. We compared our model CoPPS with several typi-
cal product search models.

• LSE [36] is a classical product search model based on latent
vector representations. It learns the product representation
in a latent vector space from its related reviews.

• HEM [4] is developed with personalization modeling based
on LSE [36]. It exploits the representation learning frame-
work that learns the representations of users, products and
queries for ranking.

• ZAM [2] considers how much personalization affects the
search quality and designs zero attention to user sequence
for ranking.

• TEM [6] utilizes the transformer structure to replace zero
attention in ZAM [2], which can learn different weights of
behaviors in user sequences for ranking.

• DREM [5] and DREM-HGN [3] are two graph-based mod-
els that model the relationship between users, queries and
products by leveraging the structural information from the
knowledge graph.

4.1.3 Evaluation. In this paper, we used three standard evaluation
metrics to measure the performance of our model and the baselines:
Mean Average Precision(MAP), Mean Reciprocal Rank (MRR), and
Normalized Discounted Cumulative Gain (NDCG). The three met-
rics are commonly used in information retrieval research. MAP is
the mean of the average precision scores for each query, MRR is
the average of the reciprocal ranks of the recalled products, and
NDCG@10 measures the accuracy of the ranking list. In the testing
phase, we retrieve only 100 items to generate the ranking list for
each user-query pair.

4.1.4 Implementation Details . We use PyTorch [31] and Trans-
formers [40] to implement our model, where the code of Trans-
formers is provided by Huggingface2. In our model, the maximum
number of tokens in the two stages is set to 128, which means
that sequences with more than 128 tokens are truncated by drop-
ping query-product pairs from the head. And we use AdamW[25]
2https://huggingface.co/bert-base-uncased

http://jmcauley.ucsd.edu/data/amazon/
https://huggingface.co/bert-base-uncased
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Table 1: Performance comparisons of different methods. The best score is bold in each column. Symbols ∗ and † denote the
statistical significance with two-sided t-test of 𝑝 < 0.05 and 𝑝 < 0.01, respectively, compared with the best baseline

Cell Cloth Music CD

Method MRR NDCG MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG MAP

HEM 0.078 0.093 0.078 0.098 0.113 0.098 0.172 0.201 0.172 0.063 0.072 0.063
ZAM 0.083 0.095 0.083 0.015 0.016 0.015 0.039 0.047 0.039 0.084 0.096 0.084
TEM 0.085 0.098 0.085 0.017 0.018 0.017 0.041 0.049 0.041 0.106 0.122 0.106
DREM 0.094 0.110 0.094 0.053 0.062 0.053 0.334 0.390 0.334 0.122 0.140 0.122

DREM-HGN 0.185 0.208 0.185 0.099 0.115 0.099 0.318 0.384 0.318 0.159 0.185 0.159
CoPPS (our) 0.291∗ 0.249† 0.291∗ 0.122 0.143† 0.122 0.333† 0.391∗ 0.333† 0.176∗ 0.190∗ 0.176∗

MRR NDCG MAP0.00
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Figure 2: Leave-one-out comparison on four datasets.

optimizer in both two stages. In the pre-training stage, for the
sequence-based strategy, we refer to the previous work [24] and
tuned on the datasets to find the optimal mask ratio as 0.3 and
reordering ratio as 0.1 respectively.

Another thing to be noted is that the reordering strategy will
not be applied if the user history sequence contains less than two
queries. We also set the batch size to 128, the training epoch to 4,
the temperature to 0.1 and the learning rate to 1e-5. We further
discuss the two hyper-parameters are in Section 4.4 to explore their
effectiveness for our model. In the fine-tuning stage, we use the
dropout in the MLP layer with the ratio of 0.1 to train the ranking
module. We also set the learning rate to 1e-5 and the training epoch
to 4. In both stages, optimal hyperparameters are determined based
on the performance of the validation set.

4.2 Experimental Results
Table 1 demonstrates the performance of our model compared with
the baselines, we have the following observations from the results:

(1) Across the four datasets, our model CoPPS significantly out-
performs all baselines. This result reveals that the contrastive learn-
ing tasks can help to obtain a stronger encoder for better detecting
users’ search intentions in personalized ranking. Our model im-
proves MRR over the best baseline model DREM-HGN by 7.23%,
23.32%, 5%, and 11% on the Cellphones, Clothing, Music instrument,
and CDs datasets respectively. In the term of NDCG metrics, there
are at least 7% higher performance than baseline models.

(2) Most personalized product search models outperform non-
personalized models, indicating the importance of mining personal-
ized interests. Among the personalized model baselines, the graph-
based approach achieves better performance than the traditional
sequence-based PPSmodels on most datasets, suggesting that graph
knowledge containing rich structural information of users and prod-
ucts, can provide an effective complement to the user’s purchase
log history.

(3) Comparedwith the sequential personalizedmodels, our CoPPS
model achieves better performance. Although the most competitive
sequential model, TEM, also uses a encoder based on transformer
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Figure 3: Performance comparison (in MRR) w.r.t. different 𝛼 , ` and 𝜏 on Cellphones and Musical Instruments datasets.
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Figure 4: The performance with different sizes of training
datasets ("w.o.Seq" denotes the cases without the sequence-
based strategies).

architecture to capture user search preferences, our CoPPS still
improves MAP and MRR by at least 5% across four datasets. The
primary reason for this is the application of contrastive learning
tasks in pre-training the sequence encoder within our CoPPS model.
This approach enhances the representations of users, ultimately
improving personalized ranking and contributing to its superior
performance.

(4) Compared with graph-based personalized models, our CoPPS
has higher search performance. In contrast to the graph-based ap-
proach of directly modeling the knowledge graph (KG), our CoPPS
model constructs query-specific dynamic user profiles. This enables
us to capture user intentions with greater precision when compared
to the static query-independent user profiles used in graph-based
personalized models.

4.3 Impacts of Contrastive Learning
To learn more about the impacts of contrastive learning, we test
the performance on four datasets with different data augmentation
strategies. The result is listed in Figure 2, where (1) “No Data Aug.”
means we do not pre-train the BERT encoder and use it directly in
the ranking module, (2) w/o Sequence-based means we do not use
sequence-based methods in the pre-train stage, (3) w/o Rule-based
means the rule-based method is not used in the pre-train stage, (4)
w/o Graph-based means the graph-based method is not used in the
pre-train stage, (5) “all” means that we use all the three types of
data augmentation strategies in the pre-training stage.

For the experimental result, we could find that:
(1) Our model CoPPS achieves the highest personalized search

performance among all variants with all datasets. It is suggested that
each data augmentation strategy is necessary in the pre-training
stage to learn better user representations. For example, by utilizing
rule-based augmentation, it becomes possible to identify items
belonging to the same category. This auxiliary information provides
valuable insights into the original sequences.

(2) Compared with the "No Data Aug." variant, our model has
higher performance. This suggests that pre-training the sequence
encoder is effective in enhancing the search quality. This is because
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that the augmented user sequences using the three augmented
strategies can provide more information of user preference on
making more accurate personalized ranking for the users.

(3) The variant w/o sequence-based has lower search perfor-
mance than our CoPPS model, indicating that incorporating intra-
sequence information through sequence-based data augmentation
effectively enhances the robustness of the user encoder. The perfor-
mance difference between the w/o sequence-based variant and our
model CoPPS is relatively smaller in the Musical dataset, possibly
due to its smaller size.

(4) The variant w/o rule-based augmentation exhibits inferior
performance compared with CoPPS. This suggests that incorpo-
rating the item category to perform augmentation is beneficial for
modeling user representations. Note that the performance of the
variant on the CD dataset is quite close to that of CoPPS. This may
be due to the fact that there are more items belonging to the same
category, and such substitutions will produce a similar sequence of
high quality with a lower probability.

(5) The superior performance of our CoPPS model, compared
to the variant w/o graph-based, demonstrates the effectiveness of
using knowledge embeddings learned from the knowledge graph.
These embeddings facilitate the computation of item similarities,
enabling data augmentation and further enhancing the model’s
capabilities.

4.4 Impacts of Hyper-parameters
According to previous research [9, 15], the temperature hyper-
parameter 𝜏 is important for contrastive learning. Moreover, the
deletion ratio ` and replacement ratio 𝛼 in graph-based data aug-
mentation also have effects on the model performance. To further
study their influence, we’ve trained our model under different set-
tings. The results on dataset Cellphones and Musical instruments
are shown in Figure 3. We find that: (1) Performance initially in-
creases under the ratios, peaking at ` = 0.1 and 𝛼 = 0.3, and then
begins to decline. This may be due to the fact that random strategies
alone lead to worse performance than when knowledge is incorpo-
rated. (2) A higher temperature would cause a higher loss, which is
the definition of contrastive loss. After tuning at the ranking stage,
we find that a lower loss usually leads to better performance at
retrieval. And we set the temperature to 0.1, since it achieves the
best results.

4.5 Impacts of the size of Training Datasets
Previous studies found that the amount of data would impact the
performance of contrastive learning [9, 15]. Thus, we conduct a
study to show the effects of different size of training data and the
results are shown in Figure 4.

We initially reduce the amount of training data in both datasets
and observe a corresponding decrease in performance during the
ranking stage. Additionally, we note that contrastive learning ben-
efits from larger dataset sizes. We then conduct experiments with
different epochs and found that contrastive learning typically re-
quires more epochs for optimal results; however, once a certain
threshold is reached, further increases do not lead to significant
improvements.

In addition, we find that the performance changes of the model
with and without the sequence augmentation setting are different as
the dataset size increases. For the Cell Phones & Accessories dataset,
the performance of the model with and without the sequence-based
strategy improves slowly with increasing data size, and the im-
provement is similar. For the Musical instruments dataset, the per-
formance of the model changes relatively more with and without
the sequence-based strategy. This may be due to the fact that the
Musical instruments dataset itself is much smaller than the Cell
Phones & Accessories dataset, and the sequence-based data augmen-
tation approach may have a greater effect on short sequences, so
changing the dataset size has a more dramatic effect on theMusical
instruments dataset.

5 CONCLUSION AND FUTUREWORK
In this paper, we investigate contrastive learning tasks in person-
alized product search with the goal of acquiring high-quality user
representations to enhance search quality. To achieve this objective,
we propose a novel learning framework called CoPPS that utilizes
self-supervised learning to pre-train a more robust sequence en-
coder and fine-tune it for ranking tasks.

During the pre-training stage, we designed three data augmen-
tation approaches - sequence-based, rule-based, and graph-based
strategies - to generate contrastive pairs with high equality. These
augmented sequences were then utilized for pre-training the se-
quence encoder. During the fine-tuning stage, we further refine
the encoder to perform ranking tasks. By incorporating these aug-
mentation techniques into our model design, we are able to extract
more meaningful search patterns for user modeling and ultimately
achieve effective personalized search. We conducted extensive ex-
periments on four benchmark datasets. The experimental results
showed the effectiveness of CoPPS, which achieved remarkable
search performance. Additionally, we conducted ablation experi-
ments to prove the effectiveness of three data augmentation ap-
proaches

As part of our future research, we aim to explore additional
approaches for contrastive learning tasks within the context of
personalized product search. Our current work represents our initial
attempt at incorporating contrastive learning in this field, and we
are committed to further investigating and refining these techniques
to improve the performance and effectiveness of our models.
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