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ABSTRACT
Search clarification in conversational search systems exhibits a
clarification pane composed of several candidate aspect items and
a clarifying question. To generate a pane, existing studies usually
rely on unstructured document texts. However, important struc-
tured information in search results is not effectively considered,
making the generated panes inaccurate in some cases. In this paper,
we emphasize the importance of structured information in search
results for improving search clarification. We propose enhancing
unstructured documents with two kinds of structured information:
one is “In-List” relation obtained from HTML list structures, which
helps extract groups of high-quality items with abundant parallel
information. Another is “Is-A” relation extracted from knowledge
bases, which is helpful to generate good questions with explicit
prompts. To avoid introducing excessive noises, we design a rela-
tion selection process to filter out ineffective relations. We further
design a BART-based model for generating clarification panes. The
experimental results show that the structured information is good
supplement for generating high-quality clarification panes.
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Figure 1: Search clarification in conversational search sys-
tems. The quality of clarifying questions and aspect items
directly determines the effectiveness of clarification.

1 INTRODUCTION
Search clarification is important for conversational search [29, 38],
aiming to understand users’ intents by interaction. It is particularly
useful for ambiguous or faceted queries [9]. The basic clarification
process is shown in Figure 1. A user first submits a query (i.e., lost, a
TV series) to the system. Since the query is faceted, the system will
return a search clarification pane which includes several clickable
aspect items representing sub-intents or sub-topics of the query (i.e.,
each season of the TV series), together with a proactive clarifying
question (i.e., Which season of lost are you looking for?) to help
the user clarify her intent. When a user clicks one of the provided
items, the query will be refined accordingly and the clarification
process can be continued until the query is no longer ambiguous
or faceted. In such a search clarification system, both the items
and the question are important: high-quality items will help users
identify their intents quickly, and a good question will improve the
intelligence and trustworthiness of the response.

In order to generate aspect items and clarifying questions, re-
searchers have extensively utilized retrieved document texts
(or snippets) as the main resource. For example, to generate high-
quality aspect items, Dou et al. proposed a rule-based model [7] to
extract query facets from list structures in top HTML documents.
Recently, Hashemi et al. [10, 11] learned multiple representations
of a query and generate aspect items based on the query and top
retrieved snippets. As for clarifying question generation, Wang and
Li [39] studied question template selection and slot filtering in a
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multi-task manner utilizing snippets as the input. Zhao et al. [49]
utilized abundant description information in top retrieved docu-
ments to generate more readable and informative questions. Com-
pared with other resources like the query log [45], search results
(or retrieved documents) are publicly available and contain more
contextual information about the query, which is deemed crucial
to generate high-quality aspect items and clarifying questions.

Although existing methods leveraging search snippets (as the
retrieved documents) have been able to generate high-quality items
and questions in most cases [10, 11, 30, 39], besides unstructured
information like snippets, search results also contain abundant
structured information, which is less considered. In fact, both
aspect items and clarifying questions have a strong correlation
with the structured information. First, for aspect items, they are
organized in the form of a list [7], which is very similar to some list-
structured information in search results. For instance, the HTML
source of the query “lost” contain several drop-down lists that
exhibit all seasons of the TV series, which may overlap with ground-
truth items, while unstructured texts do not contain this kind of
explicit information. Second, for clarifying questions, they are
largely based on the descriptions [45] of the query and the items.
Therefore, integrating such “Is-A” description into the text
will also help generate better questions. For instance in Figure 1,
episodes, characters, reviews, and plot are four kinds of information
of the query “lost season 2”. A good question can be “What do you
want to know about this TV series?”. However, it is challenging to
extract “TV series” from unstructured snippets without any other
guidance. To make up for this deficiency, we can combine search
result contexts and external “Is-A” like knowledge bases to know
that “TV series” is a good description of the query, which can then
be applied to generate high-quality questions.

Based on the observations above, we propose extracting two
kinds of relations: “In-List” relation and “Is-A” relation and
integrating them into plain texts as supplements for improving
search clarification. The two kinds of relations are illustrated in Fig-
ure 2. Among them, the “In-List”relation integrates list-structured
information extracted from search results into plain texts by ex-
plicitly denoting which term in plain texts appears in the extracted
lists. The “Is-A” relation extracted from knowledge bases (such as
Concept Graph [42, 43]) adds the descriptions of the query and
items explicitly into plain texts to promote the model to generate
more accurate clarifying questions. As shown in Figure 2, after
leveraging these two kinds of relations, the unstructured document
text is extended into a structured tree. A branch starting from a
term denotes which list the term is contained in, and/or which “Is-A”
description can describe the term appropriately.

On the other hand, the extracted relations may contain excessive
noises like unrelated lists and descriptions. To ensure the quality
of extracted relations, we first rank and select important “In-List”
relations using human-designed features including frequency, se-
mantic similarity, and common-occur information, and then filter
“Is-A” relations using the search result contexts. To avoid introduc-
ing knowledge noises [22], we modify a BART [21] encoder with
two-granularity visible matrices: (1) Intra-document matrix: fol-
lowing the existing study [22], only tokens on the same branch in
a document can see each other; (2) Cross-document matrix: for
different search result documents, only those containing the same

“In-List” or “Is-A” relations can see each other, so as to prevent too
much ineffective attention between unrelated documents.

We use the MIMICS dataset [46] to train and evaluate our pro-
posed methods. The experimental results show that, compared
with existing models for either generating items or questions, our
proposed method performs better in various metrics. In addition,
although our proposed method can independently generate high-
quality aspect items or clarifying questions, they may indicate
different meanings in some cases, which lacks unity and influences
the user experience. Therefore, we also try to generate a question
and several items at the decoder side of the model simultaneously,
which can directly deliver a high-quality integrated clarification
pane to users. We further conduct ablation experiments which
show that our proposed components, such as “In-List” and “Is-A”
relation extraction, relation selection, and multi-granularity visi-
ble matrix, all have beneficial impacts on the experimental results,
which proves the effectiveness of the motivation of each module.

Overall, our contributions include:
• To our best knowledge, we are the first trying to incorporate
structured information for search clarification generation.
This idea can also be extended to some other IR tasks.

• We design a process to mine structured relations from search
results together with an end-to-end model to integrate struc-
tured relations with unstructured plain text.

• Experimental results demonstrate the effectiveness of our
idea and method for generating clarifying questions and
aspect items for search clarification.

2 RELATEDWORK
Clarifying Question Generation. Open-domain search clar-

ification was originally proposed for conversational search sys-
tems [2–4, 32]. When the user’s intent is ambiguous, the system
proactively asks a clarifying question to help the user re-articulate
its intent [9, 20]. Compared with conversational search systems,
an information retrieval (IR) system can also clarify user intents
by asking questions. Zamani et al. [45] defined the clarification in
IR systems that, when a user submits a query, the system gener-
ates several items for clicking together with a question displayed
to the user, shown in Figure 1. They then analyzed interactions
between users and the search engine to improve clarification qual-
ity [47]. They also built a dataset MIMICS [46] based on the query
log of Bing search engine. Recently, Wang et al. [39] and Zhao et
al. [49] emphasized the importance of search results for high-quality
question generation. However, all of the work does not consider
combining structured information with unstructured information
for clarifying question generation. We argue that unused structured
information in search results can improve unstructured retrieved
document texts to generate high-quality questions.

Aspect Items Generation. The aspect items can be expressed
in different forms. For example, query suggestion (or query auto-
completion) [1, 14, 16, 24, 25, 34, 41] suggests one or more queries
that are likely to be entered. Query subtopics mining [6, 13, 17, 33,
40] is a technology often used in search result diversification. Query
facets mining [7, 8, 15, 18, 19] aims to findmultiple groups of phrases
that explain the underlying query facets. In search clarification [45,
46], aspect items are defined as a group of highly-related candidate



Improving Search Clarification with Structured Information Extracted from Search Results KDD ’23, August 6–10, 2023, Long Beach, CA, USA

terms, usually revealing an important aspect of the query. Recently,
Hashemi et al. [10, 11] mined aspect items by learning multiple
representations of a query to improve their quality. In fact, aspect
items can be treated as a list, which can correspond to much list-
structured information contained in HTML documents. Therefore,
these list structures should be important for items generation, which
is less considered in existing studies. Aspect items can also be
generated with clarifying questions simultaneously [45] to provide
mutual information for generation.

Language Modeling by Leveraging Structured Information.
Pre-trained language model (PLM) [5, 27, 28, 37] has become an
important research topic [23, 26]. However, most PLMs cannot
integrate structured information like knowledge into languages.
This makes PLMs insensitive to model structured information. To
integrate knowledge into PLMs [12, 35], ERNIE [36, 48] applied
entity-level masking to promote the model to learn more accurate
entity-related knowledge in the pre-training stage. K-BERT [22]
modified the visible matrix when fine-tuning to avoid introducing
excessive knowledge noises. In this paper, we aim to integrate
structured relations into retrieved snippets as supplements for fine-
tuning a PLM, similar to K-BERT [22], to generate better items and
questions. Differently, we need to supply two types of structured
relations rather than a single type. Besides, since one query can
correspond to several retrieved documents (snippets), we need
to consider modifying not only the visibility of tokens within a
document, but also the visibility of tokens between documents.

3 METHODS
3.1 Structured Information in Search Results
Top retrieved documents have been applied to generate both aspect
items 𝑆 [10] and clarifying questions 𝑄 [39]. Existing work usually
utilizes search snippets as the retrieved documents 𝐷 , and repre-
sents the query 𝑞 and each document 𝑑𝑖 by concatenating them
with a special token ([SEP]) like “𝑞 [SEP] 𝑑1 [SEP] 𝑑2 [SEP] ... [SEP]
𝑑 |𝐷 |”, or encode them respectively to obtain their representations.
However, no matter what encoding method is selected, structured
information contained in search results is ignored, making the
generated items and questions inaccurate in some cases.

(1) For aspect items 𝑆 , they are usually organized as a list
structure in HTML documents (“In-List”) [7]. We deem it help-
ful to generate 𝑆 by explicitly representing these structures as in-
troduced in Section 1. Without their guidance, the model will be
difficult to summarize structured lists from unstructured documents,
thereby will reduce the quality of generated items.

(2) For clarifying question 𝑄 , a large proportion of 𝑄 rely
on the “Is-A” descriptions of the query 𝑞 or items 𝑆 [45, 46, 49].
For example in Figure 1, “season of lost” is the description of 𝑆 :
[season 1, season 2, season 3, season 4], so a good question can be
“Which season of lost are you looking for?”.Without any information
guidance, the model can be easily confused by various terms in
plain texts. In this situation, the model tends to generate a large
number of generic questions like “Select one to refine your search”,
which brings a negative impact on the user experience.

(3) The “Is-A” relation can help generate not only clarify-
ing questions, but also aspect items, especially for ambiguous

queries. For example, the query “apple” can have corresponding
ambiguous items such as “apple company”, “apple fruit”, and “apple
film”. For such queries, understanding their various potential “Is-A”
relations helps identify their ambiguous items. On the contrary,
we deem that the “In-List” relation also helps generate better
clarifying questions, because list structures introduce potential
description candidates for items into the plain texts.

Given the effectiveness of the “In-List” and “Is-A” relations in
search results, it is crucial to integrate them into the generation
process of aspect items and clarifying questions. In the following
parts of this section, we first introduce the overall framework of
our proposed method, then thoroughly explain each component in
the framework one by one.

3.2 Framework
To integrate the extracted “In-List” relation and “Is-A” relation for
generating aspect items 𝑆 and clarifying questions 𝑄 , we propose
a framework shown in Figure 2. First, the user inputs a query 𝑞

(“google chrome exe”) into the search engine to get the retrieved
documents 𝐷 = {𝑑1, 𝑑2, ..., 𝑑 |𝐷 |}. In this paper, we use the snip-
pets as 𝐷 to restrict document lengths, which is consistent with
previous work [10, 11, 30, 39]. Then, we implement an algorithm
to get list structures 𝐿 = {𝑙1, 𝑙2, ..., 𝑙 |𝐿 |} in the HTML documents.
Next, we inject the “In-List” and “Is-A” relations into 𝐷 to expand
plain snippet texts into tree structures. To avoid integrating un-
necessary relations, we conduct a relation selection process, so
that only important relations for generating 𝑆 or 𝑄 are retained,
and useless relations are removed. Finally, we apply BART [21] to
model the tree structure for end-to-end training and generation. As
the original attention matrix of BART does not consider the tree
structure, following K-BERT [22], we modify the visible matrix in
two granularity to avoid introducing knowledge noises.

3.3 Obtaining Search Result Documents
We obtain the search results returned by the Bing’s Web Search
API for all queries in the MIMICS datasets.1 For each query, we
get top-𝑘 snippets as 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑘 }, where 𝑘 ⩽ 10. In addition,
we also crawl the HTML source file corresponding to each search
result URL for further structured information extraction.

3.4 Obtaining List Structures
As mentioned in Section 3.1, list structures in HTML usually con-
tain important structured information. For example, the navigation
bar of shopping websites facilitates users to search for goods from
different perspectives, and some important attributes in Wikipedia
are usually listed in the form of list-structured tables. Unlike plain
texts, extracting list structures contained in search results is chal-
lenging, because the lists can be organized in different forms of
HTML codes, while plain texts in search results are more simple
and more convenient to be extracted. To obtain list structures from
HTMLs, we implement an effective algorithm [7]. This algorithm
extracts list structures from different resources like HTML list tags,
tables, and repeat regions using human-designed rules. For each
user query 𝑞, the algorithm parses each downloaded HTML file and
gets corresponding lists. The lists are then gathered as one total
1https://github.com/microsoft/MIMICS



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ziliang Zhao, Zhicheng Dou, Yu Guo, Zhao Cao, and Xiaohua Cheng

Figure 2: An overview of our proposed methods for generating aspect items 𝑆 and clarifying questions 𝑄 .

list set 𝐿 = {𝑙1, 𝑙2, ..., 𝑙 |𝐿 |}, where each list is composed of several
terms 𝑙𝑖 = {𝑡1, 𝑡2, ..., 𝑡 |𝑙𝑖 |}. Since the extracted original lists have
excessive noise, we further design a relation selection process to
cluster similar lists, select important lists, and delete useless lists
and list terms. See Section 3.7 for details.

3.5 “In-List” Relation Extraction
We define the “In-List” relation as a triple (𝑡, 𝐼𝑛-𝐿𝑖𝑠𝑡, 𝑙), where 𝑡
is a term (n-gram) in retrieved document texts (snippets) and 𝑙 is
a list extracted from search results using the method mentioned
in Section 3.4. The extraction process can be effectively finished
by matching each snippet term with each list term. The “In-List”
relation indicates that a term in plain texts occurs in a list
structure extracted from HTML source. This kind of relation
is beneficial for finding aspect items of a query, because items are
usually organized as a list structure, and the extracted lists are
likely to contain potential high-quality items. For example, for the
query “watches”, the term “Omega” in snippets is in an extracted list
[Omega, Casio, Citizen, Rolex, Cartier]. By incorporating these list-
structured relations into search snippets, information about other
watch brands can be integrated to enhance the representation of
the original term “Omega”, so these brands are more likely to be
treated as a group of high-quality items.

3.6 “Is-A” Relation Extraction
The “Is-A” relation is usually used to find the hypernyms of a term,
so as to explicitly indicate the category or description of an entity.
Like the “In-List” relation, the “Is-A” relation can be formalized as
a triplet (𝑡, 𝐼𝑠-𝐴,ℎ), where 𝑡 represents a term, and ℎ represents its
hypernym. For example, when 𝑡 is “apple”, then ℎ can be “company”
or “fruit”. “Is-A” relation is helpful for generating high-quality in-
formative clarifying questions [39, 45, 49] because it denotes the
description of 𝑞 or 𝑆 explicitly. In order to label the search snippets
with “Is-A” tags, we first need to obtain the knowledge base with
“Is-A” relations. We choose Concept Graph [42, 43] andWebIsA [31],
two commonly used knowledge bases containing large-scale “Is-A”
relations. Then, together with “In-List” relation, we also integrate

“Is-A” relation into plain texts simultaneously. By integrating these
two kinds of relations, the plain retrieved document texts can be
extended as tree-shaped data shown in Figure 2.

3.7 Relation Selection
When all the extracted “In-List” relations and “Is-A” relations are
simply taken into account, it will produce excessive noises, that is,
the introduction of many irrelevant relations will have no effect or
even have a negative effect on the generation of items and questions.
For example, in Figure 2, the “Is-A” relation (“download” is an
“operation”) does not help generate clarifying questions, and the list
[download, install, fix] does not help generate high-quality items
for this case. Therefore, we believe that these unimportant relations
should be removed explicitly to avoid negative effects. To this end,
we design methods for the “In-List” relations and “Is-A” relations
respectively. The relation selection process can also limit the length
of the enhanced snippets, which is convenient to use a mainstream
self-attention-based encoder for representation.

3.7.1 “In-List” Relation Selection. For the “In-List” relation, the
extracted list set 𝐿 can be analyzed from two perspectives: (1) A
large number of items between some pairs of extracted lists
may be duplicated. For example, 𝑙1: [Windows 7, Windows 10,
Windows XP] and 𝑙2: [Windows 10, Windows XP, Android] both
contain “Windows 10” and “Windows XP”, so they both represent
a similar meaning potentially. For this circumstance, it is necessary
to cluster these multiple lists into a single list for removing dupli-
cation. (2) In the clustering process, some items will appear
frequently, while some other items only appear occasionally,
so their importance will be different. In the above example,
“Windows 10” and “Windows XP” are more important because they
appear more frequently. Low-frequency terms like “Android” are
deemed to be noisy, which should be removed.

Therefore, for the first perspective, we apply a list clustering
algorithm [7] to cluster similar lists in 𝐿 into a single list. For the sec-
ond perspective, we design an importance score 𝑐 (𝑙) for each list 𝑙
in the clustered list set. This score measures the importance of each
list and each term in a list, which is used for ranking and selecting
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lists and terms for the follow-up generation. To consider the impor-
tance of a list from various perspectives, we define the importance
score as the product of four kinds of features: list frequency feature
𝑓l (𝑙), document frequency feature 𝑓d (𝑙), semantic feature 𝑓s (𝑙), and
common feature 𝑓c (𝑙): 𝑐 (𝑙) = 𝑓l (𝑙) × 𝑓d (𝑙) × 𝑓s (𝑙) × 𝑓c (𝑙). Finally,
we select top-𝑥 list structures in 𝐿 as the “In-List” relation pool.
Besides, for each list, we only keep top-𝑦 terms with the highest
frequency to filter out irrelevant and unnecessary terms. Above, 𝑥
and 𝑦 are two hyper-parameters to be determined. The definitions
of the above four features are illustrated as follows:

- List Frequency Feature 𝑓l. Terms with higher frequency in
lists indicate that they occupy a higher proportion in the structured
information of search results. We define the list frequency feature
of a list as the summation of the frequency of all terms in the list:

𝑓l (𝑙) = 𝑝l · tanh(𝑘l ·
∑︁
𝑖

𝑁𝐿 (𝑡𝑖 )) (1)

where𝑁𝐿 (𝑡𝑖 ) is the frequency of term 𝑡𝑖 . 𝑝 and 𝑘 are two parameters
controlling the importance and scale. The tanh() function is to scale
the range of the feature, which is the same as below.

- Document Frequency Feature 𝑓d. In addition to lists, terms
appearing in the texts are also related to the user query. Therefore,
we also calculate the document frequency of a list as the summation
of the frequency of all terms occurring in the HTML texts:

𝑓d (𝑙) = 𝑝d · tanh(𝑘d ·
∑︁
𝑖

𝑁𝐷 (𝑇𝑖 )) (2)

where 𝑁𝐷 (𝑡𝑖 ) denotes the frequency that 𝑡𝑖 occurs in HTML texts.

- Semantic Feature 𝑓s. High-quality items usually have a strong
semantic correlation [46]. Therefore, we apply a pre-trained BERT-
base model to obtain the vector representation of each term, then
calculate their average cosine similarity:

𝑓s (𝑙) = 𝑝s · tanh(𝑘s ·
1
|𝑙 |2

∑︁
𝑖

∑︁
𝑗

sim(BERT(𝑡𝑖 ), BERT(𝑡 𝑗 ))) (3)

where BERT() is a BERT model, sim() is cosine similarity function.

- Common Feature 𝑓c. Some uncommon terms could have a
negative influence on the quality of extracted lists, so we need to
keep terms that appear frequently on the whole. To achieve this, we
go through MIMICS-Manual [46] dataset to get a term-frequency
dictionary 𝐹 [·], then calculate the common feature as:

𝑓s (𝑙) = 𝑝𝑐 · tanh(𝑘𝑐 ·
1
|𝑙 |

∑︁
𝑖

𝐹 [𝑡𝑖 ]) (4)

3.7.2 “Is-A” Relation Selection. For the “Is-A” relation, only de-
scriptions of the query 𝑞 and items 𝑆 can help generate clarifying
questions [45]. On the other hand, if a large number of irrelevant
terms in documents 𝐷 are labeled with “Is-A” relations, many irrel-
evant noises will be introduced. Therefore, we make the following
two assumptions to ensure the effectiveness of the extracted “Is-A”
relations: (1) We do not label all terms with “Is-A” relations, but
only terms that overlap with the query 𝑞 or terms that aremarked
with “In-List” relations. The former premise is to integrate the
description of query 𝑞, and the latter is to integrate the description
of potential items 𝑆 , so as to generate better questions𝑄 . (2) Besides,
the extracted “Is-A” descriptions can be sometimes ambiguous. For

example, when a user search for Apple’s related electronic products,
labeling “Apple is a fruit” will not provide any useful information.
Therefore, we ensure that the “Is-A” descriptions should occur in
retrieved document texts to ensure the correlation. In this situ-
ation, “Apple is a company” is more likely to be extracted, which
provides additional information for question generation.

3.7.3 Relation Re-sampling. In addition, since the selected relations
may still be numerous, and a large number of repeated relations
can cause redundancy, we further sample the extracted relations
so that the total length of these relation texts does not exceed
20% of documents 𝐷 , which maintains a balance of the length
between plain texts and relation-based texts, so that the semantic
information in the text will not be dominated by these relations.

3.8 BART-based Generation Model
After relation extraction and selection, original snippet texts have
been converted into relation-enhanced tree structures shown in
Figure 2. It is important to model the tree structures using a proper
network structure for the follow-up generation. To encode these
structured data, K-BERT [22] injects knowledge triples directly
after the entity. However, introducing too much knowledge into
the texts may influence the meaning of the original sentence, which
is called knowledge noise problem. Therefore, K-BERT adjusts the
visible matrix, so that the embedding of a word only comes from
the context of the same branch in a tree-structured text, and the
words of different branches do not attend to each other. Different
from K-BERT, we need to consider not only the visibility within a
document, but also the visibility among different documents.

To model the relation-enhanced tree-structured data and then
generate aspect items and/or clarifying questions, we propose a
BART-based language model composed of an encoder and a de-
coder for sequence-to-sequence learning. The decoder is consistent
with that of the original BART for generation. The encoder mainly
models the visibility of each token in the input data with two lev-
els of granularity visible matrix: intra-document matrix and
cross-document matrix. The two kinds of matrices are then con-
catenated together as the whole visible matrix. The illustration of
our proposed model is shown in Figure 3, which takes “Download
google chrome 64-bit for Windows. Fast and secure browser.” as an
example of retrieved document text (snippet).

3.8.1 Intra-document Matrix. Similar to K-BERT [22], in a single re-
trieved document (snippet), a token can only attend to other tokens
that are on the same branch. In addition, if a token is simultaneously
marked with “In-List” and “Is-A” relation, we let its corresponding
“In-List” relation and “Is-A” relation attend to each other, so as to
integrate the co-occurrence information of the two relations, as the
token “Windows” in Figure 3. We define the visible matrix within a
single snippet as the intra-document matrix 𝐼 :

𝐼𝑖 𝑗 =

{
0 𝑤𝑖 ⊖𝑤 𝑗 or𝑤𝑖 ⊕𝑤 𝑗

−∞ 𝑤𝑖 ⊘𝑤 𝑗
(5)

where 𝑖 and 𝑗 are hard indexes of each token.𝑤𝑖 ⊖𝑤 𝑗 means that
the two tokens are in the same branch, and 𝑤𝑖 ⊘ 𝑤 𝑗 means they
are not.𝑤𝑖 ⊕𝑤 𝑗 indicates that the two tokens are in “In-List” and
“Is-A” relations generated by the same token respectively.
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Figure 3: The modified BART encoder. The retrieved document texts are first enhanced with relations extracted from search
result HTML files. They are then encoded with a BART encoder with the improved visible matrix.

3.8.2 Cross-document Matrix. The input data of our model is com-
posed of top-𝑘 relation-enhanced snippets. When encoding the data,
different documents can fully pay attention to each other, which
introduces unnecessary noise [22]. One way is that each document
can only focus on itself, but this ignores the interactive information
between documents. For example, 𝑑1 mentions the symptoms and
treatment of headache, while 𝑑2 mentions its treatment and causes.
The two documents need to attend to each other to make the model
understand “headache” more comprehensively. Therefore, we re-
design the attention across different documents. For two documents
𝑑𝑖 and 𝑑 𝑗 , if they contain the same “In-List” or “Is-A” relation, the
visibility between their texts should be built. This lead to |𝐷 |2 − |𝐷 |
cross-document matrices 𝐶𝑖, 𝑗 , where 1 ⩽ 𝑖, 𝑗 ⩽ |𝐷 |. We finally
combine all intra-document matrix 𝐼 and cross-document matrix 𝐶
to construct the final visible matrixM of the BART encoder:

M =


𝐼1 𝐶1,2 · · · 𝐶1,𝑘

𝐶2,1 𝐼2 · · · 𝐶2,𝑘

.

.

.
.
.
.

. . .
.
.
.

𝐶𝑘,1 𝐶𝑘,2 · · · 𝐶𝑘,𝑘


(6)

The self-attention mechanism can then be redefined with:

𝒉 = softmax

(
𝑸𝑲𝑇 +M√︁

𝑑𝑘

)
𝑽 (7)

Besides the visibility, we further modify the embedding layer of
BART to make it easier for the model to distinguish different parts
of the input. The original BART [21] embedding layer composed of
Position Embedding and Token Embedding. Both are learnable
parameters that encode the position information and the semantics
of tokens in the input sequence respectively. However, these two
embeddings cannot distinguish whether a term comes from the
snippet text or the relations. Therefore, we add the third Segment
Embedding shown in Figure 3, using different tokens to represent
different parts of the input data, which is similar to [5].

4 EXPERIMENTS
In this section, we hope to answer the following three research
questions: (1) RQ1: Does the extracted structured information help
generate better items and questions? (2) RQ2: what is the impact
of co-generation and generation order of 𝑄 and 𝑆 on the results?
(3) RQ3: How can each part of our proposed framework affect the
experimental results? Among them, RQ1 mainly studies whether
our proposed methods can perform better than existing baselines in
generating items and questions. RQ2 mainly explores whether the
model can generate items and questions at the same time so that it
can be applied to generate more integrated clarification panes. RQ3
further explores whether our proposed important components are
helpful to the experimental results.

4.1 Dataset
MIMICS [46] is a dataset with over 400k pieces of data, each piece of
data is composed of a query, several aspect items, and one clarifying
question. We process MIMICS dataset to obtain a set of (𝑞, 𝑆,𝑄),
where 𝑞 indicates the query, 𝑆 is a set of items, and𝑄 is a clarifying
question. We further download the top-ten retrieved snippets pro-
vided by MIMICS as the retrieved document set 𝐷 for each query 𝑞,
together with their corresponding URLs and HTML files. To stay
consistent with previous work [30], for aspect items generation,
we use MIMICS-Click data for training and use MIMICS-Manual
data with Fair or Good labels for evaluating our proposed model.
For clarifying question generation, we use a subset of MIMICS [39]
(about 40k) which maintains a balance in the number of different
question templates for training and evaluation.

4.2 Evaluation Metrics
For aspect items generation, we apply four sets of evaluation met-
rics in previous work [10, 11, 30]. (1)Termoverlap precision, recall,
and F1: these three metrics calculate the overlap between the set
of generated terms with the ground truth terms, which have been
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Table 1: Items generation evaluation results, ablation studies, and co-generation results. Each best evaluation metric is bold. “†”
denotes significant improvement compared with the best baseline with 𝑝-value < 0.05.

Term Overlap Exact Match Set BLEU Set BERT-Score
Model Prec Recall F1 Prec Recall F1 1-gram 2-gram 3-gram 4-gram Prec Recall F1
QDist 0.1275 0.1108 0.1121 0.0084 0.0103 0.0087 0.2042 0.1752 0.1578 0.1439 0.5185 0.5114 0.5108
QFI 0.1525 0.1840 0.1606 0.0137 0.0162 0.0155 0.2141 0.1845 0.1597 0.1561 0.5113 0.5174 0.5156
QFJ 0.1504 0.1853 0.1584 0.0143 0.0151 0.0144 0.2144 0.1879 0.1591 0.1540 0.5174 0.5208 0.5185
QDMiner 0.1629 0.1879 0.1690 0.0207 0.0278 0.0223 0.2225 0.1970 0.1680 0.1605 0.5118 0.5170 0.5124
NMIR 0.1856 0.1965 0.1905 0.0354 0.0388 0.0370 0.2524 0.2139 0.1906 0.1741 0.5311 0.5368 0.5344
BART-𝑞𝐷 0.2014 0.3084 0.2361 0.0417 0.0655 0.0496 0.2972 0.2339 0.2030 0.1855 0.5361 0.5412 0.5382
BART-𝑞 0.1816 0.2861 0.2161 0.0304 0.0458 0.0355 0.2993 0.2355 0.2032 0.1852 0.5319 0.5401 0.5356
Labeling 0.2075 0.2424 0.2131 0.0588 0.0878 0.0678 0.2236 0.1637 0.1380 0.1260 0.5389 0.5252 0.5314
Classification 0.0608 0.0626 0.0594 0.0254 0.0373 0.0294 0.1227 0.0638 0.0386 0.0305 0.5455 0.5182 0.5130
Extraction 0.1748 0.2465 0.1971 0.0149 0.0287 0.0192 0.2915 0.2203 0.1851 0.1669 0.5260 0.5362 0.5307
Our 0.2316† 0.3124 0.2621† 0.0859† 0.0914† 0.0820† 0.3375† 0.2817† 0.2590† 0.2322† 0.5416 0.5425 0.5422
Our-SQ 0.2407† 0.3144† 0.2721† 0.0798† 0.0815† 0.0804† 0.3408† 0.2803† 0.2592† 0.2410† 0.5413 0.5399 0.5405
Our-QS 0.2328† 0.3029 0.2639† 0.0820† 0.0874† 0.0839† 0.3288† 0.2753† 0.2520† 0.2228† 0.5387 0.5433 0.5406
w/o. “In-List” 0.2091 0.2928 0.2408 0.0688 0.0723 0.0705 0.3033 0.2457 0.2121 0.1896 0.5397 0.5402 0.5399
w/o. “Is-A” 0.2312 0.3068 0.2630 0.0848 0.0903 0.0870 0.3343 0.2772 0.2511 0.2259 0.5408 0.5427 0.5414
w/o. Selection 0.1823 0.2799 0.2193 0.0382 0.0462 0.0412 0.2779 0.2286 0.1951 0.1664 0.5266 0.5302 0.5285
w/o. M 0.2155 0.2374 0.2245 0.0519 0.0669 0.0581 0.3083 0.2525 0.2192 0.1868 0.5328 0.5337 0.5331

previously used for evaluating query facets mining [18]. (2) Exact
match precision, recall, and F1: these three metrics are more strict
than term overlap metrics. They only measure the condition when
the generated items are the same as ground truth items. (3) Set
BLEU: BLEU is usually implemented to measure the n-gram simi-
larity between a piece of candidate text and a set of reference texts.
It has been widely used for evaluating all kinds of text generation
tasks. We implement the Set BLEU score from 1-gram to 4-gram
so that these metrics can measure the n-gram similarity between
two sets. (4) Set BERT score precision, recall, and F1: BERT score
is widely used to compute semantic similarity between sentences.
Similar to the Set BLEU, we also implement the Set BERT-score to
evaluate the semantic similarity between two sets of texts.

We also use the four kinds of evaluation metrics defined in pre-
vious work [39] to evaluate the quality of clarifying questions. For
clarifying question selection (CQS) models and clarifying template
selection (CQT) models, we use accuracy to measure how many
question templates of the generated questions can be matched with
that of ground truth questions. We also useMRR@3 to evaluate
the quality of the top-3 ranked question templates by applying a
3-head beam search for generation. For clarifying question gen-
eration (CQG) models, we evaluate the results using BLEU and
entity-F1. BLEU calculates the 4-gram overlaps between generated
questions and ground truth questions, which evaluates the results
from a lexical perspective. Since the most replaced part in a clarify-
ing question is the entity description filled in the question template,
we further implement Entity F1 by micro-averaging precision and
recall over these entity descriptions to evaluate the results.

4.3 Implementation Details
In the “In-List” relation selection module, all importance param-
eters 𝑝𝑥 and scale parameters 𝑘𝑥 are determined by grid search
with the step of 0.1 within the range of (0, 1]. Specifically, we first
sample 1k held-out queries and their corresponding items. To mea-
sure the quality of extracted “In-List” relations, for each parameter

combination, we calculate the frequency that the extracted “In-List”
terms that occur in the ground-truth items and finally choose the
best parameter. This process ensures that the “In-List” relation se-
lection module is effective to mine information about the aspect
items. We also ensure that the four features for selecting “In-List”
relations used in Section 3.7.1 all have positive effects on the qual-
ity of extracted “In-List” relations. For the hyper-parameter 𝑥 and
𝑦 mentioned in Section 3.7, they are both set to be 5 intuitively,
because a ground-truth items set contains at most five items. All
learnable parameters in the BART-based model are initialized with
the pre-trained BART-base model. In all the experiments, the batch
size is set to 8, the input length is set to 768, and the maximum
output length is set to 64. To discriminate different part of the input,
following previous work [30], we use a special token “[SEP]” to
concatenate user query 𝑞 and documents 𝐷 as 𝑞 [SEP] 𝑑1 [SEP]
𝑑2 [SEP] ... [SEP] 𝑑𝑘 . In the decoder part, the model generates a
clarifying question 𝑄 or generates aspect items one by one as 𝑆1
[SSEP] 𝑆2 [SSEP] ... [SSEP] 𝑆𝑁 . We use AdamW optimizer with a
learning rate of 2 × 10−5 to optimize the loss function.

4.4 Experimental Results (RQ1)
To answer RQ1, we report the experimental results of aspect items
generation and clarifying question generation in the upper part of
Table 1 and Table 2 respectively and analyze the results.

4.4.1 Aspect Items Generation. For aspect items generation, we
compare three groups of baseline methods: (1) QDist [44], QFI,
QFJ [18], and QDMiner [7] are four rule-based or machine learning-
based methods for query facets mining. They make use of the list-
structured information in search results, but do not combine them
with unstructured text. (2) NMIR [10], a neural model that learns
multiple representations of a query to generate items, but does not
utilize structured relations. (3) Four types of PLM-based models [30]
to obtain aspect items, including generation, labeling, classification,
and extraction. Among these models, we mainly aim to compare
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the BART generation model (BART-𝑞𝐷 in Table 1) which uses only
the concatenated query and snippet texts as the input for items
generation, to prove the effectiveness of our extracted structured
relations. Table 1 reports the experimental results.

The first and most important conclusion is that our proposed
model outperforms existing baselines in nearly all evalua-
tion metrics, including term and exact match metrics, n-gram
metrics, and semantic metrics. Furthermore, most of the metrics
pass the t-test with 𝑝-value < 0.05, denoting the significance of the
improvements. The results illustrate that our proposed model is
effective to generate more satisfying aspect items compared with
other PLM-based models or traditional extraction models. Espe-
cially, our model outperforms the original BART model (BART-𝑞𝐷
in Table 1) significantly, illustrating that the snippets enhanced
by our extracted structured information aremore effective to
mine and generate aspect items compared with pure snippet
texts. On the other hand, our model has little improvement on
the Set-BERT score metric. Compared with the optimal baseline
BART-𝑞𝐷 , the F1-score of this metric has only increased by 0.004,
while the precision even decreases slightly. This illustrates that,
compared with the original snippet texts, the structured infor-
mation hardly brings significant improvement on semantic
similarity, which is different from the former three metrics. How-
ever, we argue that the improvement on the Set BERT-core does not
completely represent the improvement of the quality of the items.
For example, the query “google chrome exe” may correspond to two
groups of items: 𝑆1: [32 bit, 64 bit], 𝑆2: [Windows, Linux, MacOS].
These two groups of items have roughly equal Set BERT-score,
yet 𝑆1 is the ground truth and 𝑆2 is deemed sub-optimal. To sum
up, we deem that the results generated by structured information
are significantly better than those generated by plain texts, thus
demonstrating the effectiveness of our proposed idea and model.

We also notice that, compared with traditional extraction meth-
ods utilizing structured information (including QDist, QFI, QFJ, and
QDMiner), neural models utilizing snippets (NMIR, BART, etc.) can
gain overwhelming advantages in almost all evaluation metrics.
The results demonstrate that, compared with traditional machine
learning or human-designed features, unstructured data contain-
ing abundant contextual information like the snippet is also
important tomine query intents. Our proposed model combines
the advantages of unstructured snippets and structured data, so it
further achieves an effective positive effect on the results.

4.4.2 Clarifying Question Generation. For clarifying question gen-
eration, we compare several basic clarifying question selection
(CQS), clarifying template selection (CTS), and clarifying ques-
tion generation (CQG) baselines. We then compare our proposed
model with TG-ClariQ [39], which is a multi-task architecture for
question template selection and slot filling. We use training and
evaluation data consistent with these baselines. As can be seen
from Table 2, first, our model shows a slight improvement in the
Accuracy and MRR@3 compared with the best baseline, illustrat-
ing that our proposed generation model can match the selection
model (TG-ClariQ-BERT) in template selection, or even exceed the
selection model. However, it is more important and challenging
to generate appropriate descriptions filled in question templates,
which denotes that BLEU and Entity-F1 can better evaluate the

Table 2: Experimental results of question generation. Each
best metric is bold. “†” denotes significant improvement com-
pared with the best baseline with 𝑝-value < 0.05.

Model Accuracy MRR@3 BLEU Entity-F1
BM25 (CQS) 0.355 0.399 - 0.414
RankNet (CQS) 0.308 0.384 - 0.203
LambdaMART (CQS) 0.490 0.564 - 0.214
BERT (CQS) 0.394 0.440 - 0.356
BM25 (CTS) 0.095 0.191 - -
RankNet (CTS) 0.323 0.455 - -
LambdaMART (CTS) 0.564 0.621 - -
BERT (CTS) 0.676 0.794 - -
LSTM (CQG) - - 45.30 0.166
LSTM+Copy (CQG) - - 52.64 0.495
Trm+Copy (CQG) - - 55.37 0.546
TG-ClariQ-LSTM 0.659 0.791 55.05 0.682
TG-ClariQ-BERT 0.722 0.827 60.49 0.788
Our 0.734 0.837 71.56† 0.835†

Our-SQ 0.736 0.831 71.50† 0.837†
Our-QS 0.735 0.834 71.59† 0.839†

w/o. “In-List” 0.729 0.828 67.83 0.823
w/o. “Is-A” 0.722 0.823 67.94 0.825
w/o. Selection 0.656 0.714 62.75 0.755
w/o. M 0.694 0.781 64.13 0.780

overall quality of the generated questions. As shown in the BLEU
and Entity-F1 results, our proposedmodel significantly outperforms
existing best baselines with BLEU rising from 60.49 to 71.56, and
Entity-F1 rising from 0.788 to 0.835. These results effectively prove
that the extracted structured information contributes to the
generation of high-quality clarifying questions.

4.5 Co-generation of Items and Questions (RQ2)
In Section 4.4, we focus on evaluating the quality of generated
items and questions independently. However, in real-world sys-
tems, the integration of items 𝑆 and question 𝑄 is also important,
which means that the question should accurately clarify these items.
However, generating items and questions separately will lose their
co-occurrence information, which would generate inconsistent clar-
ification panes. For example, for the query “watches”, the generated
items are [Omega, Casio, Citizen, Rolex, Cartier], while the gener-
ated question is “Who are you shopping for?”. This is because the
supervised data does not contain the interactive information of 𝑄
and 𝑆 at the same time. To solve this problem, we can easily change
the supervised data on the decoder side so that the model can de-
code clarifying questions and aspect items sequentially. There are
two ways to achieve this: generating questions followed by several
items like “𝑄 [QSEP] 𝑆1 [SSEP] ... [SSEP] 𝑆𝑘 ” (denoted as Our-QS),
or first generating several items followed by a question like “𝑆1
[SSEP] ... [SSEP] 𝑆𝑘 [QSEP] 𝑄” (denoted as Our-SQ).

To compare with the previously generated items and questions,
we still use the evaluation data and metrics mentioned in Section 4.2
to evaluate the generated items and questions. The results are also
recorded in Table 1 and Table 2 respectively. The experimental
results show that, first, compared with generating items separately,
the co-generation results have a little fluctuation in these automatic
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Table 3: Human annotation of integrated clarification panes.

Our Our-QS Our-SQ Tie
13.5% 31.0% 32.5% 23.0%

evaluation metrics, yet the impact is not great. For questions, the
results show a slight increase in accuracy and entity F1 and a slight
decrease in MRR@3. In addition, the order of generating items
and questions has little effect on the results. In general, the co-
generation of 𝑄 and 𝑆 and the generation order of the two have
little influence on the experimental results.

On the other hand, evaluating items and questions separately
ignores their consistency. For example, for the query “apple”, [com-
pany, fruit, film] and [ipad, iPhone, macbook] are both good items
set. However, a model may generate the former set of items fol-
lowed by asking the question “which product of apple are you
looking for?”, which is more suitable for the latter items set. In
this situation, although the generated items and questions are both
of high quality, they are inconsistent and are not satisfying to be
delivered in real-world conversational search systems. Therefore,
we hope to further evaluate the overall quality of several items
and a question, that is, the quality of a whole clarification pane.
To achieve this, we randomly sampled 200 queries from the eval-
uation set. For each query, we generate three panes: (1) 𝑄 and 𝑆

generated by our proposed model separately (Our), (2) 𝑄 and 𝑆

generated by Our-QS, (3) 𝑄 and 𝑆 generated by Our-SQ. We hire
three annotators to select one best pane manually, and the final
winner is determined by major voting. In 23% conditions, the three
methods generate the same panes, so these results are labeled “Tie”.
The winning and losing situation is shown in Table 3. In most cases
(31.0% for Our-QS and 32.5% for Our-SQ), co-generation models
can generate more integrated clarification panes which defeat sep-
arate generation results which only win in 13.5% of the data. The
result shows that the co-generation paradigm is more suitable to
be applied in online search engines for clarification.

4.6 Ablation Studies (RQ3)
Our proposed model is composed of several important components
like “In-List” relation, “Is-A” relation, relation selection module,
and two-granularity visible matrix. These modules are directly
constructed on the BART-base model together. Therefore, it is very
important to clarify their separate effect on the results (RQ2). To
achieve this, we briefly remove the above four modules separately
and then recalculate all evaluation metrics for ablation. The results
of items and questions are shown in the bottom part of Table 1 and
Table 2 starting with “w/o.” followed by the module name.

The ablation results show that, after removing the “In-List” rela-
tion, items generation showed a serious decline in all evaluation
metrics, and clarifying question generation results are also slightly
affected. The results are intuitive: we have assumed and demon-
strated that the “In-List” relation is mainly helpful for aspect items
generation, and the experimental results further prove that it is
not only helpful for items generation, but also has an impact on
clarifying question generation. Similar to the “In-List” relation, by
removing the “Is-A” relation, the evaluation metrics of items gen-
eration do not change significantly, while the clarifying question

generation showed a certain decline in the four metrics. It shows
that the “Is-A” relation mainly has a certain effect on questions, yet
has little effect on items. To remove the relation selection module,
we directly sample relations from the original extracted lists and “Is-
A” descriptions without weighting and selecting them, which could
lead to a large number of noises. The results of aspect items and
clarifying questions both show a significant decline. Specifically,
for items generation, after removing the relation selection process,
our proposed model performs even worse than the original BART
model for generating items, and most metrics evaluating questions
also drop significantly to under-baseline levels. This is because the
unfiltered “In-List” and “Is-A” relations have a lot of information
that is not related to items and questions, which introduces exces-
sive noise. Therefore, the model input does not contain much useful
information, which cannot help generate, but will bring negative
effects. We finally change the visible matrix M into a full-of-zero
matrix, which means that each token in the whole input can see
each other. This leads to a slight decline for all metrics of aspect
items and clarifying questions. This illustrates that the adjustment
of the visibility of input data is effective and can reduce the noise
caused by the integration of structured relations.

5 CONCLUSION
In this paper, we study generating clarification panes with struc-
tured information extracted from search results. We design two
kinds of relations: “In-List” relation and “Is-A” relation, as supple-
ments for enhancing unstructured retrieved document texts. We
then apply a BART encoder to model the enhanced texts and gener-
ate items and/or questions. To filter out noisy relations, we design
a rule-based relation selection module to select relations according
to their importance score. We further design a two-granularity visi-
bility matrix to integrate the two kinds of relations into the BART
encoder. The experimental results on the MIMICS dataset show that
our proposed methods can generate clarification panes with higher
quality compared with strong baselines on several evaluation met-
rics. We further try to generate items and questions simultaneously
to deliver integrated clarification panes, which is important for
online systems. Finally, we conduct ablation studies to prove the
usefulness of each of our proposed component.
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