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ABSTRACT
Conversational search supports multi-turn user-system interactions
to solve complex information needs. Compared with the traditional
single-turn ad-hoc search, conversational search faces a more com-
plex search intent understanding problem because a conversational
search session is much longer and contains many noisy tokens.
However, existing conversational dense retrieval solutions simply
fine-tune the pre-trained ad-hoc query encoder on limited conver-
sational search data, which are hard to achieve satisfactory perfor-
mance in such a complex conversational search scenario. Mean-
while, the learned latent representation also lacks interpretability
that people cannot perceive how the model understands the session.
To tackle the above drawbacks, we propose a sparse Lexical-based
Conversational REtriever (LeCoRE), which extends the SPLADE
model with two well-matched multi-level denoising methods uni-
formly based on knowledge distillation and external query rewrites
to generate denoised and interpretable lexical session representa-
tion. Extensive experiments on four public conversational search
datasets in both normal and zero-shot evaluation settings demon-
strate the strong performance of LeCoRE towards more effective
and interpretable conversational search.
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1 INTRODUCTION
Conversational search makes it possible to address users’ complex
information needs through multi-turn user-system interactions. It
provides a brand new search experience for users and is expected
to be the next generation of search engines [6]. In contrast to the
traditional single-turn ad-hoc search where users mainly use a
concise keyword query to express their information needs [25],
conversational search systems need to deal with the whole conver-
sational search session, which is composed of multi-turn natural lan-
guage queries and system responses, for search intent understand-
ing [15, 34, 35]. This tends to be much more difficult than the query
understanding in ad-hoc search because the conversational search
session is more complex and often contains tremendous noisy to-
kens irrelevant to understand the current search intent [2, 24]. For
example, as shown in Figure 1, the real search intent of the current
turn (i.e., 𝑞3) should be “What happens to water molecules when it
freezes?”, while many tokens (e.g., 𝑞1 and 𝑟1) in the conversation
context actually would not contribute useful information and can
even have a negative effect on the session understanding.

Early conversational query rewriting methods [22, 31, 34] uti-
lize a rewriting model to explicitly reformulate the conversational
search session into a new context-independent query rewrite and
then feed it into any existing ad-hoc search pipeline to finish conver-
sational search. As illustrated in Figure 1 (a), although the rewrite
shows high interpretability, the rewriting model is hard to be opti-
mized towards the downstream search task in such a two-stage (i.e.,
rewrite-then-search) fashion since the discrete generation process
in rewriting breaks the backpropagation of gradients, leading to
non-ideal performance. Recently, as shown in Figure 1 (b), the end-
to-end conversational dense retrieval [21, 35], which is to train a
session encoder to directly encode the whole conversational search
session into a latent representation, solves the above limitation and
generally achieves better search effectiveness.

Nevertheless, most of the existing conversational dense retrieval
models [18, 21, 35] are simply learned by fine-tuning the pre-trained
ad-hoc encoders on conversational search data [1, 3]. Considering
that 1) the original ad-hoc encoders are only pre-trained with short
ad-hoc queries and 2) the currently available conversational search
data is mainly generated by humans which is not as abundant as
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Figure 1: A conceptual illustration for the three types of methods. LeCoRE has multi-level denoising approaches uniformly
based on knowledge distillation to achieve more effective end-to-end optimization towards search and decent interpretability.

that in ad-hoc search since real conversational search systems have
not been widely deployed in practice, such a simple fine-tuning
way is hard to make the ad-hoc encoders well adapted to the noisy
and complex conversational search scenario. Besides, compared
with the explicit query rewrite, it is hard to know how the model
understands the session from the learned latent representation.
This is unfriendly to end users because no explicit readable text can
be returned to users. It is also unfriendly to the model developers
to make targeted improvements when the model fails to correctly
understand the user’s search intent.

The goal of this work is to improve the end-to-end conversational
search model with better context denoising abilities to achieve
consistently strong effectiveness as well as decent interpretability.
Specifically, we resort to external query rewrites to enhance the
model’s denoising ability. Although the rewrite may not perfectly
represent the real search intent [32], it has at least been refined to
containmuch less noise than the original session, which can provide
valuable guidance for better denoising. To achieve interpretability,
we abandon the dense retrieval architecture and instead adopt
SPLADE [14, 19], which is a state-of-the-art sparse lexical-based
retriever, as our base retrieval model. Compared with previous
dense retrieval models, the lexical-based model further transforms
latent representation into lexical representation in the vocabulary
space. As shown in Figure 1 (c), the activated tokens and weights
(e.g.,water (1.2) and freeze (1.3)) of the lexical representation provide
a decent hint for understanding the model’s behaviors, largely
improving the model interpretability while keeping the feasibility
of end-to-end training towards search.

To be more specific, we propose a novel sparse Lexical-based
Conversational REtriever (LeCoRE), which extends the popular
SPLADE model with two well-matched multi-level denoising meth-
ods without introducing any new parameters. The two denoising
methods are uniformly based on knowledge distillation from ex-
ternal query rewrites to generate denoised lexical session repre-
sentation for more effective and interpretable conversational search.
Technically, the first Proxy Teacher-guidedDenoising (PTGD)method
leverages the knowledge of query rewrite to explicitly filter out
high-confident noisy tokens at the latent level. And the second
Adaptive Sparsity Regularization (ASR) directly takes effect at the
final lexical level to improve the critical token weights while ensur-
ing the overall sparsity of the output lexical representation based
on the guidance of query rewrite. LeCoRE is trained by integrating
the ranking objective and the two proposed denoising objectives

using multi-task learning. At search time, LeCoRE encodes the con-
versational search session into sparse lexical session representation
to retrieve passages from the pre-built inverted index.

We conduct extensive experiments on four conversational search
benchmark datasets and results show that LeCoRE can consistently
outperform state-of-the-art baselines in both normal evaluation
and zero-shot evaluation settings. We also perform intuitive case
studies to show its decent interpretability for conversational search.

2 RELATEDWORK
Conversational Search. Different from traditional ad-hoc search,
conversational search faces a complex conversational session un-
derstanding problem [15]. In this part, we review a few important
conversational query rewriting and conversational dense retrieval
methods. Specifically, without generating a completely new query
rewrite, Voskarides et al. [31] propose to train a term classifier
to select relevant terms from the context and combine them with
the current query as the rewrite. Yu et al. [34] use GPT-2 as the
rewriter model and propose a rule-based method and a self-learn
method to automatically transform ad-hoc search sessions to be
the training data of conversational query rewriting. Similarly, Lin
et al. [22] demonstrate the effectiveness of T5 [28] to be the rewriter
model. Although the high interpretability of conversational query
rewriting methods is appealing, the problems of limited and expen-
sive manual rewrite data and the gap between the rewriting and
the real target (i.e., ranking) are hard to be solved. A pioneering
solution is CONQRR [32], which develops a novel reward func-
tion with reinforcement learning to bridge the optimization goal of
rewriting and search, but its effectiveness is still under further im-
provement. From another perspective, Yu et al. [35] first introduce
the thinking of dense retrieval into conversational search and pro-
pose ConvDR based on knowledge distillation to enable few-shot
learning. Concurrently, Lin et al. [21] develop a weak data aug-
mentation method based on the CANARD [12] dataset to generate
many session-relevance pairs as the training data for conversational
dense retrieval. Although achieving relatively better performance,
these models do not explicitly consider the large amount of noise in
the session which may hurt the model performance. Mao et al. [24]
investigate such a problem of noise and devise an effective context
denoising framework COTED to enhance the model’s denoising
ability under the few-shot scenario, but it needs laborious manual
annotations for necessary turns which would be hard to be scaled to
real conversational search scenarios. Besides, the interpretability of
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the learned latent representation is very poor. In contrast to previ-
ous methods, we leverage the nature of lexical-based retrievers and
design two well-matched multi-level denoising methods based on
knowledge distillation to achieve both effective and interpretable
conversational search.

PLM-based Lexical Retrieval. Compared with traditional (sparse)
lexical retrieval methods (e.g., BM25 [29]), PLM-based lexical re-
trieval models take advantage of PLMs to inject semantic infor-
mation into the lexical representation to enhance retrieval effec-
tiveness. Such semantic injection can be done through explicit
document expansion (e.g., DocT5Query [26]), document term re-
weighting (e.g., DeepCT [7]), contextualized vector matching (e.g.,
(COIL [16] and uniCOIL [20]), or direct lexical representation gener-
ation from the contextualized latent representation (e.g., SparTerm [4]
and SPLADE [13, 14, 19]. Compared with the latent space of dense
retrieval, the vocabulary space of lexical retrieval is much more
understandable and thus has decent interpretability, which is par-
ticularly helpful in conversational search. To our knowledge, we
propose the first sparse lexical-based conversational retriever by
adapting the state-of-the-art SPLADEmodel with tailored denoising
extensions for effective and interpretable conversational search.

3 METHODOLOGY
3.1 Preliminaries
3.1.1 Task Formulation. In this paper, we formulate the task
of conversational search as finding the relevant passage 𝑝 from
a large passage collection 𝑃 for the current user query 𝑞𝑘 based
on the conversational context 𝐶 = {(𝑞𝑖 , 𝑟𝑖 )𝑘−1𝑖=1 }, where 𝑞𝑖 and 𝑟𝑖
denote the query and the system response of each previous turn,
respectively. We call the combination of the current query 𝑞𝑘 and
its conversational context 𝐶 as a conversational search session
𝑠𝑘 = {𝑞1, 𝑟1, ..., 𝑞𝑘 }. The challenge of conversational search lies in
how to precisely recover the user’s real current search intents from
the session 𝑠𝑘 so as to find her needed passage. For simplicity, we
omit the subscript 𝑘 in the rest of the paper.

3.1.2 Existing Two Types of Methods. To achieve this goal,
conversational query rewriting methods transform the session 𝑠 into
a de-contextualized ad-hoc query 𝑞 through an expansion model
which mainly performs history token selection [23, 31] or a text
generation model [28, 32, 34]. By contrast, conversational dense
retrieval methods map the session and passages into a unified dense
latent space to perform denser retrieval without explicit generation
of a new query:

s = CSE(𝑠), (1)
p = PE(𝑝), 𝑝 ∈ 𝑃, (2)

where CSE and PE denote the conversational session encoder and
the passage encoder, respectively. 𝑃 is the passage collection. The
matching score is computed as the dot product between the latent
session representation s and the passage representation p. The
training usually adopts ranking loss based on contrastive learning:

Lrank = −log 𝑒 (s·p
+)

𝑒 (s·p+) +∑
𝑝−∈𝑃 𝑒 (s·p

−) , (3)

where 𝑝+ and 𝑝− are the relevant and irrelevant passages for the
current turn. It is worth noting that, as the passage information has
no change in conversational search or traditional ad-hoc search, it
is common to directly reuse a well-trained ad-hoc passage encoder
and freeze its parameters in training.

3.1.3 Recap of SPLADE. SPLADE [13, 14] is a sparse lexical-
based retrieval model. It can encode a text sequence (query or
passage) 𝑡 = {𝑡1, ..., 𝑡𝑁 } into a sparse lexical representation v ∈ R |𝑉 |

by predicting token importance in the whole BERT [10] WordPiece
vocabulary space (i.e., |𝑉 | = 30522) based on the dense latent token
representations {h1, ..., hN} generated by the underlying BERT:

wi = EQhi + b, 𝑖 ∈ [1, 𝑁 ], (4)
vi = log(1 + ReLU(wi)), 𝑖 ∈ [1, 𝑁 ], (5)
v = Pooling(v1, ..., vN), (6)

where Q ∈ R768×768 and b ∈ R |𝑉 | are a trainable transformation
matrix and a bias vector, respectively. 𝑁 is the number of tokens.
E ∈ R |𝑉 |×768 is the BERT input embedding matrix. The pooling
operation can be sum, mean, or max. We adopt the max pooling in
this work because: (1) It has a self-denoising effect, i.e., only the
maximum weights of each dimension are considered and all the
other weights are ignored, which may be helpful to conversational
search where the input session is full of noises. (2) The max pooling
empirically shows better performance in ad-hoc search than other
pooling approaches [13].

In general, the training of SPLADE uses the similar ranking loss
(Eq. (3)) as dense retrieval, where the latent representation s is
replaced with the lexical representation v. Besides, to encourage
the sparsity of the output lexical representation for fast retrieval,
an additional sparsity regularization is incorporated into the final
training objective:

L = Lrank + 𝜆𝑞L
𝑞
reg + 𝜆𝑝L

𝑝
reg, (7)

where Lreg is a sparsity regularization (e.g., L1 or FLOPS [27]).
𝜆𝑞 and 𝜆𝑑 are the regularization weights for queries and passages.
Readers can refer to [14] and [19] for more details of SPLADE.

3.2 Our Model: LeCoRE
LeCoRE is an upgraded version of SPLADE which has two well-
matched denoising extensions without introducing any new pa-
rameters, including Proxy Teacher-guided Denoising (at the latent
level) and Adaptive Sparsity Regularization (at the lexical level),
to achieve more effective and interpretable conversational search.
Figure 2 shows a training overview of LeCoRE. Based on knowl-
edge distillation from external query rewrites, LeCoRE is trained
with two additional objectives (corresponding to the two denoising
methods) to enhance its context denoising ability. In the following,
we elaborate on these two denoising methods.

3.2.1 Proxy Teacher-guided Denoising. The proxy teacher-
guided denoising method helps the model learn to filter out much
irrelevant information at the latent representation level to avoid
their subsequent ill effects. Specifically, for an input conversational
search session 𝑠 , we have its corresponding query rewrite 𝑞 and a
SPLADE query encoder T which has been well-trained on large-
scale ad-hoc search data as the teacher model. Note that the query
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(colored orange) into the CLS (i.e., proxy) of the student to guide the noise filtering. At the lexical level, we refine the lexical
session representation by leveraging the teacher lexical query representation to perform adaptive sparsity regularization.

rewrite can be manually rewritten or generated by a conversational
query rewriting model. We do not expect it to perfectly express
the user’s real search intent since it has at least been refined to
contain much less noise than the original session, which would
be valuable guidance to help us reach better denoising effects. We
first input the query rewrite 𝑞 = {𝑞1, ..., 𝑞𝑛}, where 𝑛 is the number
of tokens, into the teacher SPLADE model to the get the output
teacher lexical query representation vt and the intermediate latent
token representations {ht1, ..., h

t
𝑛} of the underlying BERT:

ht1, ..., h
t
𝑛 = TBERT (𝑞), (8)
vt = T (𝑞), (9)

where TBERT denotes the underlying BERT of the teacher SPLADE
model T and the superscript “t” means “teacher”. As the teacher
SPLADE model has been well-trained to resolve ad-hoc query
rewrite, only very few tokens (i.e., indexes) of vt will be activated
with non-zero weights. In particular, the max pooling (Eq. (6)) in
SPLADE acts as a kind of self-denoising which ensures that each
activated token weight in vt comes from only one latent token
representation. We then leverage this self-denoising effect to obtain
a self-denoised teacher latent representation for later distillation.
Formally, we use 𝐼 to denote the set of indexes that are non-zero
in vt and use F to denote a mapping function that can map an
activated index 𝑖 into the corresponding unique latent token index
F (𝑖). Then, the self-denoised teacher latent representation ĥt is
computed as:

ĥt =

∑
𝑖∈𝐼 vt [𝑖] × htF(𝑖)∑

𝑖∈𝐼 vt [𝑖]
, (10)

where vt [𝑖] denotes the weight of the 𝑖-th index of vt. Since ĥt

largely represents the user’s search intent at the latent level and
has much less noise, it is suitable to be a guide for the student model
to filter out noisy input latent token representations.

Specifically, we would only feed the top-𝐾 similar latent token
representations with respect to ĥt into the next layer and filter out

the others. The similarity is computed as the dot product between
ht and ĥt and the filtering strength can be controlled by the hyper-
parameter 𝐾 . However, this is only feasible in the training phase
because generating query rewrites in the online inference phase
will make the student model performance directly related to the
quality of the generated rewrites and thus become unstable and
uncontrollable. Therefore, we consider that the query rewrite is
unavailable in the inference phase (i.e., only the conversational
search session is available), so we cannot obtain the corresponding
ĥt from the teacher. To address this obstacle, we propose to distill
the knowledge of ĥt into the latent representation of the special
CLS token of the student model S in advance when training, which
can then serve as a proxy of the teacher in inference to support the
denoising:

FC(s) = [CLS] ◦ 𝑞𝑘 ◦ 𝑟𝑘−1 ◦ 𝑞𝑘−1 ◦ ... ◦ 𝑞1 ◦ [SEP], (11)
hsCLS = PoolCLS (SBERT (FC(s))), (12)

Ltpd = MSE(hsCLS, ĥ
t), (13)

where FC (which means Flat Concatenation) is a common input for-
mat of the conversational search session1, ◦ denotes concatenation,
[CLS] and [SEP] are special tokens of BERT, PoolCLS is a pooling
operation to only output the latent representation of the CLS token,
MSE is the widely used Mean Squared Error loss function, and the
superscript “s” means “student”.

As shown in the middle of Figure 2, we add a proxy-guided
filtering layer in the student model which only allows the CLS
token and its top-𝐾 similar ones to pass. In this way, a large amount
of high-confidence noise in the original input session can be filtered
out in advance, which provides a “cleaner pool” for the subsequent
generation of high-quality lexical session representation.

3.2.2 Adaptive Sparsity Regularization. To avoid activating
too many irrelevant tokens that hurt the model performance, the

1Here we omit the [SEP] token after each query and response for clarity, but we
actually add them in our implementation.
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Table 1: Statistics of the used conversational search datasets.

Dataset # Conversations # Queries(Turns) # Passages

QReCC Train 10,823 63,501 54MTest 2,775 16,451

TopiOCQA Train 3,509 45,450 25MTest 205 2,514
CAsT-19 Test 50 479 38M
CAsT-20 Test 25 208 38M

original SPLADE simply adopts L1 or FLOPS regularization on
the output lexical representation to enhance its sparsity. Despite
their effectiveness, these regularization methods essentially assume
a strong but unrealistic prior that none of the tokens should be
activated since all token weights are forced to be zero, which would
result in sub-optimal performance.

Instead of using L1 or FLOPS regularization, we propose an
simple yet effective Adaptive Sparsity Regularization under the
conversational search scenario. Specifically, we use the teacher
lexical query representation vt as the sparsity prior for the stu-
dent’s lexical session representation vs by performing knowledge
distillation from vt to vs:

vs = S(FC(s)), (14)

Lasr =

|𝑉 |∑︁
𝑖=1

��vs [𝑖] − vt [𝑖]
�� , (15)

where we use Mean Absolute Error (MAE) loss function to en-
courage sparse solutions. Compared with previous indiscriminate
“all-zero regularization” to all samples, we adaptively set better
sparsity priors to different samples. Since vt is sparse with only
very few critical non-zero tokens, using it as the sparsity prior not
only ensures the overall sparsity to shield lots of irrelevant tokens
but also provides better prior weights for a few important tokens
unique to each sample, which helps generate higher-quality lexical
session representation. At the same time, in contrast to previous
objectives that solely focus on search performance, our adaptive
sparsity regularization makes the student model directly learn from
the readable rewrite at the lexical level, which is also beneficial to
enhance the interpretability of the lexical session representation.

3.2.3 Training and Inference. LeCoRE is trained withmulti-task
learning of the ranking loss L𝑟𝑎𝑛𝑘 , the teacher-proxy distillation
loss Ltpd, and the adaptive sparsity regularization Lasr:

L = Lrank + 𝜆Ltpd + 𝛽Lasr, (16)

where 𝜆 and 𝛽 are hyper-parameters to balance the losses. Following
previous work [21, 24, 35], only the student session encoder will
be trained while the passage encoder is frozen.

Similar to SPLADE, LeCoRE generates sparse lexical passage rep-
resentations offline and stores them into an inverted index that has
|𝑉 | (i.e., 30522) keys. At the search time, LeCoRE encodes the input
conversational search session into a lexical session representation
and uses the standard BM25 formula for retrieval, where the re-
trieval score is actually equal to the dot product between the lexical
session representation and the lexical passage representation.

4 EXPERIMENTAL SETUP
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. We evaluate LeCoRE in two experimental settings.
The first is the normal training-test setting conducted on two popu-
lar conversational search datasets: QReCC [3] and TopiOCQA [1].
The training-test split is provided in the original datasets. We ran-
domly select a validation set containing 500 query turns from the
training set for parameter tuning. The second is the zero-shot eval-
uation setting, where we evaluate the models which have been
trained on the QReCC training set, on two widely used small con-
versational search test sets: CAsT-19 [8] and CAsT-20 [9]. Note
that QReCC, CAsT-19, and CAsT-20 provide manual oracle rewrites
while TopiOCQA only provides rewrites generated by a T5-based
rewriting model [28]. Table 1 presents the dataset statistics and
further dataset details are provided in Appendix A.

4.1.2 Evaluation Metrics. Following previous studies [1, 3, 24,
35], we adopt four widely used metrics2: MRR, NDCG@3, Re-
call@10, and Recall@100 to comprehensively evaluate the retrieval
performance. The metrics are calculated using the pytrec_eval
tool [30]. Significance tests are conducted using paired t-tests at p
< 0.05 level.

4.2 Baselines
For clarity, we describe a conversational search system from two
aspects: (1) the used retriever and (2) the input type. The retriever
is to encode a text sequence (e.g, a single query (rewrite), a conver-
sational search session, or a passage) and perform retrieval, and
the input type specifies the format of the text sequence fed into the
retriever.

For retrievers, we include: (1) ANCE [33]: A state-of-the-art
BERT-based ad-hoc dense retriever trained with dynamic global
hard negatives. (2) Conv-ANCE [33]: ANCE fine-tuned on conver-
sational search data only using the ranking loss (Eq. (3)). (3) Con-
vDR [35]: ANCE fine-tuned on conversational search data using
knowledge distillation between the query rewrite representation
and the latent session representation. (4) T5-Encoder [28]: The en-
coder of T5 [28] fine-tuned on ad-hoc search data. (5) BM25 [29]: A
classical lexical-based retriever. (6) SPLADE [14]: A strong lexical-
based retriever which is also the base model of LeCoRE. (7) Conv-
SPLADE [14]: SPLADE (with L1 regularization) fine-tuned on con-
versational search data only using the ranking loss (Eq. (3))

For input types, we include: (1) T5QR [22]: The query rewrite
generated by a T5-based conversational query rewriting model. (2)
CONQRR [32]: The query rewrite generated by a reinforcement
learning-based conversational query rewriting model. Note that it
adopts the BM25 and T5-Encoder as the retrievers in their original
paper. (3) FC: Flat Concatenation (i.e., Eq (11)), which is a common
input format of the conversational search session. (4) Raw: The
query of the current turn. (5)Manual: The manual oracle rewrite
of the current turn.

2In particular, we deem relevance scale ≥ 2 as positive for MRR and recall on the
CAsT-20 dataset following the official evaluation setting [9].
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Table 2: Results of normal evaluation. The best results are in bold. † indicates significant improvements over all baselines
except CONQRR. Using FC as the input of BM25 is impractical because FC is too long and makes the search latency unbearable.

Rep. Type Retriever Input QReCC TopiOCQA
MRR NDCG@3 R@10 R@100 MRR NDCG@3 R@10 R@100

Latent

ANCE T5QR 34.5 31.8 53.1 72.8 23.0 22.2 37.6 54.4
T5-Encoder CONQRR 41.8 - 65.1 84.7 - - - -
Conv-ANCE FC 47.1 45.6 71.5 87.2 22.9 20.5 43.0 71.0
ConvDR FC 38.5 35.7 58.2 77.8 27.2 26.4 43.5 61.1

Lexical

BM25 T5QR 33.4 30.2 53.8 86.1 12.5 10.9 23.5 46.7
BM25 CONQRR 38.3 - 60.1 88.9 - - - -

SPLADE T5QR 42.4 39.4 62.1 82.9 30.6 29.5 46.4 62.8
Conv-SPLADE FC 50.0 46.6 69.9 87.8 30.7 29.5 52.1 72.0
LeCoRE (Ours) FC 51.1† 48.5† 73.9† 89.7† 32.0† 31.4† 54.3† 73.5†

For Reference

Latent
ANCE Raw 10.2 9.3 15.7 22.7 4.1 3.8 7.5 13.8
ANCE FC 42.5 39.8 62.6 79.3 10.3 9.1 19.1 35.7
ANCE Manual 38.4 35.6 58.6 78.1 N/A N/A N/A N/A

Lexical

BM25 Raw 6.5 5.5 11.1 21.5 2.1 1.8 4.0 9.2
BM25 Manual 39.7 36.2 62.5 98.5 N/A N/A N/A N/A

SPLADE Raw 13.4 12.3 19.8 28.0 5.7 5.2 9.3 15.8
SPLADE FC 48.5 45.9 67.3 84.0 15.5 14.1 25.8 47.2
SPLADE Manual 48.0 45.0 69.7 88.7 N/A N/A N/A N/A

4.3 Implementations
4.3.1 LeCoRE. We implement LeCoRE based on the excellent
public repository of SPLADE3 using the PyTorch and Hugging-
face libraries. The experiments are conducted on four Nvidia Tesla
v100 32G GPUs. Specifically, we adopt the Adam optimizer with
a learning rate of 2e-5 and a total batch size of 128. We set the
number of retained latent token representations 𝐾 to 64. The loss
balance weights 𝜆 and 𝛽 are set to 0.1 and 1e-4, respectively. On
QReCC, we use its provided manual oracle rewrite as 𝑞. While on
TopiOCQA which does not provide the oracle rewrites, we use
its provided T5QR as 𝑞. The lengths of the query, flat concatena-
tion, and passage are truncated into 32, 256, and 256, respectively.
In particular, following previous work [24, 35], only the previous
queries and the last response 𝑟𝑘−1 (i.e., the canonical passage) are
included in FC on CAsT-20 and the length of 𝑟𝑘−1 is restricted to
128. The settings of BM25 are 𝑘1 = 0.9, 𝑏 = 0.4 on TopiOCQA
and 𝑘1 = 0.82, 𝑏 = 0.68 on the other datasets. The dense retrieval
is performed using Faiss [17] with brute force. Code is released
at https://github.com/kyriemao/LeCoRE.

4.3.2 Baselines. All ANCE and SPLADE models used in baselines
and LeCoRE are uniformly initialized using the same checkpoints
pre-trained on the MS MARCO ad-hoc passage retrieval dataset4
for fair comparisons. For the ranking loss, we adopt the in-batch
negative sampling plus one hard negative sample randomly selected
from Top-50 retrieved passages by BM25. The T5 model used in
T5QR is fine-tuned on the training data of QReCC with a batch
size of 32. For ConvDR, we use T5QR as the pseudo manual or-
acle rewrites on TopiOCQA to enable its training of knowledge
distillation. For CONQRR, we directly replicate their experimental
results on QReCC because they have not released the code and their
experimental settings are similar to us.
3https://github.com/naver/splade
4https://microsoft.github.io/msmarco/

Table 3: Results of zero-shot evaluation. The best results are
in bold. † indicates significant differences between LeCoRE
and the second-best baselines.

Retriever Input CAsT-19 CAsT-20
NDCG@3 R@100 NDCG@3 R@100

BM25 T5QR 25.8 37.3 14.1 22.5
ANCE T5QR 41.7 33.2 29.9 35.3
SPLADE T5QR 46.5 46.9 32.8 39.8
ConvDR FC 43.9 32.2 32.4 33.8

Conv-ANCE FC 34.1 29.2 27.5 36.2
Conv-SPLADE FC 42.0 48.3 28.1 44.5
LeCoRE (Ours) FC 42.2 49.4† 29.0 46.7†

For Reference
BM25 Manual 30.9 44.8 24.0 39.5
ANCE FC 26.9 25.3 15.7 25.6
ANCE Manual 46.1 38.1 42.2 46.5
SPLADE FC 34.6 38.4 19.2 32.3
SPLADE Manual 56.9 54.9 48.7 61.9

5 EXPERIMENTAL RESULTS AND ANAYLSIS
5.1 Normal Evaluation
The experimental results on QReCC and TopiOCQA are shown in
Table 2, where we have the following observations:

(1) LeCoRE consistently outperforms all the other compared
baselines across all four metrics and the two datasets, which demon-
strates its superior effectiveness in conversational search. In par-
ticular, we observe 4.3% and 6.4% NDCG@3 relative gains over
the second-best results on QReCC and TopiOCQA, respectively.
This proves the strong ability of LeCoRE in the top ranks, which is
particularly desired in conversational search. The superior effec-
tiveness of LeCoRE can be attributed to the following two aspects.
(i) SPLADE tends to be a more effective retriever than ANCE and
BM25, which supports the superiority of LeCoRE. (ii) Our proposed
two denoising methods enhance the context denoising ability of
LeCoRE to achieve better performance (than Conv-SPLADE).

https://github.com/kyriemao/LeCoRE
https://github.com/naver/splade
https://microsoft.github.io/msmarco/
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Figure 3: Performance comparisons among several variants.

(2) Through the comparisons among the baselines whose in-
puts are flat concatenation, we find that using the ranking loss
and the knowledge distillation loss can both improve the model
performance. In particular, we find that leveraging manual oracle
rewrites, which express the users’ search intent from the view of
humans, may not achieve the best search performance. For example,
(i) ConvDR performs better than Conv-ANCE on TopiOCQA while
is worse on QReCC and (ii) usingManual as the input performs even
worse than FC no matter adopting SPLADE or ANCE on QReCC.
This is because the manual oracle rewrite is not guaranteed to be
the best from the view of search.

(3) T5QR achieves significantly better performance than FC for
both SPLADE and ANCE on TopiOCQA, which proves that T5
is effective for conversational query rewriting. However, as the
training of the T5 rewriter is based on the manual rewrite which
may not be ideal for passage ranking as illustrated in (2), T5QR
does not show very good performance on QReCC. In contrast, an
important advantage of our LeCoRE is that, even if the effect of
the query rewrite is not very ideal that using it alone cannot bring
improvements, LeCoRE can still leverage it to achieve better results
thanks to its multi-task way of learning.

5.2 Zero-shot Evaluation
We also conduct zero-shot testing on CAsT datasets to evaluate
the transferring abilities of the compared models which are trained
on QReCC. We report the results of NDCG@3 and Recall@100 in
Table 3 and we have the following findings:

(1) LeCoRE outperforms all the other baselines in terms of Re-
call@100 and achieves the third-best NDCG@3 results on both
two datasets, which demonstrates the strong transferring ability
of LeCoRE. Compared with Conv-SPLADE, LeCoRE consistently
maintains its superiority in the zero-shot setting, demonstrating
the generalization of our newly designed denoising methods.

(2) Jointly analyzing Table 2 and Table 3, we observe that T5QR
shows to be more effective on the CAsT datasets, especially in terms
of NDCG@3, which demonstrates that conversational query rewrit-
ing methods also have potential to achieve better performance than
conversational dense retrieval methods for top passage ranking.

(3) From the results for reference, we find that the qualities
of manual oracle rewrites of the CAsT datasets are higher than
those of QReCC since Manual clearly achieves better performance
than FC. Compared with their no-training counterparts, the better
results of ConvDR, Conv-ANCE, and Conv-SPLADE demonstrate
the effectiveness of the knowledge distillation and the ranking
loss again. Besides, we also observe that the SPLADE retriever
consistently keeps its advantage for conversational search on the
CAsT datasets compared with BM25 and ANCE.

5.3 Ablation Study
In this section, we investigate the effects of the proxy teacher-
guided denoising and the adaptive sparsity regularization proposed
in LeCoRE. Specifically, we build the following variants of LeCoRE
for comparisons: (1) L1, which replaces the adaptive sparsity reg-
ularization with L1 regularization. (2) FLOPS, which replaces the
adaptive sparsity regularization with FLOPS regularization. (3)w/o-
PTGD, which removes the proxy teacher-guided denoising from
LeCoRE, i.e., setting 𝜆 to 0. (4) Conv-SPLADE, which is equivalent
to removing PTGD and replacing ASR with L1 in LeCoRE.

Performance comparisons are shown in Figure 3. We observe a
similar performance ranking on both datasets. Specifically, Conv-
SPLADE, which is not equipped with our proposed two denoising
methods, performs the worst among all the compared models, and
the complete LeCoRE clearly outperforms all the others. Meanwhile,
we can also observe performance improvements when only one
of the denoising methods is used (i.e., L1, FLOPS, and w/o PTGD).
These results verify the necessity of the proposed denoising meth-
ods for more effective conversational search.

5.4 Lexical Representation Analysis
In this section, we investigate the denoising effects of LeCoRE
by analyzing the activated tokens in the output lexical session
representation on the test sets of QReCC and CAsT-20.

5.4.1 The Number of Activated Tokens. We count the number
of activated tokens of SPLADE, Conv-SPLADE, and LeCoRE, all
using FC as the input. Meanwhile, we also count the number of
activated tokens of the teacher (i.e., SPLADE using Manual as the
input type) for reference. The average numbers of tokens of FC for
QReCC and CAsT-20 are 129.2 and 138.3, respectively. As shown
in Figure 4, the good performance of the teacher indicates that the
number of necessary activated tokens may not be large. Evidently,
the original SPLADE, which is not fine-tuned on conversational
search data, has many more activated tokens and performs signif-
icantly worse than Conv-SPLADE and LeCoRE, indicating that a
large amount of noise in the original input session can seriously
impair the model performance. Through the comparisons between
Conv-SPLADE and LeCoRE, we find that the denoising methods
in LeCoRE can further decrease the number of activated tokens
while improving the model performance, which demonstrates the
positive denoising effects of the two proposed denoising methods
to a certain extent.

5.4.2 Token Overlap with the Teacher. Then, we view the
teacher’s activated tokens as the “gold” (although it does not per-
form the best) and calculate the precision, recall, and macro F1 of
the overlapped activated tokens of the three models w.r.t. to the
gold. Results are shown in Table 4. We find that, while the origi-
nal SPLADE has the largest recall, its precision is very low, which
indicates that it suffers a lot from the noise. Compared with Conv-
SPLADE, LeCoRE shows higher values on all three metrics, demon-
strating that LeCoRE absorbs the teacher’s knowledge to have an
all-around more overlap with the teacher to improve its effective-
ness. Meanwhile, LeCoRE adopts a multi-task training method to
not fully imitate the teacher, thus avoiding the undesired part of the
teacher which may degrade the ranking performance. In addition,



WWW ’23, May 1–5, 2023, Austin, TX, USA Kelong Mao, Hongjin Qian, Fengran Mo, Zhicheng Dou, Bang Liu, Xiaohua Cheng, and Zhao Cao

Table 4: Comparisons of Precision, Recall, and Macro F1 of
the activated tokens with respect to those of the teacher.

Variants QReCC CAsT-20
P R F1 P R F1

SPLADE 0.20 0.89 0.32 0.14 0.86 0.22
Conv-SPLADE 0.31 0.55 0.38 0.26 0.55 0.35

LeCoRE 0.40 0.63 0.45 0.30 0.65 0.40
SPLADE (Manual) 1.0 1.0 1.0 1.0 1.0 1.0

more overlaps with the teacher representation generated from the
readable rewrite also indicate better interpretability to some extent.
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Figure 4: Relationships between the number of activated to-
kens and NDCG@3 of SPLADE (FC), Conv-SPLADE, LeCoRE,
and SPLADE with Manual input (i.e. the teacher model).

5.5 Case Study: Interpretability
Inherited from SPLADE and enhanced by the two proposed denois-
ing methods, LeCoRE achieves decent interpretability for conversa-
tional search. The activated tokens and weights provide a hint for
us to understand how the model understands the conversational
search session. In this section, we show some concrete examples in
Table 5 to intuitively demonstrate the interpretability of LeCoRE.

In the first example, LeCoRE successfully recovers the user’s
search intent by activating the corresponding tokens (e.g., “heater”,
“cheese”, “steak”, “different”, and “normal”) with relatively large
weights. “philadelphia” and “inventing” are also weakly related to
the current search intent as the regular cheesesteak is invented by
two Philadelphians. Besides, we show the corresponding activated
token weights of Conv-SPLADE and SPLADE in Table 6 of Appen-
dix B due to the limited space. We find that the activated tokens
of Conv-SPLADE and SPLADE contain more unreasonable tokens
and weights from the view of session understanding (e.g, only
0.36 weight for the important token “cheese” in Conv-SPLADE),
which intuitively demonstrates the denoising effects in LeCoRE for
generating more interpretable lexical session representation.

While in the second example, LeCoRE does not put the desired
passage at the top rank because it fails to accurately recover the
search intent “UNLV” (abbreviation of “University of Nevada, Las
Vegas”), which specifies the transfer of Odom. This is difficult since

Table 5: Two concrete examples. The blue tokens stand for
the search intents correctly predicted by LeCoRE while the
red tokens stand for the unrecovered intents.

ID Conversational Search Session Token weights of LeCoRE

1

Context:
𝑞1: What ingredients are in a philly cheesesteak?
𝑟1: Philly Cheesesteak is a sandwich made with
super thinly sliced ribeye steak, caramelized onion,
and provolone cheese.
𝑞2: Did the sandwich come from Philadelphia?
𝑟2: A popular regional fast food, the cheesesteak has its
roots in the U.S. city of Philadelphia, Pennsylvania.
𝑞3: Who invented the sandwich?
𝑟3: Philadelphians Pat and Harry Olivieri are often credited
with inventing the cheesesteak by serving chopped steak on
an Italian roll in the early 1930s.
𝑞4: What kind of variations are there?
𝑟4: Variations of the cheesesteak include the chicken
cheesesteak, the pizza steak, the cheesesteak hoagie,
the vegan cheesesteak, and the Heater.
Current Query:
𝑞5: How is the heater different?
Manual Oracle Rewrite:
𝑞5: How is the heater different from a regular cheesesteak?

(’heat’, 2.09),
(’cheese’, 1.62),
(’phil’, 1.51),
(’steak’, 1.48),
(’##er’, 1.33),

(’different’, 1.29),
(’variations’, 0.84),
(’chicken’, 0.73),

(’philadelphia’, 0.63),
(’normal’, 0.52),
(’sandwich’, 0.47),
(’##venting’, 0.27),
(‘roots’, 0.10),
(’1930s’, 0.08),
(’roll’, 0.06),
(’##eye’, 0.06),
(’pizza’, 0.03)

2

Context:
𝑞1: Who was Lamar Odom inspired by?
𝑟1: Lamar Odom drew inspiration from his maternal grandmother,
a nurse who had raised five children and returned to school to earn
her degree in 1980 at the age of 56.
Current Query:
𝑞2: Where did he transfer to?
Manual Oracle Rewrite:
𝑞2: Where did Lamar Odom transfer to from UNLV?

(’##dom’, 2.07), (’o’, 1.68),
(’transfer’, 1.18), (’1980’, 1.16),
(’inspired’, 1.02), (’lamar’, 0.65),
(’inspiration’, 0.57), (’was’, 0.4),

(’56’, 0.39), (’1978’, 0.31),
(’school’, 0.29), (’nurse’, 0.25),

(’degree’, 0.23), (’maternal’, 0.11),
(’1976’, 0.07)

UNLV not appears in the context and can only be implicitly inferred
based on the background knowledge of Odom.

6 CONCLUSION
In this paper, we propose the first sparse lexical-based conver-
sational retriever LeCoRE. By extending SPLADE with two well-
matched multi-level denoising methods, LeCoRE effectively filters
out many noisy signals in the raw conversational search session to
get higher-quality lexical session representation. Extensive experi-
ments conducted on four public datasets demonstrate that LeCoRE
outperforms state-of-the-art baselines and achieves decent inter-
pretability. In the future, we plan to investigate better ways of
integrating lexical/latent representation and explicit query rewrites
to further improve both effectiveness and interpretability.
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A DETAILS OF DATASETS
In this section, we introduce more details of the four used conver-
sational search datasets.

QReCC is a large-scale dataset for conversational question an-
swering, which contains 14K information-seeking conversations
with 80K query-answer pairs originated from the training set of
CAsT-19 [8], QuAC [5], and NQ [5] with manually generated follow-
up queries. Each query has a response answer and a corresponding
human rewrite. The entire text corpus for retrieval includes 54M
passages and the query-passage relevance is labeled through a
heuristic span-matching method based on the answer.

TopiOCQA contains around 4K information-seeking conversa-
tions in open domains based on the Wikipedia corpus. Each con-
versation is generated by using a real search query in NQ [5] as the
start query and replenishing the subsequent turns in a wizard-of-
oz fashion. It additionally provides the topic information for each
query but does not provide the human rewrite. The text corpus
contains 25M passages and the relevance is labeled by humans.

CAsT-19 and CAsT-20 are two widely used conversational
search datasets released by TREC Conversational Assistance Track
(CAsT). There are only 50 and 25 human-written information-
seeking conversations in CAsT-19 and CAsT-20, respectively, so
they are hard to support training and are suitable to be used as the
evaluation datasets. The query turns in CAsT-19 can only depend
on the previous query turns. While in CAsT-20, the query turns
may also depend on the previous system response. Each query turn
in both CAsT-19 and CAsT-20 has a corresponding human rewrite
and CAsT-20 additionally provides a canonical response passage
for each query turn. The text corpus consists of 38M passages from
MS MARCO [25] and TREC Complex Answer Retrieval [11]. More
fine-grained query-passage relevance labels are generated by the
experts of TREC.

B SUPPLEMENT OF CASE STUDIES
We show the comparison among the activated tokens of LeCoRE,
Conv-SPLADE, and SPLADE for the first example in Table 6 to
supplement the Section 5.5.
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Table 6: The comparison among the activated tokens of LeCoRE, Conv-SPLADE, and SPLADE. The blue tokens stand for the
search intents correctly predicted by the compared models.

Conversational Search Session Activated Tokens and Weights
LeCoRE Conv-SPLADE SPLADE

Context:
𝑞1: What ingredients are in a philly cheesesteak?
𝑟1: Philly Cheesesteak is a sandwich made with
super thinly sliced ribeye steak, caramelized onion,
and provolone cheese.
𝑞2: Did the sandwich come from Philadelphia?
𝑟2: A popular regional fast food, the cheesesteak has its
roots in the U.S. city of Philadelphia, Pennsylvania.
𝑞3: Who invented the sandwich?
𝑟3: Philadelphians Pat and Harry Olivieri are often credited
with inventing the cheesesteak by serving chopped steak on
an Italian roll in the early 1930s.
𝑞4: What kind of variations are there?
𝑟4: Variations of the cheesesteak include the chicken
cheesesteak, the pizza steak, the cheesesteak hoagie,
the vegan cheesesteak, and the Heater.
Current Query:
𝑞5: How is the heater different?
Manual Oracle Rewrite:
𝑞5: How is the heater different from a regular cheesesteak?

(’heat’, 2.09),
(’cheese’, 1.62),
(’phil’, 1.51),
(’steak’, 1.48),
(’##er’, 1.33),

(’different’, 1.29),
(’variations’, 0.84),
(’chicken’, 0.73),

(’philadelphia’, 0.63),
(’normal’, 0.52),
(’sandwich’, 0.47),
(’##venting’, 0.27),
(‘roots’, 0.10),
(’1930s’, 0.08),
(’roll’, 0.06),
(’##eye’, 0.06),
(’pizza’, 0.03)

(’heat’, 2.03), (’phil’, 2.01),
(’##ste’, 1.62), (’different’, 1.51),

(’##er’, 1.48), (’pat’, 1.26),
(’variations’, 1.05), (’##venting’, 1.02),
(’philadelphia’, 0.92), (’##zen’, 0.83),

(’1930s’, 0.76), (’##agi’, 0.62),
(’##leg’, 0.54), (’name’, 0.50),

(’##lone’, 0.44), (’chicken’, 0.42),
(’##bra’, 0.40), (’cheese’, 0.36),
(’latitude’, 0.36), (’birth’, 0.35),
(’include’, 0.33), (’##sur’, 0.28),

(’,’, 0.28), (’fast’, 0.28),
(’nationality’, 0.27), (’vega’, 0.21),
(’##quin’, 0.19), (’##eye’, 0.17),
(’##cy’, 0.16), (’motown’, 0.15),
(’early’, 0.1), (’traditional’, 0.08),

(’##bil’, 0.06), (’how’, 0.04),
(’sandwich’, 0.02)

(’invented’, 2.1), (’philadelphia’, 2.01), (’sandwich’, 1.74),
(’roots’, 1.73), (’heat’, 1.7), (’variations’, 1.69),
(’chopped’, 1.69), (’vega’, 1.67), (’steak’, 1.66),

(’##venting’, 1.64), (’regional’, 1.59), (’pizza’, 1.59),
(’phil’, 1.49), (’pennsylvania’, 1.46), (’ingredients’, 1.45),

(’chicken’, 1.44), (’who’, 1.4), (’1930s’, 1.4),
(’roll’, 1.39), (’onion’, 1.38), (’fast’, 1.38),

(’popular’, 1.34), (’cheese’, 1.32), (’italian’, 1.32),
(’include’, 1.29), (’pat’, 1.27), (’##ak’, 1.21),

(’different’, 1.19), (’how’, 1.15), (’olivier’, 1.14),
(’made’, 1.1), (’sliced’, 1.09), (’##ste’, 1.09),

(’##agi’, 1.08), (’early’, 1.06), (’serving’, 0.99),
(’##eye’, 0.98), (’super’, 0.97), (’often’, 0.94),
(’food’, 0.9), (’was’, 0.89), (’credited’, 0.88),
(’come’, 0.86), (’thin’, 0.86), (’city’, 0.85),
(’##er’, 0.81), (’u’, 0.78), (’harry’, 0.76),

(’##lone’, 0.73), (’##ly’, 0.66), (’##mel’, 0.64),
(’rib’, 0.61), (’pro’, 0.58), (’origins’, 0.54),
(’##ns’, 0.48), (’from’, 0.44), (’ho’, 0.41),

(’##vo’, 0.4), (’##ized’, 0.37), (’with’, 0.34),
(’has’, 0.33), (’there’, 0.3), (’cara’, 0.3),
(’on’, 0.28), (’kind’, 0.23), (’in’, 0.22),
(’##i’, 0.08), (’##n’, 0.07), (’sub’, 0.04)
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