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WebUltron: An Ultimate Retriever on Webpages
Under the Model-Centric Paradigm

Yujia Zhou ", Jing Yao"”, Ledell Wu, Zhicheng Dou

Abstract—Document retrieval has been extensively studied
within the index-retrieve framework for decades, which has with-
stood the test of time. However, this approach inherently segregates
the indexing and retrieval processes, preventing a cohesive, end-to-
end optimization. To bridge this divide, we introduce WebUltron,
a revolutionary model-centric indexer for document retrieval. This
system embeds the entirety of document knowledge within the
model, striving for seamless end-to-end retrieval. Two primary
challenges with this indexer are the representation of document
identifiers (docids) and the model’s training. Current methods
grapple with docids that lack semantic depth and the constraints
of limited supervised data, making scaling up to larger datasets
challenging. Addressing this, we’ve engineered two novel docid
types imbued with richer semantics that also streamline model
inference. Further enhancing WebUltron’s capabilities, we’ve de-
veloped a three-stage training regimen, leveraging deeper corpus
insights and fortifying query-docid relationships. Experiments on
two public datasets demonstrate the superiority of WebUltron over
advanced baselines for document retrieval.

Index Terms—Document retrieval, generative model, model-
based IR.

I. INTRODUCTION

URNING to search engines to address daily information
T needs has become a common behavior. In response to a
given query, search engines typically employ the established in-
formation retrieval (IR) pipeline, specifically the index-retrieve-
rank strategies [1], [2], to generate a ranked list of documents.
Over the past several decades, the inverted index [1] has been
foundational to term-based or sparse retrieval methods. With
the advent of pre-trained language models (PLMs) [3], [4],
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[5], [6], sophisticated representation learning approaches [7],
[8], [9], [10], [11] have been employed. These techniques are
adept at capturing the intricate semantics of both queries and
documents, producing superior representation vectors. Such
advancements have notably enhanced the search quality within
the index-retrieve-rank framework.

Both sparse and dense retrieval models have traditionally been
studied within the index-retrieve framework, which has proven
invaluable for document retrieval. However, this pipeline-based
approach necessitates a vast pre-computed index encompassing
the entire corpus to facilitate subsequent document retrieval.
Such a requirement not only imposes significant memory over-
heads but also constrains the optimization of the distinct index-
ing and retrieval stages in an end-to-end manner. To overcome
these challenges, several recent studies [12], [13], [14], [15],
[16] have made preliminary attempts to develop an end-to-end
retrieval model. Such models directly yield relevant document
identifiers (docids) and supplant the traditional explicit index
with a large-scale model, referred to as the differentiable neural
search index [12]. This paradigm shift allows for end-to-end
document retrieval by leveraging a sequence-to-sequence (seq-
to-seq) generative model.

Despite notable advancements in generative retrieval models,
two primary challenges persistently undermine their effective-
ness in retrieving relevant documents: (1) how to represent
docids so that the model can learn the semantics of documents
and retrieve the correct docids more easily; (2) how to train
the model so as to capture the semantic knowledge of each
docid and to learn the mapping relations from queries to relevant
docids. Given these challenges, there’s a pressing need for a
comprehensive solution that enhances both the representation
of docids and the training approaches used for these models.

In the context of treating document retrieval as a generative
task, the representation of docids poses a significant challenge.
Some early studies [12], [14], [15] experimented with various
innovative approaches for representing docids, such as atomic
identifiers and semantic cluster identifiers. However, the scala-
bility of these docid representations to larger corpora remains
an unexplored issue, largely due to limitations in model pa-
rameter size and representational capacity. To address this gap,
we propose representing each docid as a sequence of shared
tokens, embedding richer semantic information into these se-
quences to enhance the model’s generalizability. Specifically,
we introduce two types of semantically-rich identifiers. The
first, termed Keyword-based identifiers, utilizes a sequence of
keywords to identify documents. In this approach, the URL
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and title of a webpage serve as natural keywords that maintain
both the uniqueness and semantic value of the identifier. The
second type, Semantic-based identifiers, represents a document
through a series of latent topic tokens. Drawing inspiration from
product quantization (PQ) technologies [17], [18], [19] in IR, we
consider the PQ code of a document as a form of semantic-based
identifier.

In this paper, we introduce WebUltron, an ultimate retriever
on webpages under the model-centric paradigm. WebUltron is
built upon generative language models that utilize a transformer-
based encoder-decoder architecture. Specifically, we concep-
tualize document retrieval as a sequence-to-sequence task: the
model receives a query as input and outputs a docid. Previous
studies [15], [16] reveal that merely relying on limited super-
vised click data is insufficient for equipping the model with
adequate knowledge about each docid. To address this short-
coming, we have developed a three-stage training framework to
optimize the WebUltron model. (1) General Pre-training. This
initial stage aims to align docids and terms within a unified
semantic space. To accomplish this, we employ multiple pre-
training tasks that bridge the semantic gap between these two
elements. (2) Search-oriented Pre-training. To improve model
performance on search tasks, we focus on enhancing its ability
to map short, query-like texts to relevant docids. In this context,
we generate pseudo-queries to train the model, thereby adapting
it to real-world search scenarios. (3) Supervised Fine-tuning.
The final stage involves fine-tuning the model using supervised
relevance data, enabling it to establish more robust associations
between queries and docids. During inference, given a query, our
model is capable of directly generating a ranked list of docids
through constrained beam search.

To evaluate the performance of our model, we conduct thor-
ough experiments using the widely-accepted MS MARCO and
NQ document retrieval datasets. The experimental results val-
idate the effectiveness of our proposed model, including two
types of semantic-enhanced docid and the three-stage training
pipeline. Furthermore, our detailed analysis of memory usage
and computational efficiency substantiates the practical feasi-
bility of our method.

The contributions of this work can be summarized as fol-
lows: (1) Along with the blueprint for model-based IR, our
primary contribution resides in framing generative retrieval as
an integration of two critical components: the representation of
docids and the enhancement of training data. (2) We introduce
two distinct methods for representing docids, offering greater
scalability to larger corpora compared to existing approaches. (3)
We develop a three-stage training workflow designed to encode
specific knowledge of each docid into the model. This aims to
bridge the semantic gap between queries and docids, thereby
improving performance in document retrieval tasks.

II. RELATED WORK
A. Index-Based Document Retrieval

In the prevailing index-retrieve-rank pipeline, sparse and
dense retrieval stand out as the two primary methods for docu-
ment retrieval.
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Sparse Retrieval: Owing to their efficiency and effective-
ness, sparse retrieval methods, which largely rely on inverted
indexes, are widely used in practice. The classic BM25 model [1]
leverages the frequency-based signal tf-idf to weigh terms and
calculate matching scores between queries and documents. Ad-
ditionally, graph-based approaches [20], [21] construct docu-
ment graphs and employ a PageRank-like mechanism to de-
rive term weights. With the emergence of representation learn-
ing [22], [23], a strand of research [24], [25], [26] has emerged
that learns term weights automatically from word embeddings
with rich semantic and co-occurrence information. However,
sparse retrieval faces the challenge of mismatch between query
and document words. To tackle this, dense retrieval meth-
ods have been employed to overcome the limitations of word
mismatching.

Dense Retrieval: These methods leverage deep learning to
capture the semantic similarity between queries and documents,
thereby overcoming the limitations associated with mere lex-
ical overlap [27]. Typically, these methodologies first apply a
neural network to embed all queries and documents into low-
dimensional vectors. Then, they calculate the vector similarity
between queries and documents to retrieve relevant documents,
where ANNS algorithm and PQ [18] are used to achieve a
more efficient vector search process. A widely-used framework
for dense retrieval is the dual encoder [7], [9], [28]. With
advancements in PLMs [3], [4], higher-quality representation
vectors are obtained, leading to improved outcomes. In order
to further enhance performance, various strategies for hard neg-
ative sampling have been proposed to optimize retrieval [27],
[29], [30], [31]. Recognizing that retrieval performance can be
constrained by the dot product of individual vectors, a line of re-
search introduces lightweight interaction layers to capture more
fine-grained matching relationships, such as the multi-vector
encoding model [32] and ColBERT [33].

In this paper, we move away from traditional indexes and ex-
plore a model-centric paradigm that directly outputs documents
on an end-to-end basis.

B. Generative Models for Information Retrieval (IR)

Recently, applying generative models to IR tasks has attracted
increasing attention. In earlier stages,seq-to-seq models are used
for text generation to assist IR tasks. Ahmad et al. [34] intro-
duced a generative component for query suggestion. Nogueira
et al. [35], [36] apply a seq-to-seq model to predict possible
queries as an expansion of the corresponding document. Subse-
quently, generative models were trained to directly produce an-
swers tailored to specific tasks. For instance, Nogueira et al. [37]
fine-tuned the TS5 model [4] to generate relevance labels for
candidate documents. GENRE [38] retrieved relevant entities by
generating their names. However, a notable limitation of these
generative models is their lack of knowledge about document
identifiers. Addressing this, a framework for model-based IR
was introduced in [39], which embeds docids within the model.
Building upon these innovations, Tay et al. [12] devised the DSI
model for retrieval tasks on a small-scale corpus. Inspired by
this, Zhuang et al. [16] introduced a query generation module for
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data augmentation. Wang et al. [15] designed the neural corpus
indexer to further enhance model performance. Taking this a
step further, Bevilacqua et al. [13] and Chen et al. [40] extended
this paradigm to knowledge-grounded retrieval tasks, achieving
better results. Yet, despite these advancements, challenges re-
main, primarily stemming from semantically deficient docids
and limited supervised data. In this paper, our goal is to delve
deeper into the model-centric approach, striving to devise an
even more efficient retriever.

III. WEBULTRON: AN ULTIMATE RETRIEVER ON WEBPAGES

The traditional index-retrieve-rank framework has been a
mainstay in IR for decades. This method involves encoding
documents into either term-based indexes or dense vector-based
indexes and then traversing the index to evaluate the relevance
between a provided query and its corresponding candidate
documents. However, as outlined in Section I, index-based re-
trieval methodologies often face optimization challenges due to
their inherently pipelined workflows. Inspired by state-of-the-art
generative PLMs such as GPT-3 [5] and TS5 [4], we propose
WebUltron, an ultimate retriever on webpages under the model-
centric paradigm that completes document retrieval tasks in an
end-to-end generative manner. During the training stage, the
model progressively learns the knowledge of all documents, and
generates the document ranking list directly for a given query in
the inference stage.

A. Backbone of the Model

In alignment with the framework of model-based IR, we
attempt to address the document retrieval problem in a generative
manner through a seq-to-seq model. As shown in Fig. 1, We-
bUltron is implemented within an encoder-decoder framework,
which encodes the input query and decodes relevant docids using
constrained beam search to formulate a ranking list directly.
In contrast to traditional sparse and dense retrieval methods,
WebUltron transforms the matching task into a generation task,
deviating from the conventional indexing-matching paradigm.

This transition not only eliminates the need for traditional in-
dexes but also allows for end-to-end optimization of the model.

Sequence-to-Sequence Model. Given the efficacy of seq-to-
seq structure across various generation tasks, we leverage the
TS5 [4] pre-trained language model as our backbone. This model
incorporates a Transformer-based [41] encoder-decoder struc-
ture. In WebUltron, we define the basic task as a “text-to-docid”
format, which means the model receives a textual input and
is tasked with generating a relevant docid (represented as a
sequence of tokens). To be consistent with the information
modeled by the dual encoder, we add a mean-pooling layer after
the encoder to represent the query with a single vector ¢. Based
on ¢, the decoder module tries to predict the relevant docid with
the highest auto-regressive score, denoted as:

N
score(dlq) = po(ylg) = [ [ po(vily<i, a), (1)

i=1
where y is the string identifier of the document d with N tokens,
and 0 is the parameters of the model. Formally, the workflow of
the WebUltron model can be defined as:

y = Decoder (Pooling (Encoder(q))) . 2)

Contrary to other seq-to-seq tasks like machine translation or
dialog systems, the document retrieval task requires the model
to generate valid docids within the corpus. Free-form generation
might result in an output string that does not match any docids.
We address this specific challenge in the subsequent section.

Constrained Beam Search: Beam search is a commonly used
decoding algorithm that enhances the capabilities of greedy
search by expanding the search space, thereby facilitating the
discovery of globally optimal solutions. However, in our specific
use case, where it is imperative to generate docids that already
exist within the corpus, conventional beam search falls short.
Motivated by [38],we employ a constrained beam search. This
approach directs the decoder to navigate within a confined token
space at each step, thereby generating valid docids from a
predefined candidate set. Specifically, we define the constraint
by constructing a prefix tree built from all docid strings. Each
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Fig. 2. Two ways of representing document identifiers as strings. We devise
keyword-based and semantic-based identifiers to involve document semantics
from different perspectives.

node in this tree has child nodes that contain all valid subsequent
tokens for a given prefix sequence. By decoding along the prefix
tree, the model ensures that the generated docids are valid and
exist within the corpus. Finally, the model yields the top-k docids
as the ranking results based on their auto-regressive scores
during the beam search.

B. Design of Document Identifiers

A natural attribute of document identifiers (docid) is to dis-
tinguish different documents. Intuitively, previous works have
tried to identify documents with a random integer, called atomic
identifiers [12], [14]. However, they lead to gigantic embedding
parameters and lack semantics. To alleviate this problem, we
represent each docid as a sequence of shareable tokens satisfy-
ing two characteristics: uniquely referring to a document and
reflecting the semantic information of the document. Following
the ideas of sparse retrieval and dense retrieval, as shown in
Fig. 2, we attempt to represent docids from two perspectives:
keyword-based identifiers and semantic-based identifiers.

Keyword-Based Identifiers: Using keywords to represent the
document content is a hallmark of sparse retrieval. Inspired
by this, we aim to uniquely identify a document using mean-
ingful keywords. Interestingly, we find that the URL of a
web page naturally has such abilities. For example, the URL
“http://www.answers.com/ g/ how_did_brian_pillman_die” re-
flects that the main content of this page is related to the answer
of “how did brian pillman die”. This observation inspires us
to generate the document’s URL directly for a given query. To
streamline the model’s prediction process, we rearrange each
segment of the URL (delimited by /) in reverse sequence. This
ensures the prediction starts with the semantically-rich portion,
followed by the domain name. However, not all URLs provide
sufficient semantic information. To navigate this, we incorporate
the document title as keyword-based information of a webpage.
Specifically, we integrate the URL and the title of the webpage
together to represent docids, defined as:

title + domain,
reverse URL,

if title length > L,

docid = .
URL { otherwise.

Here L is set to 2 in our experiments. Finally, we can get a
sequence of tokens by TS5 tokenizer to represent the docid.
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Semantic-Based Identifiers: Dense retrieval maps documents
into a latent semantic space using dense vectors. In extreme
cases, each dense vector can be used as a unique identifier to
distinguish documents. However, the space of dense vectors
is too large to decode. This promotes us to look for a way to
preserve dense vector semantics in a smaller topic space. As a
classic vector compression method, Product Quantization [17],
[18], [19] just meets our needs for designing docids. For all
D-dimensional vectors, it first divides the D-dimensional space
into m groups, and then performs K-means clustering on each
group to obtain k cluster centers. Finally, each vector can be
represented as a set of m cluster ids. Similarly, for the document
d, its semantic-based identifier can be defined as:

docidpg = PQ (Encoder(d)) , 3)

where Encoder(-) is implemented by a pre-trained T5 encoder.
For cluster ids of all groups, we regard them as m x k new tokens
and add them into the vocabulary. However, a disadvantage of
the PQ code is that it may not uniquely refer to a document.
Thus, for repeated PQ codes, we add an incremental number
after the PQ code to ensure the uniqueness of docids.

IV. THREE-STAGE TRAINING WORKFLOW

As we discuss in Section I, the training phase of WebUltron
can be likened to the indexing stage in classic IR systems.
Through this process, we expect the model to encode rich
semantics over docids and learn the mapping relations from
queries to relevant docids. However, insufficient supervised click
data makes it hard for the model to learn associations between
queries and docids. This realization motivates us to construct
more self-supervised training data to adapt the model to search
scenarios.

As shown in Fig. 3, the complete training process is divided
into three stages. The first stage is general pre-training, designed
to learn the general semantics of docids and to establish rela-
tionships between texts and docids. The second stage, search-
oriented pre-training, focuses on generating pseudo queries to
enhance the model performance on search tasks. The final stage
involves supervised fine-tuning, which is applied to further
improve model’s capabilities for document retrieval using super-
vised data. The details of the three-stage training are introduced
in the following sections.

A. General Pre-Training

The semantic information contained in the document is a
basic knowledge of the docid, which is useful in general IR
tasks. To learn such knowledge, we conduct general pre-training
by extracting self-supervised signals from the corpus. While
existing PLMs have captured semantic dependencies through
term-to-term relations, the introduction of docids brings forth
two novel types of relationships that merit consideration during
the model’s pre-training phase.

Terms-Docid: Establishing a connection between the term and
docid spaces is crucial for the model to learn the knowledge
of each docid. Specifically, multiple term sequences can be
extracted from the document content to construct the mapping
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between queries and docids.

relations from text to docid. There are two simple but effective
strategies to achieve this.

First, inspired by previous studies that use passage-level evi-
dence for document ranking [42], we segment the document text
into passages with fixed-size windows, constructing passage-to-
docid samples for model training. Formally, given a document
containing n terms, i.e., {¢1, to, . . ., L, }, we can extract multiple
training pairs using windows of size s, such as:

. tirst — docid, ()

passage : {t;, tii1,..

where 7 is any starting position and is set at intervals of s.

Second, the importance of each word within a document for
its semantic representation is different. Recognizing this, we
attempt to highlight some important words to reflect the basic
semantics of the document. TF-IDF [1] weight is a typical
indicator to measure the term importance, which can be used
to generate training pairs in the form of terms-to-docid. Based
on term weights, we select several important terms as a set to
reflect the document semantics. We have:

terms : {¢;,...,%;,...,tx} —> docid,

&)

where t;,t;, 1), are important terms selected from the document.

Docid-Docid: In our design, we utilize two methods to repre-
sent the docid: keyword-based and semantic-based identifiers.
Each method offers a unique lens through which to understand
the semantics of a document. This differentiation prompts us to
explore the relationships between the PQ code and the URL of a
document, enabling them to mutually enhance each other. Con-
cretely, for the model with semantic-based identifiers, we can
extract knowledge from keyword-based identifiers, i.e., URL-
to-PQ. In reverse, semantic-based identifiers can also provide
information for the model with keyword-based identifiers, i.e.,
PQ-to-URL. Our hypothesis is that allowing these two identi-
fiers to predict one another could bolster the model’s reasoning
capabilities.

B. Search-Oriented Pre-Training

After general pre-training, the model already attains a basic
understanding of the semantics of each docid. However, our
observations indicate that this base knowledge isn’t sufficient
for excelling at document retrieval tasks. Specifically, beyond
merely comprehending the semantic knowledge within docu-
ments, the model needs to further learn the interrelations be-
tween queries and docids. To adapt the model to search scenar-
ios, we further conduct search-oriented pre-training. This step
entails the generation of pseudo queries derived from the corpus
and the establishment of mapping relations from these pseudo
queries to docids.

Following [36], we first train a query generation model over
supervised data based on a T5 backbone. Then, for a document
containing a series of terms {1, t2,...,%,}, the query genera-
tion model outputs k predicted queries, i.e., @ = {q1,...,qx}-
Finally, by training over pseudo query-to-docid samples, our
model implements the adaptation from general tasks to search
tasks. Formally, the training pairs are formed as:

(6)

Different from the training samples used in the general pre-
training stage, the pseudo queries have two distinct features
related to search tasks. First, the average length of the generated
queries is much shorter, aligning with the typical queries posed
by users. Second, the pseudo queries often take the form of
a question, commonly starting with phrases like “how about,”
“what is,” and so forth. Training the model with such data aids
in enhancing its proficiency in mapping query-like strings to
docids.

pseudo query : ¢; — docid, i € {1,...,k}

C. Supervised Fine-Tuning

After general pre-training and search-oriented pre-training,
our model already possesses a foundational understanding and
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TABLE I
STATISTICS OF DIFFERENT DATASETS

Dataset | #Doc #Train Q #Dev Q
MS MARCO Relevant 300K 319,927 367,013 808

MS MARCO Random 300K 321,631 36,670 504
NQ Relevant 320K ‘ 231,695 307,373 7,830

reasoning capacity over docids. To tailor the model to the specific
data distribution of downstream datasets, we further use super-
vised data to fine-tune the model. Specifically, the supervised
data contains query-docid pairs indicating their relevance. By
training the model with these query-to-docid samples, it be-
comes comprehensively equipped with the necessary knowledge
for the document retrieval task.

Given that all the training tasks are unified under the “text-to-
docid” format, we finalize the three-stage training of WebUltron
based on the standard seq-to-seq objective, i.e., maximizing the
output sequence likelihood with teacher forcing. Concretely, for
the input sequence ¢, the generation objective can be formalized
as:

£ = arg max > log po(yily<i, q), (7)

where pg(y;|y<i,q) is the generation probability of token y;
based on the given input. The parameters are optimized by the
cross-entropy loss and the AdamW optimizer [43].

V. EXPERIMENTAL SETTINGS
A. Datasets

We conduct experiments on two datasets commonly used in
document retrieval tasks: MS MARCO Document Ranking [44]
and NQ (Natural Questions) [45]. The datasets’ specifics are
presented in Table I.

MS MARCO [44] is a large collection of 367,013 training
queries paired with 3.2 million documents. To assess the model’s
efficacy across varying levels of supervised fine-tuning data,
we construct two different subsets, the Relevant 300 K and the
Random 300 K. The Relevant 300 K subset includes documents
that each have a corresponding query. In contrast, the Random
300 K subset comprises 10% of candidate documents, randomly
sampled from the entire corpus. For all three sets, we use queries
whose relevant document is contained in the corresponding set
for training and testing.

NQ [45]is a public natural question dataset. Each piece of data
contains a real question alongside a corresponding Wikipedia
article serving as its answer. We use URL to eliminate duplicate
documents within the corpus. The primary objective of the
document retrieval task for this dataset is to fetch the specific
Wikipedia page associated with the question.

B. Baseline

For comparison, we select three categories of models as
baselines.
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1) Sparse Retrieval Methods: These methods score candi-
date documents based on the weight of query terms appearing
in each document. BM25 [1] uses the tf-idf feature to measure
term weights. DocT5Query [36] expands the document content
with possible queries predicted by a fine-tuned TS5 [4], which
takes the given document as its input.

2) Dense Retrieval Methods: This category emphasizes the
dual encoder framework, where both the query and the document
are individually embedded into vectors. The inner product of
these vectors is then computed to derive a relevance score.
Within this category, we examine two distinct implementations,
each based on different foundational encoders: RepBERT [7]
and Sentence-T5 [28]. For both models, we first train them
through in-batch contrastive learning and then retrieve relevant
documents on top of faiss [46]. Since we do not use hard negative
samples to optimize WebUltron model, those advanced dense
retrieval models with hard negative sampling as baselines are
not included in this paper.

3) Generative Retrieval Methods: Several generative models
have been explored for model-based IR. DSI [12] uses a text-to-
text model to map queries to relevant docids. DSI-Atomic assigns
each document with a random integer as the identifier. DSI-
Semantic semantically clusters all documents into a decimal tree
and uses the paths as their docids. DynamicRetriver [14] includes
a BERT encoder and a Docid decoder with a trainable vector
for each document. It generates relevant docids by mapping the
query representation through the decoder. For our studies, we
reproduced the OverDense variant. The models DSI-QG [16]
and NCI [15] build upon the DSI model by incorporating a
query generation module. WebUltron-Atomic, WebUltron-URL
and WebUltron-PQ are three variants of WebUltron with atomic
docids, URL docids and PQ docids respectively.

We assess the recall capabilities of models on the recall@ 10
metric and evaluate the ranking performance based on p@1 and
mrr@10.

C. Implementation Details

In our experiments, BERT model corresponds to the pre-
trained ‘bert-base-uncased‘ and TS5 model uses ‘t5-base‘, both
sourced from huggingface transformers.' For the dense retrieval
models, we set the maximum length of input sequences to 512
and the batch size to 48. For WebUltron-URL and WebUltron-
PQ, the max length of URL docids is 100, the hyper-parameter
of PQ is m = 24,k = 256, and the batch size is 128 and
200 respectively. During the three-stage training, we utilize
10 pieces of passage, 1 key term sequence, 10 pseudo-queries
and | annotated fine-tune query for each document. The max
length of each input sequence is set to 128. All models are
trained with the AdamW [43] optimizer. The learning rate is
5e-5 for BERT based models, and le-3 for TS5 based models.
All experiments are carried out on NVIDIA-A100(40 GB).
The source code for our experiments can be accessed at https:
//github.com/smallporridge/WebUltron.

Thttps://huggingface.co/bert-base-uncased/tree/main
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TABLE I
OVERALL RESULTS
‘ ‘ ‘ MS MARCO ‘ Natural Questions
Incremental
Model | Scalable | o iments | Relevant 300K \ Random 300K \ Relevant 320K
‘ ‘ | p@1 mrr@l0  r@10 | p@l mrr@10 @10 | p@l mrr@10 @10
Sparse Retrieval
BM25 v Easy 0.1894 0.2924 0.5507 0.4385 0.5421 0.7381 0.1406 0.2360 0.4793
DocT5Query v Easy 0.2327 0.3425 0.6138 0.4821 0.5795 0.7738 0.1907 0.2955 0.5583
Dense Retrieval
RepBERT v Easy 0.2525 0.3848 0.6918 0.4087 0.5109 0.7281 0.2263 0.3608 0.6876
Sentence-T5 v Easy 0.2723 0.4070 0.7240 0.4226 0.5359 0.7500 0.2251 0.3495 0.6512
DPR v Easy 0.2808 0.4140 0.7310 0.4286 0.5416 0.7552 0.2281 0.3535 0.6564
Generative Retrieval
DSI-Atomic X Hard 0.3247 0.4429 0.6992 0.4504 0.5640 0.7758 0.2023 0.3216 0.6146
DynamicRetriever X Hard 0.2904 0.4253 0.7859 0.4413 0.5518 0.7293 0.2263 0.3608 0.6876
WebUltron-Atomic X Hard 03281  0.46861 07413 | 0.4881% 05942 0.7917+ | 0.2543t 0.3859t  0.69531
DSI-Semantic v Hard 0.2574 0.3392 0.5384 0.2501 0.3221 0.4881 0.1323 0.2377 0.4828
DSI-QG v Hard 0.2782 0.3745 0.6026 0.3427 0.4093 0.5679 0.1909 0.3085 0.5837
NCI v Hard 0.2835 0.3893 0.6385 0.3699 0.4723 0.6016 0.2017 0.3390 0.6027
WebUltron-URL v Easy 0.2896*  0.4044 0.6386 0.3849 0.4679 0.6290 0.2309*  0.3652*  0.6705
WebUltron-PQ v Easy 0.3032*  0.4416* 0.7215 0.4663 0.5639 0.7282 0.2276 0.3523 0.6575

“Scalable” and “Incremental Documents™ indicate the model’s adaptability to a larger corpus and its ability to manage new documents, respectively. The highest scores are
highlighted in bold and the best results of scalable models are underlined. “t” and “ *  denotes the result is significantly better than all baselines and scalable baselines in t-test

with p<0:05.

WebUltron’s complete training process consists of three steps:
docid representation (keyword-based or semantics-based), pre-
training data construction (general pre-training and search-
oriented pre-training), and the model training (generation task
loss function). In terms of computational complexity, generative
retrieval differs from index-based retrieval as the computational
complexity during model inference is only dependent on the
beam size B and docid length L, denoted as O(B * L). This
complexity is independent of the corpus’s size. Therefore, with
a smaller designated beam size and a concise docid length,
WebUltron can facilitate swift document retrieval (details in
Section VI-C).

VI. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to answer
the following research questions:

RQ1I: How does the generative model WebUltron perform on
the document retrieval task compared to index-based methods?
In which scenarios is it most apt?

RQ?2: How does each stage of the three-stage training work-
flow contribute to the final retrieval outcomes?

RQ3: Does WebUltron have lower memory overhead and
higher inference speed than existing retrieval methods?

RQ4:1s WebUltron feasible on large-scale document corpora,
and if so, how does it perform?

A. Overall Performance (RQ1)

The overall results are presented in Table II . From the results,
we can infer several key insights to address RQ1.

(1) In most scenarios, the generative retrieval models out-
perform index-based retrieval methods, with paired t-test at
p <0.051evel. Among them, WebUltron-Atomic stands out with
the best performance on both the MS MARCO and NQ datasets.

We postulate that the superior performance of generative models
stems from their capacity for end-to-end optimization tailored
specifically for the document retrieval task. Notably, on the
Random 300 K dataset, most models lag behind DocT5Query,
with the exception of WebUltron-Atomic. This disparity could
be attributed to the reduced number of document-query pairs
available for training these deep models on this dataset, thus
limiting their ability. Yet, the search-oriented pre-training stage
of WebUltron appears to compensate for this data scarcity. An-
other notable trend is that generative models demonstrate a more
pronounced advantage in the ranking metrics p@ 1/mrr@10
compared to r@10. This may be attributed to the fact that
generative models are tailored for direct docid generation, rather
than relying on pairwise comparisons.

(2) Generative retrieval models with atomic docids (including
DSI-Atomic, DynamicRetriver and WebUltron-Atomic) outper-
form those employing semantic docids (WebUltron-PQ/URL).
In models with atomic docids, there are vectors individually
set for each document to maintain richer semantic knowledge,
thus making it easier to distinguish different documents. Fur-
thermore, WebUltron-Atomic learns more information from
pseudo queries, surpassing DSI-Atomic and DynamicRetriever
in performance. However, their parameters will increase linearly
as the number of documents increases, rendering them less prac-
tical for large-scale corpora. The semantic URL and PQ docids
with strong scalability and generalizability hold the potential to
address these challenges.

(3) When comparing the generative models that use semantic
docids, WebUltron-URL and WebUltron-PQ yield superior re-
sults compared to DSI-Semantic, DSI-QG, and NCI. On the Rel-
evant 300 K dataset, WebUltron-PQ surpasses NCI by 13.4% on
mrr@ 10. On the NQ dataset, WebUltron-URL outperforms NCI
by 7.7% on mrr @ 10. This indicates that our devised docids can
embed richer semantic information, thereby enhancing model
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TABLE III
ABLATION STUDY OF THE THREE-STAGE TRAINING WORKFLOW

| MS MARCO | Natural Questions
Model \ Relevant 300K \ Random 300K \ All 320K

| mrr@10 r@10 | mrr@10 r@10 | mrr@10 r@10
WebUltron-URL 0.4044 0.6386 0.4679 0.6290 0.3652 0.6705

w /o General Pretrain
w /o Search-oriented
w /o Fine-tune

0.3856 (-4.6%)
0.3341 (-17.4%)
0.3477 (-14.0%)

0.6321 (-1.0%)
0.5211 (-18.4%)
0.5693 (-10.9%)

0.4396 (-6.0%)
0.2198 (-53.0%)
0.4548 (-2.8%)

0.5933 (-5.7%)
0.3194 (-49.2%)
0.6083 (-3.3%)

0.3587 (-1.8%)
0.3071 (-15.9%)
0.3504 (-4.1%)

0.6608 (-1.4%)
0.6147 (-4.5%)
0.6405(-4.5%)

WebUltron-PQ
w /o General Pretrain
w /o Search-oriented
w /o Fine-tune

0.4416
0.4099 (-7.2%)
0.3445 (-22.0%)
0.4176 (-5.4%)

0.7215
0.6968 (-3.4%)
0.5730 (-20.6%)
0.7203 (-0.2%)

0.5639
0.4984 (-11.6%)
0.3656 (-35.2%)
0.5624 (-0.3%)

0.7282
0.6582 (-9.8%)
0.5655 (-22.3%)
0.7262 (-0.3%)

0.3523
0.3328 (-5.5%)
0.2427 (-31.1%)
0.3522 (-0.0%)

0.6575

0.6327 (-3.8%)
0.5220 (-20.6%)
0.6386 (-2.9%)

The bold entities highlighted the best results among different model variants for each docid.

generalizability. On the MS MARCO dataset, WebUltron-URL
trails behind WebUltron-PQ. While WebUltron-URL employs
URLs to identify documents and primarily captures semantic
knowledge linked to these keywords, it might also pick up non-
semantic noise present in URLSs, such as numbers and symbols.
In contrast, PQ docids are derived from the representation of the
entire document, making them more closely aligned with the
document’s content.

In summary, these results indicate that the end-to-end gener-
ative model with semantic document identifiers is a promising
approach for document retrieval tasks.

B. Study of Training Workflow (RQ2)

In this paper, we design a three-stage training process to
enhance the WebUltron model. In order to verify the effects
of each training stage on the final results (RQ2), we conduct
an ablation study to remove one training stage at one time and
observe its impacts on document retrieval. The results are shown
in Table I1I. We find that the removal of any training stage leads to
a decline in performance across all evaluation metrics. Specif-
ically, omitting the search-oriented pre-training results in the
most pronounced reduction, particularly evident on the Random
300 K dataset which has fewer supervised document-query pairs.
This underscores the pivotal role of pseudo queries in enhanc-
ing the model performance on search tasks. Meanwhile, upon
eliminating supervised fine-tuning, there is a notable decline in
document retrieval performance, confirming the necessity of the
supervised stage and its importanuce in facilitating more potent
linkages between queries and docids.

To provide a more detailed understanding of the impact of
each training stage, we depict a curve showing mrr@10 in
relation to the number of training epochs and stages, as presented
in Fig. 4. We can see that with the progression through each
stage, the model incrementally acquires knowledge, enhancing
its capability for the document retrieval task.

C. Study of Memory and Efficiency (RQ3)

Given that document retrieval is an essential component in
practical search applications, it is imperative to focus on min-
imizing memory overhead and maximizing efficiency. To this
end, we carry out experiments to compare the memory cost,
parameter count and inference latency between our WebUltron

e
0.4 /N e
s 0.3 —e— Ultron-PQ
c) —#— Ultron-URL
=02 ~== DocT5Query
E : --- DPR
0.1
0.0 General Pre-train Search-oriented Fine-tuning
0 10 20 30 40 50 60
Epoch
(a) MS MARCO Relevant 300K
0.6
0.5
3 0.4 —— WebUltron-PQ
~+— WebUltron-URL
@ 0.3 -~~~ DocT5Query
£02 --- DR
0.1
0.0 eneral Pre-train Search-oriented Fine-tuning
0 10 20 30 40 50 60

Epoch
(b) MS MARCO Random 300K

Fig. 4. mrr@10 with different training epochs and stages.

TABLE IV
EXPERIMENTS ABOUT THE MEMORY, MODEL PARAMETERS, AND QUERY
LATENCY OF DIFFERENT MODELS

Model | Corpus | Memory Params  Latency

Brute-force Dual 300K 0.98GB 220M 38.57ms

3.2M 9.87GB 220M 489.25ms

. 300K 0 495M 20.31ms
WebUltron-Atomic 30M 0 2718M i

300K 0.05GB 248M 13.75ms

WebUltron-URL 32M | 041GB  248M  15.70ms

300K 0.07GB 257M 8.90ms

WebUltron-PQ 32M | 062GB  257M  9.4lms

model and all baseline models across corpora of varying sizes.
The results are displayed in Table IV.

Upon examining Table IV, it’s evident that WebUltron, espe-
cially WebUltron-URL and WebUltron-PQ, offers a marked de-
crease in memory usage, parameter count, and inference latency
when compared to the brute-force dual encoder. Specifically,
WebUltron spends 90% less memory than the dual encoder. With
regard to the parameter count, the dual encoder, WebUltron-URL
and WebUltron-PQ, mainly rely on a pre-trained language model
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Fig. 5. Query latency and mrr@ 10 with different beams.
TABLE V
RESULTS ON THE LARGE-SCALE MS MARCO DATASET
WITH 3.2 M DOCUMENTS

| MS MARCO 3.2M
Model

| Params p@l mrr@10 r@10
DSI-Atomic x10 - - -
DynamicRetriever x10 - - -
DSI-Semantic x1 0.0481 0.0851 0.1217
DSI-QG x1 0.0621 0.1067 0.1893
NCI x1 0.0682 0.1147 0.2023
WebUltron-URL x1 0.1082 0.1690 0.3172
WebUltron-PQ x1 0.1246 0.2031 0.3975

Params xN refers to the ratio of the number of parameters compared to the 300k
dataset.

with a fixed number of parameters. Conversely, WebUltron-
Atomic employs a trainable vector for each document within the
model, which means its parameter scale adjusts as the number
of documents grows. Most notably, WebUltron outpaces dual
encoders in efficiency, with latency decreasing from 489.25 ms
to 15.70 ms. The brute-force dual method involves a traversal of
candidate documents, meaning its latency is directly influenced
by the size of the corpus. While dual encoder approaches can be
sped up using approximate search, this could come at the expense
of accuracy. With WebUltron, the model directly generates
relevant docids through constrained beam search. Consequently,
its speed is related to the layer and width of the prefix tree. The
curves in Fig. 5 also demonstrate that WebUltron can achieve a
better balance between effectiveness and efficiency.

D. Exploration of Scaling up (RQ4)

Generative models with semantic docids—including DSI-
Semantic, DSI-QG, NCI, WebUltron-URL, and WebUltron-
PQ-show promise for scalability to expansive document collec-
tions. To evaluate their performance in such scenarios, we carried
out experiments on the MS MARCO dataset, which consists of
3.2 million documents. The experimental results are summarized
in Table V .

Our results show that WebUltron-URL and WebUltron-PQ
surpass other baseline models, underscoring the effectiveness
of our tailored semantic docids and the three-stage training
approach. Nevertheless, regardless of the model employed, there
remains a substantial margin for improvement in terms of accu-
racy. To achieve better results on large-scale corpora, several
potential solutions can be explored. One approach is to scale up
the model, allowing it to encapsulate more nuanced information
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Fig. 6.  Model performance on different query subsets.

and thereby improving its ability to differentiate among various
documents. Another potential solution is to enrich the training
dataset by assembling a broader and more varied corpus, which
would amplify the model’s proficiency in recognizing diverse
textual nuances. Moreover, as part of our future work, we plan to
investigate substituting the t5-base model with larger pre-trained
language models to possibly further elevate performance.

E. Performance on Different Queries (RQ1)

As listed in Table I, there are approximately 300 k documents
paired with relevant queries. Consequently, only a subset of the
test queries align with the documents utilized during fine-tuning.
Based on this distinction, we categorize all test queries from the
Random 300 K dataset into ‘overlap query’ and ‘non-overlap
query’. We evaluate the performance of WebUltron and several
baselines on these two distinct query sets. The comparison
results are shown in Fig. 6.

Our analysis reveals that BM25 and DPR exhibit performance
across both query sets. In contrast, the WebUltron model tends
to exhibit marked improvements when dealing with overlap
queries. Although WebUltron-URL lags slightly behind DPR in
performance across the entire query set, it surpasses DPR when
evaluated on the overlap query set. As for WebUltron-Atomic
and WebUltron-PQ, the former leverages atomic docids to cap-
ture the richest document-level feature, and as a result, achieves
the highest performance on overlap queries. WebUltron-PQ, on
the other hand, strikes a balance between memory capacity and
generalizability, thus demonstrating satisfactory results across
both subsets.

F. Case Study

To provide an intuitive understanding of how the generative
model WebUltron works, we visualized the inference process
for WebUltron-URL, which uses URLSs as docids, as illustrated
in Fig. 7.

First, all URL docids are structured as a prefix tree. Given
a query, its contextualized representation vector is obtained
through the encoder. This vector is then fed into the decoder,
and a constrained beam search is carried out based on the
prefix tree. At each step, the token with the highest probability
is chosen, corresponding to the darkest node in Fig. 7. The
process continues until the URL ‘https://en.wikipedia.org/wiki/
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Fig. 7. Case study of the inference of WebUltron-URL.

human_hair_growth’ is fully formed upon reaching the leaf
node. We can see that these generated URLs contain the an-
notated relevant document and are indeed semantically relevant
with the entered query. This verifies WebUltron’s capability to
associate semantic knowledge with specific docids.

G. Discussions

As the field increasingly shifts its attention to model-based IR,
we would like to share some of our reflections and experiences
through the following discussion.

1) What are the Major Challenges in the Implementation
of Model-Based IR?: In the implementation of model-based
information retrieval, there are significant challenges that need
to be addressed. First and foremost is the issue of scalability.
The model needs to encode all docid information, which places
considerable demands on the design of docids. To address this,
incorporating semantics into docids can enhance generalization,
thereby reducing the need for a larger model. The lack of
sufficient training data is another critical challenge that limits
model performance. It has been observed that relying solely
on supervised data for model training does not yield satisfac-
tory results. To circumvent this challenge, a three-stage model
training framework has been designed to leverage available data
effectively.

2) What Valuable Insights Can Serve as Inspiration for Other
IR Researchers?: Several valuable insights have emerged from
our extensive experiments. First, the generative paradigm ex-
hibits superior ranking performance and higher efficiency in
document retrieval tasks compared to brute-force method of
searching the entire index. However, it is important to note that
this approach may result in lower recall rates, which warrants
further exploration. Second, incorporating semantic-rich docid
demonstrates high generalizability and scalability, positioning
it as viable solution for large-scale scenarios. Lastly, while the
atomic method might falter in terms of scalability, it excels
in capturing document-level features and holds potential for
close-domain scenarios.

3) What are the Limitations of WebUltron?: Despite the
achievements made with WebUltron in the model-centric
paradigm, several limitations still exist that warrant attention.
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First, scaling the model to handle web-sized data demands
increased model capacity, which presents a challenge when
dealing with expansive corpora. The intricate relationship be-
tween model capacity and corpus size merits deeper exploration.
Second, the incorporation of new incoming documents into
the model-based indexer remains unexplored. It’s imperative to
devise strategies that circumvent the need to retrain the model
from scratch whenever new documents are introduced. Future
research should focus on addressing these challenges to enhance
the capabilities of WebUltron in the field of model-based IR.

VII. CONCLUSION

In this work, we explore a novel model-centric paradigm for
document retrieval. The model WebUltron breaks away from the
conventional index-based methods by encoding the knowledge
of docids into an end-to-end model. Under the T5 backbone,
we devise two types of semantic document identifiers, and a
three-stage training strategy to optimize the model and adapt
it to search scenarios. Experiments on two public datasets in-
dicate the superiority of our model-based indexer on retrieval
performance and efficiency over existing baselines.
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