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Abstract—The goal of personalized search is to tailor the document ranking list to meet user’s individual needs. Previous studies

showed users usually look for the information that has been searched before. This is called re-finding behavior which is widely explored

in existing personalized search approaches. However, most existing methods for identifying re-finding behavior focus on simple lexical

similarities between queries. In this paper, we propose a personalized framework based on hierarchical memory networks (MN) to

enhance the identification of the potential re-finding behavior. Specifically, we explore the potential re-finding behaviors of users from

two dimensions. (1) Granularity dimension. The framework carries out re-finding identification with external memories from word,

sentence, and session levels. (2) Query intent dimension. Query-based re-finding and document-based re-finding are taken into

account to cover user’s different query intents. To enhance the interaction between different memory slots, we optimize the READ

operation of MN with two strategies that utilize the information in memory in a multi-hop way. Endowed with these memory networks,

we can enhance user’s potential re-finding behaviors and build a fine-grained user model dynamically. Experimental results on two

datasets have a significant improvement over baselines, and the optimized READ operation shows better performance.

Index Terms—Personalized search, re-finding identification, hierarchical memory networks

Ç

1 INTRODUCTION

USERS usually get information from the internet by issu-
ing a query to the search engine. Under the same query,

most common search engines return the same result with-
out distinction for all users. However, even for the same
query, the real intentions of different users are often differ-
ent, especially for ambiguous queries [1], [2]. Personalized
search is a possible way to solve this problem. It tailors the
original ranking of results to meet user’s individual needs.

The key to personalized search is how to build user mod-
els accurately. Previous studies have shown that the user’s
query log contains plenty of personalized information that
can help learn user profiles [3], [4], [5], [6], [7], [8], [9]. They
extracted features from a large-scale click data to model the
user. However, these manually designed features may not
fully cover every aspect. With the emergence of deep learn-
ing, new personalization approaches were proposed to learn
the semantic representation and extract features hidden in
the search history automatically [5], [10], [11], [12]. They have
successfully improved the quality of personalized search.

Although the strategies of personalization are different,
most of them pointed out that users often seek information
they have encountered before. This phenomenon is called re-
finding behavior, which can be used to build user models in
personalized search in a reliable way. Previous studies on
modeling re-finding behavior attempted to examine the fea-
tures from multiple angles to predict the clicks on viewed
documents [13], [14]. However, these studies mainly identify
the re-finding behaviour based on lexical similarity, which
cannot cover semantically similar situations. In fact, some
queries look different, but express the same intent, like ”new
Apple computer profile” and ”new macbook introduction”.
The actual re-finding behavior in search engines is much
more complicated than this. In this paper, our goal is to
strengthen the identification of users’ potential re-finding
behaviors for personalized search, especially those that can-
not be identified simply by lexical rules. Due to the powerful
ability of deep learning to learn representation, we intend to
apply it on capturing re-finding behavior in semantic and
model the sequential information hidden in them.

Previous personalized search approaches with deep
learning tried to build sequential user profiles over queries
or sessions using the recurrent neural network (RNN) [10],
[12]. These methods have been shown effective to model
user interests over time by encoding historical interaction
into a hidden state vector. However, this highly abstract
encoding approach is not conducive to capture fine-grained
user preference. Memory network has made progress on
many sequential-based tasks (e.g., reading comprehension,
sequential recommendation) due to the ability of extracting
information from large-scale data and its great interpretabil-
ity [15], [16]. Its advantages fit our needs for building a fine-
grained user model based on re-finding. Motivated by the
powerful representation ability of MN, we propose to
enhance user’s potential re-finding behavior based on it.
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According to the user’s information needs, we classify
the re-finding behavior into two categories: tracking infor-
mation about a certain topic or just for finding one docu-
ment [17]. In the first case, users typically issue similar
queries to get information. We can predict the user’s next
click behavior by analyzing his historical click data under
these queries. In the second case, we are able to summarize
the user’s query habits for finding the document, and iden-
tify the re-finding by comparing the current query with his
habits. To cover both cases, we design two separate memo-
ries, a query memory and a document memory, for storing
user historical interactions from two different angels. In
fact, users often issue a series of queries in a session for a
single information need. They might show the same query
intent over sessions. To identify this situation called ses-
sion-based re-finding, we design an intent memory to store
user past query intent of each session.

Specifically, we design a model for personalized search,
which focuses on the re-finding behavior with external
memories we stated above. Different historical behaviors
have unequal contributions to the re-finding. Thus, we
attempt to highlight relevant words and historical behaviors
stored in the word memory, query memory and document
memory based on their relevance to the current needs. And
then we further model the session-based re-finding with the
help of intent memory to build a more accurate user model.
Finally, by matching the user model and the current needs,
we compute the probability of the document being clicked
under two types of re-finding and predict the personalized
search results. Additionally, we extend our model to a
multi-hop version, which can dig deeper into the effective
information in the memory network.

Our main contributions are summarized as follows. First,
we make use of external memories to enhance user re-find-
ing behavior for personalized search in an interpretable
way. Second, in order to cover more complex re-finding, we
analyze user re-finding behavior from word, query, and
document respectively, and further consider session-based
re-finding. Third, based on the characteristic of re-finding
that a document is more likely to be irrelevant if it has been
ignored in history, we consider the negative impact of
unclicked documents to model the user interests. This paper
is an extended version of the WSDM 2020 paper [18]. The
main extensions of this journal version are: (1) We extend
our model to a hierarchical memory network, including
three levels of re-finding identification from word, sentence,
and session. Specifically, we add a word memory to empha-
size the impact of important words in queries based on user
past interactions, which is simply implemented by TF-IDF
weights in the original paper. (2) We refine the READ oper-
ation of memory networks with two optimization strategies
to improve memory utilization, while in the original paper,
we simply used a single vanilla attention. (3) We further
test the effect of the model on the public dataset AOL search
log. The performance on this dataset not only tests the
personalization ability of the model, but also reflects the
ability to match query and document in semantic.

In the rest of the paper, related works are summarized in
Section 2. Our personalized model is introduced in Section 3.
We demonstrate the experimental settings and results in
Section 4, and draw the conclusion in Section 5.

2 RELATED WORK

2.1 Personalized Search

Search results personalization has been shown to effectively
improve the quality of search engines [4]. The main goal of
personalized search is to re-rank the results to meet the indi-
vidual needs of different users, depending on the user’s
interests. In traditional methods of personalized search, the
main personalized features extracted from historical search
data focus on click number and topic similarity [7], [19],
[20], [21], [22]. The former is widely used due to its avail-
ability and reliability. Dou et al. [2] counted the number of
clicks on the documents in history to re-rank the original
document list. Teevan et al. [6] followed this approach to
identify personal navigation with individual behavior for
search results personalization. The topic-based features
have gone through a transition from manual design to auto-
mated learning [19], [23]. Due to the incomplete category of
manual design, such as Open Directory Project (ODP),
some studies proposed to learn a latent topic of the docu-
ment automatically with Latent Dirichlet Allocation (LDA)
[7], [9], [20], [22]. With the emergence of learning to rank
methods, recent studies [3], [23], [24] combined these two
types of features to train a ranking model by the Lambda-
MART algorithm [25].

The above methods have made great progress, but the
incomplete features are still a problem due to the limitations
of manual design. Deep learning has become a possible
solution to this problem. In the field of personalized search,
Song et al. [5] proposed a general ranking model based on
user individual adaptation. Li et al. [11] made use of seman-
tic features powered by deep learning to improve the in-ses-
sion contextual results. Ge et al. [10] used hierarchical
recurrent neural networks to model user short- and long-
term interests and highlighted the relevant interests by
query-aware attention. Lu et al. [12] proposed a generative
adversarial network framework to train the network with
noisy click data. These methods make use of deep learning
for semantic modeling and achieve better results. Different
from previous studies, we attempt to combine deep learning
with memory networks to enhance user re-finding behavior.

2.2 Re-Finding Identification

Re-finding behavior is a common phenomenon in informa-
tion retrieval. Users often use the same or similar queries to
retrieve previously viewed documents. Previous studies on
re-finding behavior mainly focused on re-finding identifica-
tion. Teevan et al. [14] analyzed the query log to predict
whether the user will click on the same document when the
user submitted a query that has ever issued. Tyler et al. [26]
observed different types of re-finding behavior in inter-ses-
sion and intra-session and measured the likelihood that re-
finding behavior occurs at different positions in a session.
Later, Tyler et al. [13] utilized re-finding for search results
personalization. The results showed the reliability of re-
finding prediction for personalized search. Elsweiler and
Ruthven [17] performed a diary study that classified the re-
finding tasks according to user’s information needs. To
more accurately identify the re-finding behavior, more
kinds of features are used to model the query log. Kotov
et al. [27] examined the features from three aspects: session-
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based features, history-based features, and pairwise fea-
tures. However, the above methods only consider lexical
features, while ignoring the re-finding behavior based on
semantic similarity. In this paper, we intend to combine the
lexical and semantic features, and alleviate the problem of
incomplete features with deep learning.

2.3 Memory Networks

Memory network was first proposed by Weston et al. [15] to
solve the problem of insufficient representation ability of
traditional deep learning models. They proposed a general
memory network framework, including input, generation,
output and response modules. Some subsequent studies
have optimized the model structure based on it. Sukhbaatar
et al. [28] put forward the end-to-end memory networks
which improves the training process, and extended the
model to multiple layers. Miller et al. [16] designed the key-
value memory networks to fit the question-answering task.
They used additional knowledge (knowledge base, Wikipe-
dia) to find answers. Apart from these basic memory net-
works, some novel structures have been proposed to make
up for the shortcomings of previous models. For instance,
Henaff et al. [29] recorded the world state with recurrent
entity networks. Chandar et al. [30] devised hierarchical
memory networks to speed up training. And Liu et al. [31]
constructed gated end-to-end memory networks which
introduced the gate mechanism to achieve regularization of
memory. In recent years, memory networks is popular in
many research fields, such as dialogue systems, question
answering systems, and recommendation systems. In this
paper, we intend to apply it to personalized search for
building fine-grained user profiles.

3 RPMN - A HIERARCHICAL MEMORY NETWORK

ENHANCED RE-FINDING MODEL FOR

PERSONALIZED SEARCH

Tailoring the ranking of search results according to individ-
ual interest can improve the quality of the retrieval model.
As we stated in Section 1, existing personalized search meth-
ods are weak in modeling potential re-finding behavior.
Inspired by the ability of memory networks to capture fine-
grained user preferences, we present a personalized search
model with memory networks focusing on the re-finding
behavior. With the help of external memories, we expect to
screen out historical behaviors that are related to current
needs and identify the re-finding behavior in semantic.

We define the notations used throughout the paper in
Table 1. Suppose that for user u, his historical log U includes
a series of issued queries and click information on the docu-
ments retrieved by search engine, i.e., U ¼ ffq1; D1g; . . . ;
fqi;Dig; . . . ; fqn;Dngg, where qi is the ith query in the query
log and Di is the document list retrieved for qi. Given a new
query q and its original search results D ¼ fd1; d2; . . .g, we
predict the probability of each document being clicked
according to personalized data U , and re-rank the document
listD combining the relevance to the query q. The final proba-
bility of the document d being clicked is denoted as pðdjq; UÞ.

As we have introduced in Section 1, the re-finding behav-
ior can be roughly summarized into two categories: using
similar queries to find unspecified documents or just for

finding a viewed document. For simplicity, we call these
two categories query-based re-finding and document-based
re-finding. The former focuses on the similarity between the
candidate document and the user interested documents
under similar queries, while the latter pays more attention
to the historical queries containing the similar documents.
We use pðdjUqÞ and pðqjUdÞ to represent the probability of
the document being clicked under these two types of re-
finding. The final probability consists of three parts

pðdjq; UÞ ¼ f p djUqð Þ; pðqjUdÞ; p djqð Þ� �
; (1)

where pðdjqÞ represents the adhoc relevance between each
candidate document and the query, and fð�Þ is a Multilayer
Perceptron (MLP) with tanhð�Þ as activation function, which
is used to combine the three parts with different weights.

The structure of our model is shown in Fig. 1. At first, we
set the word memory to emphasize the words in the current
query or document according to the words that the user has
interacted in the history. Second, in order to handle the
query-based re-finding and the document-based re-finding,
we devise two external memories to highlight the historical
behaviors from query and document respectively. And
then, with the help of RNN, we construct the intent memory
to model the re-finding over sessions. Finally, we get the
probability by matching the user profiles with the current
needs to re-rank the results. In the remaining parts of the
section we will introduce the details.

3.1 Highlighting Relevant Historical Behaviors
Dynamically

Although there is a large amount of personalized informa-
tion in the query log, the same information contributes dif-
ferently in different situations. So we expect to dynamically
enhance the influence of relevant historical behaviors based
on the current need, especially those with re-finding value.
To utilize each query and document more comprehensively,
we get their vector representation from two aspects. (1)
Based on word embedding, which is good at capturing the
relation at the semantic level. Their representation are com-
puted by weighting the words together with re-finding
weights from the word memory MW . (2) Based on graph
embedding, which measures the distance according to co-
occurrence probability. This method constructs the histori-
cal interactions into a graph and learns the representation of
each node. Finally, the representation of each item is gener-
ated by concatenating the vectors of two methods.

TABLE 1
Notations in the Paper

N. Definition N. Definition

u a user U u’s historical log
Q a set of queries D a set of documents
q a query d a document
qsðvÞ the q‘s string (vector) dsðvÞ the d’s URL (vector)
q0 a refined query d0 a refined document
M an external memory m a slot ofM
dþ a satisfied document d� a skipped document
dq average document of q qd average query of d
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As we discussed above, to deal with the re-finding
behavior in personalized search, we use external memories
which can store the query logs in detail to identify the re-
finding behavior in an interpretable way. For covering two
types of re-finding, we set up a query memory MQ and a
document memory MD to record user historical behaviors.
Note that our model builds memories for each user inde-
pendently to store his personal behavior.

3.1.1 Word Memory

We build this memory for measuring the importance of each
term in queries and documents. Higher weight should be
given to the word that have been issued many times in the
past. Traditional TF-IDF weight only considers the case of
exact matches and global importance, but we should also
focus on synonyms and personal information. We believe
that the weight of the current word is determined by histori-
cally related words. The word memory records vector rep-
resentations of words contained in the user’s past queries
and clicked documents, denoted as MW ¼ fwv

1; . . . ; w
v
nW
g,

where nW is the number of words. Suppose that the current
query q contains x terms, i.e., q ¼ fe1; . . . exg, the re-finding
weight aw

i of the word ei is computed by

aw
i ¼

XnW
j¼1

Sðei; wv
jÞ; (2)

where Sð�Þ is cosine similarity which keeps the values greater
than a certain threshold, which is set to 0.7. These related
words reflect the re-finding potential of the current word to
which we need pay more attention. To consider the impor-
tance of words from both global and personal aspects, we
combine the re-finding weight and TF-IDF weight together
by normalizing the weights and averaging them. Finally, the

vector representation of the current query qv is a weighted
summation of all words

qv ¼
Xx
i¼1
ðaw

i þ TF�IDFeiÞei: (3)

The query or document represented in this way contains
word-level re-finding information, which can promote the
identification of the re-finding behavior in the following.

3.1.2 Query Memory

Above we used word memory to strengthen the influence of
key words, but sometimes the same words have different
meanings in different queries. We next identify re-finding
behavior from the query level for handling the query-based
re-finding in sentence-level. The word memory can most
directly and effectively reflect the user’s interested words,
while the query memory focuses more on the semantics of
the entire sentence. They complement each other, and
jointly carry out fine-grained modeling of user interests.
Since that user behavior under similar queries are valuable
to make a prediction, the main function of the query mem-
ory MQ is to find out the historical queries that are related
to the current query. Specifically, in addition to build user
profiles using satisfied documents, we leverage the skipped
documents to model user interests in reverse. The basic idea
is if a user skipped a document before, it is more likely to
skip it again when encountering the same document. A sat-
isfied click usually refers to a click with more than 30s
dwelling time or the last click in a session [3], [9], [10]. And
a skipped document is defined as the unclicked document
above a satisfied click.

Assume that there are nQ memory slots inMQ, i.e.,MQ ¼
fmQ

1 ; . . . ;m
Q
nQ
g. Each slot stores a query string, a query

Fig. 1. The architecture of RPMN. Given a new query and a candidate document, relevant historical behaviors are highlighted by three external mem-
ories from word, query and document. After extracting session-based re-finding behavior using intent memory based on the current needs, personal-
ized information for query-based re-finding (blue lines) and document-based re-finding (orange lines) are collected. Combining relevance features,
we get the final probability for personalization.
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vector and two average document vectors (satisfied and
skipped), i.e., mQ

i ¼ fqsi ; qvi ; dþqi ; d�qig. Notice that the query
stored in each slot is different. The WRITE operation of
query memory is defined as: there is a new interaction
fq;Dg from u. We put the average vector dþq of satisfied
clicked documents and d�q of skipped documents into the
memory. If query q has been issued before, we only modify
the two average document vectors of corresponding slot

dþqiðnewÞ  GATEðdþq ; dþqiðoldÞÞ
d�qiðnewÞ  GATEðd�q ; d�qiðoldÞÞ;

(4)

where GATEð�Þ is a gate to control the proportion of new
information, GATEða; bÞ ¼ ð1� ziÞ � aþ zi � b, and the gate
weight zi is set to 0.5 in our model. Otherwise, we put the
query string, the query vector and two average document
vectors together, i.e., fqs; qv; dþq ; d�q g, into a new slot (or
replace the oldest one if there is no empty slot). Here we
keep the memory in the chronological order to maintain the
sequential information of historical interactions.

The READ operation starts when the user issues a new
query q, which is to learn the weight of each slot inMQ based
on the new query. Specifically, for covering more potential
re-finding behavior, we compute the weight from the string
level (lexical similarity) and the vector level (semantic simi-
larity). Together, they determine the influence of each slot
based on q. Formally, with respect to the query string qs and
the query vector qv, the weight aq

i of the ith slot is defined as
the combination of string level weight aqs

i and vector level
weight aqv

i

a
q
i ¼ fðaqs

i ;a
qv

i Þ: (5)

For string level weight, we choose ten common ways of
query change following previous work (“wordorder”,
“stemming”, etc.) [13], [14]. We believe they contribute differ-
ently in re-finding. To learn the influence of each types, we
devise a type memory MT to store the matching types and
their vector representation. Each representation is initialized
by zero and will be updated when the new query comes. For-
mally, if the relation between the new query string qs and a
historic query string qsi belong to the jth type, the new repre-
sentation rj of the type is

rjðnewÞ  GATEðfðqv � qvi Þ; rjðoldÞÞ; (6)

where fð�Þ is to ensure that the value is the largest when the
two queries are the same, and gradually decreases as the
difference of them increases, defined as fðxÞ ¼ e�jxj. Given
a new query q, we take out corresponding vectors according
to the relationship between the historical queries in MQ and
the new query. If a query pair does not match any query
change type, the relation vector is set to zero. We use Rqs to
represent the set of relation vectors based on qs, and the
string level weight aqs

i of slot mQ
i is learned according to its

relation vector rq
s

i

aqs

i ¼
expðfðrqsi ÞÞPn
j¼1 expðfðrq

s

j ÞÞ
; (7)

where the MLP fð�Þ is to output a weight based on the rela-
tion vector. We use the function softmaxðeiÞ to represent

expðeiÞPn

j¼1 expðejÞ
for short in the following.

For vector level weight, with respect to the current new
query vector qv, we highlight the relevant slots based on the
topic similarity between query vectors. The weight aqv

i of
slotmQ

i is generated by the attention mechanism [32]

a
qv

i ¼ softmaxðfðqv; qvi ÞÞ: (8)

Now we have learned the weight of each slot, which repre-
sents the contribution of each historical query to the current
query in re-finding. Finally, we take the vectors from MQ

according to the learned weight and get three weighted sets:
weighted historical query vector set Qq ¼ faq

1q
v
1; . . .a

q
nQ
qvnQg,

weighted satisfied document vector set Dþ;q ¼ faq
1d
þ
q1
; . . .

aq
nQ
dþqnQ g, weighted skipped document vector set D�;q ¼

faq
1d
�
q1
; . . .aq

nQ
d�qnQ g. And they act on calculating the final

probability in Section 3.3.

3.1.3 Document Memory

The document memory is used to analyze the user’s query
habits based on each candidate document. For the docu-
ment-based re-finding, we expect to focus on the queries
that retrieve the documents which are related to the candi-
date document through the document memory MD ¼ fmD

1 ;
. . .mD

i ; . . . ;m
D
nD
g. The method of constructing it is similar to

the query-based memory. Each memory slot mD
i consists of

a document URL, a document vector and an average query
vector, i.e., mD

i ¼ fdsi ; dvi ; qdig. When a new interaction
fq;Dg happens, the WRITE operation forms document-
query pairs with the satisfied documents inD and the query
i.e., ffdþ1 ; qg; fdþ2 ; qg; . . .g. And then we put each of them into
the document memory MD like query memory: modify the
qi by GATEð�Þ if the document has satisfied before, or use a
new (the oldest) slot to store it.

When evaluating a document d, we learn the weight ad
i of

each slot based on d by READ operation. Due to the limited
type of URL change, we only consider two types ”the same”
and ”the same domain” of document change to learn the
string level weight. And the vector level weight is also gener-
ated by attention mechanism, adv

i ¼ softmax f dv; dvi
� �� �

. By
combining two parts of weight, we highlight user behaviors
on relevant documents and get two weighted sets: weighted
document vector setDd ¼ fad

1d
v
1; . . . ;a

d
nD

dvnDg, weighted aver-

age query vector setQd ¼ fad
1qd1 ; . . . ;a

d
nD

qdnD g. Theywill con-
tribute to the final probability along with the sets from the
querymemory.

3.2 Modeling Session-Based Re-Finding

In a large number of search behaviors, sometimes users do not
get satisfied results by only one query. They often issue a
query at the beginning of a session and reformulate it until
getting a satisfied document [10]. We believe that user behav-
iors in a session reflect a query intent. Intuitively, the queries
and click data in historical sessions are helpful when the user
shows the same query intent next time. Therefore, we attempt
to further analyze user re-finding behavior from the session-
level. Specifically, we divide the query logs into different
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sessions, U ¼ fS1; S2; . . .g, and construct an intent memory
MI which contains nI slots to store the historical behaviors
over sessions. Each memory slot mI

i contains a query intent
vector kIi of a session and an interested document vector vIi
under the intent, denoted as mI

i ¼ fkIi ; vIi g. The WRITE and
READ operation ofMI will be introduced in the following.

3.2.1 Exploiting User Historical Intent With RNN

Assume that a user issues a series of queries fqi;1; qi;2; . . .g in
the session Si, and each query corresponds to an average sat-
isfied document vector fdi;1; di;2; . . .g. In general, if the current
query cannot meet the user’s information needs, he will sub-
mit the next query until the information needs are met. So the
latter query and the satisfied document in a session can better
reflect the user’s true intent. Inspired by the great success of
RNN in modeling sequential data, we apply it to learn the
representation of the session-based intent and interest. We
adopt GRU [33] as the basic cell in our work. Two GRU layers
are applied to model user query intent from fqi;1; qi;2; . . .g and
user interested document from fdi;1; di;2; . . .g in each session.
The WRITE operation of intent memory MI is defined as:
when a new interaction fq;Dg happens, if it belongs to an
existed session in the slotmI

i , we update the memory slot for
this session regarding the query vector qv and average satis-
fied document vector dþ as the inputs of GRU

kIi ðnewÞ  GRUðkIi ðoldÞ; qvÞ;
vIi ðnewÞ  GRUðvIi ðoldÞ; dþÞ;

(9)

whereGRUð�Þ is the GRU unit. The new state vector kIi ðnewÞ
can be calculated according to the inputs and previous state
vector kIi ðoldÞ. If it belongs to a new session, we put it in a
new (the oldest) slot and the previous state vector is initial-
ized by zero vector.

3.2.2 Extracting Session-Based Information

Now we have recorded the query intent and corresponding
interested document of each session in the intent memory,
which allows us to explore the user’s session-based re-find-
ing behavior. Based on the two types of re-finding behavior,
the READ operation of intent memory includes two ways.
For the query-based re-finding, we regard query intent as
the key and user interested document as the value in MI .
Given a new query q, to more accurately express its intent,
such as ambiguous queries, misspelled queries, etc., we gen-
erate a refined query vector according to the weighted his-
torical query vector set Qq ¼ faq

1q
v
1; . . .a

q
nQ
qvnQg obtained in

Section 3.1.2. For capturing the evolution of relevant queries
over time in history, we also take a GRU layer to represent
the current state vector hq

n. And then we map it into the
same dimension as the query vector by MLP to represent
the refined query q0

q0 ¼ fðhq
nQ
Þ ¼ fðGRUðhq

nQ�1;a
q
nQ
qvnQÞÞ: (10)

We learn the attentive weight of each slot based on the
query vector qv and the refined query vector q0. We have

aI;q
i ¼ softmaxðfðkIi ; ½qv; q0�ÞÞ: (11)

Finally, we generate a set V q ¼ faI;q
1 vI1; . . . ;a

I;q
nI
vInIg by read-

ing interested documents with query-aware weights to rep-
resent a probability distribution of different interests.

For the document-based re-finding, we exchange the
roles of the two parts in MI to evaluate what query intent
the candidate document is likely to belong to, i.e., the key is
interested document and the value is query intent. Since
that URL is based on certain rules and changes less, we sim-
ply get the refined document vector by summing the ele-
ments of weighted document vector setDd

d0 ¼
Xn
i¼1

ad
i d

v
i : (12)

And the weights on query intents based on dv and d0 is

a
I;d
i ¼ softmaxðfðvIi ; ½dv; d0�ÞÞ: (13)

The probability distribution of historical intents based on d is
denoted as the set Kd ¼ faI;d

1 kI1; . . . ;a
I;d
nI
kInIg. These two sets

from intentmemory are essential in the final probability.

3.3 Re-Ranking the Results

In this section, we compute the probability of each part in
Eq. (1) using the personalized information we got above.

(1) For pðdjUqÞ, we make use of the information which is
collected for the query-based re-finding behavior. The nota-
tion Uq means the user interactions related to q, including
(a) the weighted satisfied and skipped document vector sets
Dþ;q and D�;q obtained in Section 3.1.2. (b) the estimated
session-based interested documents V q from the Section 3.2.
In order to measure the positive and negative effects of his-
torical behaviors, we calculate the probability of the two
parts separately and use MLP to combine them, by

pðdjUqÞ ¼ fðpðdjUþ;qÞ; pðdjU�;qÞÞ: (14)

They can be measured by the matching the candidate docu-
ments and user personalized information. For a wider range
of matches, we put d and the d0 together as the target

pðdjUþ;qÞ ¼ Fkð½d; d0�; ½Dþ;q; V q�Þ;
pðdjU�;qÞ ¼ Fkð½d; d0�; D�;qÞ;

(15)

where Fk is the matching function which follows the idea of
the previous model K-NRM [34]. It devises k kernels to
cover different degrees of matching. And the number of ker-
nel k is set to 11 in our model. Formally, after projecting all
the vectors into the same semantic space, we form two
translation matrices Mþ

ij and M�
ij by cosine similarity. The

matching function combines the scores of k kernels with
MLP (usingMþ

ij as an example)

FkðMþ
ij Þ ¼ fðf1ðMþ

ij Þ; . . . ; foðMþ
ij Þ; ; . . . ; fkðMþ

ij ÞÞ;

foðMþ
ij Þ ¼

X
i

log
X
j

exp �ðM
þ
ij � moÞ2
2s2

o

 ! !
;

(16)

where mo is evenly distributed between -1 and 1 according
to k, and so is set to 0.1 in our model. This approach gives
us an opportunity to control the degree of matching by
adjusting the kernel.
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(2) For pðqjUdÞ, which represents the probability of the
document-based re-finding. And the notation Ud includes
the information associated with d. (a) the weighted query
vector sets Qd in Section 3.1.3. (b) the estimated session-
based query intents Kd in Section 3.2. Imitating the match-
ing method of last part, we are able to get the probability by
matching the personalized information with the new query
q and the refined query q0

pðqjUdÞ ¼ Fkð½q; q0�; ½Qd;Kd�Þ: (17)

(3) For pðqjdÞ, following previous work [3], we extract lots
of features for every document, including original position,
click entropy, temporal weights and topical features. What’s
more, we add several additional features of the skipped
document following our previous idea. The probability is
computed by feeding these features fq;d into MLP with
tanhð�Þ as the activation function

pðqjdÞ ¼ fðfq;dÞ: (18)

Finally, a personalized ranking list is generated by re-
ranking the original search results according to the final
probability pðdjq; UÞ. We train our model in a pairwise way
based on the LambdaRank algorithm. The document pairs
are formed by regarding the satisfied documents as positive
samples and the skipped documents as negative samples.
The distance disij of the pair di and dj is computed by
jpðdijq; UÞ � pðdjjq; UÞj with the normalization of logistic
function. We choose weighted cross entropy between the
true distance distij and the predicted distance dispij as loss
function, and we have

loss ¼ �j�ijj distijlogðdispijÞ þ ð1� distijÞlogð1� dispijÞ
� �

;

(19)

where the weight �ij is the change of ranking quality after
swapping the pair di and dj.

3.4 Optimizing Reading Operation of MN

The READ operation of each memory we proposed above is
the single-layer attention version, which has low utilization
of the memory networks. Inspired by [16], [28], we extend
our model to multi-layer reading to further exploit the infor-
mation in each memory. This strategy can enhance the inter-
action between different memory slots, so as to more
effectively use the information in memory. We design two
optimization strategies shown in Fig. 2 to reuse the informa-
tion in memory.

Multi-Hop Attention. The first optimized READ operation
is implemented by multi-hop attention. Each hop searches
for similar information from the memory according to the
input, and aggregates the information into a state vector
with attentive weights, which will be used as the input of
the next hop together with the original input. As the num-
ber of iterations increases, the information in the memory
networks will be fully mined, and the final output will bet-
ter reflect the user’s personalized preferences.

We update the READ operation with multi-hop atten-
tion for the word memory, query memory, document mem-
ory, and intent memory. Concretely, for a memory with n

slots, given the input vector h, the attentive weights of the
ith hop fai

1; . . . ;a
i
ng can be learned by Eq. 3.1.2 based on the

input vector hi�1. Next we construct user’s preference repre-
sentation pi with weighted summation of values in each
memory slot

pi ¼
Xn
j¼1

ai
jvj; (20)

where vj is the value of jth memory slot. In order to prevent
the user preferences we collected from deviating from the
original information need as the number of hops increases,
we combine both of them as input for the next hop with a
gate unit. We have

hi ¼ z � hi�1 þ ð1� zÞ � pi; (21)

where z is the gate weight and it is set to 0.5 in our experi-
ments. The input h0 is the user information need fed into the
memory. More hops can help extract more potentially rele-
vant information, but this will ruin the identification of obvi-
ous re-finding behaviors. Therefore, we propose another
reading strategywith transformer.

Multi-Layer Transformer. The vanilla attention mechanism
sometimes cannot guarantee the stability of the effect dur-
ing multi-hop reading. Transformer [35], a structure based
on self-attention mechanism, shows stability in multi-layer
structure. Therefore, we adopt the multi-layer transformer
to implement the optimized reading operation.

Specifically, for a memory with n slots, the values of all
memory slots are denoted as V ¼ fv1; . . . ; vng. Given an
input vector h, we concatenate the values of the memory
and the input vector, and apply a multi-layer transformer to
mine the user preference. We have

o ¼ Transformerlastð½V; h�Þ; (22)

where o is the output of the model and represents the aggre-
gation of information in memory based on the input vector.
The function Transformerlastð�Þ is implemented by N-layer
transformer encoder and takes the output of the last posi-
tion. The transformer encoder consists of a Multi-head Self-
attention (MS) layer and a Position-wise Feed-forward (PF)

Fig. 2. The structure of optimized READ operation.
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layer. To keep valid training as the network goes deeper,
residual connection is applied to each layer. Each trans-
former layer is defined as

TransformerðqÞ ¼ LNðMq þDðPFðMqÞÞÞ;
Mq ¼ LNðq þDðMSðqÞÞÞ; (23)

where LNð�Þ is layer normalization to stabilize the output.
And Dð�Þ is a dropout layer with 0.1 probability in our set-
tings. The implementation details of the function MSð�Þ and
PF ð�Þ can refer to the previous work [35]. With the multi-
layer transformer, the information between different mem-
ory slots can better interact to represent the user preference,
and the advantages of memory network can be fully dis-
played to enhance the re-finding behavior.

3.5 Discussion

In summary, we propose a method to enhance the re-find-
ing behavior in personalized search with memory networks.
We make a brief discussion about usability of the model
below.

Model Compression. Our model contains many external
memories to store the user’s behavior. Due to the limited
memory space in the real scene, we compress the model to
enhance its usability. We use a fixed size sliding window to
control the size of the memory, and only keep the user’s
recent behavior. The size of the window can be adjusted
according to the physical needs. The larger the window
size, the stronger the storage capacity of the model.

Deployment on Edge Devices. Edge devices often have lim-
ited computing and storage capacity, which poses a chal-
lenge for the deployment of our model. In addition to the
model compression, the construction of all external memo-
ries can be done offline and updated regularly. Moreover,
the search engine can collect the user’s behavior first, and
after the accumulation reaches a certain number, upload
them to the server to update the user’s memories.

4 EXPERIMENTS

4.1 Dataset

We experiment with query logs of a commercial search
engine and AOL. The statistics are shown in Table 2.

Commercial dataset includes two month of non-person-
alized user click-through data in 2013. Each piece of data
contains user anonymous ID, query string, query time, top
URLs returned by the search engine, and click dwelling
time. To ensure the validity of the data, we remove the users
whose active time is less than 6 sessions (to make sure we
have enough data to build user model) and the documents

that cannot be accessed. To identify a session, we use the
common approach of demarcating session boundaries by 30
minutes of user inactivity [36].

AOL dataset contains threemonth of data, which only col-
lects the clicked documents. Following [37], the candidate
documents are selected from the top documents ranked by
BM25 algorithm [38]. Different from commercial dataset, fol-
lowing [39], the session boundaries are set with respect to
the semantic similarity between two consecutive queries,
andwe sample 5 candidate documents per query for training
and validation, 50 candidates to test the model. The docu-
ment titles are regarded as the content for matching.

Since that personalized search is based on user historical
interactions, we regard the first three quarters of data as his-
torical information to build a basic user model, and the last
quarter of data is divided into training set, validation set,
and test set in a 4:1:1 ratio. Since the query time distribution
of different users is uneven, the division is based on the num-
ber of sessions of each user during this period, so as to ensure
that each part has at least one session data. For the two types
of vector representation as we stated in Section 3.1, we train
a word vector model with word2vec [40] for the method
based onword embedding, and utilize node2vec [41] to learn
the representations of graph embedding.

4.2 Baselines

We regard the original ranking as a basic baseline and con-
sider traditional personalized methods based on re-finding
and deep learning methods for performance comparison.

P-Click [2]. This method counts the click number on the
same document under the same query in history, and gener-
ates personalized results by fusing the original ranking.

URP [13]. It extracts three types of feature (query change,
personalized and shared) to identify the re-finding and uses
it to predict user behaviors for personalized search.

SLTB [3]. It summarizes 102 features, including click-
based features, topic-based features, short and long-term
features, time decay etc., to train a ranking model by the
LambdaMART algorithm.

HRNN [10]. This method models user short-term and
long-term interests and highlight relevant interests dynami-
cally using hierarchical RNN with query-aware attention. It
is the first time to leverage sequential information with a
deep learning framework.

PSGAN [12]. This is a personalized framework for deal-
ing with the noisy click data based on generative adversarial
network. We take the discriminator of the query generation
based model as our baseline model, which is the state-of-
the-art one among four variants of PSGAN.

4.3 Our Models

RPMN (Re-finding Plus by Memory Networks): It is our
model proposed in Section 3 with vanilla attention reading
operation. To validate the effectiveness of each component,
we experiment with different combinations of the compo-
nents. Specifically, we experiment with:

RPMN-WM. Word memory is removed and we only use
the TF-IDF weight to aggregate the words.

RPMN-QM. Query memory is disabled and we assign
the same weight to all historical queries.

TABLE 2
Basic Statistics of the Datasets

Type AOL dataset Commercial dataset

#days 91 58
#users 110,439 5,998
#queries 736,454 738,731
#sessions 279,930 276,047
Average query length 2.87 3.25
Average #click per query 1.11 0.46
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RPMN-DM. This method eliminates the document mem-
ory and treats the historical documents equally.

RPMN-IM. We remove the intent memory which is to
model session-based re-finding behavior from the model.

RPMN-A. The read operation is replaced by multi-hop
attention referring to Section 3.4.

RPMN-T. The read operation is replaced by multi-layer
transformer referring to Section 3.4.

We experiment with multiple sets of parameters, includ-
ing GRU hidden state size in f200; 400400; 600g, the number of
MLP hidden units in f64; 128; 256256; 512g, transformer hidden
state size in f128; 256; 512512g, the number of heads in self-
attention in f4; 88; 16g, word embedding size in 300300; 1000g,
graph embedding size in f300300; 1000g, the number of kernel
in f5; 7; 9; 1111; 13g, learning rates in f10�2; 10�310�3; 10�4g. Con-
sidering the performance of the model, training time, and
memory usage, we choose the parameters in bold to train the
model. In more detail about node2vec which we mentioned
above, we regard queries, documents, words as the nodes of
graph to learn the graph embedding. There are three types of
edges: (1) two adjacent queries in the same session; (2) the
document and the query to which it belongs; (3) the word
and the query (or document) to which it belongs. The param-
eters p and q of node2vec are both set to 1.0 in our experi-
ment. Due to the use of a large number of user history logs,
there are plenty of parameters to learn, which takes about 12
hours per epochwith 1 GPU.After about two epochs of train-
ing, themodel will reach convergence.

4.4 Evaluation Metrics

Based on the assumption that satisfied clicked documents
are relevant and others are irrelevant, we choose three com-
mon evaluation metrics to measure the quality of the rank-
ing list, i.e., Mean Average Precise (MAP), Mean Reciprocal
Rank (MRR), and average click position (A.Clk.). What’s
more, due to the influence of the original ranking position
bias, the reason why a document is not clicked may be that
the position is too low. Based on the consideration that a sat-
isfied clicked document is more relevant than the skipped
documents and the next unclicked document, following
[12], we construct the inverse document pairs by them and

take three metrics #Better, #Worse, and P-Imp. to evaluate
the results. The metric #Better shows the number of inverse
document pairs on which the model ranks the satisfied
clicked document higher than the skipped document. The
metric #Worse counts the case that next unclicked docu-
ment is ranked higher. The metric P-Imp. is defined as
P-Imp=#Better�#Worse

#Pairs , where #Pairs is the total number of
inverse document pairs.

4.5 Overall Results and Analysis

We evaluate the results of the different methods on the test
set. The overall results are shown in Tables 3 and 4. We find:

(1) Personalized baselines versus original ranking. All
personalized strategies outperform the original ranking gen-
erated by search engine on both datasets. The result of P-
Click shows that just using the exact matching based re-find-
ing behavior is effective for personalization. URP analyzes a
wider range of re-findings and gets a better performance.
Their results prove the necessity of our work to model the re-
finding behavior in a more holistic way. SLTB integrates all
kinds of features and generates a ranking by the learning to
rank method, which is more effective than traditional re-
finding based features. HRNN and PSGAN prove the effec-
tiveness of deep learning on building user profiles dynami-
cally for personalization.

(2) Our methods versus baselines. Our proposed meth-
ods outperform baseline models in all evaluation metrics on
both datasets. Compared with the best method PSGAN in
baseline models, our models have significant improvements
with paired t-test at p < 0.05 level on MAP. Specifically, the
basic model RPMN has increased by 1.40% on MAP on
commercial dataset, while this percentage increases to
8.91% on AOL dataset. The reason is that commercial data-
set has a high-quality original ranking, which more tests the
ability of personalizing the results. But the original ranking
of AOL dataset is generated by BM25 algorithm, which still
has great upside on navigational queries. As can be seen
from the reduction of #Worse on commercial dataset, our
personalized methods have a lower risk of mistakes when
the quality of adhoc ranking is high.

(3) RPMN versus other methods we designed. The com-
plete model outperforms other models that lack a memory
on both datasets. Specifically, removing the query memory

TABLE 3
Overall Performances of Models on Commercial Dataset

Model MAP MRR A.Clk. #Better #Worse P-Imp.

Ori. .7399 .7506 2.211 - - -
P-Click .7509 .7634 2.189 3214 28 .0611
URP .7742 .7802 2.070. 4631 50 .0884
SLTB .7921 .7998 1.960 6224 81 .1170
HRNN .8065 .8191 1.902 14608 2067 .2405
PSGAN .8135 .8234 1.815 14675 1694 .2489

RPMN-WM :8239y :8343y 1:746y 14686 872 :2650y
RPMN-QM :8195y :8308y 1:763y 13621 630 .2493
RPMN-DM :8207y :8312y 1:756y 13580 603 .2490
RPMN-IM :8226y :8322y 1:749y 14372 800 :2584y

RPMN :8238y :8342y 1:745y 14735 890 :2656y
RPMN-A :8249y :8351y 1:735y 15082 1019 :2697y
RPMN-T :8260:8260y :8364:8364y 1:7301:730y 1537215372 1059 :2745:2745y

”y” indicates the model outperforms all baselines significantly with paired t-
test at p < 0.05 level. The best results are shown in bold.

TABLE 4
Overall Performances of Models on AOL Dataset

Model MAP MRR A.Clk. #Better #Worse P-Imp.

Ori. .2501 .2583 17.152 - - -
P-Click .4224 .4298 16.526 148221 455 .1747
URP .4652 .4744 15.132 228534 966 .2691
SLTB .5072 .5194 13.926 310307 1480 .3652
HRNN .5423 .5545 10.552 537758 8146 .6262
PSGAN .5480 .5600 10.267 542403 7825 .6342

RPMN-WM :5926y :6049y 8:603y 651439 10892 .6502
RPMN-QM :5834y :5952y 8:782y 634664 9091 .6350
RPMN-DM :5859y :5973y 8:743y 634456 8332 .6383
RPMN-IM :5902y :6022y 8:628y 640416 10248 :6488y

RPMN :5945y :6072y 8:556y 654348 11313 :6522y
RPMN-A :5968y :6097y 8:537y 660265 11442 :6586y
RPMN-T :5995:5995y :6135:6135y 8:4988:498y 664554664554 11890 :6625:6625y
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causes a significant decline. This indicates the query-based
re-finding is common and it is feasible to capture user inter-
ested documents by analyzing the behaviors under similar
queries. The model RPMN-DM reduces most on the metric
#Better, showing that more pairs can be improved based on
the user’s query habits for finding a specific document by
the document memory. It can be seen that eliminating the
intent memory and the word memory have less influence
on the model. The intent memory is used to discover re-
finding behavior that is more implicit, and the word mem-
ory is focused on long queries which have unnecessary
words. The optimized model RPMN-A and RPMN-T shows
better performance and indicates the effectiveness of further
utilizing information in memories.

In summary, the overall results prove thatmemory networks
are helpful for enhancing the re-finding behavior based on fine-
grained personalized information, and improve the personalized
results credibly. To further analyze what kind of queries our
model improves on, we test the performance of our model on
the different query sets in the remaining parts of this section.

4.6 Results on Different Query Sets

To measure the main contribution of our model, we divide
all test queries into different sets and test the effect of the
model. We tried two ways of dividing in the following.

Informational Queries Versus Navigational Queries. Previ-
ous studies have shown that user queries can be divided
into navigation queries and informational queries according
to the intent [1], [2], [10]. The former refers to those queries
whose purpose is clear and all users prefer the same docu-
ment. The latter are generally those that are used to get vari-
ous information or ambiguous queries. We divide the
queries with the cutoff of click entropy at 1.0, which is an
indicator to measure the potential for personalization. We
choose three baseline models STLB, HRNN, PSGAN and
two our models RPMN-QM, RPMN to compare. Finally, we
compute their MAP improvements on two query sets.

As shown in Fig. 3, our models outperform the baselines
on both query sets. For commercial dataset, all the personal-
ized methods contribute more on informational queries (with
larger click entropy) than navigational queries (with lower
click entropy) on commercial dataset. Specifically, compared
to the best baseline model PSGAN, our complete model
RPMN has little improvement on navigational queries, but
the performance on informational queries ismuch better. This
shows RPMN is good at modeling fine-grained user personal-
ized information to tailor the ranking. Comparing RPMN
with RPMN-QM, we find the query memory contributes
more on informational queries. It confirms the query-based
re-finding usually happens for collecting information and it

could be enhanced by our memory networks. For AOL data-
set, we observe opposite results that the improvement on nav-
igational queries ismore obvious. A possible reason is that the
original ranking of commercial dataset has performed well in
navigational queries, while AOLdataset has a lower baseline.

Repeated Queries Versus New Queries. In personalized
search, user behaviors under relevant queries in history can
provide essential information for building user models. For
proving the effectiveness of our model on enhancing re-
finding behavior, we categorize the queries into two sets:
repeated queries (the queries the current user has issued
before) and new queries (others), and test the performance
on them with the same model settings as above.

From Fig. 4, we find that the results on two datasets are
similar. All personalized models have improved search
quality on both query sets, while the improvement on the
repeat queries is much larger than that on the new queries.
Compared to the best baseline model PSGAN, our model
RPMN has a better performance on both parts and the
improvement on new queries is more obvious. Intuitively,
improving results on new queries is a more difficult task
because of the lack of useful personalized information. Our
model not only enhances the re-finding behavior from
repeated queries, but also improves the potential re-finding
in semantic from new queries. In addition, the results of
RPMN-QM indicates removing query memory causes more
decline on repeated queries, which proves the effectiveness
of this memory to highlight the relevant queries.

4.7 Effect of Reading With Multiple Layers

Reading the memory with different hops makes different
impact to build the user model. To explore the best reading
strategy, we try different layers of transformer and observe
the effect of the model on the two datasets separately. In
addition, we choose vanilla attention to read the memory
with multiple hops as a comparison. Based on the complete
model RPMN, we set the reading hops from 1 to 5, and
observe the changes of MAP.

The results are shown in Fig. 5. For vanilla attention, we
find that on both datasets, two-layer reading is the best

Fig. 3. The results on queries with different click entropies. Fig. 4. The results on repeat queries and new queries.

Fig. 5. The performance of multi-layer reading operation.
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method, and more layers cannot further improve the MAP.
When the number of layers is greater than three, the results are
not even as good as the single-layer reading. A possible reason
is that as the network structure deepens, the impact of obvious
re-finding behaviors will be weakened. Multi-hop reading
with transformer is a better strategy obviously.When only one
layer transformer is used, the model effect is closest to vanilla
attention. As the number of layers increases, the ranking qual-
ity is higher. This indicates the transformer is able to maintain
the stability of themodel when the network goes deeper.

4.8 Analysis on Interpretability of Our Model

Compared to previous personalization approaches based on
deep learning, our model is more interpretable owing to the
ability of memory networks to store valuable information.
Recall that we highlight relevant queries by aq and docu-
ments by ad in Section 3.1, and measure the influence of ses-
sion-based historical intent by aI;q and aI;d. For simplicity,
we present an example to analyze the interpretability of the
model from the query. The analysis from the document can
be analogized to this.

As shown in Fig. 6, given a new query ”calculating speed
labs”, by looking at the content of the slot with the highest
weight in query memory and intent memory, we can get the
following explanation: the user interactions under the 153th
query ”acceleration lab” is the most informative, and user
intent in the 20th session is highly similar to the current
query intent. According to the satisfied documents under
these queries, the candidate document has a high probabil-
ity of being clicked. Similarly, from the angle of document,
we can find out the most valuable historical satisfied docu-
ment by document memory and infer the possible intent by
intent memory. This example indicates our model handles
the potential re-finding in semantic and external memories
can explain the personalized results.

4.9 Analysis on Challenges From Data

In this part we will analyze how our model overcomes the
challenges from the data: data sparsity and data noise.

Data Sparsity. For most users on the Internet, they have
very few historical query logs and it is difficult to apply per-
sonalized strategies to them. Therefore, it is critical to make
full use of the limited historical logs to model user interests.
Our model takes advantage of the memory network on stor-
ing information, and combines deep learning to fully excavate
the fine-grained interests reflected by users’ historical behav-
ior. The results on new queries that lack relevant history show

that our model can overcome the data sparsity problem to a
certain extent.

Data Noise. It is common for users to submit queries that
contain noise, such as spelling errors, incomplete input, etc.
In order to more realistically simulate user search behavior,
we retain these noisy data. We believe these noise data also
contains the personalized information. For example, a user
often misspells some certain words. When the misspelled
words are encountered for the second time, the model can
identify it and understand the user’s query intent.

5 CONCLUSION

In this paper, we made use of external memories to enhance
the re-finding behavior that is difficult to identify based on
the fine-grained user model. First, we construct a wordmem-
ory to assign the re-findingweight to eachword and generate
vector representations. And then, we designed the memories
for queries and documents to cover two types of re-finding
behavior. In addition, endowed with the benefit from RNN
on modeling sequential data, we further constructed an
intent memory to extend the recognition of re-finding to ses-
sion level. Finally, By matching the user information needs
with the estimated user interests, we calculated the user’s
click probability on each candidate document, thereby per-
sonalizing the results. The READ operation of memory net-
works can be optimized with multiple hops to strengthen the
use of memory networks. Experimental results confirmed the
effectiveness and interpretability of our proposedmodel, and
showed the necessity of each memory and optimization
strategy.
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