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Recent studies show that historical behaviors (such as queries and their clicks) contained in a search ses-
sion can benefit the ranking performance of subsequent queries in the session. Existing neural context-aware
ranking models usually rank documents based on either latent representations of user search behaviors or the
word-level interactions between the candidate document and each historical behavior in the search session.
However, these two kinds of models both have their own drawbacks. Representation-based models neglect
fine-grained information onword-level interactions, whereas interaction-basedmodels suffer from the length
restriction of session sequence because of the large cost of word-level interactions. To complement the limi-
tations of these two kinds of models, we propose a unified context-aware document ranking model that takes
full advantage of both representation and interaction. Specifically, instead of matching a candidate document
with every single historical query in a session, we encode the session history into a latent representation
and use this representation to enhance the current query and the candidate document. We then just match
the enhanced query and candidate document with several matching components to capture the fine-grained
information of word-level interactions. Rich experiments on two public query logs prove the effectiveness
and efficiency of our model for leveraging representation and interaction.
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1 INTRODUCTION

The search engine has become an increasingly popular way for people to get information from
the Web. It receives a query and returns a ranked document list for the user to browse and click.
Usually, users’ search intents are complex so that they need to try multiple queries and browse
several websites to obtain the information that satisfies their search intent. This series of user
search behaviors (i.e., issued queries and browsed documents) is referred to as a search session [18,
29]. Leveraging contextual information in a session has been proved useful for inferring a user’s
current search intent and improve ranking [1–3, 24, 31]. Figure 1 shows an example, which helps
us understand how a user’s search context benefits the user’s current search. Supposing a user
is issuing a query “apple” and has searched “microsoft.” The current search intent is likely to be
browsing information about the “apple” company. However, if the user has searched “banana” a
minute before, the user may be looking for the fruit “apple” now. From this example, we can see
that the query “apple” is ambiguous and has different meanings under different search contexts. By
considering the historical queries (“banana” or “microsoft”), we can identify the real intent of the
current query and improve the ranking performance. Hence, utilizing contextual information of
the current search session is valuable for mining a user’s actual search intent, which is the primary
motivation of context-aware document ranking.
There are already some early works focused on session context modeling [3, 4, 13, 26, 31].

Most extract specific features from the search session to analyze the user’s current search intent.
For example, Shen et al. [26] use statistical language models to model session context. Recently,
with the widespread use of deep learning technologies in the artificial intelligence field, some
neural context-aware document ranking models have been proposed [1, 2, 24]. Following [1],
we roughly divide existing neural context-aware document ranking models into two categories:
representation-based models [1, 2] and interaction-based models [24]. Representation-based
models usually encode queries, documents, and session context into hidden representations and
compute the ranking scores of the candidate documents based on the encoded history representa-
tion and the representation of the current query. In contrast, interaction-based models often rank
documents by the fine-grained term-level interactions between queries and documents. For exam-
ple, Qu et al. [24] concatenate all search behaviors of the session into a long sequence and put it
into BERT to get the word-level interaction-based contextual representations for ranking.
These neural context-aware ranking models have achieved great performance. Nevertheless,

both kinds of models have their own advantages and drawbacks. Representation-based models
overlook the fine-grained word-level interactions [1, 2]. Interaction-based models try to compute
the interactions between every two words in the session sequence (i.e., historical search behav-
iors, the current query, and candidate documents), which leads to a larger calculation cost with
the increasing length of the input sequence. There are a few works that attempt to integrate both
interaction-based features and representation-based features for ad-hoc search [17, 23], which do
not include the session context into interactions. However, to the best of our knowledge, there
has not been any attempt to leverage both representation- and interaction-based approaches for
context-aware document ranking. In this article, we attempt to take full advantage of representa-
tion and interaction to perform session search.
The challenge of leveraging representation and interaction for context-aware document ranking

is how to incorporate session context into word-level interactions while reducing calculation cost.
In contrast to HBA-Transformers [24] making every behavior (historical queries and documents)
in the search session interact with each other on the word level, we attempt to encode the session
history into a latent representation and use it to enhance the word-level interactions between the
current query and the candidate documents. In other words, instead of matching every query
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Fig. 1. An example of session contexts reflecting different search intents under the same query.

and document in a session, we alternatively use the history representation to enhance

the last ones of the session (i.e., the current query and the candidate document) and then

match the last ones on the word level. This will significantly reduce the cost of interaction and,
at the same time, it keeps the signals of historical representations. This is a lightweight integration
of both representation and interaction signals for context-aware ranking. In addition, we generate
supplemental queries to interact with the candidate document. These supplemental queries are
supposed to contain richer information about the current user intent than the original queries and
will help improve ranking quality.

We propose a Representation and Interaction-fused Context-aware document Ranking model
(RICR), which can utilize the advantages of both representation- and interaction-based approaches.
As shown in Figure 2, RICR is composed of three modules:

(1) The session history encodermodule attempts to represent the session history into a latent
representation. It first uses the behavior encoding sub-module to obtain an attentive rep-
resentation for each historical behavior with respect to the current query. This sub-module
consists of the term-level query-aware attention mechanism and the inner-attention mech-
anism. Term-level query-aware attention can capture word-level interactions between the
current query and the historical behaviors. In addition, the inner-attention mechanism [19]
encodes different weights of words in the current query and uses them to integrate the
word-level interaction between the current query and a specific behavior for the attentive
representation of that behavior. Then, the session history encodermodule applies a Gated
Recurrent Unit (GRU) [6] on the attentive representations of historical behaviors to obtain
the sequential information of the session context.

(2) Next, the information enhancing module employs another two GRUs with the encoded
history representation as the initial hidden state to learn the enhanced word-level represen-
tations of the current query and the candidate documents. This module uses the final hidden
state of the GRU used for enhancing the current query to select a supplemental query. This
can help our model deal with a user’s search intent being more complex than the issued
query, which contains only a small set of keywords.

(3) Finally, with the enhanced and supplemental representations ready, thematching and scor-

ing module computes the matching score for document ranking with the Conv-KNRM [8]
component.

Rich experiments on an AOL search log and Tiangong-ST search log show that our model not
only yields a state-of-the-art performance but also reduces considerable calculation cost versus
interaction-based context-aware models (e.g., HBA-Transformers). RICR manages to cut over 80%
of parameters versus HBA and reduces training and inference cost considerably. More analysis of
the cost reduction is provided in Section 5.6. In addition, we conduct analysis of the supplemental
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Fig. 2. The detailed structure of RICR. Our model has three modules. (1) Session history encoder: RICR
uses the Behavior Encoding (BE) sub-module to encode historical behaviors. BE consists of the term-level
query-aware attention mechanism and the inner attention mechanism. Then, we use a GRU to model the
sequential history information and take the last hidden state of it as the overall history representation (H).
(2) Information enhancing: RICR usesH as the initial hidden state of two GRUs to enhance q and d . We also
use the last hidden state of the GRU used for enhancingq to select a supplemental queryqs forq and enhance
qs with aGRU aswell. (3)Matching and scoring:With the enhanced and supplemental representations ready,
RICR computes the matching score for document ranking with the Conv-KNRM component.

query selection module in Section 5.5, which proves that RICR manages to select a supplemental
query that can enhance the information obtained by the original query.
Our main contributions can be summarized as follows:

(1) We propose a context-aware document-ranking model, which takes full advantages of both
representation and interaction with low calculation cost.
(2) We develop a Behavior Encoding sub-module that utilizes the word-level information of the

current query to learn historical behaviors’ attentive representations.
(3) We use the overall representation of the session history to enhance the word-level repre-

sentations of the current query and the candidate documents for later matching. We also select a
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supplemental query from the query database to enhance our understanding of the current query,
which can make our model more robust.

The rest of the article is organized as follows. Related works, including representation-based and
interaction-based models, are briefly introduced in Section 2. We introduce details of our context-
aware document-ranking model RICR in Section 3. In Section 4, we describe the datasets, exper-
imental settings, and selected baselines. In Section 5, we compare and analyze the experimental
results. We present our conclusions in Section 6.

2 RELATEDWORK

2.1 Neural Ranking

There are already ad-hoc neural ranking models that only use the current query to re-rank the
candidate document. These ad-hoc models can be split into two groups: representation-based mod-
els [15] and interaction-based models [8, 15, 23, 32]. Representation-based ad-hoc models usually
encode the current query and the candidate document into hidden vectors, then compute the rank-
ing score. ARC-I [15], for example, uses Convolutional Neural Networks (CNNs) to represent the
current query and the candidate document, and utilizes a Multi-Layer Perceptron (MLP) to calcu-
late the ranking score. Interaction-based ad-hoc models calculate the ranking score based on word-
level interaction-based information between the current query and the candidate document. For
example, on the interaction matrix of the current query and the candidate document, ARC-II [15]
uses a 2D-CNN. On a word-by-word basis, Xiong et al. [32] extract the aspects of interaction be-
tween the current query and the candidate document. Kernel-pooling is used to provide soft match
signals for ranking.
The main difference between representation-based and interaction-based ad-hoc models is that

representation-based models encode query and documents into latent vectors whereas those
that are interaction based mine the information from word-level interactions between query and
documents.

2.2 Context-Aware Ranking

Previous studies have revealed that queries issued by users are usually short and ambiguous [7, 27]
and that these queries’ intents are hard to understand. Modeling a user’s search context inside
the current search session has been proved to help understand a user’s real search intent [3, 11,
18, 33]. There are already early works focused on modeling session context [3, 4, 13, 26, 31]. For
example, Bennett et al. [3] have proved contextual information inside the current search session–
that is, short-term session behaviors–to be important for improving the performance of retrieval.
This work unifies prior works on short- and long-term behaviors’ contribution to personalized
retrieval. Their work also shows that as the search session progresses, the role of the current
session’s previous behaviors in satisfying the user’s search intent becomes increasingly important.
Shen et al. [26] use statistical language models to model contextual session information. White
et al. [31] mine other users’ search sessions that are similar to the current one and use them to
identify the documents that may have a high rank. They generate features to build rich models of
a current user’s search task for finding similar tasks in the history search log. These traditional
retrieval models have made great progress, but most focus only on specific features, overlooking
those that may be equally valuable.
With the recent emergence of deep learning, lots of neural information retrieval models have

been studied [1, 2, 8, 24, 32]. These deep models gradually resolve the problem that the extracted
features are limited. Following [1], we roughly divided existing neural context-aware document
ranking models into two categories: representation-based and interaction-based models.
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2.2.1 Representation-Based Models. Representation-based models usually encode user search
behaviors and the session context into hidden representations and compute the ranking scores of
the candidate documents based on both the session context and the current query.
Ahmad et al. [1] propose a multi-task neural session relevance framework (M-NSRF) to predict a

user’s click in the current session and the user’s next query jointly. They use long short-termmem-
ory (LSTM) [14] to model queries, documents, and the sequence of historical queries into latent
representations. Then, they concatenate the representations of current query and session history
and take the result as the user’s search intent, re-ranking candidates based on this operation.
Ahmad et al. [2] supplement their previous work [1] by adding an attention mechanism into

encoding queries and documents. They also model the sequence of previously clicked docu-
ments in the current session as clickthrough information into the context representation. Though
representation-based models can include rich history information of the current session inside la-
tent vectors, they inevitably lose the fine-grained information of word-level interactions between
queries and documents.

2.2.2 Interaction-Based Models. There are already some ad-hoc retrieval models that focus on
word-level interaction [8, 17, 23, 32]. However, only a few works pay attention to an interaction-
based neural ranking model for session search. Qu et al. [24] design a Hierarchical Behavior Aware
Transformer (HBA-Transformer). They regard queries, clicked documents, and skipped documents
all as user behaviors and concatenate all behaviors in a session into a long sequence. They put the
sequence into a BERT [9] encoder to make every two behaviors in it interact with each other and
get their contextual word-level interaction-based representations. Then, they use a transformer
structure with behavior embedding and relative position embedding to further enhance the repre-
sentations. Finally, the representation of the first token (“[CLS]”) is used to calculate the ranking
score. This is the state-of-the-art method.
Interaction-based models mainly focus on fine-grained information, which makes them able

to represent user behaviors with word-level interactions. Nevertheless, interaction-based models
often cannot handle a long sequence of behaviors because of high calculation cost. Qu et al. [24]
use a history window to resolve this issue. They only concatenate user’s historical behaviors in a
fixed window size in the encoding stage. Still, they will inevitably neglect some useful information
of those behaviors that are not in the window.
In our work, we design a neural context-aware document-ranking model that leverages repre-

sentation and interaction. Instead of making every two search behaviors interact with each other,
RICR enhances the current query and the candidate document with the encoded session context
and then matches them. Experimental results show that our method is simple but effective.

3 OUR METHOD

The main goal of our model is to capture the fine-grained information of word-level interactions
with the session context taken into consideration while reducing the calculation cost. Rather than
matching every single query and document in a session, RICR uses the encoded representation of
session history to enhance the word-level interaction between the current query and the candidate
document, which manages to significantly reduce the cost.

3.1 Problem Definition

Before shedding light on RICR, we first need to state the task and some notations. In a search
session, to express a complex intent, a user might need to try several different queries and browse
some websites to obtain adequate information. The user’s former search history, that is, search
context, has influence on the user’s current search activity. Therefore, it is crucial to use session
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context to facilitate current search. The search context S is composed of the historical queries and
their corresponding clicked documents:

S = {(q1,D1), (q2,D2), . . . , (qn−1,Dn−1)}, (1)

where qi is the i-th query of the session and Di = {di,1, . . . ,di,M } refers to the corresponding list
of clicked documents. As stated in [2, 24], the skipped documents have little value; thus, we do
not include them in S. The goal of context-aware ranking is to rank the candidate document list
Dn based on both the current query qn and the session context S. Specifically, we rankDn by the
ranking scores of every document in it. The ranking score of a candidate document d under the
session history S and the current query q (short for qn) is denoted as P (d |S,q).

Note that when no ambiguity is involved, we will refer to q and d as the current query and the
corresponding candidate document to be ranked, respectively.

3.2 Overview

In this work, we propose a context-aware document-ranking model to encode S into a latent
representation and use it to enhance the word-level representations of q and d . Based on these
enhanced representations, RICR obtains fine-grained information of word-level interactions in the
matching module. Specifically, as shown in Figure 2, RICR can be divided into three main modules:
a session history encoder module, information enhancing module, and matching and scoring module.
With the statement and notations stated in Section 3.1, we give a brief introduction of these three
modules as follows.
(1) Session History Encoder. As shown in the upper right part of Figure 2, the goal of this

module is to encode the session context S into a single latent representation for further usage in
the enhancing module. RICR first uses a Behavior Encoding (BE) sub-module (illustrated in the
upper left part of Figure 2) to encode each behavior in S. The BE sub-module consists of the term-
level query-aware attention mechanism and the inner-attentionmechanism [19], which can utilize
the word-level information of q to encode historical behaviors. Then, a GRU [6] is applied to the
attentive representations of encoded historical behaviors to obtain the sequential information of
S. We use the final hidden state of this GRU as the overall history representation.
(2) Information Enhancing. As shown in the middle of Figure 2, the goal of this module is

to use the overall history representation to enhance the information of queries and documents on
the word level. RICR applies two GRUs with the encoded history as their initial states to encode
the sequential information buried in the word sequences of q and d , respectively, which can also
incorporate historical information into the enhancement. In addition, we use the final hidden state
of the GRU used for enhancing q to select a supplemental query qs to make our model more robust.
(3) Matching and Scoring. As shown in the lower part of Figure 2, the goal of this module

is to gain fine-grained information of word-level interactions. With the original and enhanced
representations ofq,qs , andd ready, RICR utilizes several matching components (Conv-KNRM [8])
to compute the matching scores of all paired combinations between these queries and documents.

3.3 Session History Encoder

With this module, RICR attempts to model session history S into a single vector for further usage
in the enhancing module. To obtain this latent representation, we use the Behavior Encoding (BE)
sub-module at the lower level to encode historical search behaviors and a GRU at the higher level
to model the sequential structure of session histories.
(1) Encoding Historical Search Behaviors. In this part, for each behavior in S, given a se-

quence of T words {o1, . . . ,oT }, we first embed them into dw -dimensional vectors {w1, . . . ,wT }
using a pretrained word-embedding model word2vec [22]. Instead of those complex embedding
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models, such as BERT [9], we choose word2vec as our initialized embedding model to reduce
the cost. As stated in Section 3.1, there may be several clicked documents (Di = {di,1, . . . ,di,M })
for each historical query qi . We simply calculate the mean of these documents’ word embedding
vectors to get a fixed-length vector for further performing of the attention mechanism, that is,
di = mean(Di ). Note that we need the word-level information in the information enhancing mod-
ule. Thus, we take the average of these word embeddings over all clicked documents instead of
their tokens. Let’s assume that the shape of the tensor of clicked documents is [the batch size, the
length of session history, the number of clicked documents, the number of words in the document,
the size of word embeddings]; the average is taken on the third dimension, that is, document-level.
We will refer to di as the aggregated representation of the corresponding clicked documents of qi .
We leave a more advanced approach to aggregating clicked documents as our future work.

Over theword-embedding layer, we encode historical search behaviors using the BE sub-module
as follows:

h
q
i = BE(qi ), (2)

hdi = BE(di ), (3)

where hqi and hdi are the output representations of qi and di , and the BE sub-module consists of
the term-level query-aware attentionmechanism and the inner-attentionmechanism. Let us
take the encoding of qi as example to walk through the structure of BE.
qi will first go through the term-level query-aware attention mechanism. The motivation of this

mechanism is that different words of the current query q have different focuses on the words of
a historical behavior. For example, the current issued query is “Tencent manager” and a historical
query is “Alibaba president.” The word “manager” will pay more attention to “president” than
“Alibaba.” However, for “Tencent,” “Alibaba” draws more attention. We use the term-level query-
aware attention mechanism to capture these various focuses. We compute the focused result of
qn, j (we use it to represent the embedding vector of the j-th word in q to avoid ambiguity) on qi
as follows:

h
q
i, j = softmax ��

(qn, jW
q + bq ) (qiW

k + bk )T

√
dw

�
� (qiW

v + bv ), (4)

where qi is the embedding of qi , h
q
i, j is the attentive representation that aggregates the focuses

of qn, j on every word of qi , Wq , bq , Wv , bv , Wk , and bk are the parameters to apply linear
transformations on representations, and dw is the dimension of word embeddings. Note that allW
of the linear transformations in the term-level query-aware attention mechanism do not change
the dimension of the vector to which it is applied.
Then, we apply the inner-attention mechanism [19] on the obtained attentive representations

to identify the weights of words in q. The intuition here is that the importance of each word in
q is different with respect to the encoding of qi . For example, the current query is “history of
China.” The weights of “history” and “China” should be higher than that of “of.” We re-weight the
word-level attentive representations of a behavior, for example, hqi , as follows:

h
q
i =

|q |∑

j=1

α jh
q
i, j , (5)

α j = softmax
(
tanh(hqi, jW2 + b2)W1 + b1

)
, (6)

where hqi is the weighted output representation ofqi , tanh(·) is a tangent activation function,W2 ∈
R
dw×dw ,W1 ∈ Rdw×1, and b2 and b1 are the parameters of a two-layer perceptron to compute the
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attention weight. Through this, the word of q that is more informative, its corresponding focused
result on a search behavior (e.g., hqi, j ), would have a larger weight in the aggregated representation

of that behavior (hqi ).
Note that we use the developed BE sub-module instead of other sophisticated structures such

as Transformer [28] because we attempt to encode each historical behavior with only its own
information and take q into consideration to reduce the cost.
(2) Modeling Sequential Session Histories. In a search session, a user often issues several

queries, browses the returned documents, and clicks on some of them. The sequential information
of the session histories is crucial for inferring the user’s current search intent. For example, a user’s
current query is “population.” Without any historical information, we may be confused about the
user’s intent. However, if we know that the user’s last two queries are “China” and “capital,” we
will infer that the user’s current intent is searching for “population of China’s capital,” which is a
concatenation of the sequential history information. In this part, we attempt to model this kind of
sequential information. Specifically, for the representations of each historical query (qi ) and the
corresponding clicked documents (di ), we first combine them to get a fixed-length vector of the
behaviors made at timestamp i . Then, intending to utilize the recurrent structure of a Recurrent
Neural Network (RNN) to model sequential information explicitly, we use a GRU to model the
sequential session histories. We use a GRU rather than LSTM [14] to reduce the cost.
For the attentive representations (obtained in Equations (2) and (3)) of a historical query (hqi )

and its corresponding clicked documents (hdi ), we use a multi-layer perceptron (MLP) with the
tanh(·) as the activation function to combine them into a fixed-length vector:

hi = MLP
(
h
q
i ,h

d
i

)
, (7)

where hi is the combined representation of the behaviors at timestamp i . Then, a GRU is used
as the encoder of sequential historical information. It computes the hidden state of each step as
follows:

si = GRU(si−1,hi ), (8)

where si ∈ Rdh is the hidden state at the i-th behavior and dh is the dimension of the GRU’s hidden
unit. We take the last hidden state sn−1 as the overall encoded history representation H.

3.4 Information Enhancing

In this module, RICR first utilizes two GRUs with the encoded history H as their initial hidden
states to enhance the information of q and d . Then RICR uses the final hidden state of the GRU
used for enhancing q to select a supplemental query and enhances it as well. These two ways of
information enhancing are illustrated as follows.
(1) Enhancing the representation of q and d with the Session History. The main goal

of our model is to obtain the information of word-level interactions along with contextual infor-
mation, while simultaneously reducing the cost. Thus, instead of matching every behavior in the
search session, we attempt to use the history (H) to enhance the current query q and the candi-
date document d , and then match them. Most works represent d independently from the session
context [1, 2, 11]. However, we believe it should also be represented contextually. For example, let
us suppose that d is “mouse Amazon.” If a historical clicked document is “computer mouses,” we
will know that d may lead the user to where one can purchase computer mouses, not animal mice.
In the following, we describe how we utilize the encoded historyH to enhance the information of
q and d .

We start by using two GRUs to enhance the word-level representations of q and d , respectively.
The recurrent structure of an RNN can give the words contextual representations by encoding the
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sequential information of the sentence. In addition, we use the encoded history H as the initial
hidden state of the GRU to add session history information into the enhancing process. We obtain
the word-level enhanced representations of q and d as follows:

q+ =
{
w
q+
1 , . . . ,w

q+

T

}
= Enhance

({
w
q
1 , . . . ,w

q

T

})
, (9)

d+ =
{
wd+

1 , . . . ,w
d+
T

}
= Enhance

({
wd

1 , . . . ,w
d
T

})
, (10)

where {w1, . . . ,wT } are the embedded word vectors from the word-embedding layer and
{w+1 , . . . ,w+T } are the enhanced embeddings. The following gives the process of word-level en-
hanced representations:

si = GRU(si−1,wi ), s0 = H, (11)

w+i = MLP(si ), (12)

where s0 is the initial hidden state, si ∈ Rdh is the hidden state at the i-th word, dh is the dimen-
sion of the GRU’s hidden unit, w+i is the enhanced word representation, MLP(·) is a multi-layer
perceptron with tanh(·) as the activation function.
(2) Enhancing q with a Supplemental Query. A user issuing a query might input only a set

of keywords of interest. For example, a user issues a query “wedding songs” whereas the actual
search intent is to find a song to dance with at the user’s son’s wedding. This kind of search intent
is not fully expressed by the issued query, which makes it hard to satisfy, especially with a lack of
historical behaviors. To deal with this, we attempt to mine a supplemental query for q from the
query database to help us understand it, which can make our model more robust. Note that the
query database we use here is the query set of the training dataset. We select 9 candidate queries
from the database for each query. Following [21], we evaluate a candidate’s supplemental rate
based on the following function:

sup(qc |q) = spe(qc |q) + sim(qc |q), (13)

where:

(1) qc is the candidate query, sup(qc |q) is the supplemental rate of qc against q;

(2) spe(qc |q) = len(qc )−len(q )
len(q ) when every word of qc appears in q, otherwise, spe(qc |q) = 0. This

component computes the specificity between qc and q.
(3) sim(qc |q) is the similarity between qc and q. We use the Python class SequenceMatcher1 to

compute the similarity here. We choose it because it is a human-friendly longest contigu-
ous and junk-free sequence comparator. We leave more advanced approaches to calculating
similarity, for example, semantic similarity, as our future work.

We use the function above to choose the top 9 queries in the database as candidates for every
query. Following [21], to ensure that if q matches the user’s current search intent or all candidates
are worse than q, we also add q into the candidate set, which makes each candidate set contain
10 queries.

To choose one from the candidates, we first use the mean of the word-embedding vectors to
represent them. Then, for each candidate, we concatenate its representation with the final hidden
state of the GRU that is used to enhance q (sq

T
, introduced in Equation (11)). Next, we apply an

MLP with relu(·) as the activation function on it:

pi = MLP
( [
s
q

T
,qci

] )
, (14)

1https://docs.python.org/3/library/difflib.html.
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where qci is the i-th candidate. Then, pi goes through a softmax function to get the probability of
selecting qci .
Finally, the qci that has the largest pi is selected as the supplemental query qs . The intuition

here is that we utilize the information of both S and q to infer which candidate we should select.
In the case that our model tries to degenerate to q, it will select q from the candidates. Moreover,
we obtain the enhanced version of the supplemental query with the same process illustrated in
Section 3.4:

qs+ = Enhance(qs ). (15)

3.5 Matching and Scoring

In this section, we describe how we perform word-level interactions between queries and docu-
ments and how we integrate different aspects of interactions to get an overall score.
In thismodule, to capture the fine-grained information of word-level interactions, we use several

matching components to calculate the ranking score of d . There are some promising matching
components for re-ranking, such as KNRM [32], Conv-KNRM [8], Duet [23], and so on. RICR
uses Conv-KNRM as its matching component because of its ability to model n-gram soft matches,
which can capture the word-level information more thoroughly. We construct RICR on top of
Conv-KNRM instead of BERT because we want to model long-sequence session context with less
GPU memory and lower computation cost in comparison with BERT-based models. (BERT-based
models are often incapable of dealingwith long session sequences. HBA simply uses a small history
window to deal with only a short session sequence.) There will be a more thorough discussion of
efficiency in Section 5.6. We obtain four scores to get a thorough understanding of the relevance
between q and d : P (d,q), P (d,q+), P (d+,q), and P (d+,q+). We obtain another four scores to get a
supplemental understanding of the relevance by matching qs and d : P (d,qs ), P (d+,qs ), P (d,qs+),
and P (d+,qs+). q and d are the original current query and candidate document. q+ and d+ are
the information-enhanced version of them. qs and qs+ are defined in Equation (15). Each score is
computed as follows:

P (d,q) = CKNRM(d,q), (16)

where P(d,q) is the matching score between a query and the corresponding candidate document.
CKNRM is short for Conv-KNRM.
Let’s shed light on P (d,q) as an example. The Conv-KNRM component first applies convolution

filters to compose n-grams from the text. We first construct a similarity matrix M . Each element
Mi, j of the matrix M is the embedding similarity between the i-th word qi of q and the j-th word
dj of d by cosine similarity. Then, we use some RBF kernels on the similarity matrixM to convert
word-level interactions to multi-level soft-match features ϕ (M ) between the query and document:

ϕ (M ) =
T∑

i=1

log�K (Mi ), (17)

�K (Mi ) = {K1 (Mi ), . . . ,KK (Mi )}, (18)

Kk (Mi ) =
∑

j

exp ��−
(Mi, j − μk )2

2σ 2
k

�
� , (19)

whereT is the number of words in q; K is the number of RBF kernels; μk and σk are the mean and
variance of the k-th RBF kernel, respectively; and ϕ (M ) is the obtained ranking features.
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Table 1. Statistics of all Datasets

AOL Training Validation Test

# sessions 219,748 34,090 29,369
# queries 566,967 88,021 76,159
average # queries per session 2.58 2.58 2.59
# candidates per query 5 5 50
average query length 2.86 2.85 2.9
average document length 7.27 7.29 7.08
average # clicks per query 1.08 1.08 1.11
Tiangong-ST Training Validation Test (Click) Test (Relevance)

# sessions 143,155 2,000 2,000 2,000
# queries 344,806 5,026 4,420 2,000
average # queries per session 2.41 2.51 2.21 1.00
# candidates per query 10 10 10 10
average query length 2.89 1.83 3.26 3.92
average document length 8.25 6.99 8.76 10.11
average # clicks per query 0.94 0.53 0.78 6.48

In total, we use eight Conv-KNRM components with different parameters to calculate the match-
ing scores of all combinations. All eight scores are combined using an MLP to get the overall rank-
ing score:

P (d |S,q) = Φ
(
P (d,q) , P

(
d+,q
)
, P
(
d,q+
)
, P
(
d+,q+

)
,

P (d,qs ) , P
(
d+,qs

)
, P
(
d,qs+

)
, P
(
d+,qs+

) )
, (20)

where Φ(·) is an MLP with tanh(·) as the activation function, P (d |S,q) is the overall ranking score
for d with respect to the current query q and the session context S.
3.6 Model Learning

To train our model, we apply a standard pairwise learning-to-rank (LTR) algorithm. For the usage
of pairwise loss, we craft pairwise training documents on the search log in the data preprocessing
stage. The positive samples are the clicked documents and the negative samples are the skipped
documents. The ranking loss for q is computed as follows:

LR (q) =
∑

(dp,dn )∈Dp,n
q

max
(
0, 1 − P (dp |S,q) + P (dn |S,q)), (21)

where Dp,n
q is the crafted paired document set for q, dp is the clicked document, and dn is the

skipped document. By this loss function, we train our model to re-rank the positive samples higher
than the corresponding negative samples.

4 EXPERIMENTAL SETTINGS

4.1 Datasets and Evaluation Metrics

We evaluate our model on two public search logs. The statistics of these two datasets are shown
in Table 1.

4.1.1 AOL Search Log. We use the one provided by Ahmad et al. [2]. Each query in the training
and validation datasets has 5 candidate documents. For each query in the testing dataset, there are
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50 candidate documents retrieved by BM25 [25]. As suggested in [2, 10, 16], we use only the title
as the content for each document.

4.1.2 Tiangong-ST Search Log. The Tiangong-ST Search Log [5] is collected from Sogou, a Chi-
nese commercial search engine. It consists of 18-day user-issued queries, their top 10 results, and
the click information made on the results. Among all sessions, there are 2,000 sessions whose last
query has human relevance labels. We use these sessions as the test set. For the rest of the sessions,
we use the last 2,000 sessions as the validation set and the remaining sessions as the training set.
In the training and validation sets, each document has a label that shows whether it was clicked
by the user. For the testing dataset, because only the last query in each session has an

annotated relevance score, we construct two testing sets based on the original testing

data:

(1) Tiangong-ST-Click: In this testing set, we do not use the last query of each session. Each
document has a label that shows whether it is clicked by a human.
(2) Tiangong-ST-Relevance: In this testing set, only the last query in a session that has a manual

annotation is used. Each of these queries is manually annotated with a five-graded relevance score.
More details about the relevance score can be found in [5]. When counting the statistics of this
dataset, we take the documents with the relevance score higher than 1 as the clicked documents.
Therefore, the average number of clicked documents for each query of this testing set seems to be
larger than those of the training and validation sets in Table 1. Note that when a context-aware
model is being evaluated on this dataset, the previous queries of each session (i.e., queries in an-
other testing set) are still used as session context.
Note that following [2, 10, 16], we use only the title as the content for each document.

4.1.3 Evaluation Metrics. To evaluate our model, we use Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR), and Normalized Discounted Cumulative Gain (NDCG) [30] as metrics.
NDCG includes NDCG@1, NDCG@3, NDCG@5, and NDCG@10, where NDCG@k indicates
NDCG at position k . For Tiangong-ST-Relevance, the relevance label has five levels, 0 to 4, which
is not suitable for using MAP or MRR. Hence, we considered documents with labels larger than
one to be relevant for computing MAP and MRR. All evaluation results are calculated by TREC’s
evaluation tool (trec_eval) [12].

4.2 Baselines

We use two kinds of baseline models for comparison to prove our model’s effectiveness.
(1) Ad-hoc Models: These models do not utilize any information from search history, that is,

they only use q to re-rank d .

• BM25 [25] is a classical retrieval algorithm that ranks d based on the terms of q appearing
in d .
• ARC-I [15] represents q and d with CNNs. Then, it uses an MLP to calculate the ranking
score.
• ARC-II [15] is interaction based. A 2D-CNN is utilized on the interaction matrix of the
current query and the candidate document.
• KNRM [32] extracts the features of interaction between q and d on the word level. Kernel
pooling is used to provide soft match signals for ranking.
• Conv-KNRM [8] is an extension of KNRM, which models n-gram soft matches with CNNs.
• Duet [23] integrates both representation-based features and interaction-based features to
rank d for ad-hoc search.
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(2) Context-aware Models: These models utilize both S and q to calculate the ranking score
of d .

• M-NSRF [1] predicts the user’s click in the current session and the user’s next query jointly.
It models queries, documents, and session history information into continuous vectors. Then,
it computes the ranking score based on these representations.
• CARS [2] solves query suggestion tasks and document-ranking tasks simultaneously. In
contrast to previous works [1], it adds attention mechanism into encoding queries and doc-
uments. It also encodes the sequence of clicked documents in the current session into a
context representation.
• HBA-Transformers [24] concatenates all search behaviors of the session into a sequence
and puts it into BERT to get word-level interaction-based contextual representations. Then,
HBA uses a hierarchical behavior attention module that consists of behavior embedding and
position embedding to further enhance the representations. Finally, the representation of the
token [CLS] is used to calculate the ranking score. This is the state-of-the-art method.2

4.3 Experiment Setup

We re-implemented all baselines. All baselines used the same pairwise ranking loss as RICR. For
ARC-I, ARC-II, Duet, M-NSRF, and CARS, we selected their hyperparameters following [2]. As
for KNRM, Conv-KNRM, and HBA, we selected their hyper-parameters following their original
papers [8, 24, 32]. As suggested in [24], we fine-tuned the BERT encoder of HBA during training.
All models (including RICR) were trained for 10 epochs on the AOL dataset and 5 epochs on the
Tiangong-ST dataset. Note that we did not use an early-stopping strategy and selected the best
result among all epochs as the final result.
To finalize the parameters of our model, we tried multiple sets of experiments on the valida-

tion set. The decided parameters are as follows. We set the pretrained 100-dimensional word2vec
model [22] as the initial word embedding, the dimension of GRU’s hidden unit as 256, the maxi-
mum length of a session as 7, the maximum length of a query as 7, the maximum document length
as 15, the dropout rate as 0.1, the learning rate as 0.001, and the training batch size as 512. As
for the Conv-KNRM components, their kernel pooling layers all have 21 kernels with different
parameters, and one is used for exact matching (μ = 1.0 and σ = 0.001). Other hyperparameters of
Conv-KNRMs are set as suggested in [8].We use AdamW [20] as the optimizer, and train ourmodel
on a 12G TITAN V GPU. The code is released on GitHub at https://github.com/haon-chen/RICR.

5 RESULTS AND ANALYSIS

5.1 Overall Performance

The overall results on all datasets are presented in Table 2. We find that all neural models out-
perform the traditional model BM25 significantly, which indicates that the task we study is diffi-
cult and meaningful. It can be clearly observed that RICR outperforms all baseline models on all
datasets in terms of all metrics. This indicates that our model successfully takes full advantage of
representation and interaction to improve re-ranking performance. For example, our model has
achieved about 13.13% improvement on NDCG@1 compared with the state-of-the-art baseline
HBA-Transformers on the Tiangong-ST-Click set and about 3.29% improvement in the terms of
NDCG@1 on the AOL set. Further, we determined the following.

2There are some slight differences between our re-implemented results and those of the original paper on HBA. This is
because of different batch size settings. We use a considerably smaller batch size than HBA does (32 vs. 512) due to the
limitation of computing resources.

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 21. Publication date: January 2023.

https://github.com/haon-chen/RICR


Integrating Representation and Interaction for Context-Aware Document Ranking 21:15

Table 2. Overall Results on All Three Testing Datasets

Dataset Model MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

AOL

BM25 0.2200 0.2271 0.1195 0.1862 0.2136 0.2481
ARC-I 0.3559 0.3661 0.2032 0.3308 0.3773 0.4242
ARC-II� 0.4114 0.4217 0.2507 0.3945 0.4396 0.4837
KNRM� 0.3861 0.3954 0.2268 0.3640 0.4115 0.4578
Conv-KNRM� 0.4282 0.4380 0.2634 0.4156 0.4598 0.5007
Duet� 0.4268 0.4364 0.2616 0.4134 0.4580 0.5002
M-NSRF� 0.4308 0.4479 0.2951 0.4297 0.4832 0.5214
CARS� 0.4363 0.4457 0.3005 0.4313 0.4801 0.5309
HBA�� 0.5273 0.5382 0.3770 0.5254 0.5597 0.5916
RICR�� 0.5338† 0.5450† 0.3894† 0.5267† 0.5648† 0.5971†
Improv. 1.23% 1.26% 3.29% 0.25% 0.91% 0.93%

Tiangong-ST-Click

BM25 0.2963 0.3073 0.1181 0.2085 0.2910 0.4649
ARC-I 0.6657 0.6899 0.5368 0.6474 0.7015 0.7557
ARC-II� 0.6684 0.6995 0.5451 0.6470 0.7103 0.7602
KNRM� 0.6733 0.6952 0.5356 0.6629 0.7149 0.7615
Conv-KNRM� 0.6925 0.7138 0.5575 0.6769 0.7248 0.7761
Duet� 0.6952 0.7145 0.5594 0.6838 0.7335 0.7776
M-NSRF� 0.6849 0.7111 0.5649 0.6741 0.7182 0.7746
CARS� 0.6923 0.7128 0.5682 0.6829 0.7297 0.7774
HBA�� 0.6961 0.7185 0.5658 0.6855 0.7366 0.7790
RICR�� 0.7472† 0.7697† 0.6401† 0.7450† 0.7822† 0.8174†
Improv. 7.34% 7.13% 13.13% 8.68% 6.19% 4.93%

Tiangong-ST-Relevance

BM25 0.7837 0.8225 0.6029 0.6646 0.7072 0.8541
ARC-I 0.7901 0.8580 0.7271 0.7263 0.7451 0.8781
ARC-II� 0.7977 0.8621 0.7390 0.7463 0.7588 0.8842
KNRM� 0.8139 0.8915 0.7429 0.7489 0.7561 0.8896
Conv-KNRM� 0.8132 0.8921 0.7498 0.7474 0.7593 0.8889
Duet� 0.8025 0.8762 0.7389 0.7357 0.7572 0.8844
M-NSRF� 0.8077 0.8811 0.7154 0.7329 0.7503 0.8805
CARS� 0.8112 0.8850 0.7389 0.7428 0.7492 0.8846
HBA�� 0.8142 0.8929 0.7598 0.7509 0.7617 0.8893
RICR�� 0.8147† 0.8937† 0.7670† 0.7636† 0.7740† 0.8934†
Improv. 0.06% 0.09% 0.95% 1.69% 1.61% 0.46%

“HBA” is short for HBA-Transformers. “Improv.” reflects improvements of RICR over HBA-Transformers. “�” indicates
this model is context-aware. “�” indicates this model utilizes interaction-based features. “†” indicates our model
outperforms all baselines significantly (p < 0.05 in two-tailed paired t-test). The best performance is in bold and the
second-best performance is underlined.

(1) RICR performs better than all ad-hoc models, which indicates the importance of

modeling session history. The ad-hoc models do not take the session context into consideration,
while RICR does. Therefore, the higher performance of RICR compared with ad-hoc models sug-
gests that modeling session context is important. In addition, RICR obtains the best performance
among all context-aware models, which proves its effectiveness for modeling session context. In-
triguingly, we find that most existing context-aware models perform worse than the interaction-
based ad-hocmodel Conv-KNRMon the Tiangong-ST set. The reasonmay be that thesemodels fail
to capture fine-grained interactions on the word level; thus, they are unable to take full advantage
of historical information.
(2) Interaction-based methods generally outperform representation-based ones. We

find that even without the usage of session context, the interaction-based model Conv-KNRM
still performs better than representation-based context-aware models on the Tiangong-ST-Click
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Table 3. Performance of Ablated Models on All Datasets

Dataset Metric w/o HE w/o DE w/o BE w/o SQS RICR (Full)

AOL

MAP 0.4454 −16.56% 0.5087 −4.93% 0.5271 −1.26% 0.5287 −0.96% 0.5338
MRR 0.4552 −16.48% 0.5192 −4.97% 0.5381 −1.27% 0.5391 −1.08% 0.5450

NDCG@1 0.2796 −28.20% 0.3566 −9.51% 0.3803 −2.34% 0.3813 −2.08% 0.3894
NDCG@3 0.4355 −17.32% 0.5014 −5.04% 0.5201 −1.25% 0.5219 −0.91% 0.5267
NDCG@5 0.4779 −15.39% 0.5399 −4.61% 0.5577 −1.26% 0.5593 −0.97% 0.5648
NDCG@10 0.5190 −13.08% 0.5750 −3.84% 0.5914 −0.95% 0.5929 −0.70% 0.5971

Tiangong-ST-Click

MAP 0.7216 −3.43% 0.7402 −0.94% 0.7329 −1.91% 0.7409 −0.84% 0.7472
MRR 0.7425 −3.53% 0.7622 −0.98% 0.7513 −2.39% 0.7631 −0.86% 0.7697

NDCG@1 0.5998 −11.00% 0.6281 −1.85% 0.6099 −4.72% 0.6284 −1.83% 0.6401
NDCG@3 0.7180 −3.62% 0.7359 −1.22% 0.7297 −2.05% 0.7404 −0.62% 0.7450
NDCG@5 0.7612 −3.96% 0.7752 −0.90% 0.7699 −1.57% 0.7771 −0.65% 0.7822
NDCG@10 0.7978 −3.62% 0.8121 −0.65% 0.8060 −1.39% 0.8126 −0.59% 0.8174

Tiangong-ST-Relevance

MAP 0.8127 −0.25% 0.8133 −0.17% 0.8139 −0.10% 0.8144 −0.03% 0.8147
MRR 0.8890 −0.53% 0.8881 −0.63% 0.8927 −0.11% 0.8912 −0.28% 0.8937

NDCG@1 0.7605 −0.85% 0.7612 −0.76% 0.7643 −0.35% 0.7647 −0.30% 0.7670
NDCG@3 0.7511 −1.64% 0.7537 −1.30% 0.7546 −1.18% 0.7524 −1.47% 0.7636
NDCG@5 0.7705 −0.45% 0.7693 −0.61% 0.7673 −0.87% 0.7692 −0.62% 0.7740
NDCG@10 0.8901 −0.37% 0.8902 −0.36% 0.8909 −0.28% 0.8912 −0.25% 0.8934

set. In addition, the interaction-based context-aware model HBA-Transformers outperforms all
other baselines on all datasets. These can indicate the effectiveness of mining the information of
interactions between queries and documents. Compared with all interaction-based models, RICR
achieves better performance, which proves that it manages to take full advantage of both repre-
sentation and interaction to improve re-ranking performance.

5.2 Ablation Analysis

To prove the effectiveness of our model, we design several variants of RICR to evaluate the impor-
tance of the components. We conduct ablation experiments on all three datasets as follows.

• RICR w/o HE. We remove the queries and documents obtained by history enhancing (HE,
introduced in Section 3.4): d+, q+, and qs+. In other words, we use only these two matching
scores: P (d,qs ), P (d,q) to re-rank d .
• RICR w/o DE. We remove the history-enhanced candidate documents (DE, introduced in
Section 3.4) and the corresponding four matching scores: P (d+,q+), P (d+,q), P (d+,qs+), and
P (d+,qs ).
• RICR w/o BE. We remove the behavior-encoding sub-module (BE, introduced in Sec-
tion 3.3), which consists of the term-level query-aware attention mechanism and the inner-
attention mechanism. Instead, we simply encode each historical search behavior by averag-
ing the embedding vectors of its words.
• RICR w/o SQS. We abandon the supplemental query selection (SQS, introduced in
Section 3.4) and the corresponding four matching scores: P (d,qs ), P (d+,qs ), P (d,qs+), and
P (d+,qs+).

The results of ablation experiments are shown in Table 3, from which we can see that all three
ablated models underperform the full model. We can further obtain the following conclusions.
(1) Utilizing contextual information of session history is necessary. In the information-

enhancing module, RICR uses the encoded session history as the initial state of three GRUs to
learn the enhanced word representations of q, qs , and d , respectively. This adds the information
of S into the latter matching module. Our model’s performance decreases after discarding the
matching of enhanced queries and documents. For example, it makes our model decrease 13.08%
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Fig. 3. Performance on sessions with different lengths.

in terms of NDCG@10 on the AOL dataset. The significant decrease shows that using contextual
information (i.e., S) is necessary for inferring a user’s intent. It is consistent with our analysis in
Section 5.1.
(2) Enhancing the candidate document with session history is effective. In contrast to

most works that represent d independently from the session context [1, 2, 11], RICR enhances the
candidate document with session history. The performance of RICR decreases after discarding the
corresponding matching scores of the enhanced document. For example, it makes our model de-
crease 9.51% in terms of NDCG@1 on the AOL dataset. This proves the effectiveness of enhancing
the candidate document.
(3) It is important to utilize the information of the current query to encode historical

behaviors. RICR uses the Behavior Encoding (BE) sub-module to encode every behavior in S. It
consists of the term-level query-aware attention mechanism and the inner-attention mechanism.
Term-level query-aware attention can encode each behavior in S with the word-level interactions
between the behavior and q. The inner-attention mechanism can identify the different levels of
importance of words in q, and use this information to encode the representations of behaviors in
S. From Table 3, we find that removing BE causes a decrease in our model’s performance. For
example, NDCG@1 decreases 2.34% on the AOL dataset. This confirms the effectiveness of our BE
sub-module. We conduct more analysis of BE in Section 5.4.
(4) The supplemental query that we select can make our model more robust. In the

information-enhancing module, we select a supplemental query (qs ) based on both session context
and q. It can help our model to deal with the user issuing a small set of keywords as q while the
search intent is more complex than this. After we abandon the supplemental query selection (SQS)
and its corresponding four matching scores, the performance of our model decreases. For example,
removing SQS causes a 1.83% decrease in terms of NDCG@1 on the Tiangong-ST-Click dataset.
This proves the effectiveness of our supplemental selection module. More analysis is provided in
Section 5.4.
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Table 4. An Example Search Session with ThreeQueries

q q1 q2
popular a song for my son groom and mother wedding dance songs
wedding a song for my son groom and mother wedding dance songs
songs a song formy son groom and mother wedding dance songs

q1 and q2 are the historical queries, q is the current query. Bold words of q1 and q2 are given
higher weights with respect to a specific word of q by term-level query aware attention
mechanism. Bold words of q are given higher weights by inner-attention mechanism.

5.3 Effect of Session Length

To study the impact of context information on sessions with different lengths, we split the test set
of the AOL dataset into three bins:

(1) Short sessions (with 2 queries) — 66.5% of the test set;
(2) Medium sessions (with 3–4 queries) —27.24% of the test set;
(3) Long sessions (with 5+ queries) — 6.26% of the test set.

Note that following [2], we filter out sessions with only one query, that is, without context
information.
We compare RICR with Duet, CARS, and HBA-Transformers on the AOL dataset and present

the results on MAP and NDCG@3 in Figure 3. We can obtain the following conclusions from the
experiment:
(1) RICRmanages to take full advantage of representation and interaction tomodel ses-

sion context.We clearly find that RICR outperforms all context-aware document ranking models
on all three groups of sessions. This proves RICR’s effectiveness in learning context information.
RICR first utilizes the BE sub-module with a GRU to encode the session context into a latent vector.
Then, it uses this latent representation to enhance the word-level interaction between the current
query and the candidate document for scoring. Through this, RICR manages to model and utilize
the session context.
(2) Modeling historical information is essential for improving ranking performance.

It is evident that the ad-hoc ranking model Duet performs worse than all three context-aware
document ranking models on all bins of sessions. This demonstrates the importance of modeling
session context once again.
(3) RICR can handle long sessions better thanHBA-Transformers. From Figure 3, we find

that all models’ performance on long sessions decreases drastically. However, RICR’s performance
is relatively stable compared with the BERT-based model HBA-Transformers. For example, HBA
decreases 10.23% in terms of NDCG@3 on long sessions compared with that on medium sessions,
whereas RICR only decreases 4.90%. This supports our claim that RICR can handle long sequences
better than the SOTA model HBA-Transformers.

5.4 Case Study of Behavior Encoding and SupplementalQuery Selection

To further verify the effectiveness and interpretability of the BE sub-module, we illustrate a quali-
tative example from the AOL search log in Table 4. The original session has four queries: “a song
for my son” (q1), “groom and mother wedding dance songs” (q2), “popular groom and mother wed-
ding dance songs” and “popular wedding songs” (q). We take the last one as the query being issued,
that is, q, and abandon the third because it is almost identical to q2. In Table 4, we highlight two
words for each query that gain higher attention weights. For example, the words “wedding” and
“songs” of q are in bold because they are given higher weights by the inner-attention mechanism,
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Table 5. An ExampleQuery “Popular Wedding Songs”
with Its Candidate Set

Index Candidate query
1 listen to most popular wedding songs
2 wedding songs
3 �family wedding songs

4 wedding songs example
5 wedding processional songs
6 free wedding songs
7 popular love songs
8 money dance wedding songs
9 new wedding tradition songs
10 popular wedding songs
The selected supplemental query is in bold and marked
with a “�”.

which indicates that they are more informative than other words in q. For q1 in the second row,
the words “song” and “son” are in bold because they are given higher weights with respect to the
word “wedding” of q by the term-level query-aware attention mechanism. Like these two exam-
ples, most of the given attention weights are reasonable and interpretable. This proves the value
of our BE sub-module.
We also take a look at how our model selects the supplemental query for q. The candidates

and the selected result are presented in Table 5. It can be observed that the selected query “family
wedding songs” is clearly consistent with the user’s current search intent, which is to find a song
to dance with at the son’s wedding, whereas q is too simple to infer this intent, which indicates
that the supplemental query can make our model more robust. We can also infer that our model
selects the supplemental query based on both the historical information and q, which is consistent
with our claim in Section 3.4.

5.5 Quality of Selected SupplementalQueries

To further study the quality of the supplemental query selected by RICR, we take a look at some
statistics of the selected supplemental queries of the AOL dataset, presented in Table 6. The first
row of this table is the rank of the supplemental rate of each candidate, which is computed by Equa-
tion (13). The second row is the proportion of the queries being selected. As stated in Section 3.4,
to ensure that if the original query matches the user’s current search intent or all candidates are
worse than the original query, we also add it into the candidate set and place it at the head of the
candidate set, that is, rank 0. We find that about 35% of supplemental queries end up being the
same as the original query, that is, about 65% of the supplemental queries have the information
that the original query does not have. We also use a sentence-transformer model3 to compute the
semantic similarity between the supplemental queries and the original. The average similarity is
0.6452. This indicates that RICR manages to select a supplemental query that can enhance the
information obtained by the original query.

5.6 Cost Comparison between RICR and HBA-Transformers

The main goal of our model is to capture the information of word-level interactions along with
contextual information while reducing the cost. To investigate how our model performs with

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.
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Table 6. Statistics of the Selected Supplemental Queries of AOL Dataset

Supplemental Rate Rank 0 1 2 3 4 5 6 7 8 9
Proportion 0.3544 0.0588 0.0653 0.0584 0.0591 0.1020 0.0859 0.0762 0.0695 0.0704
The original query is in bold.

Fig. 4. The training and inference cost of RICR and HBA. The batch size for training is 16 and is 100 for
inference. The experiment is conducted on a 12G TITAN V GPU.

respect to cost reduction, we compare the cost of our model and HBA-Transformers in two ways:
an analysis of the number of parameters and an experiment on training and inference cost.

5.6.1 The Number of Parameters. HBA-Transformers has two main components: a BERT En-
coder (BERT-Base-Uncased) and a Hierarchical Behavior Attention module. The BERT-Base model
has a position-embedding layer and 12 encoders. Each encoder has two main parts: a Multi-Head
Attention module and a Feed Forward layer. Each part in each encoder has a residual connection
around it and is followed by a layer-normalization step. Most parameters of HBA-Transformers
fall into the BERT Encoder. The Hierarchical Behavior Attention module has a two-level attention
mechanism, which also requires training.
For RICR, most parameters fall into four parts: a Word-Embedding layer, a BE sub-module, four

GRUs, and eight Conv-KNRM components. The BE sub-module, which is used to encode historical
behaviors, consists of a term-level query-aware attention and an inner attention. Among the four
GRUs, one is used to encode the sequential information ofS; the other three are used for enhancing
word-level representations of q, d , and qs . Conv-KNRM is used to capture the fine-grained word-
level interactions between queries and documents.
The main difference that allows our model to reduce the cost is that in the history-encoding

stage, instead of making every two search behaviors interact with each other, RICR obtains the
interaction information between the current query and each historical behavior only. This can be
observed in the difference between our BE sub-module and HBA’s BERT Encoder.
We count the number of the parameters that require training for both models. The results

are that HBA-Transformers has 117,044,738 parameters and RICR has 23,043,270 parameters. It is
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clear that our model cuts about 80% of the parameters compared with HBA-Transformers,
which achieves our goal to reduce the calculation cost.

5.6.2 Training and Inference Cost. To obtain a more straightforward view of the calculation
cost of RICR and HBA, we record their training and inference costs on the AOL dataset on a
12G TITAN V GPU. We record the occupation of GPU memory and the runtime as the cost. We
record the total runtime on all queries as the training and inference time. The IO, tokenization, and
word embedding have all been considered. The results are presented in Figure 4. For the training
stage, it is evident that our model saves over a half training time period compared with HBA and,
at the same time, takes only about 14.4% of HBA’s GPU memory usage. This proves our model’s
offline training efficiency. Furthermore, for the inference stage, ourmodel uses only 15.8% of HBA’s
GPU memory and spends 9.7% of HBA’s inference time. This confirms RICR’s online inference
efficiency.
We have compared the training cost, inference cost, and the number of trainable parameters of

RICR and HBA. From these analyses and experiments, we conclude that our model manages to
reduce the calculation cost considerably.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a context-aware document-ranking model RICR that leverages repre-
sentation and interaction. We first use word-level attention mechanisms and RNN to encode the
session history. We then use this encoded history to enhance the representations of the current
query and the corresponding candidate document. Tomake ourmodel more robust, we also select a
supplemental query for the current query. Finally, we use several matching components to obtain
the fine-grained information of word-level interactions. Our model manages to incorporate ses-
sion context into the word-level interactions while reducing calculation cost. Experimental results
prove the effectiveness and the efficiency of our model.
For future work, we are interested in (1) developing more advanced approaches instead of just

averaging the word embedding to aggregate clicked documents; (2) studying more effective ap-
proaches to calculate the similarity between the current query and the candidate queries to select
the supplemental query; (3) exploring how our proposed model performs on long document con-
tents instead of only titles; and (4) extending our work to different scenarios, such as personalized
search.
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