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ABSTRACT
Users’ complex information needs usually require consecutive
queries, which results in sessions with a series of interactions. Ex-
ploiting such contextual interactions has been proven to be favor-
able for result ranking. However, existing studies mainly model
the contextual information independently and sequentially. They
neglect the diverse information hidden in different relations and
structured information of session elements as well as the valu-
able signals from other relevant sessions. In this paper, we propose
HEXA, a heterogeneous graph-based context-aware document rank-
ing framework. It exploits heterogeneous graphs to organize the
contextual information and beneficial search logs for modeling user
intents and ranking results. Specifically, we construct two heteroge-
neous graphs, i.e., a session graph and a query graph. The session
graph is built from the current session queries and documents.
Meanwhile, we sample the current query’s 𝑘-layer neighbors from
search logs to construct the query graph. Then, we employ hetero-
geneous graph neural networks and specialized readout functions
on the two graphs to capture the user intents from local and global
aspects. Finally, the document ranking scores are measured by how
well the documents are matched with the two user intents. Results
on two large-scale datasets confirm the effectiveness of our model.
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1 INTRODUCTION
Withmore complex information needs, users’ search behaviors have
evolved from one-shot queries to multiple consecutive queries. Such
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Figure 1: An example processed by our method. For the cur-
rent session 𝑆𝑖 , our method represents queries, documents,
and their relationship by a heterogeneous session graph. Be-
sides, queries/documents in other sessions (such as 𝑆 𝑗 and
𝑆𝑘 ) related to the current query 𝑞3 are sampled to construct a
heterogeneous query graph. We measure the context-aware
relevance of a document based on these two graphs.

a series of queries and the corresponding user activities (e.g., clicked
documents) are often regarded as a search session [2]. Exploiting the
contextual information in a session (such as user historical behavior
or interaction) is known to be effective for understanding the user’s
search intent and ranking the search results [2, 52, 56, 58].

Various methods have been proposed for utilizing contextual in-
formation in a search session. Early studies designed some heuristic
methods to capture the influence of contextual information on doc-
ument ranking [42]. Later, many studies employed neural networks
(such as RNNs) to learn user intents from sequential session be-
haviors [1, 9, 44]. With the development of large-scale pre-trained
language models, recent studies have adopted these advanced mod-
els to identify users’ search intent from their behaviors and have
achieved significant improvement [41, 56].

The majority of existing methods formulate context-aware doc-
ument ranking as a sequential modeling problem, that is, they treat
each search session as a sequence. Although they have achieved
promising performance, in this paper, we argue that it would be
better to represent a session in a heterogeneous graph. This is
because there are various relations between queries and documents
in a session, and they convey information in different ways. We
think these different relations should be modeled discriminately,
and they have been overlooked by existing sequential methods. We
illustrate this with some examples. As shown in Figure 1, consider-
ing the current session {𝑞1, 𝑑1, · · · , 𝑑3, 𝑞3}, the transition between
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𝑞1 and 𝑞2 reflects the way the user’s search intent changes from
top-rated movies to a specific movie (Forrest Gump), while the click
action of 𝑑2 under 𝑞2 reflects how the user’s query is satisfied by 𝑑2.
It is evident that mixing together such query transition and click
relations will disturb the model in distinguishing different user
intentions behind them. Furthermore, the structures of different
relation combinations can present abundant information. For exam-
ple, combining query transition and click relations can reveal the
path of how the user’s information needs change and are satisfied
by the clicked document. The combination of click relations (e.g.,
𝑑2 ← 𝑞2 → 𝑑3) reflects that both documents meet the query intent
in different aspects.Heterogeneous graphs can naturally repre-
sent various relations by multiple edge types and capture the
structural information through graphs, hence they would be
superior to sequences in modeling a session.

Another shortcoming of existing methods is that they treat each
search session as an independent sample. In other words, only the
queries and documents in the current session are used for boosting
the ranking of a subsequent query. In fact, other related sessions
in search logs can also provide useful knowledge for under-
standing the current query and improving the ranking. As
shown in Figure 1, the current query 𝑞3 “Forrest Gump movie re-
view” also appears in other sessions (e.g., 𝑆 𝑗 and 𝑆𝑘 ). If we check
the movie review document 𝑑5 by the click relation, we can better
capture the user’s information need; and if we know that the query
𝑞5 (whether the movie is based on a true story) is often issued after
𝑞3, we can infer the user’s other potential interests. Such supple-
mentary and diverse information from other sessions in search logs
is helpful and critical for understanding a query, but it is neglected
by existing methods. In this paper, we propose to represent the
query-related information contained in related sessions by a
heterogeneous graph, similar to the way we propose to represent
a single session.

Consequently, we propose a HEterogeneous graph-based model
for conteXt-Aware document ranking, which is called HEXA. We
build two heterogeneous graphs, i.e., a session graph and a query
graph, to capture the user intents from different perspectives. (1)
For the session graph, we view the query and document as two
types of nodes due to their different natures. Three directed edge
types are considered to connect nodes, i.e., query transition, doc-
ument transition, and click-through. In detail, we link any two
queries that occurred in the same session by a directed transition
relation to capture the long dependency of the user intent trans-
fer. Another similar relation is also introduced to connect clicked
documents within a session to learn the user intent evolution in
a different perspective. Each query is linked with its clicked docu-
ments to model the intent satisfaction relation. (2) For the query
graph, we use the same graph schema as the session graph. Due to
the sparsity of click-through of search logs, we further introduce
a top result relation between queries and top returned documents.
Based on the four directed edge types, we transfer search logs into
a global graph. The query graph is built by sampling the current
query’s 𝑘-layer neighbors with our developed sampling method
from the global graph. Therefore, the understanding of the current
query can be enhanced by the supplementary information from
other sessions. We illustrate the two graphs in Figure 1.

After graph construction, we apply heterogeneous graph neu-
ral networks to compute node representations. Different readout
functions are devised for different graphs to learn user intents. Fi-
nally, we compute the similarity between candidate documents and
the obtained user intent representation and rank the documents
accordingly. We conduct experiments on two large-scale datasets,
AOL and Tiangong-ST, and the results show that our model signif-
icantly outperforms state-of-the-art methods, demonstrating the
effectiveness of modeling search sessions by heterogeneous graphs.

Our main contributions are three-fold:
(1) We exploit heterogeneous graphs to model different roles of

queries and documents in a session and differentiate their relations.
(2) We build two heterogeneous graphs, which capture user

intents within a search session and exploit supplementary informa-
tion from other sessions, to enrich the intent representation.

(3) We propose a context-aware ranking framework based on
these heterogeneous graphs. Experimental results on two real search
logs verified both the effectiveness and efficiency of our method.

2 RELATEDWORK
2.1 Context-aware Document Ranking
It has been verified that contextual information of a session search
is conducive to user intent modeling. Early studies leveraged statis-
tical features and heuristic algorithms to quantify the contextual
information and characterize the user intent [42, 49, 52]. However,
such methods heavily rely on human experience, thus limiting the
application in various retrieval tasks. Thereafter, researchers started
to build predictive models for learning user intent. For example,
hidden Markov model and Reinforcement learning were introduced
to model the evolution of user intent [3, 15, 16, 30].

With the development of deep learning, numerous neural network-
based approaches have achieved great success. For instance, recur-
rent neural networks (RNNs) were used to represent user behavior
sequences and yielded positive results in both context-aware docu-
ment ranking and query suggestion tasks [9, 44]. Researchers fur-
ther discovered that jointly learning document ranking and query
suggestion can boost the performance of both tasks [1, 2]. Recently,
large-scale pre-trained language models, e.g., BERT [11], have ex-
hibited satisfying performance in various NLP and IR tasks [5, 13,
14, 23, 31, 32, 55, 57]. In context-aware document ranking, BERT has
also achieved significant improvement with the help of additional
behavior structures or contrastive learning tasks [41, 56].

Though promising results have been obtained, the above studies
use each piece of user behavior in search logs as a single sequence
to train the model. Different from them, we propose using het-
erogeneous graphs to represent user behavior sequences where
queries/documents and their relations are modeled differently.

2.2 Application of Graph Structure in IR
Graphs are widely used in data mining as they can naturally rep-
resent structured knowledge. Based on whether involving diverse
node and relation types, graphs can be roughly categorized into ho-
mogeneous graphs and heterogeneous graphs. The homogeneous
graph considers all relations and nodes to be of the same types and
has numerous applications in the IR area. For instance, HITS [33]
and PageRank [35] were proposed to measure the importance of the
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documents based on their link relationships; click-through graphs
are employed in many IR tasks [10, 22, 27, 51]. Recently, graph
neural networks (GNNs) have shown considerable potential in
modeling graph-structured data. Homogeneous GNNs [18, 24, 46]
have also been applied to many IR tasks [7, 26, 28], and have ex-
hibited their advantages of encoding the structural information.
Some session-based recommendation algorithms employed GNNs
to model user intent based on the graph structure of the session
items [8, 36, 40, 43, 48].

In many practice scenarios, graphs typically consist of heteroge-
neous nodes and relations with different semantics; yet, the homo-
geneous GNNs are insufficient for exploring such potential informa-
tion. Several studies [20, 47, 54] therefore developed heterogeneous
graph neural networks (HGNNs) to address this problem. Recent
studies [21, 25, 37] have exploited HGNNs on recommendations to
simulate various relations between the items, attributes, and users.
They focus primarily on the heterogeneity of item attributes rather
than the different relationships between search behaviors. In con-
trast to these studies, in this work, we use heterogeneous graphs
and HGNNs to learn the user intent by capturing the semantics
of search behavior from both the contextual information within a
session and the entire search log.

3 OUR PROPOSED METHOD
Context-aware document ranking aims at learning user intent from
contextual behaviors and improving ranking quality. However, ex-
isting methods mainly focus on encoding the independent sequence
of the current session, while neglecting the information hidden in
the complex inside structure of the session and useful signals from
other sessions. In this paper, we leverage heterogeneous graphs to
capture the rich information contained in both the current session
and similar sessions, to help better understand the current intent
and improve result ranking in the end.

3.1 Problem Definition
The problem of context-aware document ranking has been exten-
sively studied in existing works [2, 41, 56]. We briefly formulate the
task as follows. We denote the user’s search behavior of a session
as a sequence of𝑀 queries S𝑟 = {𝑞1, · · · , 𝑞𝑀 }. Each query 𝑞𝑖 has a
list of candidate documents D𝑖 = {𝑑𝑖,1, · · · , 𝑑𝑖,𝑛} with binary click
signals (𝑦𝑖, 𝑗 = 1 if clicked). Each query 𝑞𝑖 is represented by the
original text string submitted to the search engine, while each can-
didate document 𝑑𝑖, 𝑗 is represented by its text content. All queries
are ordered according to their issued timestamps. For a specific
query 𝑞𝑖 , we denote all its previous queries {𝑞1, · · · , 𝑞𝑖−1} and the
corresponding clicked documents as its search context.1 With the
above notations, the context-aware document ranking task is de-
fined as: reranking the candidate document setD𝑖 of query 𝑞𝑖 based
on its search context so as to rank the clicked document as high as
possible, and each candidate document is scored by its relevance
with respect to the current query and its context. In this paper, we
propose taking more information from other sessions related to 𝑞𝑖
in search logs as a supplement to the context.2

1The first query 𝑞1 does not have a search context.
2We only use sessions from training set as search logs to avoid data leakage in inference

𝑞1 oil painting 

𝑞2 oil painting materials

𝑞3 flat brush

𝑞4 oil painting frame

𝑞1 𝑞2 𝑞3 𝑞4

(a) A series of issued query (b) The soft transition

Figure 2: An example of soft transition.

3.2 Overview
The overall structure of our model is shown in Figure 3. First, we
organize the user’s contextual behaviors within the current session
as a session graph. Meanwhile, given the current query and pre-
defined edge types, we sample the query’s 𝑘-layer neighbors from
search logs by our developed sampling method to form the query
graph. Then, we employ the Heterogeneous Graph Transformer
(HGT) and different readout functions on both graphs to model
the user intents from two perspectives, respectively. Finally, we
compare each candidate document with the two intent representa-
tions. The resulting similarity scores are combined with the score
calculated by the sequential model, to yield the final ranking score.

3.3 Heterogeneous Graphs Construction
A heterogeneous graph can model complex relations and structures,
hence is more representative than a homogeneous graph when
involving diverse node and relation types. Formally, the definition
of a heterogeneous graph is G = {V, E,T ,R}, where V , E, T ,
and R denote the sets of the nodes, edges, node types, and edge
types respectively. The type mapping functions are presented as,
𝜏 (𝑣) : V ↦→ T , 𝜙 (𝑒) : E ↦→ R. Following [12], S = {T ,R} is called
the graph schema of a heterogeneous graph where |T | + |R| > 2.

In this section, we will introduce how to construct our two
heterogeneous graphs, i.e., the query graph 𝐺𝑞 and the session
graph 𝐺𝑠 . They are derived from the similar graph schema.

3.3.1 Graph Schema. Our graph schema S includes two node
types, i.e., query and document. The edge types come from three as-
pects, i.e., query-query, query-document, and document-document.
Different edge types represent different relations between nodes.

Query-query. Users usually perform multiple interactions with
the search engine to satisfy their vague and changeable information
needs. Thus, the transition relation between queries is favorable
for mining the user search intent. A straightforward method is
to connect adjacent queries. However, merely considering such a
transition is hard to capture long dependence between queries and
makes the model sensitive to noisy queries. As shown in the exam-
ple of Figure 2 (a), the query𝑞4 “Oil painting frame” is more relevant
to 𝑞1 “Oil painting” and 𝑞2 “Oil painting materials” than 𝑞3 “flat
brush”. Therefore, we define a soft transition relation, i.e., ®𝑟stq, for
all query pairs in the same session – a previous query is connected
to all future queries, which can be described as (𝑞𝑖 , 𝑞𝑖+𝑘 , ®𝑟stq), as
shown in Figure 2 (b). We believe this edge type is more general
and robust than adjacent transition.

Query-document. For the large-scale search log, the click-
through is a commonly used evidence of relevance between queries
and documents [10, 27]. As a result, we consider the click relation
®𝑟c between queries and their clicked documents i.e., (𝑞, 𝑑, ®𝑟c). Due
to the sparsity of the click-through of the entire search log, we
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Figure 3: The architecture of our proposed model and graph schema.

further introduce a top result relation, ®𝑟t, between queries and their
top returned results for the query graph to provide more abundant
relevance signals. It can be denoted as (𝑞, 𝑑, ®𝑟t).

Document-document.Queries and documents reflect the user’s
information need from two perspectives, where the former is usu-
ally a short and vague description, and the latter contains spe-
cific and sufficient information about the query. We deem that the
clicked document transition can also reflect the user’s intent evolu-
tion, which is complementary to query transition. Similar to the
query pair, we introduce the soft transition relation ®𝑟std for clicked
document pairs in the same session as (𝑑𝑡 , 𝑑𝑡+𝑘 , ®𝑟std), where the
subscript indicates the order of the clicked documents.

It is worth noting that all relations above are asymmetrical, thus
the edges in the graph are directed. This is because the message
passing in opposite directions has different meanings. Taking the
click relation as an example, the information flows from documents
to queries is more concrete and detailed, while the opposite direc-
tion brings more general and critical descriptions from queries to
documents. Consequently, we further introduce the corresponding
reverse edge types for these directed relations to model the message
passing in different directions, e.g., (𝑞, 𝑑, ®𝑟 c). Formally, our hetero-
geneous graph schema can be defined as S = {T = {𝑄,𝐷},R =

{®𝑟x, ®𝑟x |x ∈ {stq, c, t, std}}}, which is visualized in the left of Figure 3.

3.3.2 Session Graph. The session graph 𝐺𝑠 is built on queries and
documents within the current session, which provides a local view
of the search intent. Considering that contextual behaviors reflect
the current user’s information needs, the top results of the session
queries that are ignored by the user may imply that the current user
is not interested in them. Thus the top results of current session
queries are hard to provide valuable relevance signals. Therefore,
we omit it and exploit the left relations to construct the session
graph based on the session queries and documents.

3.3.3 Query Graph. The query graph 𝐺𝑞 is designed to expand
the current query with relevant queries or documents in search
logs, which provides a global view of the query intent. Specifi-
cally, we view queries/documents containing identical content as a
query/document node. Based on our defined edge types, we con-
vert the search logs into a global graph. To consider the degree of
association between connected nodes, the number of times an edge

appears in search logs determines the edge weight. As the global
graph is usually very large, it is impractical to process it online.
Thus, we choose to offline store the global graph and sample the
query’s 𝑘-layer neighbors from it to build the query graph.

Weighted Neighbors. To sample a high-quality query graph,
we distinguish the importance of neighbors for target nodes. Specif-
ically, for edge (𝑣𝑖 , 𝑣 𝑗 , ®𝑟 ), where 𝑣𝑖 is the source node, 𝑣 𝑗 is the target
node and ®𝑟 is the edge type (when the edge type is ®𝑟 , source and
target nodes are switched), we denote the edge weight as 𝜂 (𝑣𝑖 , 𝑣 𝑗 , ®𝑟 ).
, representing how many times the connections between the nodes
have appeared in the search log. For the target node 𝑣 𝑗 , the weight
of its neighbor 𝑣𝑖 on relation ®𝑟 ,𝑤 (𝑣𝑖 |𝑣 𝑗 , ®𝑟 ), is the normalization of
the edge weight:

𝑤 (𝑣𝑖 |𝑣 𝑗 , ®𝑟 ) =
𝜂 (𝑣𝑖 , 𝑣 𝑗 , ®𝑟 )∑

𝑣𝑘 ∈N®𝑟 (𝑣𝑗 ) 𝜂 (𝑣𝑘 , 𝑣 𝑗 , ®𝑟 )
. (1)

N®𝑟 (𝑣 𝑗 ) is the neighbor set of 𝑣 𝑗 connected by the edge type ®𝑟 .
Graph SamplingMethod. Given the issued query 𝑞, we sample

its 𝑘-layer neighbors from the global graph as the query graph 𝐺𝑞 .
Unfortunately, the traditional sampling method based on for-loop
introduces a large time overhead. Concretely, we set the number
of sampled neighbors for the node at layer 𝑙 is 𝑚 × 𝑒 , where 𝑚
is the number of edge types connected to the node, and 𝑒 is the
number of sampled neighbors in each edge type. For a batch nodes
of size 𝐵, the time complexity of the 𝑘-layer neighbor sampling is
𝑂 (𝐵∑𝑘

𝑙=1 (𝑚𝑒)
𝑙−1). To accelerate the sampling process, we devise a

batch sampler with a new storage form of the global graph. Specifi-
cally, we allocate 𝐶 neighbor slots for each node on each edge type.
These slots are filled by neighbors based on their weight:

𝑂𝑐𝑐 (𝑣𝑖 |𝑣 𝑗 , ®𝑟 ) =
[
𝐶 ×𝑤 (𝑣𝑖 |𝑣 𝑗 , ®𝑟 )

]
, (2)

where [·] is the rounding operation. By this means, we obtain a
tensorM with size |R | × |V𝑙 | ×𝐶 as the global graph, whereV𝑙
is the node set of the global graph. When sampling, we take out a
tensor with size |R | × 𝐵 ×𝐶 fromM based on the target nodes in
the batch, then uniformly sample 𝑒 indexes in the last dimension to
acquire 𝑒 neighbors for all nodes in one time. The 𝑘-layer neighbors
can be obtained by repeating the above process 𝑘 times, and the
overall time complexity is reduced to 𝑂 (𝑘).
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3.4 Modeling User Intent Based on Graphs
Given the session graph 𝐺𝑠 and the query graph 𝐺𝑞 , we apply het-
erogeneous graph neural networks (HGNNs) to them for learning
node representations. Then, different readout functions are devised
for the two graphs to capture user intents from different perspec-
tives. For clarity, the obtained intent representations are called
session intent and query intent, i.e., I𝑠 and I𝑞 , respectively.

The Heterogeneous Graph Transformer (HGT) [20] is a recently
proposed method that can model different relations and capture
flexible heterogeneous structural information. We adopt this ad-
vanced network to process our graphs. Such a choice is flexible,
and HGT can be replaced by any other HGNNs.

3.4.1 Learning Session Intent. With the session graph composed
of contextual queries, documents, and their link edges, we exploit
HGT to learn the representation of queries and documents in the
graph. Since the user intent transition is hidden in the internal
structure of the session queries and documents, a single node is
inadequate to represent the complete user intent in the session.
Thus, we design a session readout layer to learn the representation
of the entire graph and capture the user’s session intent.

Session Readout. The node heterogeneity makes it hard to
capture reasonable session intent by aggregating session queries
and documents simultaneously. Moreover, because the previously
clicked documents reflect the user’s potential information needs
concretely, after the process of HGT, their node representations are
refined by the rich structural information of user intent transition
and query information of the session. Therefore, we aggregate their
node representations to compute the overall session intent:

I𝑠 =
∑︁𝑐

𝑖=1
𝛼𝑖d𝑖 ; d𝑖 = HGT(𝐺𝑠 ) [𝑑𝑖 ], (3)

where 𝑐 is the number of clicked documents, 𝛼𝑖 is the document
weights, and d𝑖 is the updated node representation of the document
𝑑𝑖 . The weight 𝛼𝑖 is yielded by the soft attention mechanism [37]
based on the current query’s node embedding, q:

𝛼𝑖 = Softmax𝑖 (𝛾𝑖 ) ; 𝛾𝑖 = v𝑇𝜎 (W𝑎q +W𝑏d𝑖 + b𝑎), (4)

where v ∈ Rℎ×1,W𝑎,W𝑏 ∈ Rℎ×ℎ , and b𝑎 ∈ Rℎ×1 are parameters,
and ℎ is the dimension of the node representation.

3.4.2 Learning Query Intent. Considering that the query graph
is centered on the current query and includes the query’s 𝑘-layer
neighbors, applying the HGT to the query graph can sufficiently
aggregate high-order neighbor features and structural informa-
tion to the current query’s node representation. We believe such a
representation can present the user’s query intent accurately. Con-
sequently, we directly readout the node representation of the query
𝑞 as the query intent I𝑞 representation, namely query readout:

I𝑞 = HGT(𝐺𝑞) [𝑞], (5)

3.4.3 Processing Steps of HGT. Inspired by the Transformer en-
coder [45] the HGT adopts the self-attention mechanism to aggre-
gate neighbor features into target nodes. Particularly, the projection
weights of HGT are specific to node and edge types for modeling
their heterogeneity. We state its steps below.

Attention Mechanism. Take the triplet (𝑠, 𝑡, ®𝑟 ) as an example,
where 𝑠, 𝑡 denote the source and target nodes, and ®𝑟 is the edge

type. The attention value is calculated as:

Attn(𝑠, 𝑡, ®𝑟 ) = Softmax𝑠∈N(𝑡 )
((
𝐾 (𝑠)W𝐴

®𝑟 𝑄 (𝑡)
)
·
𝜇®𝑟√
ℎ

)
, (6)

where N(𝑡) is the set of node 𝑡 ’s neighbors from all relations; W𝐴
®𝑟

is an edge type-specific matrix (different edge types have different
parameters) for modeling the edge heterogeneity; 𝜇®𝑟 are trainable
parameters to capture the prior importance of each edge type; and
𝐾 (𝑠) and 𝑄 (𝑡) are Key and Query vectors mapped from source
and target nodes. To encode node heterogeneity,𝑄 (𝑡) and 𝐾 (𝑠) are
produced by node type-specific linear projections K-Linear𝜏 (𝑠 ) and
Q-Linear𝜏 (𝑡 ) as:

𝐾 (𝑠) = K-Linear𝜏 (𝑠 )
(
𝐻 𝑙 [𝑠]

)
, 𝑄 (𝑡) = Q-Linear𝜏 (𝑡 )

(
𝐻 𝑙 [𝑡]

)
.

𝐻 𝑙 [𝑥] denotes the node 𝑥 ’s representation after 𝑙 layer HGT, and
𝐻0 [𝑥] is initialized by the pre-trained BERT embeddings.

Massage Passing. To model diverse semantics conveyed in
different types of edges and nodes, the massage passing is also
sensitive to the graph heterogeneity, which is defined as:

Message(𝑠, 𝑡, ®𝑟 ) = V-Linear𝜏 (𝑠 )
(
𝐻 𝑙 [𝑠]

)
W𝑀
®𝑟 . (7)

Similar to the attention mechanism, V-Linear𝜏 (𝑠 ) (·) andW𝑀
®𝑟 are

used to learn the heterogeneity of node and edge types.
Nodes Updating. Given attention values and message features,

the information from source nodes is aggregated as follows:

�̃� 𝑙+1 [𝑡] =
∑︁

𝑠∈N(𝑡 ) Attn(𝑠, 𝑡, ®𝑟 ) ·Message(𝑠, 𝑡, ®𝑟 ). (8)

It is used to update the representation of the target node by:

𝐻 𝑙+1 [𝑡] = 𝜎
(
A-Linear𝜏 (𝑡 )

(
�̃� 𝑙+1 [𝑡]

))
+ 𝐻 𝑙 [𝑡], (9)

where the linear projection A-Linear𝜏 (𝑡 ) (·) is applied to map the
aggregated vector �̃� 𝑙+1 [𝑡] back to the type-specific space of the
target node. 𝜎 is an activation function.

Themulti-head attention is employed to capturemulti-granularity
features from different heads. We conduct a 𝑘-layer HGT on the
graphs and view the 𝐻𝑘 [𝑥] as the node 𝑥 ’s representation.

3.5 Candidate Document Ranking
With the query intent modeling user intent from global search logs
and the session intent capturing user intent from the local session,
the ranking score of the candidate document 𝑑 is measured by how
well it matches the user intents. Specifically, we first calculate two
types of ranking scores, i.e., sg (𝑑) and sl (𝑑), by dot-production as:

sg (𝑑) = I⊤𝑞 d, sl (𝑑) = I⊤𝑠 d. (10)

where d is the document vector produced by the BERT, which
is the same model used to initialize the node vector. Since BERT
has achieved great performance in sequential modeling [41, 56],
we retain it to model the user’s session behaviors. Following [56],
all queries and the corresponding documents are concatenated
alternatively as a long sequence 𝑋 and fed into the BERT. The
output of the [CLS] token is used to compute the matching score:

sq (𝑑) = 𝑓 (BERT(𝑋 )[CLS] ), (11)
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Table 1: The statistics of two datasets. We abbreviate “Query”,
“Document”, and “Session” to “Qry”, “Doc”, and “Sess”.

Items AOL Tiangong-ST

Train Valid Test Train Valid Test

# Sessions 219,748 34,090 29,369 143,155 2,000 2,000
# Queries 566,967 88,021 76,159 344,806 5,026 6,420
Avg. # Qry/Sess 2.58 2.58 2.59 2.41 2.51 3.21
Avg. # Doc/Qry 5 5 50 10 10 10
Avg. Qry Len 2.86 2.85 2.9 2.89 1.83 3.46
Avg. Doc Len 7.27 7.29 7.08 8.25 6.99 9.18
Avg. # Clicks/Qry 1.08 1.08 1.11 0.94 0.53 3.65

where 𝑓 (·) is an MLP layer. Finally, We yield the ranking score by
combining the three scores through an MLP layer𝜓 (·):

s(𝑑) = 𝜓 ( [sg (𝑑); sl (𝑑); sq (𝑑)]), (12)

where [;] is the concatenation operation.

3.5.1 Optimization. Consistent with previous studies [2, 41, 56],
we apply a point-wise learning-to-rank algorithm to optimize our
model. The loss function is formulated as follows:

L = − 1
𝑁

∑︁𝑁

𝑖=1
𝑦𝑖 log 𝑧𝑖 + (1 − 𝑦𝑖 ) log (1 − 𝑧𝑖 ) (13)

where𝑁 is the number of training samples, where 𝑧𝑖 = sigmoid(s(𝑑𝑖 )).

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. Following previous studies [4, 56, 58], we conduct
experiments on two large-scale search log datasets, i.e., AOL [38]
and Tiangong-ST [6].

We use the AOL dataset provided by [2]. It contains numerous
search logs grouped as sessions. Specifically, five candidate docu-
ments are provided for each query in both training and validation
sets. In the test set, 50 documents retrieved by BM25 are used as
candidates for each query. The candidate construction process can
be referred to at [1]. There is at least one clicked document under a
query. For the Tiangong-ST dataset, the session data are extracted
from an 18-day search log provided by a Chinese search engine, and
each query has ten candidate documents. In training and validation
sets, we use the click-through labels as relevant signals, while in
the test set, the dataset provides an annotated relevance score (0-4)
for the last query of each session. Following [2, 56], we use the
document title as its content to reduce memory load and improve
efficiency. The statistics of both datasets are shown in Table 1.

4.1.2 Evaluation Metrics. We employ three common metrics to
evaluate the models’ performance, i.e., Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR), and Normalized Discounted
Cumulative Gain at position 𝑘 (NDCG@𝑘 , 𝑘 = {1, 3, 5, 10}). As the
relevance labels provided in the Tiangong-ST dataset are human-
annotated, MAP and MRR may be inaccurate for evaluation. We
follow the original authors’ suggestion [6] and concentrate on
NDCG metrics. All evaluation results are computed by the TREC’s
official evaluation tool (trec_eval) [17].

4.2 Baselines
In our experiment, we compare the performance of our model with
two kinds of baselines, including (1) ad-hoc ranking methods; and
(2) sequence-based ranking methods.

(1) Ad-hoc ranking. These methods focus on the matching
between the issued query and candidate documents but do not use
the information from the search context.
• ACR-I [19] is a representation-based method that applies con-

volutional neural networks (CNNs) to learn the representations of
queries and documents.
• ACR-II [19] employs CNNs on the matching map between

query and document terms to better capture their interactions.
• KNRM [53] is another interaction-based model that captures

relevance signals from the matching map by Gaussian kernels.
• Duet [34] combines interaction-based and representation-based

features to learn more reliable ranking scores.
(2) Sequence-based ranking. It utilizes the session behavior

sequence to learn the user intent and rank the candidates.
• M-NSRF [1] jointly optimizes the next query prediction and

context-aware document ranking tasks by a multi-task framework.
• M-Match-Tensor [1] (M-Match for brevity) improves M-NSRF

by learning contextual representations for query and document
terms. It yields the ranking score by word-level representations.
• CARS [2] incorporates implicit feedback from contextual infor-

mation to enhance both query suggestion and document ranking.
• HBA-Transformer [41] (HBA for brevity) exploits BERT and a

high-level Transformer structure to learn the contextual informa-
tion by CLS-pooling.
• COCA [56] leverages the contrastive learning to pre-train the

BERT and improves its robustness for representing user behavior
sequences. It is the state-of-the-art (SOTA) method for context-
aware document ranking.

4.3 Implement Details
We implement our model based on PyTorch [39], and the BERT
checkpoint is provided by HuggingFace [50]. For the storage of
the global graph, we set the count of neighbor slots 𝐶 as 100. For
the query graph, we set the order of sampled neighbor 𝑘 = 2
and we sample two neighbors for each edge type. Therefore, there
are at most eight neighbors for each target node. We conduct a
two-layer HGT on the session and query graphs to alleviate the
over-smoothing problem. The head number of HGT is six. We pre-
train the BERT used to initialize the node embedding by positive
query-document pairs and in-batch negative sampling to offer high-
quality node features. The BERT used for sequential modeling is
initialized with the original parameters from HuggingFace. We
adopt AdamW optimizer [29] to train our model. The learning rate
is set as 2e-5 with a linear decay. We train our method by five
epochs and the batch size is set as 64. Our code was released on
GitHub via https://github.com/ShootingWong/HEXA.

4.4 Overall Results
Experimental results are shown in Table 2. We can see that our HEXA
outperforms all existing methods. It demonstrates the advantage of
our approach. Additionally, we have the following observations.
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Table 2: The overall results of our model and compared baselines. “‡” indicates the model outperforms all baselines significantly
in paired t-test at 𝑝 < 0.01 level (with Bonferroni correction). The best result is emphasized by bold.

Models AOL Dataset Tiangong-ST Dataset

MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

ARC-I 0.3361 0.3475 0.1988 0.3108 0.3489 0.3953 0.7088 0.7087 0.7317 0.8691
ARC-II 0.3834 0.3951 0.2428 0.3564 0.4026 0.4486 0.7131 0.7237 0.7379 0.8732
KNRM 0.4038 0.4133 0.2397 0.3868 0.4322 0.4761 0.7560 0.7457 0.7716 0.8894
Duet 0.4008 0.4111 0.2492 0.3822 0.4246 0.4675 0.7577 0.7354 0.7548 0.8829

M-NSRF 0.4217 0.4326 0.2737 0.4025 0.4458 0.4886 0.7124 0.7308 0.7489 0.8795
M-Match 0.4459 0.4572 0.3020 0.4301 0.4697 0.5103 0.7311 0.7233 0.7427 0.8801
CARS 0.4297 0.4408 0.2816 0.4117 0.4542 0.4971 0.7385 0.7386 0.7512 0.8837
HBA 0.5281 0.5384 0.3773 0.5241 0.5624 0.5951 0.7612 0.7518 0.7639 0.8896
COCA 0.5500 0.5601 0.4024 0.5478 0.5849 0.6160 0.7769 0.7576 0.7703 0.8932

HEXA 0.5625‡ 0.5727‡ 0.4142‡ 0.5631‡ 0.5974‡ 0.6279‡ 0.7791 0.7734‡ 0.7945‡ 0.9011‡

Improv. over COCA +2.27% +2.25% +2.93% +2.79% +2.14% +1.93% +0.28% +2.09% +3.14% +0.88%

Table 3: The results of ablation studies.

Models AOL Tiangong-ST

MAP NDCG@1 NDCG@3 NDCG@5

HEXA (Full) 0.5625 0.4142 0.7734 0.7945
w/o SGM 0.5535 0.4053 0.7668 0.7821
w/o QGM 0.5506 0.4019 0.7647 0.7916
w/o INE 0.5588 0.4115 0.7598 0.7747
w/o SRL 0.5595 0.4124 0.7617 0.7823
w/ GCN 0.5496 0.4003 0.7585 0.7699
w/ Max 0.5442 0.3967 0.7534 0.7606

Table 4: The results of different sampling strategies/methods.

Models AOL Tiangong-ST

Qry Latency (s) MAP Qry Latency (s) NDCG@3

HEXA (Full) 0.0548 0.5625 0.0139 0.7734
+for-loop 0.0585 0.5621 0.0169 0.7729
+uni-spl 0.0581 0.5543 0.0164 0.7673
+top-spl 0.0547 0.5606 0.0139 0.7728

COCA 0.0531 0.5500 0.0120 0.7576

(1) Compared with all baselines, our HEXA achieves the best
results, confirming that modeling search sessions and valuable
search logs based on heterogeneous graphs is effective. Generally,
context-aware ranking models perform better than ad-hoc ranking
methods, indicating the benefit of contextual information for under-
standing user intent and improving ranking. Further, the significant
improvement achieved by HBA and COCA (more than 15% in terms
of all metrics on AOL) implies the superiority of the pre-trained
language models (e.g., BERT) in capturing sequential information.

(2) Our graph-based HEXA model significantly outperforms
the state-of-the-art method COCA (in paired t-test at 𝑝-value
< 0.01). All previous context-aware document ranking approaches
modeled the user’s session behavior as a sequence. In contrast, our
HEXA leverages heterogeneous graphs to represent the session and
expand the current query in local and global views, respectively. The
improvement obtained by HEXA suggests that the heterogeneous

graph can more accurately represent the session, which can help
determine the user intent and enhance the document ranking.

(3) It is interesting that the improvement of HEXA on the AOL
is greater than that on the Tiangong-ST. The potential reasons
include: (i) On Tiangong-ST, the model is trained on click labels but
tested with human-annotated relevance labels. This gap makes the
task considerably more difficult, but we speculate that the problem
can be alleviated if there are additional training relevance labels
available. (ii) Candidate documents in Tiangong-ST are returned by
the modern search engine, resulting in a higher overall relevance
than candidates in AOL. It requires models to discern finer-grained
differences between documents and increases the difficulty of the
task. Nevertheless, our HEXA performs best on both datasets,
indicating its high generalizability and broad application.

4.5 Ablation Study
We conduct several ablation studies to investigate the effects of
various modules in HEXA. The results are shown in Table 3.

(1) Effectiveness of the two graphs. The two heterogeneous
graphs play different roles in HEXA. To study their impact, we first
eliminate the session graph and construct a variant, namely “w/o
SGM”. We find the performance drops significantly. This demon-
strates the importance of modeling the heterogeneous structure
of session elements and their internal relations. Next, we drop the
query graph and denote the variant as “w/o QGM”, where the model
only uses the current session to rank documents. The performance
degradation reveals that the other relevant sessions are extremely
useful for identifying the intent of the current query.

(2) Effectiveness of encoding two graphs independently.
Our HEXA builds two graphs from different information sources, i.e.,
contextual information and relevant search logs. Alternatively, they
can be combined into a hybrid graph. We denote this variant as
“w/o INE”. The result indicates that HEXA performs worse with the
hybrid graph than separately modeling the two graphs. The possi-
ble explanation is that the semantics contained in the two graphs
are derived from different perspectives. The query graph captures
the relevant information from the global search logs, whereas the
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Figure 4: Results on different session lengths.

session graph displays the user’s intent in the local view. There-
fore, they are incompatible and may affect each other. Despite this,
HEXA with the hybrid graph can still outperform COCA. It again
demonstrates the limitations of existing sequential methods for
representing heterogeneous objects and relations.

(3) Effectiveness of session readout layer. To learn the user’s
session intent, we devise a session readout layer to capture the
embedding of the session graph. To test its effect, we replace it
with the query readout layer and build a variant “w/o SRL”. The
results show that adopting query readout on the session graph
is detrimental to the model’s performance. We analyze the cause
since the graph structure of session items represents complex user
intents, which is hard to capture with a single node. Thus, the
session readout layer performs better than the query readout layer.

(4) Effectiveness of heterogeneous graphs. To model the
heterogeneity of graph structures, we employ HGT on the two
heterogeneous graphs for representation. To validate its useful-
ness, we replace HGT with the widely used homogeneous GNN,
GraphSAGE [18]. Specifically, we apply GraphSAGE with two ag-
gregation functions, GCN and Max-pooling, denoted as “w/ GCN”
and “w/ Max”, respectively. Based on the results, all homogeneous
GNNs perform worse than our model. These results confirm our
assumption that different relations should be modeled separately,
hence heterogeneous graphs can better capture user intents.

4.6 Efficiency and Effectiveness of Sampling
To test the efficiency of our proposed batch sampler, we compare
it with the traditional for-loop-based sampling in terms of the
average query latency. To verify the effectiveness of our weighted
sampling, we further employ two alternative sampling strategies.
One is uniformly sampling neighbors without weights (denoted as
“uni-spl”), and the other is sampling the top-weighted neighbors
fixedly (denoted as “top-spl”). We compare the results with COCA.
Based on the results in Table 4, we have the following observations:

(1) Our batch sampler is faster than for-loop sampling, which
implies its efficiency for inference on large-scale datasets. Since
uniform sampling is also based on for-loop, they have similar pro-
cessing costs. The efficiency of top sampling is similar to our batch
sampler as we also store the top neighbors via a tensor. Besides, we
also notice that the average query latency of all variants of HEXA is
comparable to COCA. This is because the sequential modeling part of
HEXA is the same as COCA (i.e., a BERT model), and it consumes the
majority of processing costs. As a comparison, our heterogeneous
graph modules only require a little additional overhead, but bring

significant improvement. This clearly demonstrates its superiority
in context-aware document ranking. (2) For effectiveness, all HEXA
variations outperform the SOTA model, confirming the power and
robustness of our proposed model. In detail, uniform sampling per-
forms worstly among all variants, and top sampling underperforms
batch sampling. The reason is that the uniform sampling ignores
the importance of each neighbor, which introduces considerable
noise. On the other hand, top sampling uses fixed neighbors, which
may lose diverse training signals and hurt model optimization.

4.7 Impact of Session Lengths
The session length controls the richness of contextual information
and influences the performance of context-aware ranking models.
We examine this effect by dividing the test sessions into short
(length≤2), medium (length=3 or 4), and long sessions (length>4).
The results of HEXA and some baselines are illustrated in Figure 4,
where the 𝑦-axis denotes the improvement of the models over the
strong ad-hoc ranking model Duet.

It is evident that HEXA performs better than all baselines, which
implies the robustness of our model across various session lengths.
Furthermore, we discover that the shorter the session length, the
greater the improvement in HEXA. We attribute this to the use of
the query graph, which expands the current query throughout the
entire search log beyond the contextual information. These results
verify the advantages of heterogeneous graphs in modeling session
behaviors and the benefits of relevant search logs on ranking.

5 CONCLUSION
In this paper, we propose a heterogeneous graph-based model for
context-aware document ranking, which leverages the current ses-
sion and other sessions by heterogeneous graphs to capture accurate
user intents. Specifically, we view queries and documents as two
node types and devise four directed relations to build a trustwor-
thy graph schema. Two heterogeneous graphs are derived from
it by organizing the current session and other relevant sessions,
respectively. We further develop a batch sampler to accelerate the
sampling process. The heterogeneous graph transformers and two
readout functions are applied to capture user intents from the two
graphs. Finally, we measure the document scores by their similarity
with the user intents. Experimental results prove the effectiveness
and efficiency of our proposed method.
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