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Abstract
Cloud solutions have gained significant popularity in the technol-
ogy industry as they offer a combination of services and tools to
tackle specific problems. However, despite their widespread use, the
task of identifying appropriate company customers for a specific
target solution to the sales team of a solution provider remains a
complex business problem that existing matching systems have
yet to adequately address. In this work, we study the B2B solution
matching problem and identify twomain challenges of this scenario:
(1) the modeling of complex multi-field features and (2) the limited,
incomplete, and sparse transaction data. To tackle these challenges,
we propose a framework CAMA, which is built with a hierarchical
multi-field matching structure as its backbone and supplemented by
three data augmentation strategies and a contrastive pre-training
objective to compensate for the imperfections in the available data.
Through extensive experiments on a real-world dataset, we demon-
strate that CAMA outperforms several strong baseline matching
models significantly. Furthermore, we have deployed our match-
ing framework on a system of Huawei Cloud. Our observations
indicate an improvement of about 30% compared to the previ-
ous online model in terms of Conversion Rate (CVR), which
demonstrates its great business value.

CCS Concepts
• Information systems → Retrieval models and ranking.

Keywords
Multi-field Matching, Contrastive Learning, Cloud Solutions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/3637528.3671513

ACM Reference Format:
Haonan Chen, Zhicheng Dou, Xuetong Hao, Yunhao Tao, Shiren Song,
and Zhenli Sheng. 2024. EnhancingMulti-field B2B Cloud SolutionMatching
via Contrastive Pre-training. In Proceedings of Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24).
ACM, New York, NY, USA, 11 pages. https://doi.org/3637528.3671513

1 Introduction
Cloud solutions, referring to a combination of various cloud-based
technologies, tools, and services, have become increasingly pop-
ular among companies these years. They are designed to address
specific business needs or solve particular problems, such as data
storage, application development, customer relationship manage-
ment (CRM), etc. For solution providers, it is crucial to have an
effective matching system that can guide sales teams in identifying
potential enterprises that can buy the solution. This is particularly
important due to the marketing value of solutions and the high cost
of human resources in Business-to-Business (B2B) scenarios.

While there have been some studies focusing on designing ef-
fective matching systems [2, 23, 25, 29, 37, 44, 47], none of these
works have explored the matching of cloud solutions and their cus-
tomers, which holds significant business value. In Huawei Cloud,
the scenario is manual-driven, wherein our model identifies a list
of the top matching companies to the sales team associated with
a specific solution. The sales team then manually reviews this list
and proceeds with promoting the solution to those companies. This
specific scenario can be considered a matching problem, with the
primary goal being the identification of appropriate companies
(customers) for the sales teams to target in their promotion efforts.

In this work, we focus on this specific scenario of B2B solution
matching and identify two main challenges: (1) The features of
solutions and companies are complex and often comprised of
multiple fields.As presented in Table 1, the features consist of text,
categorical, and numeric features, which consist of multiple fields.
Modeling these different types of features can pose challenges, such
as different encoding paradigms for texts and other features, po-
tential interference between different text fields, and interactions
between different types of features. (2) The available transac-
tion data, which include recorded successful purchases, are
limited, incomplete, and sparse. The paradigm of our scenario
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is manual-driven, i.e., the list of highly matched companies gen-
erated by a matching system needs to be manually reviewed by
sales teams before contacting potential customers. As a result, the
matching of solutions and target companies in a B2B scenario re-
quires significant human resources, leading to limited recorded
data. Additionally, the data of solutions and companies may be
incomplete, with specific fields or tokens missing due to recording
or registration errors (as shown in Table 1). In addition, numer-
ous potential purchases remain undiscovered. For instance, despite
similar companies requiring the same solution, they may not be
persuaded by the sales team due to various factors, including the
effectiveness of the sales pitch, the company’s history of purchasing
solutions from other providers, and even personal relationships.
Consequently, our available training data inherently suffers from
data sparsity.

To address these problems, we propose a Contrastive pre-trained
hierArchicalMulti-field mAtching framework for B2B cloud solu-
tion matching (CAMA). More specifically:
• For the first challenge, we propose a hierarchical multi-field
matching framework as the backbone of CAMA. To mitigate token-
level interference between different types of texts, we separate the
text fields into description-like texts and attribute-like texts. To
gain a comprehensive understanding of each text group, we uti-
lize two separate BERT models [11] as token-level encoders. We
further incorporate Field-aware Embeddings into the embedding
layers of BERTs to identify different fields during the matching
process. In addition to the text fields, we also employ look-up em-
beddings and the AutoDis technique [16] to encode categorical
and numerical features, respectively. Furthermore, we model the
interactions among different feature groups at a higher level using
another Transformer encoder [12]. This allows us to capture the
dependencies and relationships between the various feature groups.
• To address the second challenge, we devise several data aug-
mentation strategies and implement a contrastive learning objective
to pre-train the BERT encoders. To generate additional solution-
company sample pairs, we employ three augmentation techniques:
Token Masking, Field Masking, and Company Replacing. These
strategies allow us to complement the imperfect transaction data
by introducing variations. Through pre-training the BERT encoders
with augmented data and a contrastive learning objective, we aim
to enhance our model’s robustness and generalization.

Our experiments in both online and offline settings demonstrate
the effectiveness of our proposed model. CAMA performs signif-
icantly better than some strong matching baseline models on a
real-world dataset. After being deployed on an online system, it
surpasses the previous online model of Huawei Cloudby about 30%
in terms of Conversion Rate.

In summary, the contributions of our work are as follows:
(1) We recognize the value and importance of the B2B cloud

solution matching problem and identify two major challenges.
(2) To address these challenges, we propose CAMA, a framework

that incorporates a hierarchical multi-fieldmatching approach and a
text-matching enhancement module utilizing contrastive learning.

(3) We validate the effectiveness of our framework through ex-
periments conducted in both offline and online settings. The results
demonstrate that our method is effective in the matching of cloud

Table 1: An example solution-company pair to present their
complex multi-field features. The missing fields and tokens
due to recording errors are marked with the color red.

Group Field Feature

Solution

Description
(𝑠d)

Name Distributed Cache Service
Introduction There are currently hot data in...

Attribute
(𝑠a )

First-level Industry Internet
Second-level Industry Internet Information Services
Third-level Industry NA
Target Industry NA

Company

Description
(𝑐d)

Name *** (masked for privacy concern)
Introduction *** is an internet education...
Business Scope The business scope includes...

Attribute
(𝑐a)

First-level Industry Education
Second-level Industry (Online) Education
Third-level Industry Skills training, ...
Copyright Name review system, ...
Key Project Category Education Platform

Scale
(𝑐s)

Categorical Features {Status: 1}, ... (8 more features)
Numeric Features {# App: 7}, ... (21 more features)

solutions and target companies in real-world B2B scenarios, offering
substantial industrial value.

2 Related Work
2.1 B2B Application Scenario
Business-to-Business (B2B) systems differ fromBusiness-to-Consumer
systems typically employed on e-commerce platforms. B2B systems
are designed for more complex scenarios and are primarily deployed
within a company for internal usage. Consequently, the existing
literature on B2B matching is limited. Zhang et al. [49] was an
early work introducing B2B matching scenario. Some works com-
bined several techniques to design hybrid systems [1, 31, 36]. For
instance, Pande et al. [31] combined case-based reasoning (CBR),
Collaborative Filtering (CF), and Random Walk for Consultancy.
Furthermore, some applied tree-based algorithm [40] and graph-
based methods [18, 41, 42] to model relationships of customers. For
example, Henna et al. [18] utilized a graph convolution network
(GCN) for B2B customer relationship management. These works
all make great contributions to this field. However, none of these
studies have explored the valuable solution-company matching
scenario and its associated challenges.

2.2 Matching Models
In our scenario, the problem can be considered a matching problem
of solutions and companies, i.e., helping salesmen contact the com-
panies that match the solution. In neural text matching, researchers
focused on two kinds of models, representation-based [4, 20, 22,
24, 26, 30, 34, 46, 52] and interaction-based [5, 7, 11, 32, 43, 45, 50].
Representation-based models convert sentences into hidden vec-
tors, whereas interaction-based models match texts on word-level
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Figure 1: The illustration of CAMA. The scale encoding module incorporates the usage of look-up embedding and the AutoDis
encoder to effectively model categorical and numeric features, respectively. Furthermore, two pre-trained BERT encoders are
employed along with field-aware embeddings to capture token-level interactions within two distinct groups of text pairs. At a
higher level, a Transformer encoder is utilized to model field-level interactions among various feature groups.

interactions. Because of the high cost of human marketing, there is
a high requirement for B2B matching systems’ accuracy. Thus, we
need to model the interactions of the texts.

Some researchers have studied multi-aspect text matching for
News Recommendation [13, 39, 48], Document Ranking [47], and
Dense Retrieval [2, 23, 27, 37]. For instance, Kong et al. [23] rep-
resented multiple aspects of a query using different embeddings.
Shan et al. [37] designed an attribute-guided representation learn-
ing framework to couple the query and item representation learning
together. This framework can also identify the most relevant item
features for item representation. To facilitate text matching, we
also encode the scale features of companies. Some works have stud-
ied to incorporate side information into the text-matching process
for Document Ranking [33] and Recommender Systems [8, 17, 35].
Wide&Deep [8] combined awide linear model and a DNN to capture
both sparse features and dense embeddings. Some works of Entity
Matching have developed matching frameworks that can be poten-
tially applied to our cloud solution matching problem [25, 29, 44].
For example, HierGAT [44] developed a hierarchical graph attention
transformer that utilizes both self-attention and graph-attention
mechanisms.

3 Methodology
This study focuses on the matching of solutions and companies
in the B2B scenario, which holds significant commercial value but
has received limited attention in previous research. To address
the challenges of this scenario, we first propose a Hierarchical
Multi-field Matching framework to model the complex multi-field
features of solutions and companies. Specifically, by considering
three aspects of the modeling process, i.e., scale features encod-
ing, fine-grained token-level interaction, and field-level inter-group
interaction, we can compute matching scores from different per-
spectives. Furthermore, recognizing the issue of limited, incomplete,
and sparse transaction data, we devise several data augmentation
strategies to generate supplemental solution-company data pairs.

Additionally, we employ a contrastive learning objective to pre-
train our text models, enhancing their ability to learn the intricate
interactions between solutions and companies.

3.1 Problem Definition
Before shedding light on ourmodel, we first give a concise definition
of the problem we study. Our objective is to identify potential
buyers (companies) to the sales teams based on the outcomes of
our framework. Specifically, we denote the solutions as 𝑆 and the
companies as𝐶 . For each solution 𝑠 ∈ 𝑆 , we need to rank𝐶 based on
thematching scores between 𝑠 and every company 𝑐 ∈ 𝐶 , denoted as
𝑃 (𝑠, 𝑐). As presented in Table 1, the fields of 𝑠 and 𝑐 are divided into
three groups: description texts (𝑠d, 𝑐d), attribute texts (𝑠a, 𝑐a), and
scale features (𝑐s) (only 𝑐 has categorical and numerical features
representing its scale). We categorize the text features into two
distinct groups based on their meanings and structures: (1) The
description texts are typically long natural language texts consisting
of general descriptions of 𝑠 and 𝑐 . On the other hand, attribute
texts include keywords or tags that represent attributes of 𝑠 and 𝑐 .
Due to the distinct nature of these two types of texts, their token-
level interactions can interfere with each other (demonstrated in
Section 5.2). (2) The text features of solutions and companies are
heterogeneous. In other words, the features of 𝑠 and 𝑐 are not exact
matches. Thus, it is not feasible to treat each field as a group and
perform field-to-field matching between 𝑠 and 𝑐 .

The top-ranked company list of 𝐶 will be distributed to the
sales team responsible for promoting the corresponding solution,
who will subsequently contact these companies and pursue poten-
tial sales opportunities. By leveraging the multi-field features, the
model aims to learn the patterns of matching between 𝑠 and 𝑐 and
subsequently rank the companies most likely to purchase 𝑠 as high
as possible within the generated lists.

3.2 Framework Overview
In this part, we will briefly introduce the overall structure of our
framework. Our framework is comprised of two parts:
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(1)Hierarchical Multi-field Matching. As shown in the lower
part of Fig. 1, we design a hierarchical matching structure to effec-
tively capture the interactions between solutions and companies
whose features are comprised of complex fields. To begin with,
we focus on capturing the fine-grained token-level interactions
within two groups of text fields. This is achieved by utilizing BERT
encoders and field-aware embeddings, which allows us to extract
rich representations from the textual data. We also encode scale
features of 𝑐 into a representation that captures the company’s
scale. Subsequently, we employ a Transformer encoder to model
the field-level inter-group interactions. Four matching scores are
calculated based on the interactions from different perspectives.

(2) Text Matching Enhancement. In this part, we attempt
to enhance the token-level interactions of the text features. To
achieve this, we design three data augmentation strategies and a
contrastive objective to pre-train the BERT encoders. Specifically,
for each (𝑠, 𝑐) pair in the training data, we randomly select two
strategies to generate two similar pairs. Subsequently, we apply
a contrastive loss function to pull together the representations of
the generated pairs and push them away from other pairs within
the same mini-batch. By pre-training our BERT encoders with this
objective, we effectively improve the modeling of text interaction,
especially with limited, incomplete, and sparse data.

3.3 Hierarchical Multi-field Matching
In our B2B cloud solution matching scenario, we have identified
a significant and unexplored challenge: the modeling of complex
multi-field feature interactions. Specifically, the fields of solutions
and companies are comprised of two main kinds of features: scale
features and text features. Consequently, we devise distinct models
to effectively capture and analyze these different types of features.

3.3.1 Scale Encoding. Since only 𝑐 has scale features that represent
its scale, our goal here is to encode these features into a representa-
tion rather than modeling interactions. Instead of using 𝑐s directly,
we encode it to better interact with the textual representations.
Besides, 𝑐s is comprised of both categorical (e.g., whether 𝑐 is listed)
and numerical (e.g., registration capital) fields. Therefore, we en-
code these two types of features separately and fuse them into a
unified representation, as illustrated in the lower left part of Fig. 1.

Suppose 𝑐s contains 𝐺 categorical fields and 𝑁 numerical fields:
𝑐s = [v1, v2, . . . , v𝐺 ; 𝑣1, 𝑣2, . . . , 𝑣𝑁 ], where v𝑖 is the one-hot vector
of the value of the 𝑖-th categorical field, and 𝑣 𝑗 is the scalar value
of the 𝑗-th field of the numerical features.

For the categorical fields, we apply a look-up embedding tech-
nique to encode the one-hot vectors. Specifically, for the 𝑖-th cate-
gorical field, we obtain its embedding: e𝑖 = E𝑖 ·v𝑖 ,where E𝑖 ∈ R𝑓𝑖×𝑑s
is the embedding matrix for the 𝑖-th field to look-up, 𝑓𝑖 is the field
size, and 𝑑s is the embedding size of all scale features.

To handle the numerical fields, we employ an automatic embed-
ding learning technique based on soft discretization (AutoDis [16]).
The utilization of soft discretization within our end-to-end learn-
ing framework allows for the optimization of this process. First,
the scalar value 𝑣 𝑗 is discretized into buckets by a two-layer neu-
ral network with skip-connection h𝑗 = Leaky_ReLU(w𝑗𝑣 𝑗 ), ṽ𝑗 =
W𝑗h𝑗 + 𝛼h𝑗 , where w𝑗 ∈ R1×𝐻 𝑗 andW𝑗 ∈ R𝐻 𝑗×𝐻 𝑗 are learnable
parameters that automatically discretized 𝑣 𝑗 into the projection

outputs of 𝐻 𝑗 buckets: ṽ𝑗 = [𝑣̃1
𝑗
, 𝑣̃2

𝑗
, . . . , 𝑣̃

𝐻 𝑗

𝑗
], where 𝑣̃ℎ

𝑗
is the pro-

jection of scalar value 𝑣 𝑗 on the ℎ-th bucket. This projection is
then normalized by the Softmax(·) function into a weight on the
corresponding bucket: 𝑣̂ℎ

𝑗
= Softmax(𝑣̃ℎ

𝑗
).

Subsequently, a set of meta-embeddings ME𝑗 ∈ R𝐻 𝑗×𝑑s is de-
signed for the 𝑗-th field. The softly discretized results v̂𝑗 represents
the relevance between the 𝑗-th field of the numeric features and the
buckets of meta-embeddings. Thus, we can leverage a weighted-
average technique to aggregate the meta-embeddings and their
corresponding weights into a representation for each numerical
feature: enum

𝑗
=
∑𝐻 𝑗

ℎ=1 𝑣̂
ℎ
𝑗
·MEℎ

𝑗
.

After the scale features are embedded into continuous vectors, we
employ a Multi-Layer Perceptron (MLP) to fuse them into a unified
representation cs ∈ R𝑑s that captures the scale features of 𝑐: cs =
MLP

(
[e1, e2, . . . , e𝐺 ; enum1 , enum2 , . . . , enum

𝑁
]
)
. We can get a score by

applying a linear projection 𝑔1 (·) to map this representation into a
(scalar) score: 𝑃scale (𝑠, 𝑐) = 𝑔1 (cs).

3.3.2 Token-level Interaction. In this part, we attempt to model
the token-level interactions of (𝑠, 𝑐). Pre-trained language models,
such as BERT [11], have gained significant popularity in various
tasks, including Recommender Systems [19, 38] and Information
Retrieval [6, 51]. To capture the fine-grained token-level interac-
tions of (𝑠d, 𝑐d) and (𝑠a, 𝑐a), we leverage BERT as the underlying
encoder. We employ special tokens to concatenate the fields in the
description texts, resulting in the following sequence:

𝑋 d = [CLS]𝑠d1 [SEP] . . . 𝑠
d
𝐹sd

[SEP] [SEP]𝑐d1 . . . 𝑐
d
𝐹cd

[SEP] [SEP],

where 𝐹 is the number of text fields, 𝑠𝑖 and 𝑐 𝑗 are the 𝑖-th and
𝑗-th fields that consist of many tokens of the solution and the
company, respectively, “[CLS]” is the token used for representing
the sequence, “[SEP]” is the separator token. We append a “[SEP]”
token after each field to indicate the end of a field and another
one at the end of each sequence of fields. Moreover, to distinguish
the multiple tags in attribute texts (e.g., different industry tags),
we further utilize “[EOS]” tokens to separate these tags before
concatenating them (as shown in the lower center part of Fig. 1):

𝑐a𝑗 = 𝑐a𝑗,1 [EOS]𝑐
a
𝑗,2 [EOS] . . . 𝑐

a
𝑗,𝑇𝑗

[EOS],

𝑋 a = [CLS]𝑠a1 [SEP] . . . 𝑠
a
𝐹sa

[SEP] [SEP]𝑐a1 . . . 𝑐
a
𝐹ca

[SEP] [SEP],

where 𝑐a
𝑗
is the 𝑗-th attribute field of the company and 𝑇𝑗 is the

number of the tags contained in this field.
Furthermore, we design a set of field-aware embeddings that

help the encoders to distinguish different fields during the modeling
of interactions. Specifically, for each text group, we initialize a field-
aware embedding matrix FE ∈ R𝐹×𝑑e , where 𝐹 is the number
of the fields and 𝑑e is the size of BERT’s word embeddings. The
“[EOS]” tokens within and the “[SEP]” tokens after fields are also
enhanced with corresponding field-aware embeddings (the FE of
“[CLS]” is distinct from others). Consequently, the embedding of
each token is comprised of both our field-aware embedding and
BERT embedding (as shown in the lower right part of Fig. 1): Xd =

BERTd[CLS]
(
FEd +eBERT (𝑋 d)

)
,Xa = BERTa[CLS]

(
FEa +eBERT (𝑋 a)

)
,

where eBERT (·) is the embedding layer of BERT.
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We can get two token-level matching scores by applying linear
projections 𝑔2 (·) and 𝑔3 (·) on Xd and Xa, respectively: 𝑃desc (𝑠, 𝑐) =
𝑔2 (Xd), 𝑃attr (𝑠, 𝑐) = 𝑔3 (Xa).

3.3.3 Field-level Interaction. In the previous section, we have gath-
ered information regarding token-level interactions within two
distinct text groups. However, although it has been observed that
token-level interactions between different groups can have a detri-
mental effect on model performance, we still aim to capture the
inter-group interactions from a higher level, i.e., the field level. As
shown in the center part of Fig. 1, for each text field, we use the
encoded output of the “[SEP]” token appended to it as its represen-
tation. By doing so, we avoid using all tokens for the same reason
we divide the features into two groups, i.e., preventing fine-grained
interference. Additionally, we use the encoded scale representa-
tion cs to facilitate the modeling of field-level interactions. This
is because the scale of a company can influence how a solution
interacts with it. For instance, interactions with smaller companies
may place more emphasis on their copyright works due to their
more focused business nature.

In order to comprehensively model these representations and
capture the interactions among fields, we utilize the Transformer
encoder, as proposed in the Transformer [12] architecture. The
Transformer encoder effectively models the aforementioned repre-
sentations in the following manner:

Y = Trmp
( [
p; 𝑙 (cs); sd1, . . . , s

d
𝐹sd

, cd1, . . . , c
d
𝐹cd

;

sa1, . . . , s
a
𝐹sa

, ca1, . . . , c
a
𝐹ca

] )
, (1)

where Trm(·) is the Transformer encoder which consists of 𝑘 Trans-
former layers, s and c are the encoded outputs of “[SEP]” appended
to text fields, 𝑙(·) is a linear projector to map cs into the latent
space of the text field representations, and p ∈ R𝑑e is a randomly
initialized vector used for pooling.

We can get a field-level matching score by applying a linear
projection 𝑔4 (·): 𝑃field (𝑠, 𝑐) = 𝑔4 (Y).

3.3.4 Optimization. Since the label of whether a company buys a
solution is binary (0/1), we use a cross-entropy loss to optimize our
matching model. We formulate the loss for the matching scores of
our hierarchical models, i.e., {P} = {𝑃scale, 𝑃desc, 𝑃attr, 𝑃field}:

LMatch = − 1
𝑀

𝑀∑︁
𝑖=1

∑︁
𝑃∈{P}

𝑦𝑖 log 𝑃𝑖 + (1 − 𝑦𝑖 ) log (1 − 𝑃𝑖 ), (2)

where𝑀 is the number of (𝑠, 𝑐) pairs in the training set, and 𝑦𝑖 is
the label of the 𝑖-th data pair.

3.4 Text Matching Enhancement
In our study, we identify several challenges of the transaction data
in our scenario. Firstly, the training data is limited attributed to
the high cost of human resources required for promoting solutions.
Additionally, the data is incomplete as some solutions and com-
panies lack specific tokens or fields. Moreover, the data is sparse,
meaning that many potential pairs have not been discovered and
recorded. To mitigate these challenges, we attempt to enhance the
generalization and robustness of the BERT encoders by pre-training
them. As shown in Fig. 2, we employ a contrastive objective, which
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Figure 2: The illustration of our data augmentation strate-
gies and contrastive learning process. Initially, an original
(𝑠, 𝑐) pair is augmented by two random strategies. The BERT-
encoded representations of these two similar pairs are then
brought closer through our contrastive loss function.

aims to bring together the representations of augmented similar
sequences while pushing away different ones.

3.4.1 Data Augmentation Strategies. The similar sequences are gen-
erated from the inputs of BERT encoders (𝑋 ). We design three data
augmentation strategies to generate additional data to complement
the limited transaction data in our scenario.

(1) Token Masking. Some existing works in Natural Language
Processing [3, 9, 14] have employed token-level augmentation tech-
niques to enhance the robustness of sentence representations. This
approach enables our BERT encoders to acquire more robust and
generalized representations with incomplete data that may lack
specific tokens, by reducing reliance on specific tokens.

To begin, we represent the token-level input sequence 𝑋 as a
token sequence: 𝑋 = [𝑡1, 𝑡2, . . . , 𝑡𝑊 ], where𝑊 denotes the total
number of tokens. Next, we randomly mask a proportion 𝑟t of
the tokens in 𝑋 : 𝑇m = [𝑡 ′1, 𝑡

′
2, . . . , 𝑡

′
𝑀T

], where 𝑡 ′
𝑖
is the token to

be masked and 𝑀T = ⌊𝑟t ∗𝑊 ⌋. For each token 𝑡𝑖 ∈ 𝑋 , if it is
marked to be masked in 𝑇m, we will replace it with a special token
“[token_mask]”, which is similar to “[MASK]” in BERT [11].

(2) Field Masking. To obtain robust representations of incom-
plete data pairs, our BERT encoder models should avoid relying on
specific data fields while encoding the whole matching sequences.
By contrasting sequences that are augmented through the masking
of certain fields with other sequences, we can facilitate the learning
of text matching for incomplete data within our BERT models.

We represent 𝑋 as a sequence of data fields: 𝑋 = [𝑓1, 𝑓2, . . . , 𝑓𝐹 ],
where 𝐹 is the total number of fields. We randomly mask a ratio 𝑟f of
the fields: 𝐷m = [𝑓 ′1 , 𝑓

′
2 , . . . , 𝑓

′
𝐹T
], where 𝑓 ′

𝑖
represents the token to

be masked and 𝐹T = ⌊𝑟f ∗𝐹 ⌋. For 𝑓𝑖 ∈ 𝑋 , if it is marked to be masked
in 𝐷m, we will replace it with a special token “[field_mask]”.

(3) Company Replacing. To address the data sparsity problem,
we design a rule-based method to identify similar companies1 that
can replace the company in the positive pairs. Specifically, for each
1We only find similar companies because the number of companies is much larger
than the number of solutions, and solutions are often distinctive.
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sequence 𝑋 of positive pairs (𝑠, 𝑐), we find one similar company 𝑐′
to generate a pair (𝑠, 𝑐′). Because the company name serves as the
primary identifier, capturing information about the industry and
business nature, we only use the name to identify similar companies.
This simplification aims to expedite computations and diminish the
complexity of the rule. Our rule-based method randomly selects one
of the five most similar companies of company 𝑐 to be designated
as company 𝑐′. The similarity between companies is obtained by
calculating the semantic similarity of company names using the
sentence-transformers package [34].

3.4.2 Contrastive Learning Objective. Inspired by several studies
in Information Retrieval [10, 15, 21, 28, 51], we adopt a contrastive
learning approach to enhance our model for text matching. In
order to carry out contrastive learning for our task, we define a
loss function specifically for the contrastive prediction task. This
task involves identifying similar augmented pairs within the set
{X}, which is constructed by randomly augmenting the original se-
quences of a minibatch. Suppose a minibatch contains𝑀 sequences,
we randomly employ two of our augmentation strategies to gen-
erate {X} comprising 2𝑀 sequences. Among these sequences, the
two sequences generated from the same solution-company pair are
considered a similar (positive) pair, whereas the remaining 2(𝑀−1)
augmented ones serve as negative samples {X}− . We formulate
the contrastive learning loss for a positive pair (X𝑖 ,X𝑗 ) as follows:

𝜙 (·) = exp
(
Sim(·)

𝜏

)
, (3)

LCL (𝑖, 𝑗) = − log
𝜙 (X𝑖 ,X𝑗 )

𝜙 (X𝑖 ,X𝑗 ) +
∑

X−∈{X}−
𝜙 (X𝑖 ,X−)

, (4)

where Sim(·) is a similarity function which is defined as cosine
similarity in our study, and 𝜏 is a hyperparameter temperature.

4 Experimental Setup
4.1 Dataset
To evaluate the effectiveness of our proposed method, we conducted
extensive experiments on a real-world dataset. We first sampled
from the real-world data and constructed an offline dataset B2B
Solution Matching (BSM). BSM contains three parts: solution data,
company data, and transaction data. The solution dataset stores the
text information of 27 solutions, such as solution names, detailed
descriptions, and tags of their industries. The company dataset pro-
vides detailed company profiles for 533,784 companies, including
company names, company registration capital, and their business
scopes, etc. The transaction data are derived from the marketing
feedback of the sales teams online. Whether a company buys a so-
lution is relevant to not only its suitability but also many subjective
factors (e.g., the sales team’s pitch). Consequently, unsuccessful
purchases are often noise and disregarded.

We constructed the data format as a pairwise form (solution,
company) along with their corresponding label from the abovemen-
tioned raw dataset. Then the constructed dataset is split into three
parts, where 70% is used for training, 10% is used for validating
and the remaining 20% is for testing. For each positive sample, we

Table 2: Statistics of the BSM dataset.

Datasets Training Validation Testing

# total samples 48,515 6,930 13,860
# positive samples 9,703 1,386 2,772
# negative samples 38,812 5,544 11,088

randomly sampled 4 negative companies from the company dataset.
The statistics of our dataset are presented in Table 2.

4.2 Evaluation Metrics
We comprehensively evaluate our proposed method through both
offline and online evaluations.

(1) Offline Metrics. We use Mean Average Precision (MAP),
Area Under Curve (AUC), Precision at 𝑘 (P@𝑘 , 𝑘 = 10, 100, 500),
and Recall at position 𝑘 (R@𝑘 , 𝑘 = 10, 100, 500) as offline metrics.
The results are calculated by averaging across different solutions.

(2) Online Metrics.We verify the performance of our proposed
model with Conversion Rate (CVR) as online metrics. CVR is defined
as: CVR = # Purchase/# Promoted, # Purchase denotes the number
of companies that purchase the solutions and # Promotedmeans the
number of companies that the sales teams market their solutions.
To evaluate CAMA’s effectiveness, we will compare its performance
to a previous online model of Huawei.

4.3 Baseline Models
We compare our CAMA with two kinds of baselines:

(1) Text Matching Models only use the interactions of texts
to get the matching score. • Sentence-BERT (SBERT) [34] encodes
the solution and company with two BERTs separately and takes
the cosine similarity of these representations as the matching score.
• MADR [23] is also a representation-based model that designs
aspect learning tasks to extract representations of different aspects
from texts and then fuses them by calculating the weighted sum.
• Concatenating-BERT (CBERT) is an interaction-based model that
models the token-level interaction of the solution and company
without identifying different text fields.

(2) Side-awareMatchingModels have frameworks that can en-
code side information (scale) along with the text interaction module
to get the representations for matching. •Wide & Deep (W&D) [8]
combines a wide linear model and a DNN. For its implementation,
we utilize a two-tower BERT model to get text representations
and fit them into the framework with scale features. • MCN [33]
conducts an element-wise matching of solutions and companies,
and fuses the matching output with scale features to learn inter-
active information. For the encoding modules in MCN, we use a
two-tower BERT to get the textual representations and our scale
encoding module to model scale features. We also apply some entity
matching frameworks to our solution matching problem by treating
our text and numeric fields as different entities. • DeepMatcher
(DM) [29] uses the GRU-RNN model to learn the attribute embed-
dings of entities, which are aggregated for matching. • Ditto [25]
applies pre-trained Transformer-based language models and op-
timization techniques to perform the sequence-pair classification
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Table 3: Overall results on BSM. “†” denotes our model outperforms all baselines significantly in paired t-test at 𝑝 < 0.01 level
(with Bonferroni correction). The best performance is in bold and the second-best performance is underlined.

SBERT MADR CBERT DM W&D HSCM Ditto MCN HieGAT CAMA

MAP 0.1953 0.2259 0.2539 0.4084 0.4178 0.4534 0.4711 0.5392 0.5799 0.6810†

AUC 0.7135 0.7238 0.7721 0.8093 0.8141 0.8136 0.8206 0.8451 0.8480 0.8528†

Rec@10 0.1809 0.2187 0.3283 0.3468 0.3579 0.3740 0.3887 0.4176 0.4361 0.4579†

Rec@100 0.2698 0.3685 0.3947 0.4782 0.4947 0.5396 0.5570 0.6295 0.6727 0.7394†

Rec@500 0.4156 0.5731 0.5581 0.7211 0.7372 0.7503 0.7773 0.8035 0.8783 0.9335†

Pre@10 0.3679 0.4084 0.4723 0.5021 0.5183 0.5420 0.5682 0.6168 0.6492 0.6807†

Pre@100 0.2561 0.2795 0.2810 0.2988 0.3019 0.3121 0.3344 0.3642 0.3973 0.4266†

Pre@500 0.0620 0.1068 0.1034 0.1529 0.1551 0.1634 0.1659 0.1740 0.2291 0.2688†

problem. • HierGAT [44] combines Transformer attention with
hierarchical graph attention to effectively learn entity embeddings.

(3)Hybrid Solution-CompanyMatching Framework (HSCM).
This is a previously online yet unpublished framework used by
Huawei Cloud. Based on the number of solutions in transaction data,
the algorithm categorizes solutions into three groups. It devises
unsupervised, semi-supervised, and supervised models for each cat-
egory, respectively. It is a well-designed classification framework
based on the classical Gradient Boosting Decision Tree (GBDT)
model and BERT-encoded features. Due to the company’s confiden-
tiality policy, it is not feasible for us to provide further elaboration.
However, HCSM has the following drawbacks: (1) The framework
maintains a distinct model for each solution, leading to a significant
waste of resources. (2) Because of its naive structure, the results of
the matching are unsatisfactory.

4.4 Implementation Details
We use BERT provided by Huggingface as the token-level encoder2.
The size of scale embedding 𝑑s is set as 64, and the parameters of
AutoDis encoder are the same as its original paper [16]. We use
𝑘 = 6 Transformer layers as the field-level encoder. During the text
matching enhancement process, we set the temperatures as 0.2 and
0.05 for pre-training description BERT (𝜏𝑑 ) and attribute BERT (𝜏𝑎),
respectively. The token mask ratio and field mask ratio are tuned
and established as 0.2 and 0.5, respectively, for both BERTs. The
learning rates are set as 3e-5 for the token-level encoding module,
5e-4 for the scale encoding module, and 5e-5 for both field-level
encoding and pre-training. The model is trained with a batch size
of 32 for four epochs using four Tesla P100 16G GPUs.

5 Results and Analysis
To compare our proposed model CAMAwith baselines, we perform
experiments in both offline and online settings. We primarily con-
duct detailed experiments on BSM offline. We then deploy CAMA
on the online system to observe its overall performance.

2https://huggingface.co/hfl/chinese-bert-wwm-ext

5.1 Overall Results
5.1.1 Offline Results. Experimental results on BSM are presented
in Table 3. The results show that the performance of CAMA is sig-
nificantly better than baseline models. We can make the following
observations based on the results:

(1) Our proposedmethod CAMA outperforms all baselines.
The offline results demonstrate that CAMA performs significantly
better than all baseline models. This indicates that our hierarchi-
cal multi-field matching framework and contrastive pre-training
technique are effective for matching solutions and companies.

(2) Side-aware models generally perform better than the
models purely based on text matching. For example, the weak
side-aware model W&D still outperforms the strong text-matching
model CBERT. This demonstrates the necessity of modeling the
scale features. Moreover, our model still performs better than all
side-aware baselines, which demonstrates the effectiveness of our
hierarchical multi-field matching framework again.

5.1.2 Online Deployment Results. To assess our proposed model,
CAMA, we implemented it in a real-world system over a six-month
period. Our method, when given a solution slated for sale, generates
a Top-K ranked list. The sales team for the solution then reviews this
list, selecting companies based on the provided matching scores and
their own expertise. Following this, salesmen contact the chosen
companies and gather feedback to compute the Conversion Rate
(CVR). Due to confidentiality constraints, we cannot reveal specific
CVR figures. However, we present the relative CVR increase ratios
during the evaluation period. Our approach involved having the
same sales teams process both the company lists generated by
our model and those produced by the pre-online model HSCM.
By comparing the CVR results from these two models, CAMA
demonstrated a 29.99% improvement over the HSCM model during
the same timeframe. Moreover, we can make these observations:

(1) Our proposed method CAMA achieves a superior per-
formance over HSCM. The performance of CAMA surpasses the
previous online model HSCM by 29.99%, which demonstrates its
great commercial value.

(2) Our proposedmethod CAMA is not only better than the
previous framework HSCM but also easy to deploy andmain-
tain. The online deployment results validate the effectiveness of
the hierarchical multi-field matching structure and the contrastive
pre-trained method compared with the improvement over HSCM.
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Table 4: Performances of ablated models on BSM.

Metric MAP Rec@10

CAMA (Full) 0.6810 - 0.4579 -
w/o. Description Texts 0.4891 -28.18% 0.3905 -14.72%
w/o. Attribute Texts 0.5885 -13.59% 0.4243 -7.33%
w/o. Text Grouping 0.4866 -28.55% 0.3888 -15.09%
w/o. Field Embeddings 0.5927 -12.97% 0.4266 -6.83%
w/o. Scale Encoding 0.5596 -17.83% 0.4162 -9.11%
w/o. Field-level Interaction 0.6386 -6.23% 0.4393 -4.07%
w/o. Pre-training 0.5919 -13.09% 0.4259 -6.98%

Furthermore, CAMA provides a unified model for all solutions
which makes it easy to maintain in online deployment.

5.2 Ablation Studies
To evaluate the effectiveness of each component, we perform the
following ablation studies on the BSM dataset:

• CAMA w/o. Description Texts is CAMA without the inter-
actions of Description Texts, i.e., without 𝑃desc and the correspond-
ing field-level representations. • CAMA w/o. Attribute Texts is
CAMA without the interactions of Attribute Texts. • CAMA w/o.
Text Grouping is CAMA without Text Grouping, i.e., we do not
distinguish two types of texts and only compute one matching
score ({𝑃desc, 𝑃attr} → 𝑃text ). • CAMAw/o. Field Embeddings is
CAMA without the Field-aware Embeddings. • CAMA w/o. Scale
Encoding is CAMA without the Scale Encoding component. •
CAMA w/o. Field-level Interaction is CAMA without the Field-
level Interaction module, i.e., 𝑃field. • CAMA w/o. Pre-training is
CAMA without the pre-training of the token-level BERT encoders.

The results in Table 4 clearly demonstrate that the full model
outperforms all ablated models, indicating the effectiveness of our
components. Moreover, we can make the following conclusions:

(1) Both the interactions of two text groups can help the
matching process. Specifically, CAMA’s performance decreases
by about 28.18% and 13.59% in terms of MAP after abandoning
Description and Attribute Texts, respectively. This indicates the
importance of modeling both groups of texts.

(2) The token-level interactions between two text groups
interfere with each other. Our model’s performance decreases by
about 15.09% in terms of Rec@10 after we combine two text groups
and do not distinguish them in the token-level interaction module.

(3) Identifying different text fields with field-aware em-
beddings is effective. The decrease of CAMA after discarding
Field-aware Embeddings demonstrates its effectiveness.

(4) Modeling the scale of companies can facilitate our hi-
erarchical textual interactions. This decrease of CAMA after
abandoning Scale Encoding meets our observation in Section 5.1,
that company scale plays an important role in modeling the match-
ing between solutions and companies.

(5) Field-level interaction is effective for capturing inter-
group matching signals. The performance of CAMA decreases
after abandoning the high-level interaction among fields of different
groups. This indicates the effectiveness of our field-level interaction.

Table 5: Performances of CAMA without different data aug-
mentation strategies on BSM.

Metric MAP Rec@10

CAMA (Full) 0.6810 - 0.4579 -
w/o. Token Masking 0.6479 -4.86% 0.4463 -2.54%
w/o. Field Masking 0.6097 -10.47% 0.4326 -5.53%
w/o. Company Replacing 0.5961 -12.47% 0.4274 -6.65%

(6) Utilizing data augmentations and contrastive learning
to pre-train our BERT encoders can make CAMAmore gen-
eralized. Specifically, our model’s performance decreases by about
13.09% in terms of MAP. This validates that our data augmentation
strategies and contrastive objective can make CAMA more robust.

5.3 Influence of Data Augmentation Strategies
In our text matching enhancement module, we propose three data
augmentation strategies and a contrastive learning objective to
pre-train the BERT encoders. To investigate the influence of these
strategies, we compare CAMA with the ablated models and show
the results in Table 5. We can make the following observations:

(1) Token masking strategy can help pre-train the BERT
encoders. After abandoning the sequences generated by masking
specific tokens, the performance of our model drops by about 4.86%
in terms of MAP. This shows that the available transaction data
are deficient for training a robust model, and our token masking
strategy can help CAMA get more generalized representations.

(2) Pairs augmented by field masking can mitigate the
problem of incomplete data. There are some solutions and com-
panies lack specific data fields. The performance of CAMA w/o.
Field Masking validates this problem of our data and demonstrates
that our strategy can help mitigate this challenge.

(3) Replacing the company in a matching pair with a sim-
ilar company can generate data pairs for addressing data
sparsity. The performance of our model decreases by about 6.65%
in terms of Rec@10 after discarding Company Replacing, which
demonstrates this technique can complement the sparse data.

5.4 Influence of Hyperparameters
5.4.1 The Embedding Size of Company Scale. To model the inter-
actions between scale features and text embeddings, we have to
embed the scale features into a vector cs ∈ R𝑑s . We tune the scale
embedding size 𝑑s in the range [16, 256] with the step of 16 on
the validation set and present the performances of CAMA with
different 𝑑s on the test set. Due to the space limitation, we present
the performance of MAP on BSM and only show the results of five
tuned values (the henceforth displays will follow the same policy).
As shown in the left part of Fig. 3, the performances increase to the
optimal value and then drop. This pattern indicates a trade-off: If
the embedding size is too low, the scale embedding can not encode
sufficient information. However, it may introduce noise into CAMA
if the embedding size is too high.

5.4.2 The Temperature of Contrastive Learning. In our contrastive
loss, there is a hyperparameter 𝜏 representing the temperature hy-
perparameter which controls the model’s discrimination against
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Figure 3: Performance of CAMA on the BSM dataset with different hyperparameters.

negative samples. If it is set too low, our model will concentrate
on the negative pairs that are hard to distinguish. However, a high
value of 𝜏 will make CAMA treat all negative samples equally. We
tune 𝜏𝑑 in the range [0.05, 0.5] with the step of 0.05 and 𝜏𝑎 in the
range [0.01, 0.2] with the step of 0.01. The results presented in the
middle part of Fig. 3 demonstrate the trade-off of this hyperparam-
eter and validate our choices.

5.4.3 TheMask Ratios. In our data augmentation strategies, we use
mask ratios 𝑟t and 𝑟f to control the number of tokens/fields we mask
in Token Masking and Field Masking strategies, respectively. We
tune these two ratios for pre-training two BERTs and find that the
patterns of the two BERTs are the same, thus we present the tuning
results of each ratio for both BERTs in the same figure. Specifically,
we tune 𝑟t and 𝑟f in the range [0.0, 1.0] with the step of 0.05. The
results shown in the right part of Fig. 3 indicate there is also a
trade-off for the masking ratios. If we set the masking ratios too
high, the augmented pairs may not be similar to the original pair.
However, too low masking ratios will introduce little knowledge
into our pre-training process, resulting in insufficient pre-training.

6 Conclusion
In this work, we study a valuable yet understudied problem of B2B
solution matching and identify two key challenges in this scenario.
Initially, we propose a hierarchical multi-field matching framework
to model the interactions between the complex multi-field features
of solutions and companies. Subsequently, three data augmentation
strategies and a contrastive learning objective are proposed to deal
with the limited, incomplete, and sparse transaction data. Extensive
experiments on a real-world dataset BSM demonstrate the effec-
tiveness of CAMA. The deployment of our framework on Huawei
Cloud validates the feasibility and effectiveness of our framework
in an online scenario. Considering the generalizability of our frame-
work, it can also be applied to other B2B matching scenarios that
encounter similar challenges.
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