
1260 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 3, MARCH 2024

Query-Aware Explainable Product Search With
Reinforcement Knowledge Graph Reasoning

Qiannan Zhu , Haobo Zhang, Qing He, and Zhicheng Dou , Member, IEEE

Abstract—Product search is one of the most effective tools for
people to browse and purchase products on e-commerce platforms.
Recent advances have mainly focused on ranking products by their
likelihood to be purchased through retrieval models. However, they
overlook the problem that users may not understand why certain
products are retrieved for them. The lack of appropriate expla-
nations can lead to an unsatisfactory user experience and further
decrease user trust in the platforms. To address this problem, we
propose a Query-aware Explainable Product Search with Rein-
forcement Knowledge Reasoning, namely QEPS, which uses search
behaviors related to the current query to reinforce explanations.
Specifically, with the aim of retrieving suitable products with expla-
nations, QEPS takes full advantage of the user-product knowledge
graph (KG) and develops a reinforcement learning approach, char-
acterized by the demonstration-guided policy network and query-
aware rewards, to perform explicit multi-step reasoning on the KG.
The reasoning paths between users and products are automatically
derived from the current query-related search behavior, which can
provide valuable signals as to why the retrieved products are more
likely to satisfy the user’s search intent. Empirical experiments
on four datasets show that our model achieves remarkable per-
formance and is able to generate reasonable explanations for the
search results.

Index Terms—Explainability, knowledge reasoning, product
search, reinforcement learning.

I. INTRODUCTION

W ITH the rapid growth of products on e-commerce web-
sites, users are inundated with a vast array of choices

and options in their daily lives. Product search engines have
become an increasingly popular tool for people to discover and
purchase products. In a typical product search scenario, a user
submits a query to a search engine and the search engine returns
a list of relevant products ranked by likelihood of purchase.
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The relevance of the products on the search engine results
pages would affect user satisfaction and transactions, which in
turn would affect the revenues and profits of the e-commerce
platforms.

Due to the important influence of the user’s personal prefer-
ences on their purchase decision, previous studies on product
search such as HEM [1], TEM [2] and ZAM [3] attempt to
incorporate personalization to improve the quality of product
search, aiming at retrieving relevant products to satisfy the user’s
personal tastes and preferences. For example, the promising
model ZAM [3] designs a zero-attention mechanism on the
user’s search logs to automatically identify the user’s individual
intent on the product search session. However, such personalized
product search methods ignore the problem that users may not
understand why certain products are returned to them. A good
reason makes the search results more trustworthy and is essential
for users to justify their purchases. Therefore, it is important to
develop an effective product search model with the ability to
retrieve relevant products and provide good explanations for the
retrieved results.

Based on the successful application of knowledge graphs
(KGs) in explainable product recommendations [4], [5], [6],
[7], [8], it is reasonable to assume that structured information in
KGs has great potential in providing explanations for product
search. Inspired by this assumption, recent methods such as
DREM [9] attempt to represent the queries as dynamic rela-
tionships between users and products in the user-product KG,
and employ entity soft matching with knowledge embeddings to
extract the ad-hoc explanations in the form of reasoning paths.
Despite their effectiveness, these explainable product search
methods suffer from two inherent limitations. First, they simply
adopt the entity soft matching strategy to find the soft entities
in the reasoning paths between users and products, preferring to
generate implicit explanations. Second, they ignore the potential
of search behaviors related to the current query on the gener-
ation of explanations, resulting in the under-exploration of the
collaborative signal related to the current query. Therefore, these
limitations act as obstacles to providing explicit and persuasive
explanations tailored to the current preferences of the users.

To address the above issues, this paper considers the search
behaviors related to the current query as the direct way to
enhance the explicit and persuasive explanations. More im-
portantly, the search behaviors related to the current query are
the queries that have semantic relevance (similarity) to the
current query, which can be considered as the collaborative
information of the current query. The typical knowledge-aware
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Fig. 1. Illustration of Knowledge Reasoning for Explainable Product
Search. The path-based explanations take into account the search behaviors
{query1, query3} related to the current query query1. The query-related
search behaviors are the key to guaranteeing consistency between the explanation
and the users’ current search intentions.

explanations [6], [10] in recommendation are multi-hop path
reasoning, which focuses on entity and relation selection during
the reasoning process. Similarly, in the product search scenario,
the path-based explanation that implies the search behaviors
related to the current query will be more convincing and well-
understood. Fig. 1 illustrates an example where user A entered
query1, the path (user A, query1, item A) can be explained
as item A is retrieved because the user previously purchased
this product under the submitted query1, and the path (user
A, query2, item C) → (item C, query2, user B) ⇒ (user B,
query1, item D) explains that item D was retrieved because user
B, with similar search behavior to target user A, had previously
purchased this product under the submitted query1. The relevant
search behaviors query1 in the paths are the collaborative signal
about the current query query1, which is the key to guaranteeing
consistency between the explanation and the users’ current
search preference.

In order to fully exploit the current query and explore the
reasoning paths consistent with it, we propose a query-aware ex-
plainable product search model with reinforcement knowledge
reasoning, named QEPS. Different from the typical reinforce-
ment learning-based recommendation methods [6], [10], QEPS
considers the current query as guidance to explore its relevant
search behaviors in the path-finding process, encouraging the
agent to arrive at the appropriate products as well as explanations
tailored to the user’s current preferences. Specifically, QEPS de-
velops the demonstration-guided actor-critic framework, which
is guided by the query-specific path demonstrations and query-
aware reward signals to perform path reasoning and return the
explainable search results to the users. For the query-specific
path demonstrations, QEPS designs a demonstration extractor
to heuristically generate the query-specific demonstrations that
imply query-related search behaviors based on manually defined
meta-paths. These demonstrations are the typical ground truth
of the path-based explanations for the current query, which
can provide supervised guidance to the actor-critic network’s
path-finding process. For the query-aware reward signals, QEPS

determines the terminal and immediate rewards, which compre-
hensively consider the plausibility of the triplet with the current
query (user, query, item), the rationalization of reasoning paths
supervised by the query-specific path demonstrations and the se-
mantic relevance between current query and the retrieved prod-
ucts. Such rewards can well judge whether the agent generates
a demonstration-like reasoning path and whether the retrieved
product satisfies the user’s current preference. We empirically
evaluate our model on Amazon e-commerce datasets. Experi-
mental results show that our model achieves remarkable retrieval
results as well as reasonable explanations.

The main contributions of this paper can be outlined as
follows.
� We propose an RL-based approach to perform an explain-

able product search, which considers the query-related
search behavior as guidance to explore a set of products
with explanations to satisfy users’ search intent.

� We design a demonstration-guided policy network charac-
terized by path demonstrations and query-aware rewards
to efficiently generate the explicit reasoning paths that
are towards suitable items tailored to the user’s current
preferences.

� We develop query-aware rewards that leverage the ra-
tionalization of the query-related triplets and reasoning
paths together with the relevance of the retrieved products
to the user’s search intent to ensure the effectiveness of
explanations.

II. PRELIMINARY

In an e-commerce search scenario, a user-product KG Gs

is constructed from the product-related meta-information and
user-product interactions. Typically, the user-product KG is
composed of triplets, i.e., Gs = {(e, r, e′)|e, e′ ∈ E, r ∈ R},
where E and R are the sets of entity and relation, respectively.
Each triplet (e, r, e′) represents the fact that the relation r links
the head entity e and the tail entity e′. Following DREM [9],
we convert five types of entities (i.e., user, item, word, brand,
category) and their relations into the following groups of triplet
facts: (1) (u, q, i) represents that the user u bought the item i
under the submitted query q. (2) (u, mentioned, w) represents
that the user u mentioned the word w in his reviews. (3) (i,
describedAs, w) represents that the item i was described by the
word w in the item’s reviews. (4) (i, belongTo, c) represents
that the item i belongs to the category c. (5) (i, producedBy, b)
represents that the item i is produced by the brand b. (6) (i1,
alsoBought, i2) represents that the items i1 and i2 were bought
by the same user. (7) (i1, boughtTogether, i2) represents that the
items i1 and i2 were bought together in a single transaction. (8)
(i1, alsoViewed, i2) represents that the item i2 was viewed before
or after the purchase of the item i1. The Table I introduces the
basic notations that will be used in this paper.

Due to the nature of search tasks, the queries can be considered
as dynamic relationships between users and items because they
are usually computed by the search content for product search
on the fly. Previous studies show that the non-linear projection
function [11] is more robust to modeling queries in latent space.
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TABLE I
SUMMARY OF THE NOTATIONS USED IN THIS PAPER

Let {wi ∈ Rd} be the word embeddings of words {wi} in the
query q, we calculate the representation of the query q as

q = tanh

(
U

∑
wi∈q wi

|q| + b

)
(1)

where U ∈ Rd×d,b ∈ Rd are the parameters and d is the di-
mension of the embeddings of entities and relations in the
user-product KG.

Task Problem: The problem in this paper is to find prod-
uct items that are likely to have a query relationship with
users, i.e., to measure the plausibility of the triplet (u, q, i).
In particular, given a user-product KG Gs, the user u and his
current query q, the goal is to retrieve a set of product items
{in} ∈ E such that each triplet (u, q, in) is associated with one
reasoning path tailored to user’s current query as p(u, q, in) =
{u, r1, e1, . . ., rk, in}, 1 � k � T . T is the maximum length of
the path.

III. METHODOLOGY

Our model QEPS aims to provide explicable search results
through explicit KG reasoning. The main idea is to train an RL
agent under the guidance of path demonstrations and query-
aware rewards, where the agent is encouraged to find paths to
potential items conditioned on the user and his current query. To
achieve this, QEPS takes the current query as the guidance signal
in the path-finding process and designs three main components:
(1) Demonstration Extractor (DE) : DE heuristically extracts
the query-specific path demonstrations that imply query-related
search behaviors based on manually defined meta-paths. These
query-specific demonstrations can provide supervised guidance
to the actor-critic network for retrieving suitable products and ex-
planations. (2) Query-aware Rewards (QR): QR thoroughly con-
siders the plausibility of the query-related triplet (u, q, i) and the
reasoning path together with the semantic relevance between the

current query and the retrieved product, and further elaborates
the terminal and immediate rewards to assess the rationalization
of the path-finding process. (3) Demonstration-guided Policy
(DP): DP is an actor-critic network where the goal is to perform
path reasoning on the selection of appropriate entity-relation
pairs to finally reach the correct product. The policy network
is jointly supervised and optimized by the query-specific path
demonstrations and query-aware reward signals. The framework
of our model QEPS is illustrated in Fig. 2.

A. Reinforcement Learning Formulation

Starting from a user node, QEPS sequentially determines the
next-hop nodes and moves towards potential items that satisfy
the user’s search intent (i.e., the current query). To achieve it,
we formulate the knowledge reasoning as a Markov Decision
Process (MDP) and define the following components:

State: The state st at step t is defined as st = (u, q, ht, et),
where u is the starting user entity, q is the current query, ht is
the history before step t, i.e., ht = {u, r1, e1, . . ., et−1, rt}, et
is the entity visited at step t. (u, q) is the global context shared
by all states. Conditioned on the user u and his current query
q, the initial state is s0 = (u, q, u,�) and the terminal state is
sT = (u, q, hT , eT ).

Action: The possible action space At of state st is de-
fined as the outgoing edges of entity et in Gs excluding his-
tory entities. Concretely, At = {(r′, e′)|(et, r′, e′) ∈ Gs, e

′ /∈
{u, e1, . . ., et}}. To end the search of the agent, a self-loop edge
associated with the no operation (NO-OP) relation is added to
each entity, i.e., if e ∈ E, then (e, rnoop, e) ∈ Gs. We also add
reverse edges to guarantee the path connectivity in the reasoning
process, i.e., if (e, r, e′) ∈ Gs, then (e′, r−, e) ∈ Gs. Since the
out-degrees of some entities can be very large, it is flexible to
keep the size of the action space according to their out-degree.
Thus we keep the most promising edges with a pruning function
as

f((r′, e′)| u, ht) =

(
u+

∑
ri∈ht

ri + r′
)

� e′ (2)

where � is the dot product operation. The pruning function
is to map the outgoing edge (r′, e′) to a real-valued score for
the action selection. Importantly, the score can measure the
likelihood that a user u, a sequence of relations {r1, . . ., rt, r′}
and an entity e′ can form a reasonable path during the action
selection. Then the pruned action space of state st, denoted by
Ãt(u), is defined as

Ãt(u) = {(r′, e′)|Topε(rank(f)), (r′, e′) ∈ At} (3)

where rank() is the ranking function in descending order,Topε()
is to select the top ε actions according to their ranking scores in
the (2).

Transition: Given a state st = (u, q, ht, et) and an action
at = (rt+1, et+1), the transition to the next state is st+1 =
(u, q, ht+1, et+1), where ht+1 = {u, r1, e1, . . ., rt, et, rt+1}.

Reward: The agent aims to explore as many valuable paths as
possible that fit the user’s search intent. A valuable path is the
one that terminates with a high probability at an item relevant to
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Fig. 2. Our Query-aware Reinforcement Knowledge Graph Reasoning Model QEPS for Explainable Product Search. FC stands for the fully connected layer.

the user’s current. We define the reward function for the terminal
state sT = (u, q, hT , eT ) as

RT =

{
g(u, q, eT ), if eT ∈ Iu
0, otherwise.

(4)

where Iu is the set of items purchased by the user u, g(·) is
an aggregated reward function that motivates the agent to find
both correct items and explanations. The details of the reward
function are described in Section III-C.

B. Demonstration Extractor

The demonstration extractor aims to obtain a set of user-
centric path demonstrations, which are the query-aware multi-
hop paths between users and items in the user-product KG.
Studies suggest [12], [13] that the meta-paths tend to export
the path demonstrations with more interpretable and logical
than randomly sampled paths. To generate the high-quality path
demonstrations, we define several typical meta-paths followed
by [6], [10], [14] in Table II.

As illustrated in Table II, a meta-path is a sequence of entity
and relation types [12]. For example, the meta-path of the

path Jark
q:{iphone}−−−−−−→ iphone6

belongTo−−−−−−→ Apple phone
belongTo−−−−−−−→

iphone12 can be written as user
q:{wi}−−−−→ item

belongTo−−−−−−→ category
belongTo−−−−−−−→ item. In the demonstration extractor, we first consider
each user u as the starting node of the constrained random
walks [10] and sample only the paths whose meta-path belongs
to the predefined set. Second, we keep only those paths that lead
to the items purchased by the user as demonstrations. Formally,
we assume that the pre-defined metapath set is {Mi|i ∈ [1,m]}
and the kept path demonstrations of user u are Pu = {Pi|Pi =

TABLE II
THE PRE-DEFINED META-PATHS IN THIS PAPER

{pij}}. m is the number of the metapaths and Pi is the set of
path demonstrations belonging to the metapath Mi.

In order to obtain the ground truth of the path-based explana-
tions for the current query, i.e., the path demonstrations as the
examples in Fig. 1 that contains query-related search behaviors,
we directly use the relevance of the path demonstrations to the
current query to determine how the demonstration can explain
the search results. Before doing so, we introduce the concept of
desirable-query as follows.

Definition 1(desirable-query): For the relation sequence
{r1, r2, . . ., rj , rj+1. . ., rk} in a path demonstration
{u, r1, e1, . . ., rj , ej , . . ., rk, ek}, if there exists a query relation
rj whose following relations {rj+1, . . ., rk} are not query
relation, then rj is the desirable-query.

Based on the characteristics of the meta-paths and the
desirable-query, a naive way is to use the similarity or relevance
of the current query to the desirable-query to explain why the
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retrieved items match the user’s search intents. The stronger
the similarity, the better the path-based explanation matches
the user’s search intents. For example, given the user u and
his current query Apple Phone, and two path demonstrations

Jenny
mention−−−−−→ high-resolution

mention−−−−−−−→ Bob
q:{iPhones}−−−−−−−→

iPhone12 Plus and Jenny
mention−−−−−→ high-resolution

mention−−−−−−−→
Bob

q:{CellPhones Protector}−−−−−−−−−−−−−−−−→ Screen Protector for iPhone12
Plus. The first path returns a more appropriate item iPhone12
Plus and a more convincing explanation than the second one.
This is because the desirable-query {iPhones} in the first path is
more similar or relevant to the current query Apple Phone than
the desirable-query {CellPhones Protector} in the second path.
Thus, the desirable-query with the high similarity to the current
query are the users’ relevant search behaviors, which are the
key to ensuring the consistency between the explanation and the
users’ current preference.

Having established the demonstrations with stronger expla-
nations for the current query, we select the path demonstrations
from {Pi} with a ratio α by ranking the similarity of the current
query and the desirable-query in descending order, i.e,

Pu = {rank(sim(q′,q)) ≤ α|q′ ∈ pij , pij ∈ Pi, i ∈ [1,m]}
(5)

where q and q′ are the embeddings of the current query q and
the desirable-query q′ in the path demonstration pij . sim(·) is
the cosine function, α is a hyperparameter that upper bounds
the size of the path demonstrations. After that, the selected
demonstrations are the paths that contain query-related search
behaviors. In this paper, the embeddings of queries are calculated
by (1) and pre-trained by the typical method DREM [9].

C. Query-Aware Rewards

Better reward design can reflect the uncertainty of how the
product item satisfies the user’s search intent. This section
comprehensively considers the plausibility of the triplet with
the current query (u, q, i), the explainability of the query-aware
reasoning path, and the semantic relevance of the current query
to the arrived product item, and further defines three terminal
rewards to estimate the correctness of the reached entities.

1) Knowledge-Based Reward: From the perspective of
knowledge graphs, the product search in this paper aims to
find product items that are likely to have the query relation-
ship with users. As studied in the knowledge representation
learning methods [15], [16], [17], [18], [19], the observed
triplets in KGs should have higher plausibility than these unob-
served triplets. For example, the typical knowledge embedding
method TransE [15] makes the observed triplet (h, r, t) satisfy
h+ r ≈ t, but forces h+ r away from t′ for the unobserved
triplet (h, r, t′). Thus, we use the plausibility of the query triplet
(u, q, eT ) to estimate the probability of the user u purchasing
the product item i based on the query q

Ru,e = (u + q)� eT (6)

where {u,q, eT } ∈ Rd are the embeddings of the user u, the
query q and the reached terminal item eT respectively. Since

learning the embeddings of entities and relations in the user-
product KG is not our focus in this paper, we simply pre-trained
these embeddings using DREM [9] with the goal of fully ex-
ploiting the structural information of KGs. These pre-trained
embeddings will also be used in our subsequent rewards.

2) Path-Based Reward: The reasoning paths in our model
aim to explain to users why the terminal items are retrieved.
A better reasoning path can provide a more convincing expla-
nation to fit the user’s search intentions. After establishing the
desirable-query, if the desirable-query in the reasoning path is
relevant or similar to the current query, then the path can infer
the correct target item and generate a better explanation. For
example, given the user u with his current query q, a path be-

longing to the meta-path u
mention−−−−−→ word

mention−−−−−−−→ u′ q′−→ i, if
the desirable-query q′ is relevant or similar to the current query
q, then the agent can return the item i and give the explanation
as the item i is retrieved because the users with similar tastes to
the target user u have previously purchased this product under
the similar query q’. Thus, we use the cosine similarity of the
desirable-query q′ in the reasoning path and the current query q
as a reward to measure the explainability of the reasoning path,
i.e,

Rq,q′ = sigmoid(cos(q,q′)) (7)

where {q,q′} are the embeddings of the queries {q, q′} pre-
trained by DREM [9]. In summary, the path-based reward mea-
sures the explainability of a reasoning path by whether the path
contains the collaborative information (i.e., similar or relevant
search behaviors) for the current query.

3) Semantic-Based Reward: In the web search field, when
a user submits a query, the search engine retrieves and ranks
the relevant documents to satisfy the user’s search intents. In
particular, the semantic relevance of the query-document pair is
the core metric to rank the document list, where the relevant
query-document pairs would receive higher matching scores
than the irrelevant ones. As studied in [3], in the product scenario,
the user often specifies the item’s name directly in the query
string, where some keywords are relevant to the item’s context
(i.e., title, description). On this basis, contextual relevance is
an effective way to recognize whether the terminal product
items satisfy the user’s search intents. Therefore, we consider
the semantic relevance to strengthen the terminal reward. More
specifically, for the terminal product item e, we concatenate the
item’s title and description to form its context as C(e) = {wj}
and calculate the semantic relevance of the item’s context to the
current query q as

Rq,e = sigmoid(KNRM(Q,E))

Q =
∑
wi∈q

tf-idfi wi

E =
∑

wj∈C(e)

tf-idfj wj (8)

There have been numerous methods to build the semantic rel-
evance of the query-document pairs, such as Doc2Vec [20],
KNRM [21], HRNN [22] and BERT [23], etc. Since relevance
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modeling is not our focus in this paper, we simply adopt the
popular KNRM [21] with 11 kernels to calculate the semantic
relevance of the query-item pairs. Here we use word2vec [24]
as the embeddings of the words {wi, wj} in (8), and calcu-
late TF-IDF weights of words by the set of query-item pairs,
where the context of the items can be as documents. Here,
word2vec [24] differs from the embeddings of the word entities
in the user-product KG learned by DREM [9]. Simultaneously,
we also use the semantic relevance to boost path-based reward
Rq,q′ and rewrite it as

Rq,q′ = sigmoid(cos(q, q′) + KNRM(Q,Q′))

Q =

∑
wi∈q wi

|q|

Q′ =

∑
wj∈q′ wj

|q′| (9)

In order to provide both high-quality items and convincing
explanations, we integrate the above rewards as the terminal
reward, i.e,

RT =

{
λ1Ru,e + λ2Rq,e + λ3Rq,q′ , if eT ∈ Iu
0, otherwise.

(10)

where λ1, λ2, λ3 are the weights of the three rewards. The
terminal reward RT is calculated when the agent terminates the
search.

D. Demonstration-Guided Policy Network

This component is an actor-critic network that aims to retrieve
a set of items for users, as well as the reasoning paths for
the retrieved items. As described in Section III-B, the path
demonstrations are a powerful tool that can arrive at correct items
and provide convincing explanations. A straightforward way is
to use the path demonstrations as ground-truth labels and learn a
model that tries to generate paths identical to the demonstrations.
To imitate the demonstrations, we design a demonstration-based
indicator to supervise the actor’s path generation based on
the demonstrations, the actor’s imitation learning can give the
immediate reward Rm,t to measure whether each step of the
path generation is identical to the demonstrations. Moreover, the
terminal reward is the direct signal to inform the actor whether
the terminal entity is correct for the users. Thus, the critic jointly
uses the terminal and immediate rewards together to accurately
assess the value of each action with an unbiased estimate of the
reward gradient for the actor’s training.

1) Actor: In the t-th step, the actor πθ takes as input the state
st and the pruned action space Ãt(u), and emits the probability
of each action in the action space as

πθ(·|st, Ãt) = softmax(Ãt � g(st))

g(st) = W2ReLU(W1 st) (11)

where st ∈ Rds is the concatenation of the embeddings of its el-
ements, i.e, st = [u;q;ht; et], Ãt is the stack of the embeddings
[r; e] of the actions (r, e) ∈ Ãt, W2 ∈ R2˜d×ds ,W1 ∈ Rds×ds

are the learned parameters in our model.

2) Demonstration-Based Indicator: The indicator judges
whether the actor can generate a demonstration-like path seg-
ment at each step t. The path segment can be represented by st
and the selected action at by the actor. Then the demonstration-
based indicator πϕ is defined with the parameter ϕ

πϕ(st, at) = σ(ρTϕ tanh(Wϕ ht)

ht = tanh([st;aϕ,t]) (12)

where aϕ,t ∈ Rda is the learned embedding of action at in πϕ,
σ is the sigmoid function and ρϕ ∈ Rdϕ ,Wϕ ∈ Rdϕ×(ds+da)

are key parameters to be learned. The indicator is trained so that
πϕ(st, at) can transmit the probability that (st, at) comes from
a demonstration. This is achieved by the following classification
loss, i.e,

Lϕ = −(log πϕ(s
′
t, a

′
t) + log(1− πϕ(st, at))) (13)

where s′t = (u, q, h′
t, e

′
t) and a′t = (r′t+1, e

′
t+1) are deter-

mined by a demonstration u
r′1−→ e′1

r′2−→ e′2. . .
r′k−→ i. Here h′

t =
{u, r′1, e′1, . . ., e′t−1, r

′
t}. In the experiment, we randomly sam-

pled the demonstration from the demonstration set Pu. Then,
the demonstration-based indicator rewards the actor if the actor
generates (st, at) pairs that are likely to come from the demon-
strations, the immediate reward Rm,t is as follows:

Rm,t = log πϕ(st, at)− log(1− πϕ(st, at)) (14)

3) Critic: The critic is to effectively model the terminal and
immediate rewards, which can accurately estimate the contribu-
tion of each action to the rewards for better guidance to the actor.
To achieve this, we adopt the critic network [25] with better
convergence properties to estimate the value (contribution) of
each action. Specifically, given the state st and the action at of
the t-th step, the critic network is defined as

πφ(st, at) = (aφ,t � g(st))

g(st) = Wφ,2ReLU(Wφ,1 st) (15)

where aφ,t ∈ Rda , Wφ,2 ∈ Rda×ds ,Wφ,1 ∈ Rds×ds are the
learned parameters in the critic network πφ.

4) Optimization: We use the Temporal Difference (TD)
method [26] to learn the critic network. This method first calcu-
lates the target qt according to the Bellman equation1

qt = R(t) + Ea∈πθ
πφ(st+1, a) (16)

where R(t) is an aggregated reward that motivates the policy
to find paths similar to the demonstrations and to achieve better
retrieval accuracy

R(t) = Rt + λ4Rm,t, t ∈ [1, T ] (17)

Then the critic is updated by minimizing the TD error, i.e.

Lφ = (πφ(st, at)− qt)
2 (18)

and the actor is learned by minimizing the loss function as

Lθ = −Ea∈πθ
πφ(st+1, a) (19)

1https://en.wikipedia.org/wiki/Bellman_equation
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Algorithm 1: The Training Process of QEPS.
1: Input: the user u, the current query q, actor πθ, critic

πφ, demonstration-based indicator πϕ, predefined
demonstration path p′ and the maximum path length T .

2: Output: πθ, πφ, πϕ.
3: for k = 1,... epoch do
4: Initialize the total loss Lθ, Lϕ, Lφ = 0, the reasoning

path P0(u, i) = {u}
5: for t = 1,...,T do
6: for p ∈ Pt−1(u, i) do
7: path p = {u, r1, . . ., rt−1, et−1}
8: state st−1 = (u, q, ht−1, et−1)
9: get pruned action set Ãt−1(u) using Eq (3)

10: action probability p(a) = πθ(a|st−1, Ãt−1(u))
11: select an action a = (rt, et) based on the action

probability distribution {p(a)|a ∈ Ãt−1(u)}
randomly

12: new path Pt(u, i) = p ∪ {rt, et}
13: calculate Rt, qt and the step loss lθ, lϕ, lφ using p′

14: new actor loss Lθ = Lθ + lθ
15: new critic loss Lϕ = Lϕ + lϕ
16: new indicator loss Lφ = Lφ + lφ
17: end for
18: end for
19: successively minimize Lθ, Lϕ, Lφ to update πθ, πφ,

πϕ.
20: end for
21: Return πθ, πφ, πϕ

We can jointly optimize the actor, critic, and demonstration-
based indicator by minimizing the combined loss

L = Lθ + Lϕ + Lφ (20)

The process is described as Algorithm 1. It takes as input the
given user u, the current query q, the predefined demonstration
p′, and the maximum path length T . As output, it delivers the
optimized actor, critic and demonstration-based indicator by
exploring the valuable reasoning path. In one iteration, the joint
loss can be optimized by successively minimizing Lθ, Lϕ, Lφ.
More specifically, during the k-th iteration, for the pair of
training sample (u, q), our agent samples a demonstration pij
from Pu as well as a path p′ij generated by the actor. Next,
Lθ, Lϕ, Lφ are successively minimized based on pij and p′ij .
We then go to the next training epoch until the model converges
or the maximum number of epochs is reached.

IV. EXPERIMENT

In this section, we conduct experiments with Amazon product
datasets and compare our method with state-of-the-art baselines.
In general, the evaluation of our model involves three parts: (1)
the evaluation of retrieval performance in terms of retrieving
items that the users are most likely to purchase under their sub-
mitted queries, (2) the evaluation of explanation effectiveness in
terms of illustrating the case study of the connections between
users, queries, and retrieved items, (3) the evaluation of the
retrieval performance in terms of the relevant search behaviors

TABLE III
STATISTICS FOR THE 5-CORE DATASETS OF AMAZON

and other hyper-parameters. The following presents the exper-
imental setup, and then reports and analyzes the experimental
results.

A. Experimental Setting

1) Data: Amazon product dataset2 is one of the most pop-
ular and well-established benchmarks for product search [1],
[3], [27] and recommendation [5], [6], [7]. It contains infor-
mation for millions of customers, queries, products and asso-
ciated metadata including descriptions, reviews, brands, and
categories. In this paper, we use the 5-core data of four Amazon
datasets, i.e., Electronics, Kinde Store, CDs&Vinyl, and Cell
Phones&Accessories. For a fair comparison, we utilize the same
strategy in the promising baseline DREM [9] to generate the
training, valid and test data. The basic statistics of the datasets
are shown in Table III.

2) Baselines: We compare our model to several typical
baselines, including non-personalized (Group1), personalized
(Group2) and explainable (Group3) search models. The details
of the baselines are as follows:

(1) Non-personalized methods. The non-personalized search
models do not take into account the user’s personalized inter-
est preferences when retrieving and returning relevant product
items. We select the following typical non-personalized search
models as our baselines. QL [28] uses a language model to rank
documents based on the posterior probability of observing the
query words. BM25 [29] ranks documents using a statistical
scoring function that assumes a 2-Poisson distribution for the
observed words. LaMART [30] ranks items using the ranking
features extracted from the items’ text and user behavior logs.
LSE [11] ranks items by the similarity of item embeddings and
their encoded n-grams from the reviews.

(2) Personalized methods: The personalized search models
aim to retrieve and return personalized search results for users
based on their individual preferences. The user’s personalized
interest preferences are usually captured from the user’s search
logs by various techniques, such as neural networks, attention
mechanisms and etc. The following are typical personalized
search models. AEM [3] constructs a query-aware attention
mechanism to obtain dynamic user profiles for product search.
ZAM [3] extends AEM with a zero attention mechanism for

2http://jmcauley.ucsd.edu/data/amazon/
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TABLE IV
OVERALL PERFORMANCE OF MODELS

product search. TEM [2] replaces the zero attention in ZAM
with a transformer [31] for product search. HEM [1] ranks
items based on their posterior probability given the user and
the product search query. Furthermore, our technical task is to
predict the missing item for the triplet (user, query, ?) in the
user-product KG, which is the link prediction task in the field
of knowledge representation learning. The link prediction task
aims at predicting the missing entity h(t) or relation r for a
triplet (h, r, t) in KGs. Thus, we select the typical knowledge
representation learning method TransE [15], which achieves bet-
ter performance in the link prediction task, as our personalized
baselines.

(3) Explainable methods: The study of explainable retrieval
systems has recently attracted the attention of researchers. Most
of the existing studies on explainable IR focus on recommen-
dation tasks, which focus on providing pre-hoc or post-hoc
explanations for recommendation results. In the field of ex-
plainable recommendation, the reinforcement learning-based
methods are relevant to our task. As a result, we select the
state-of-the-art RL-based path reasoning method PGPR [6] for
product recommendation as our baseline for comparison. PGPR
is developed to explore the reasoning paths between users and
items as explanations based on the user-conditional state in
each step. For better use of PGPR in search scenarios, we also
initialize the embeddings of the user-product KG by DREM [9],
and further add the user’s current query to the state of each
step and make the next action selection based on the query
enhanced user-conditional state. Moreover, in the product search
domain, DREM [9] is a state-of-the-art explainable product
search retrieval model. It ranks on the plausibility of the triplet
(user, query, item) in the user-product KG, and uses the entity
soft matching to generate the path-formed explanations.

3) Implementation Details: In the training stage, we ini-
tialized the embeddings of the entities and relations of user-
product KG by DREM [9] and set the maximum path length
T = 3, the history length of ht as 2, the pruned action space
with the maximum size ε = 250 and the maximum size of
extracted path demonstrations α = 30. For the hyperparame-
ters, we select the learning rate μ ∈ {0.0001, 0.001, 0.01, 0.1},

the embedding dimension d ∈ {100, 200, 400}, the batch size
B ∈ {64, 512, 1024}, the weights in the reward functions
{λ0, λ1, λ2, λ3} ∈ [0, 1] with interval 0.1. The optimal hyper-
parameter configuration is determined by grid search as fol-
lows: the learning rate μ = 0.0001, the embedding dimension
{d, da} = 400, the batch size B = 512, the reward weights
λ1 = 0.98, λ4 = 0.01 for CellPhones, λ1 = 0.97, λ4 = 0.02
for Electronics and CD, λ1 = 0.96, λ4 = 0.03 for Kindle and
λ2 = λ3 = 0.005 for all datasets. In the testing stage, we only
retrieve 100 items to generate the ranked list for each user-query
pair. Following the baselines in our paper, we compute Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), and
Normalized Discounted Cumulative Gain at 10 (NDCG@10) to
evaluate the retrieval performance in the experiments.

B. Retrieval Result and Analysis

Table IV summarizes the overall performance on the Amazon
dataset, showing that our model consistently outperforms all
baselines on all metrics across four datasets. It confirms that our
model successfully leverages the query-aware rewards and the
demonstration-guided policy network to encourage the agent to
retrieve the appropriate products and persuasive explanations.
The key to the improvement in retrieval performance is that the
search behaviors related to the current query are well explored in
the path-finding process. Specifically, for the Electronics/ Kindle
Store/ CD&Vinyl/ Mobile Phones datasets, our model achieves
at least 0.015/ 0.025/ 0.002/ 0.037 higher performance on MAP,
0.016/ 0.031/ 0.004/ 0.038 higher performance on MRR and
0.054/ 0.004/ 0.078/ 0.046 higher performance on NDCG than
state-of-the-art baseline methods. Furthermore, we can see that:
(1) Personalized models achieve higher retrieval performance
than the non-personalized models. This is because the personal-
ized models take full advantage of the user’s historical behavior
logs to capture the dynamic and personalized user profiles for
more accurate retrieval results. While, TransE has comparable or
better results than other personalized models because it utilizes
additional meta-information (i.e., item attribution and item-item
interactions) in the KGs to build users’ search intentions. (2)
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Fig. 3. Performance of different variants of QEPS.

Compared with the personalized and non-personalized models,
the explainable models obtain the best performance. It indicates
that the path reasoning in the explainable models can effectively
integrate the auxiliary information from the user-product KG
to enhance performance. (3) Among the explainable models,
our model QEPS outperforms PGPR and DREM. This suggests
that our model implements an efficient search strategy in path
inference, while PGPR and DREM may suffer from noise in
their reasoning paths. The main reason for this is that QEPS
uses query-aware rewards and demonstration-aware guidance
for path-finding process, which can explore reasonable paths
to correct items using the search behaviors associated with the
current query. (4) Compared with the graph-based baselines such
as DREM and SBG, our model has a better retrieval performance
on four datasets. This is due to the fact that we consider the
demonstration guidance on the path exploration for reaching
the correct products.

Ablation study: Compared to the baselines, our model QEPS
develops a demonstration-guided policy network featured by
query-specific path demonstrations and query-aware rewards.
The path demonstrations are extracted by the demonstration
extractor based on the manual meta-paths, aiming to provide
supervised signals with the demonstration-based indicator on
the path-finding process. To explore the demonstration-based
components on the effectiveness of our model, i.e., demonstra-
tion extractor and demonstration-based indicator, we construct
several variants as: (1) QEPS w/o meta-path does not consider
the metapaths defined in Table II, and generates the path demon-
strations with random walks. (2) QEPS w/o desirable-query uses
the defined meta-paths to generate the demonstrations without
considering the relevance of the demonstrations to the current
query, i.e., (5). (3) QEPS w/o indicator means that QEPS does not
use the demonstration-based indicator to guide the path-finding
process of the actor-critic policy network.

Fig. 4. Performance of different rewards of QEPS.

The experimental results are shown in Fig. 3, which are:
(1) QEPS w/o meta-path has a lower retrieval performance
than QEPS. This indicates that our manually defined meta-
paths can facilitate the model’s search for the correct target
products compared to the randomly sampled paths. (2) QEPS
w/o desirable-query achieves worse retrieval performance than
QEPS, suggesting that the relevance (similarity) modeling be-
tween the desirable-query in the demonstrations and the current
query is necessary to find stronger path-based explanations.

(3) Compared with QEPS w/o indicator, QEPS obtains better
retrieval performance. This means that the demonstration-based
indicator can provide valuable guidance in the path-finding pro-
cess to arrive at correct products with convincing explanations.

Moreover, to analyze the importance of different rewards in
QEPS, we construct QEPS w/o Ru,e, QEPS w/o Rq,e, QEPS
w/o Rq,q′ and QEPS w/o Rm,t, which does not consider the
knowledge-based reward Ru,e, the semantic-based reward Rq,e,
the path-based reward Rq,q′ and the immediate reward Rm,t,
respectively. Fig. 4 gives the convincing experimental results,
which are: (1) QEPS achieves the highest retrieval performance
among all variants. It is suggested that the four rewards are all
necessary to guide the agent to find the correct product items
for the users. (2) QEPS w/o Ru,e achieves the lowest retrieval
results among the variants. It indicates that the knowledge-based
reward is the most important signal to explore the correct target
products. (3) QEPS w/o Rq,e and w/o Rq,q′ has slightly lower
performance than QEPS. It indicates that the rationalization of
the reasoning path and the semantic information of the items’
context is the valuable signal to guarantee the high-quality of
retrieved results and explanations. (4) QEPS w/o Rm,t achieves
lower performance than QEPS, suggesting that the immediate
reward from the demonstration-based indicator is effective in
finding correct paths to the items that can satisfy the user’s
current search intent.
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Fig. 5. Real cases of reasoning paths for product search.

C. Usefulness of Relevant Search Behaviours

In our model, the user’s relevant search behaviors are those
desirable-query with high similarity to the user’s current query in
the reasoning path, which are the key to boosting explanations.
For example, given user A and the current query maybelline

remover, the reasoning path user A
mention−−−−−→ fashion&gentle

mention−−−−−−−→ user B
q:{maybelline remover}−−−−−−−−−−−−−−−→ maybelline EYE+LIP

makeup remover can provide the meaningful explanations be-
cause the desirable-query builds a strong correlation with the
current query based on their high-similarity. The explanation
can be as the product is retrieved because user B with a similar
taste to the target user A previously purchased this product by
the current query.

To explore the importance of the relevant search behaviors
on the retrieval performance, we heuristically select triplets
{(u′, q′, i′)} with their scores greater than a threshold δ as the
relevant search behaviors for the current queries {q} in the train
set. The scores are the cosine similarity of the queries q′ and q
based on their semantic representations calculated as equation
(1). In the experiment, we empirically set δ = 0.95 and generate
3,086/12,031 triplets for the smallest and largest datasets, i.e.,
Cell Phones and Electronics.

We then use these triplets with the rate α = {0%, 20%, 40%,
60%, 80%, 100%} in the training stage. Fig. 6 gives convincing
results, which are: (1) whenα = 0%, the relevant search queries
are not used in the reasoning process. QEPS has the lowest
accuracy because it does not extract valuable information from
the relevant search behavior to find paths to the correct items.
(2) With the growth of α, the performance of QEPS consistently
increases and outperforms DREM, i.e. the richer the relevant
search behaviors, the higher the accuracy. This confirms that
the relevant search behaviors in KGs do indeed help to improve
retrieval performance and further increase explanations.

Fig. 6. Performance on the relevant search behaviors.

Case study. To intuitively understand how the relevant search
behaviors affect the product search, we give a case study in
Fig. 5, where the queries with red font in the paths are the search
behaviors related to the user’s current queries. Specifically, (1)
in case 1, two users have similar search behaviors because they
both previously purchased the product Home Button Sticker
for iPhone under the query phone accessory. When the target
user submits phone screen protector, QEPS returns the product
Screen Protector for iPhone 4 with the explanation as the product
is retrieved because the user with similar search behavior to
the target user previously purchased this product under the
submitted query.

(2) Both users in case 2 have similar tastes as they like
something in fiction. Based on the high-similarity of the query
q3 : {mastery and sleuth fiction} and the submitted query
thriller and suspense ebook, the product Coffin tales season
of death is returned with the explanation as the product is
retrieved because the user with similar tastes to the target
user previously purchased this product under the similar query.
(3) Conditional on the high similarity between the query q4 :
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TABLE V
CROWDSOURCING RESULTS FOR EXPLANATION EVALUATION

{electronics Earphones} and the submitted query accessory
headphone, in case 3 the explanation is returned as the product
is retrieved because the user has previously purchased products
from brands such as HiFiMan under the similar query. In
general, these typical explanations of cases illustrate that the
search behaviors related to the current query in the reasoning
paths can provide a bridge to generate a reasonable explanation
of the search results.

D. Explanation Evaluation

Our evaluation of the search explanations focuses on three
main perspectives: (1) Informativeness, assessing whether the
explanations provided relevant information about the item and
the query; (2) Usefulness, determining if the explanations were
effective in attracting users to purchase the item; and (3) Sat-
isfaction, gauging whether providing explanations increased
users’ satisfaction with the product search engine’s service.
In this paper, we conduct pairwise comparisons between ex-
planations generated by QEPS and the promising explainable
method DREM-HGN for each user-query-item combination.
We ask workers to annotate their preferences based solely on
pairwise comparisons. Pairwise preferences have been proven
to be much more robust and reliable compared to pointwise
relevance judgments in IR [32]. In this way, we conduct a user
study to enhance the quality of our crowdsourcing experiments.
First, our crowdsourcing dataset is derived from the Electronics
retrieval experiment dataset. Electronics is a popular product
category on Amazon, known for having less complex knowledge
structures. Inspired by DREM-HGN [33], we randomly select
101 user-query pairs from the Electronics test data, where both
QEPS and DREM-HGN achieved MRR scores greater than or
equal to 0.1.

To ensure fairness, we create user-query-item triples by pair-
ing user-query pairs with the item that was actually purchased
by the user in the corresponding search session. Consequently,
all sampled items are actually purchased by the user, and the
workers are tasked with judging which explanations better ex-
plain the user’s purchase behavior in the search session. To
obtain reliable labels, we recruit three workers per case and use
a voting process to determine the final annotations. Moreover, to
ensure that the evaluation process was impartial and unbiased,
we employ a strategy to anonymize QEPS and DREM-HGN by
randomly labeling them as ”Explanation A” and ”Explanation
B”. The workers’ task is simply to determine which explanation
presents better search explanations: ”Explanation A”, ”Expla-
nation B”, both, or none. Table V presents the results of our
crowdsourcing experiment, where most workers preferred the
explanations provided by QEPS over DREM-HGN in terms

Fig. 7. Performance with different weights of knowledge-based reward.

of Informativeness and Satisfaction. QEPS’s ability to capture
the user’s search intentions through the retrieval model’s infer-
ence process contributes to its reliability and trustworthiness.
However, there were no significant differences between QEPS
and DREM-HGN in terms of Usefulness, although QEPS had
slightly higher overall scores in this aspect.

E. Discussion

1) Reward Weight Sensitivity: To analyze the sensitivity of
the reward weights, we plot MAP, NDCG metrics of QEPS on
Cell Phones and Electronics datasets with different parameter
settings. Based on the optimal settings in subsection IV-A3,
we fix λ2 = λ3 = 0.005 and report the results for the reward
weight λ1 ∈ [0.95, 1.0] with interval 0.005. Fig. 7 gives the
results: (1) When λ1 = 0.99, QEPS is degraded to QEPS w/o
Rm,t, which achieves slightly worse performance than QEPS.
(2) QEPS achieves worse performance with smaller or larger
λ1. It is because that too small λ1 may be difficult to provide
valuable information for the agent to explore reasoning paths,
and too large λ1 may introduce much more noise than the useful
signals. (3) QEPS achieves the best performance when λ1 =
{0.98, 0.97} on two datasets. It reveals that both query-aware
knowledge-based terminal reward and demonstration-guided
immediate reward are both valuable in encouraging the agent
to reach the correct product items.

2) Effectiveness of Pruning Strategy: How to determine the
concise and precise action space for different states is the
challenge in the RL-based algorithm. In our model, it is more
important to simplify the action space for the entities with lots
of neighbors. Thus we design the following pruning strategies to
evaluate the effectiveness of our pruning function: (1) Random
pruning: we randomly select actions from the entitie’s neigh-
bors, (2) Simplified pruning: we directly use f((r′, e′)|u) =
(u+ r′)� e′ to make the action selection. The experimental
results in Fig. 8, where we can see that: (1) our model with the
pruning action function in Eq (2) achieves the highest retrieval
performance among the pruning variants, suggesting that the
pruning function considers the plausibility of the reasoning path
during the path-finding process is helpful to obtain remarkable
retrieval performance. (2) The simplified pruning strategy has
better performance than the random one. This is because random
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Fig. 8. Performance with different pruning functions.

TABLE VI
COMPUTATIONAL COMPLEXITY

pruning may filter out the valuable actions that contribute to
reaching the correct products.

3) Computational Complexity: In our model, the learned
embeddings are the parameters of the actor, critic and
demonstration-based indicator. Thus the time complexity of
our model and the baselines RGPR, DREM and DREM-
HGN are O(d ∗ ds + d2s +Na ∗ da), O(d ∗ ds + d2s +Na ∗
da), O((Ne +Nr) ∗ d) and O((Ne +Nr +NT ) ∗ d+NT ∗
d2). We make the comparison of computational complexity
between our model and the baselines in Table VI. In this ta-
ble, d, ds, da are the embedding dimension of the entity (re-
lation), state and action in the policy network, respectively.
Na, Ne, Nr, NT are the number of the actions, entities, relations
and entity types. After analyzing, it usually exists Ne +Nr �
Na � ds ≥ d = da > NT , where we can see that our model
has a similar computational complexity with state-of-the-art
RL-based baselines, and the lower computational complexity
with increasing (Ne +Nr) and NT .

V. RELATED WORK

The field of explainable artificial intelligence is young and
has recently received considerable attention in industry and
academia. Focusing on the concerns of this paper, there are
two lines of studies that are related to our work: explainable
recommendation and explainable search.

A. Explainable Recommendation

The explainable recommendation aims to explore why the
items are recommended, i.e., how a recommended item relates
to a user’s preferences [34]. Providing explanations has been
shown to have great advantages in improving algorithm trans-
parency and user satisfaction [35]. In the field of explainable
recommendation, there are many methods that can be roughly

classified into user-review explanations [36], [37], [38], image-
visualizations [39], reasoning rules [40], [41] and knowledge-
aware explanations [42], [43], [44], etc. Among these methods,
the user-review explanations [36], [37] usually highlighted the
words or sentences with some strategies (e.g., attention mecha-
nism and pre-defined templates) in the user review information
as explanations. Different from the user-review explanations, the
knowledge-aware explanations [6], [7] mainly performed path
reasoning [45], [46], [47], [48] over the knowledge graph, where
the reasoning paths between user and item were constructed
to generate path-formed explanations. More specifically, the
reasoning process can be explored in various algorithms, such as
recurrent neural network [4], [5], graph convolutional neural net-
work [7], [49], [50], [51], and reinforcement learning [52], etc.,
for which the RL-based reasoning methods are more promising
and effective. In summary, the RL-based reasoning methods
formulate multi-hop reasoning as a sequential decision making
problem. For example, the promising RL-based reasoning model
PGPR [6] conducted path reasoning by reinforcement learn-
ing (RL) technique, which is featured by the user-conditional
state and rewards. Due to these RL-based knowledge reasoning
methods on explainable recommendation are closely related to
our work, we select PGPR [6] as our baseline for comparison.
Importantly, a fundamental difference between this work and
our model QEPS is that we leverage the query-aware rewards
and demonstrations to find paths to correct items and explore
the relevant search behaviors to boost explanations.

B. Explainable Search

In the search scenario, the user’s intents can be explicitly
expressed through queries, which is fundamentally different
from recommendations. With the focus on the explainable search
field, the existing methods mainly focus on retrieving text doc-
uments based on the user’s query, such as news articles or web
pages. For example, SHAP [53] explores the importance of input
features on the model’s prediction results to explain the output
of the model. Unlike document-based search, which focuses on
text matches, product search is more expert in using information
such as knowledge entities and user history logs to determine
user purchases. In general, product search aims to retrieve and
return relevant products to customers based on their submitted
queries.

Previous studies [54], [55], [56], [57], [58], [59] mainly use
products’ aspects (e.g., brand, category, context) to do non-
personalized search for users. The typical DP [54] retrieved
products by matching queries with multiple aspects of prod-
ucts simultaneously. LSE [11] retrieved products by matching
queries and products with their latent representations. With
the increasing complexity of user needs, many personalized
models [1], [3], [60], [61], [62] have emerged to capture users’
personal interests and return user-centric products. The popular
personalized models like [1], [2], [3] designed a variety of
attention mechanisms (e.g., zero-attention, self-attention) to ag-
gregate users’ historical behaviors with queries as user’s profiles
and use them to retrieve personalized products.
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Recently, explainability is an important criterion to measure
the quality of a product system, which has been extensively
studied for product recommendation. Although numerous meth-
ods using KGs for explainable recommendations have been
successful, few studies have been done to explain search results
in the product search scenario. DREM [9] made the first attempt
to exploit the structural information in user-product KGs for
explainable product search. It built the queries as dynamic
relations between users and products and adopted entity soft
matching with knowledge embeddings to extract the post-hoc
soft explanation. The fundamental difference between DREM
and our model is that (1) our search results are produced by the
reasoning process, while DREM is not, and (2) our explanations
are tailored to the current search intentions of users, and are
more explicit and persuasive than DREM.

VI. CONCLUSION

This paper proposes a Query-aware Explainable Product
Search with Reinforcement Knowledge Reasoning QEPS for
explainable product search. QEPS develops a demonstration-
guided policy network, which is characterized by the query-
aware rewards and path demonstrations to return correct prod-
ucts to users as well as the reasoning path to explain the retrieved
products. The query modeling in the rewards and demonstration
guidance on the policy network can well explore the user’s
relevant search behavior with the aim of providing more accurate
products and convincing explanations to the users. Empirical
experiments on four datasets show that our model achieves re-
markable performance and has the ability to generate reasonable
explanations for search results.

ACKNOWLEDGMENT

The work was partially done at the Engineering Research Cen-
ter of Next-Generation Intelligent Search and Recommendation,
MOE, and Beijing Key Laboratory of Big Data Management and
Analysis Methods.

REFERENCES

[1] Q. Ai, Y. Zhang, K. Bi, X. Chen, and W. B. Croft, “Learning a hierarchical
embedding model for personalized product search,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2017, pp. 645–654.

[2] K. Bi, Q. Ai, and W. B. Croft, “A transformer-based embedding model for
personalized product search,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2020, pp. 1521–1524.

[3] Q. Ai, D. N. Hill, S. V. N. Vishwanathan, and W. B. Croft, “A zero
attention model for personalized product search,” in Proc. ACM Int. Conf.
Inf. Knowl. Manage., 2019, pp. 379–388.

[4] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T. Chua, “Explainable
reasoning over knowledge graphs for recommendation,” in Proc. AAAI
Conf. Artif. Intell., AAAI Press, 2019, pp. 5329–5336.

[5] Q. Zhu, X. Zhou, J. Wu, J. Tan, and L. Guo, “A knowledge-aware
attentional reasoning network for recommendation,” in Proc. AAAI Conf.
Artif. Intell., AAAI Press, 2020, pp. 6999–7006.

[6] Y. Xian, Z. Fu, S. Muthukrishnan, G. de Melo, and Y. Zhang, “Re-
inforcement knowledge graph reasoning for explainable recommenda-
tion,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2019,
pp. 285–294.

[7] Y. Xian et al., “CAFE: Coarse-to-fine neural symbolic reasoning for ex-
plainable recommendation,” in Proc. ACM Int. Conf. Inf. Knowl. Manage.,
2020, pp. 1645–1654.

[8] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowl-
edge base embeddings for explainable recommendation,” Algorithms,
vol. 11, no. 9, 2018, Art. no. 137.

[9] Q. Ai, Y. Zhang, K. Bi, and W. B. Croft, “Explainable product search with a
dynamic relation embedding model,” ACM Trans. Inf. Syst., vol. 38, no. 1,
pp. 4:1–4:29, 2020.

[10] K. Zhao et al., “Leveraging demonstrations for reinforcement recommen-
dation reasoning over knowledge graphs,” in Proc. Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2020, pp. 239–248.

[11] C. V. Gysel, M. de Rijke, and E. Kanoulas, “Learning latent vector spaces
for product search,” in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2016,
pp. 165–174.

[12] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-path based
context for top-n recommendation with a neural co-attention model,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018,
pp. 1531–1540.

[13] S. Fan et al., “Metapath-guided heterogeneous graph neural network for
intent recommendation,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2019, pp. 2478–2486.

[14] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3,
pp. 268–308, 2003.

[15] A. Bordes, N. Usunier, and A. Garcia-Dur ’an, “Translating embeddings
for modeling multi-relational data,” in In Proc. Int. Conf. Neural Inf.
Process. Syst., 2013, pp. 2787–2795.

[16] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proc. AAAI Conf. Artif. Intell., AAAI
Press, 2014, pp. 1112–1119.

[17] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in Proc. Assoc. Comput. Linguistics, 2015,
pp. 687–696.

[18] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Com-
plex embeddings for simple link prediction,” in Proc. Int. Conf. Learn.
Representations, 2016, pp. 2071–2080.

[19] B. Yang, W. Yih, X. He, J. Gao, and L. Deng, “Embedding en-
tities and relations for learning and inference in knowledge bases,”
2014, arXiv:1412.6575.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[21] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power, “End-to-end neural
ad-hoc ranking with kernel pooling,” in Proc. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2017, pp. 55–64.

[22] S. Ge, Z. Dou, Z. Jiang, J. Nie, and J. Wen, “Personalizing search results
using hierarchical RNN with query-aware attention,” in Proc. ACM Int.
Conf. Inf. Knowl. Manage., 2018, pp. 347–356.

[23] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Assoc. Comput. Linguistics: Hum. Lang. Technol., 2019,
pp. 4171–4186.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proc. Int. Conf. Learn. Repre-
sentations, 2013.

[25] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in Proc. Int. Conf. Learn. Representations, 2016.

[26] R. S. Sutton, “Learning to predict by the methods of temporal differences,”
Mach. Learn., vol. 3, pp. 9–44, 1988.

[27] J. Yao, Z. Dou, J. Xu, and J. Wen, “RLPS: A reinforcement learning-based
framework for personalized search,” ACM Trans. Inf. Syst., vol. 39, no. 3,
pp. 27:1–27:29, 2021.

[28] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” SIGIR Forum, vol. 51, no. 2, pp. 202–208,
2017.

[29] S. E. Robertson and S. Walker, “Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval,”
in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 1994,
pp. 232–241.

[30] C. Wu, M. Yan, and L. Si, “Ensemble methods for personalized e-
commerce search challenge at CIKM cup 2016,” 2017, arXiv: 1708.04479.

[31] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[32] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, “Accurately
interpreting clickthrough data as implicit feedback,” in Proc. 28th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retrieval, New York, NY, USA,
2017, pp. 4–11.

Authorized licensed use limited to: Renmin University. Downloaded on June 25,2024 at 03:13:38 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: QUERY-AWARE EXPLAINABLE PRODUCT SEARCH WITH REINFORCEMENT KNOWLEDGE GRAPH REASONING 1273

[33] Q. Ai and L. R. Narayanan, “Model-agnostic vs. model-intrinsic inter-
pretability for explainable product search,” in Proc. 30th ACM Int. Conf.
Inf. Knowl. Manage., 2021, pp. 5–15.

[34] K. Balog, F. Radlinski, and S. Arakelyan, “Transparent, scrutable
and explainable user models for personalized recommendation,” in
Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2019,
pp. 265–274.

[35] X. Chen, Y. Zhang, and J. Wen, “Measuring “why” in recommender
systems: A comprehensive survey on the evaluation of explainable rec-
ommendation,” 2022, arXiv:2202.06466.

[36] L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users and
items using reviews for recommendation,” in Proc. ACM Int. Conf. Web
Search Data Mining, 2017, pp. 425–434.

[37] C. Chen, M. Zhang, Y. Liu, and S. Ma, “Neural attentional rating regression
with review-level explanations,” in Proc. Int. Conf. World Wide Web, 2018,
pp. 1583–1592.

[38] H. Chen, X. Chen, S. Shi, and Y. Zhang, “Generate natural language
explanations for recommendation,” 2021, arXiv:2101.03392. [Online].
Available: https://arxiv.org/abs/2101.03392

[39] X. Chen et al., “Personalized fashion recommendation with visual explana-
tions based on multimodal attention network: Towards visually explainable
recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2019, pp. 765–774.

[40] Y. Zhu, Y. Xian, Z. Fu, G. de Melo, and Y. Zhang, “Faithfully explainable
recommendation via neural logic reasoning,” in Proc. Conf. North Amer.
Assoc. Comput. Linguistics: Hum. Lang. Technol., 2021, pp. 3083–3090.

[41] S. Shi, H. Chen, W. Ma, J. Mao, M. Zhang, and Y. Zhang, “Neural
logic reasoning,” in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2020,
pp. 1365–1374.

[42] D. Liu, J. Lian, Z. Liu, X. Wang, G. Sun, and X. Xie, “Reinforced
anchor knowledge graph generation for news recommendation reasoning,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2021,
pp. 1055–1065.

[43] G. Balloccu, L. Boratto, G. Fenu, and M. Marras, “Post processing rec-
ommender systems with knowledge graphs for recency, popularity, and
diversity of explanations,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2022, pp. 646–656.

[44] Y. Yang, J. Lin, X. Zhang, and M. Wang, “PKG: A personal knowledge
graph for recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2022, pp. 3334–3338.

[45] A. García-Durán, A. Bordes, and N. Usunier, “Composing relationships
with translations,” in Proc. Conf. Empir. Methods Natural Lang. Process.,
2015, pp. 286–290.

[46] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu, “Modeling relation
paths for representation learning of knowledge bases,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2015, pp. 705–714.

[47] Q. Zhu, X. Zhou, J. Tan, and L. Guo, “Knowledge base reasoning with
convolutional-based recurrent neural networks,” IEEE Trans. Knowl. Data
Eng., vol. 33, no. 5, pp. 2015–2028, May 2021.

[48] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based rec-
ommendation fusion over heterogeneous information networks,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2017, pp. 635–644.

[49] Z. Zhang, Z. Li, H. Liu, and N. N. Xiong, “Multi-scale dynamic convo-
lutional network for knowledge graph embedding,” IEEE Trans. Knowl.
Data Eng., vol. 34, no. 5, pp. 2335–2347, May 2022.

[50] Z. Li, Q. Zhang, F. Zhu, D. Li, C. Zheng, and Y. Zhang, “Knowledge graph
representation learning with simplifying hierarchical feature propagation,”
Inf. Process. Manage., vol. 60, no. 4, 2023, Art. no. 103348.

[51] Z. Li, Y. Zhao, Y. Zhang, and Z. Zhang, “Multi-relational graph attention
networks for knowledge graph completion,” Knowl.-Based Syst., vol. 251,
2022, Art. no. 109262.

[52] S. Zhou et al., “Interactive recommender system via knowledge graph-
enhanced reinforcement learning,” in Proc. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2020, pp. 179–188.

[53] S. M. Lundberg and S. Lee, “A unified approach to interpreting
model predictions,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4765–4774.

[54] S. C. J. Lim, Y. Liu, and W. B. Lee, “Multi-facet product information search
and retrieval using semantically annotated product family ontology,” Inf.
Process. Manage., vol. 46, no. 4, pp. 479–493, 2010.

[55] P. Nurmi, E. Lagerspetz, W. L. Buntine, P. Floréen, and J. Kukkonen,
“Product Retrieval for Grocery Stores,” in Proc. Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2008, pp. 781–782.

[56] Y. Guo, Z. Cheng, L. Nie, X. Xu, and M. S. Kankanhalli, “Multi-modal
preference modeling for product search,” in Proc. Multimedia Conf., 2018,
pp. 1865–1873.

[57] K. Bi, C. H. Teo, Y. Dattatreya, V. Mohan, and W. B. Croft, “Leverage
implicit feedback for context-aware product search,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2019.

[58] S. K. K. Santu, P. Sondhi, and C. Zhai, “On application of learning to rank
for e-commerce search,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2017, pp. 475–484.

[59] X. He, T. Chen, M. Kan, and X. Chen, “TriRank: Review-aware explain-
able recommendation by modeling aspects,” in Proc. ACM Int. Conf. Inf.
Knowl. Manage., 2015, pp. 1661–1670.

[60] Y. Guo, Z. Cheng, L. Nie, Y. Wang, J. Ma, and M. S. Kankanhalli,
“Attentive long short-term preference modeling for personalized product
search,” ACM Trans. Inf. Syst., vol. 37, no. 2, pp. 19:1–19: 27, 2019.

[61] K. Bi, Q. Ai, Y. Zhang, and W. B. Croft, “Conversational product search
based on negative feedback,” in Proc. ACM Int. Conf. Inf. Knowl. Manage.,
2019, pp. 359–368.

[62] L. Wu, D. Hu, L. Hong, and H. Liu, “Turning clicks into purchases:
Revenue optimization for product search in e-commerce,” in Proc. Int.
ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2018, pp. 365–374.

Qiannan Zhu received the PhD degree from the Insti-
tute of Information Engineering, Chinese Academy
of Sciences, in 2020, and the postdoctoral degree
from the Gaoling School of Artificial Intelligence,
Renmin University of China, in 2023. Currently she
is a lecturer with the School of Artificial Intelligence,
Beijing Normal University. Her research interests in-
clude recommendation system, information retrieval,
knowledge representation and large language models.

Haobo Zhang is working toward the PhD degree
with the Gaoling School of Artificial Intelligence,
Renmin University of China. His research interests
include explainable recommendation, product search
and information retrieval.

Qing He is working toward the degree with the School
of Finance, Renmin University of China. Her research
interests include explainable recommendations, prod-
uct search, and information retrieval.

Zhicheng Dou (Member, IEEE) received the BS and
PhD degrees in computer science and technology
from Nankai University, in 2003 and 2008, respec-
tively. He is a professor with the Gaoling School of
Artificial Intelligence, Renmin University of China.
He worked with Microsoft Research as a researcher
from 2008 to 2014. His research interests include in-
formation retrieval, web search, and nature language
processing.

Authorized licensed use limited to: Renmin University. Downloaded on June 25,2024 at 03:13:38 UTC from IEEE Xplore.  Restrictions apply. 

https://arxiv.org/abs/2101.03392


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


