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Given a user, a personalized search model relies on her historical behaviors, such as issued queries and their

clicked documents, to generate an interest profile and personalize search results accordingly. In interest

profiling, most existing personalized search approaches use “static” document representations as the inputs,

which do not change with the current search. However, a document is usually long and contains multiple

pieces of information, a static fix-length document vector is usually insufficient to represent the important

information related to the original query or the current query, and makes the profile noisy and ambiguous.

To tackle this problem, we propose building dynamic and intent-oriented document representations which

highlight important parts of a document rather than simply encode the entire text. Specifically, we divide

each document into multiple passages, and then separately use the original query and the current query to

interact with the passages. Thereafter we generate two “dynamic” document representations containing the

key information around the historical and the current user intent, respectively. We then profile interest by

capturing the interactions between these document representations, the historical queries, and the current

query. Experimental results on a real-world search log dataset demonstrate that our model significantly

outperforms state-of-the-art personalization methods.
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1 INTRODUCTION

Web search has become an activity most of us engage in by issuing a query to a search engine
to get interested content. However, studies have shown that the query could be ambiguous, and
different users have different interests under the same query [12, 28]. By taking different users’
information needs into consideration, personalized search is an effective way to address the above
problems. It utilizes the user’s historical search behaviors to build and update an user profile
reflecting her interest, so that the search engine could return an adapted result list according to
the profile. Many traditional methods of personalized search focus on analyzing user query logs
to extract personalized features. They mainly extract click-based features and topic-based features
to model user interest [2–4, 8, 17, 20, 43]. With the emergence of deep learning, many researchers
attempted to better build user interest profiles by automatically learning the representations
of queries, documents, and users to capture search interests from sequential or contextual
perspective [19, 29, 31, 59, 64]. These works have shown significant improvement in search
quality.
Most previous studies aim at building a user interest profile by modeling the history and

highlighting relevant behaviors based on the current query. They then re-rank the search results
by calculating similarities between the user profile and candidate documents. Each document (i.e.,
each historically clicked document and candidate document) is represented in a static fixed-length
vector. For example, Ge et al. [19] used the weighted average of the word representations to
represent a document. Zhou et al. [65] used transformers to further encode the document
together with the corresponding query to build the past interest, but they still simply took the
fixed document title to represent a document. As the general user interest modeling paradigm
illustrated in Figure 1(a), no matter which encoding method is used, the document representation
is only dependent on the document itself, regardless of the corresponding historical query leading
to the click, and also the current query. We argue such a static representation is problematic in
personalized search. Since a document is usually long and contains multiple pieces of diverse
information, the static fixed-length document vectors used in the above methods would inevitably
include broad and noisy information about the document, and make the final user profile cluttered
and inaccurate. Because of this, we need to represent a document in a more effective way—paying
more attention to the important parts and de-emphasizing other parts.
In fact, the important pieces of the same document when modeling historical and current

interests are rather different. When a historical query is issued, the user will most probably pay
attention to the passages relevant to the query, other than all content in the document she clicked.
In the meantime, in the future when the user looks for new information, the historical information
pieces that are relevant to her new information needs are also important. An example is shown in
Figure 2. At one search in the history, the user enters the query “iPhone” and clicks the document
with a description of the phone in the first lines shown in this example. In the current search, the
user would like to know information about “Apple chip” perhaps because the content in the latter
part of the clicked document triggers her interest or simply reveals another aspect of her interest.
In either case, the clicked document i should be considered different because of its contributions
to the depicting of the current intent. These observations of intent variations on documents
inspire us to build intent-oriented document representations for better user interest profiling. In
this article, we attempt to explicitly extract the two sides of information during the document
representation stage. The general idea is illustrated in Figure 1(b). Unlike previous studies, we
build dynamic user interest by building two intent-oriented document representations for each
document: (1) A document representation concentrating on the corresponding user intent when
it was clicked. We use the corresponding query leading to the click to guide the generation of
this representation. (2) A document representation focusing on the user’s current search intent.

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 96. Publication date: February 2024.



Intent-oriented Dynamic Interest Modeling for Personalized Web Search 96:3

Fig. 1. The comparison of previous user interestmodeling strategy and ours. i refers to the ith search behavior
in the user history. Existing methods ignore the impact of either the current search or the corresponding
search during the document representation stage.

Fig. 2. Example user search behavior. The clicked document contains pieces related to the corresponding
intent and pieces related to the current intent. The current intent-related pieces extracted from the clicked
document provide supplemental information to clarify the current needs, as well as boost the relevance of
candidate document 2.

Accordingly, we use the current query to highlight the relevant parts of the document. We argue
that by using these types of intent-oriented representations, we can better model historical
behaviors and consequently generate better user profiles.
More specifically, we propose a personalized model DIMPS (Dynamic Interest Modeling for

Personalized Search), which builds dynamic document representations with the influence of the
user’s historical intent and the current intent. It consists of twomodules: a dynamic intent-oriented
document encoder and a dynamic interest modeling module. (1) The dynamic intent-oriented

document encodermodule generates two types of dynamic document representations separately
centered on the historical intent and the current intent. By using the historical query and the cur-
rent query as guidance, the relevant information pieces at the passage level in the document are dy-
namically captured. (2) After the dynamic document representations are generated, the dynamic

interest modeling module then uses transformers to capture the full interactions between these
historical queries and their clicked documents, the current query, and also the candidate document.
In this way, the current query plays a key role in extracting features from the behavior sequence
for the interest profile depicting, while the candidate document can directly attend to the intents
revealed in the historical representations for its relevance estimation. (3) Finally, we learn a dy-

namic user profile and calculate a ranking score for the candidate document based on this.
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Experimental results on a real-world search log dataset demonstrate that our model signifi-
cantly outperforms the state-of-the-art personalization methods. With the dynamic document
representations, we can model user interest more accurately.
In conclusion, our main contributions lie in the three aspects:

(1) We propose building dynamic intent-oriented interests to model more accurate user profiles
for personalized web search;

(2) We devise a dynamic intent-oriented document encodingmodule to generate dynamic repre-
sentations separately centered on the corresponding historical intent and the current intent;

(3) We apply a dynamic interest modeling module that attends the interactions among the
search sequence, the current query, and the candidate document to dynamically depict the
user’s current search interest;

(4) We design a model-free document pruning algorithm that extracts interest-related features
from documents. It facilitates the learning of user interest for traditional methods using
entire document text.

The rest of article is organized as follows: In Section 2, we summarize related works. In Section 3,
we describe the proposed dynamic interest modeling strategy in detail. The experimental setup
is discussed in Section 4. In Section 5 and Section 6, we present and analyze the results. The
conclusion is drawn in Section 7.

2 RELATEDWORK

2.1 Personalized Search

Some traditional personalized works focus on modeling click behaviors in query logs [17, 47]. For
example, Dou et al. [17] proposed the P-Click model to calculate the click probability by counting
historical click numbers on documents. Moreover, some works [8, 20, 48, 54] view topic-based
features as their essential features, and employ models as Latent Dirichlet Allocation (LDA) [6,
54] to build user profile in topic space. Later, some researchers utilized learning to rank algorithms
to combine these features. Great improvement has been shown in search results with the utilization
of the advanced ranking algorithm LambdaMART [4, 56].
However, features adopted in most traditional personalized methods suffer from the heavy

burden of manually extraction and the limitation in scope and variety. The emergence of deep
learning enables us to automatically learn distributed representations from query logs. For per-
sonalized search, it facilitates the modeling of potential user interest [15, 31, 51, 59, 61–63]. A line
of works aimed at modeling interest by excavating sequential information. Ge et al. [19] devised
query-aware hierarchical recurrent neural networks to model sequential information and gener-
ated a dynamic user profile with query-aware attention to highlight related interests. Ma et al. [32]
focused on leveraging fine-grained time information associated with user actions. They designed
time-aware LSTM architectures for short-term interest where subtle interest evolution of users are
captured, and calculated re-finding influences for long-term interest. Some works concentrated
on leveraging context information in user interactions to build interests. Li et al. [29] generated
semantic features from in-session contextual information through deep-learning models, and
incorporate those features to current re-ranking models. Zhou et al. [64] proposed clarifying
users’ information needs by encoding history with context-aware representation learning.
The key of the personalized search task is to depict user interest from the history sequence,

which evolves over each time of search behaviors. Properly tackling such dynamic features would
benefit the improvement of ranking results. There exists a group of works that has shown good
ability at dealing with dynamic features. Rossi et al. [38] proposed a Temporal Graph Network
for continuous-time graphs represented as sequences of timed events. With the help of memory
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modules and graph-based operators, it successfully produces the embedding of the graph nodes
at each time. This network has been experimented on future edge prediction tasks and dynamic
node classification tasks and has obtained adorable results. Nonetheless, similar attempts have
been made in the field of community-level information pathway prediction, whose goal is to
predict the transmission trajectory of content across online communities. Jin et al. [22] devised a
dynamic graph to capture the temporal variability across communities and model the time-aware
propagation patterns of content information.
However, directly applying these advanced dynamic approaches to personalized web search

would suffer a great performance drop. These approaches focused on capturing the temporal vari-
ability, while in personalized search, clicked documents contain multiple information pieces and
cannot reflect accurate user intents. Failure in intent identification will limit the improvement of
these time-aware dynamic approaches. These approaches do not explicitly address such intent
variations and expect the model to automatically extract useful features for the current search
from the whole updated sequence.
In this work, we observe that the intents revealed by the documents change between historical

search and current search. As a result, we focus on dealing with such dynamics in user intents,
rather than the dynamics in temporal information, to present historical representations with ac-
curate reflections of corresponding intents at each time of search behaviors.
In fact, many personalized search tasks have also paid attention to the dynamics of intents over

the history sequence. For example, Ge et al. [19] built dynamic user profiles by using the current
query-aware attention to emphasize important historical behaviors. Zhou et al. [64] joined the
current query into transformers to better capture its correlations with user history. But all the
aforementioned personalized searchmethodsmerely impose the impact of the current search upon
fixed document representations. This prevents the model from further identification of the user
intents at different searches. Nonetheless, Bi et al.’s study [5] on the personalized product search
task has shown the effectiveness of using the current query to attend user historical interacted
items and current candidate items at a fine-grained level. Although simply migrating such an
approach into personalized web search would limit the performance improvements, the clicked
documents not only are too long but also cannot reflect accurate intents, and letting the current
query attend to each word from documents is rather ineffective. It still encourages us to pose the
impact of varying intents to the details of documents, rather than the whole content of them.
Based on the idea of capturing dynamics of user intents from more detailed evidence of

documents, we devise an intent-oriented document profiling approach to build a more accurate
user profile. In this work, we pose the influence of changing queries on document passages which
has not been studied by previous personalized web search works.

2.2 Intent Identification

Query intent identification has long been actively researched in ad-hoc IR diversity tasks to
address query ambiguity. Diversification approaches can be broadly categorized by whether or not
explicit query intent representations are used [40]. The intent-explicit approaches formulate the
query intents as explicit query aspect spaces, which are either directly given as genres or formed
through techniques like matrix factorization [1, 39, 45]. While the intent-implicit approaches
are typically based on inter-document similarity assuming dissimilar documents address diverse
tastes [50, 60].

The notion of user intent was also introduced by Vargas et al. [45] in the recommender
systems. It describes the uncertainty of user interests under the assumption that interests are
associated with multiple sides and subareas. Exploring user intents has been a popular topic
in a set of IR tasks. Early studies [45, 53] relies on item features to model user intents. Vargas
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et al. [45] considered two scenarios in which item feature data is explicitly known or can only be
obtained through matrix factorization from the user-item preference data. Wasilewski et al. [53]
injected a user perspective into items by incorporating a personalized intent-aware framework
into the item-based recommendation algorithm, which is implemented by applying personalized
covariance into the item similarity measure. Kaya et al. [26] proposed an alternative approach
to model user intents without the use of item features. Instead, they used subsets of liked items,
defined as subprofiles, to represent aspects of user tastes. The subprofiles are detected based on
the nearest neighbors of like items and then sent to a subprofile-aware diversification framework.
Recent recommendation studies [9, 10, 34, 52] have observed that user demands change as

search contexts evolve and have been making an effort to tackle such dynamics. For session-based
recommendation, such dynamics are captured by exploiting users’ recent behaviors with time
information. MCPRN [52] proposed mixture-channel purpose routing networks where distinct
purposes underlying items are learned dynamically in different channels. ICM-SR [34] designed
an intent-guided neighbor detector to better select and leverage collaborative information from
correct neighbor sessions. Further, in sequential recommendations where longer user history
is considered, modeling user intents has also been an effective approach. IDSR [9] addressed
the diversity in sequential recommendation with an intent-aware diversified sequential recom-
mendation model. It introduced an implicit intent mining module, which includes a multi-intent
attention mechanism where attention functions corresponding to particular intents are employed
in parallel, to extract multiple user intents from the user behavior sequence. Further, it designed an
intent-aware diversity-promoting loss function to update the model regarding the diversity task.
ICL [10] proposed a general learning paradigm called intent contrastive learning to leverage latent
intents in the sequential recommendation. It models the user intent through a latent variable
and learns the intent representation by learning the distribution function via clustering. Then, it
fuses the learned intents into sequential recommendation models with contrastive self-supervised
learning, which maximizes the mutual information between a view of the sequence and its
corresponding intent.
To solve the personalized search problem, we intend to capture the user’s intents in terms of the

corresponding historical and current ones, with the dynamics across time taken into consideration.
To be more specific, we excavate user intents from clicked and candidate documents by intent-
oriented representation. The extracted intents are attached with temporal information to form an
intent sequence for the final interest modeling.

2.3 Long Document Modeling

As for document modeling in ad-hoc search, dividing documents into fix-sized windows is a
regular way to handle contents with varying lengths. This passage-level evidence makes it possi-
ble to greatly outperform traditional IR systems [11, 30]. Despite the effectiveness of traditional
per-passage models, their significant computational cost remains a heavy burden. To address this
problem, Hofstätter et al. [21] proposed an Intra-Document Cascading Model (IDCM) which
first prunes passages of a candidate document with a less expensive model before running a slower
scoring module. In news recommendation, precisely representing the news serves as a core way
for user interest modeling andmatching. Gao et al. [18] regarded titles, bodies, and topic categories
as different views of news documents, and designed an attentive multi-view learning model to
learn unified news representations. Wang et al. [49] hierarchically constructed multi-level repre-
sentations for each news via stacked dilated convolutions, as an attempt to perform fine-grained
interest matching from browsed news and candidate news. Nonetheless, in personalized search,
most studies represent the documents by simply summarizing the word embeddings of titles
or bodies.

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 96. Publication date: February 2024.



Intent-oriented Dynamic Interest Modeling for Personalized Web Search 96:7

In this work, we introduce long document modeling into personalized web search. To reduce
the noise and computational cost, the documents are first divided into fixed-sized passages and
then pruned according to the relatedness with historical and current intents. We then enhance the
intent-related features in the two views to generate intent-oriented document profiles.

2.4 Attention Mechanisms

Attention mechanisms enable neural networks to model the dependencies in sequences regardless
of distances. Recently many of the IR methods have actively integrated attention mechanisms to
extract important features from long sequences. Wu et al. [55] employed personalized attention
in news recommendations to model the informativeness of each news in terms of different user
tastes. At the word level, after generating a preference query from the user ID, they computed
the attention weights between news word representations and the preference query to determine
the informativeness of each word. For the whole clicked news sequence, they again applied
personalized attention to determine the informativeness of each piece of news. In personalized
product search, whose object is to deliver adjusted product lists given user history, attention
mechanisms could serve as an effective technique when building interests upon history. For
example, Shen et al. [42] calculated the attention weights of historical behaviors in terms of the
current query and the target item, respectively, to extract accurate current interests. Similarly, in
personalized web search, Ge et al. [19] assigned query-aware attention weights for the behavior
representations, which are computed from recurrent neural networks, to build dynamic user
profiles.
The self-attention mechanism, proposed by Vaswani et al. [46], captures the contributions of

each part in the input sequence for generating the output sequence. It is formulated as:

Attention(Q,K ,V ) = softmax

(
QKT

√
d

)
V , (1)

where Q , K , and V represent the query keys and values in the input sequence, while 1√
d

is

the scaling factor. Without the conjunction of recurrent networks and convolutions that are
commonly used in attention mechanisms, it can draw global dependencies with less com-
putational cost. Such natures make it suitable for most sequence modeling problems in IR
tasks. A group of studies utilize the self-attention techniques in text encoding. Dai et al. [13]
leveraged the BERT [16], a self-attention-based language model, to understand the text content
of queries and documents with contextual information. In personalized tasks, Zhou et al. [64]
used the transformer architecture [46], which is built solely upon self-attention mechanisms,
to clarify information needs by learning context-aware representations for queries. Another
line of studies models users’ historical behaviors with self-attention mechanisms. In sequential
recommendation, Kang and McAuley [24] aimed at capturing long-term semantics of user history
even with sparse recent records. The self-attention mechanism perfectly served this goal by
identifying relevant actions from a user’s history. For personalized item search, Kocayusufoglu
et al. [27] proposed multi-resolution attention where relations between queries and past inter-
actions are captured across different temporal subspaces. Through this way, the self-attention
mechanism effectively retrieves historical information that is relevant to users’ current search
intents.
In this article, we integrate attention mechanisms in an end-to-end intent-oriented interest

modeling framework. We propose a document pruning module with query-aware attention to
extract corresponding user intents from documents. We also design an interest modeling module
where past behaviors are modeled with self-attention so that the contributions of each behavior
representation for generating the final interest profile are well captured.
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Table 1. Summary of the Main Notations

Notation Description

H user’s historical search sequence

N the number of search behaviors in the user history

q user’s current query

c the candidate document

qi the query of the ith search in the user history

di the clicked document of the ith search in the user history corresponding to the query qi
Ti the title of document di
Pi, j the jth passage of document di selected by our historical intent-oriented document pruning part

P̃i, j the jth passage of document di selected by our current intent-oriented document pruning part

K the number of passages in each intent-oriented pruned document

q the representation vector of the current query q

C̃ the representation vector of candidate document c
qi the representation vector of the historical query qi
Ti the representation vector of title Ti
Pi, j the representation vector of passage Pi, j
P̃i, j the representation vector of passage P̃i, j
Di the historical intent-oriented representation vector of document di
D̃i the current intent-oriented representation vector of document di
IH the historical interest sequence formed by historical query and document representations

I the learned user profile

3 METHODOLOGY

Personalized search has significantly improved users’ search results by capturing their real infor-
mation needs for document re-ranking. As we stated in Section 1, most of the existing methods
learn user interests by extracting features from user behaviors, but their static representations do
not distinguish the broad and noisy information pieces in documents. This further hinders the
procedure of learning accurate user interests. In this paper, we focus on building dynamic intent-
oriented document representations to better model user profiles. Specifically, with the correspond-
ing query and the current query as guidance, intent-oriented document representations regarding
the historical intent and the current intent are generated by the dynamic document encoder. Then,
in the dynamic interest modeling part, we organize these query and document representations into
a sequence and capture their interactions between the current query and the candidate document
to depict an interest pattern to judge the documents’ relevance.
The main notations in this article are summarized in Table 1. To begin with, the problem is

formulated as follows: Suppose that a user has a search history defined as a sequence of queries and
their clicked document sets. H = {(q1,d1), . . . , (qN ,dN )}, where N is the number of queries. The
document set di consists of a title list and a body list. Note that a query may have multiple clicked
documents, we respectively concatenate their titles and bodies to form the two lists. Considering a
user’s current query q and a candidate document list returned by the search engine, our objective
is to re-rank each document c in the list according to the search historyH and the current query q.

As shown in Figure 3, our proposed model DIMPS consists of three components: (1) dynamic
intent-oriented document encoder; (2) dynamic interest modeling; (3) re-ranking. In the following
sections, we will elaborate on the structure details.

3.1 Dynamic Intent-oriented Document Encoder

As It is composed of two parallel we stated in Section 1, the fix-length static document represen-
tations include much noise hindering us from capturing real user interests. To solve this problem,
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Fig. 3. The architecture of our proposed model is named DIMPS. Given each query-document pair in the
search log, we first send it to the intent-oriented document encoder. Passage-level evidence is selected
and modeled with the guidance of the corresponding query and the current query respectively to generate
historical intent-oriented representations and current intent-oriented representations. The details of the
document encoder are illustrated in Figure 4. Together with the historical query representation, the three
vectors compose the dynamic behavior representation. We then send them to a sequence-level transformer
to capture their interactions with the current query the and candidate document and learn a dynamic user
interest profile. Finally, we can calculate the candidate document’s ranking score from the learned profile
and additional features.

we intend to build intent-aware document representations. Based on the observation that some
search behaviors encompass information not only about the corresponding search but also the
future search, for each document we extract features centered on historical and current intents in
two separate parts. Each part is composed of two modules: (1) document pruning, where the body
of each document is divided and further pruned by passage according to the relevance with the
historical or the current intents; (2) document encoding. It aggregates the selected passage-level ev-
idence to reflect the corresponding search intent. At last, we obtain one historical intent-oriented
document representation and one current intent-oriented document representation. The structure
of this module is illustrated in Figure 4.

3.1.1 Document Pruning. Documents returned by search engines contain abundant informa-
tion, but could have too much noise for the learning of interest-related features. Also, they can
be too long to deploy in real applications. Thus, aimed at extracting intent-oriented parts and
reducing the query latency, we devise an offline document pruning mechanism to extract parts
most related to the user’s historical intent and the current intent respectively. Some previous stud-
ies [7, 25] have shown the effectiveness of organizing documents by fix-sized passages. Moreover,
such passage-level evidence has been widely used in ad-hoc search [21, 41]. Similarly, we divide
the document bodies into these passage-level information pieces.
To be specific, considering a user-issued query qi , we first join the titles and bodies of its

clicked documents, which may be more than one. For document titles, the first words of a certain
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Fig. 4. The architecture of the dynamic intent-oriented document encoder. parts where historical intent and
current intent are respectivelymodeled. Given a document, we first send it to two separated pruningmodules
where passages are selected according to their relevance with the historical query or the current query. Then
the selected evidence is further encoded with the guidance of the corresponding query to reflect the specific
search intent. Finally, we obtain a historical intent-oriented document representation and a current intent-
oriented document representation for each document.

number in the title lists are retained, denoted as Ti . For document bodies, we divide them into
multiple partially overlapping windows with a fixed size, which results in a passage set. As
described in Section 1, in this module we aim to build intent-oriented document representations.
Intuitively corresponding queries will be good evidence for selecting intent-related passages.
Thus, the pruning part is implemented by selecting the top K most relevant passages with the
corresponding query. For each passage, we apply TF-IDF and calculate two relevance scores. The
procedure for calculating the relevance score regarding the historical intent can be formulated as
follows:

score(Pi, j ,qi ) =
∑
t ∈qi

P
(
t | Pi, j

)
=

∑
t ∈qi

t f t,Pi, j
M

lg

( |C |
c ft + 1

)
, (2)

where Pi, j denotes the jth passage of the document di , while tf t,Pi, j is the count of term t in it. c ft
is the corpus frequency of t . |C | is the length of the corpus, and qi symbolize the corresponding
historical query leading to the document. When calculating the score of the current intent just
substitute qi with the current query q. Note when pruning candidate documents qi is q.
For each documentdi , after the pruning stage as we get its titleTi and two sets of topK passages:

{Pi,1, . . . , Pi,K , } and {P̃i,1, . . . , P̃i,K }, respectively, relevant to the historical intent and the current
intent. After encoding them with the Sentence-BERT model [37], we have the pruned document
formulated as:

d
p
i =

{
Ti ,

{
Pi,1, . . . , Pi,K ,

}
,
{
P̃i,1, . . . , P̃i,K

}}
. (3)
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The pruned results of the candidate document c are similar to that of historical documents. Note
that to cut down the computational cost, during the model implementation, the whole procedure
of document pruning is performed offline.

3.1.2 Document Encoding. As previously discussed, documents have many irrelevant parts that
may hinder us from learning the real search interest. Intuitively, the corresponding queries can
serve as guidance for intent-related feature extraction. Hence, we aggregated the passage-level
evidence with the influence of the corresponding query.
Take the current intent-oriented behavior encoding part as an example. Considering the docu-

ment di , we assign query-aware attention weights based on the current query vector q, which is
generated by encoding the q with the Sentence-BERTmodel, each current intent-oriented passage-

level information pieces (e.g., the current-intent oriented passages set {P̃i,1, . . . , P̃i,K } and the title
Ti denoted as P̃i,K+1 under this scenario) to further extract current interests. The weights for each
passage-level evidence of the document di are calculated as follows:

ei, j = ϕ
(
q, P̃i, j

)
, (4)

αi, j =
ei, j∑K+1

m=1 ei,m
, (5)

where ϕ(·) indicates the multilayer perceptron (MLP). Then the current intent-oriented docu-

ment representation D̃i is computed by summarizing the weighted passage-level vectors:

D̃i =

K+1∑
j=1

αi, jei, j . (6)

The procedure of computing the historical intent-oriented document representationDi is merely
the same as computing the current intent-oriented representation. Just substitute the current query
vector qiand current intent-oriented passage set {Pi,1, . . . , Pi,K } for the corresponding historical

query vector q and the historical intent-oriented passage set {P̃i,1, . . . , P̃i,K }.
Finally, we have generated two dynamic intent-aware representations Di and D̃i for every doc-

ument di , and one dynamic current-intent oriented representation C̃ for the candidate document c .
Next, we will organize these documents with their corresponding queries into a behavior sequence
to learn a search pattern and re-rank documents.

3.2 Dynamic Interest Modeling

So far, we have one query representation and two intent-oriented document representations for
each behavior. Next, we are going to model the interactions among these behaviors through a
sequence-level user transformer to model the user interest profile. Additionally, we regard the
combination of the current query and the candidate document as the predicted current behavior
and append it to the behavior sequence. Including the current query facilitates the learning of
features related to the current intent and the building of a more accurate user profile. In the mean-
time, directly capturing the relevance between the candidate document and intent-oriented history
representations also benefits the judgment of the candidate document’s relevance with the user
interest. Specifically, first, to provide the search sequence with sequential information, we assign
position embeddings for each vector. The positions indicate the number of behaviors appearing in
the historical sequence. The larger the number the latter the behavior. In dynamic modeling, the
positions of behaviors are used to indicate the sequential order within the history. Note that the
three vectors from one behavior share the same position embeddings since they are from the same
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Table 2. Statistics of the Dataset

Item Statistics Item Statistics

number of days 58 average query length 3.25
number of users 33,204 number of sessions 97,858
number of queries 267,479 average click number per query 1.19

search. At last, we join the historical interest sequence IH = {(q1, D̃1,D1), . . . , (qN , D̃N ,DN )} gen-
erated from the historical click data with the current query q and the intent-oriented candidate

document representation C̃ and then send them to a transformer encoder. Similarly, we take the
output of the “[CLS]” token as the learned dynamic user profile I :

I = TrmCLS
( [
IH , q, C̃, [CLS]

] )
. (7)

3.3 Re-ranking

Furthermore, similar to existing personalization methods [19, 58, 64, 65], we follow the idea of
SLTB [4] and extract traditional click and topic features fq,c for every candidate document. We
send the additional features to amultilayer perceptron (MLP) to compute the ad-hoc relevance
score for the document. Next, to generate the final ranking score p(c |q,H ) we aggregate the
ad-hoc relevance score and the learned user profile I with a MLP ϕ(·) operation. Specifically, our
output is:

p(c |q,H ) = ϕ
(
I,ϕ

(
fq,c

) )
. (8)

Until now, we have obtained the final personalized score p(c |q,H ). In training, we adopt the
ranking algorithm LambdaRank, which is also popular used in modern personalized models like
our baselines [19, 58, 64, 65], in a pair-wise manner. First, we generate training document pairs
from query logs with satisfactory clicked documents as positive samples and skipped documents
as negative samples. Our objective is to maximize the distance between the positive score and the
negative score. Hence, we compute the final loss with the weighted cross-entropy between the
true probability p̄i j and the predicted probability pi j :

loss = −
��λi j �� (p̄i j log(pi j ) + p̄ji log(pji

)), (9)

where the weight λi j is the change of metric when swapping the positions of the candidate
document ci and the candidate document c j . The predicted probability pi j is calculated as
follows:

pi j =
1

1 + exp
(
p
(
c j |q,H

) − p (ci |q,H )) . (10)

4 EXPERIMENT SETUP

4.1 Dataset

The search log AOL [35] does not provide the documents’ full content. The URLs in the log are from
2006 which are too old to crawl from the current Web. Besides, as the dataset is not published for
academic search, another reason for its inaccessibility stems from a combination of confidential-
ity concerns and potential ethical implications associated with its use. We have prioritized ethical
considerations and the protection of individual privacy, which align with our research principles
and ethical guidelines. Hence, we evaluated our model on a real-world dataset sampled from a
commercial search engine, referred to as ‘B dataset’ in the remainder of this article. The basic sta-
tistics are shown in Table 2. It is a large-scale query log containing two months of click-through
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data from 1st January 2013 to 28th February 2013. Each query record is composed of a user ID,
a query string, a query issued time, a session identifier, the top 20 retrieved URLs, their click la-
bels, and dwelling times. We regard documents with a dwelling time longer than 30 seconds as
clicked documents. As for dataset partitioning, we take the first six weeks as history and the last
two weeks as experimental data. For each user, the split ratio of training and test set is 4:1 under
the measurement of session number in the experiment data, while the last one-fifth sessions of
the training set are taken as validation data. Users with less than 4 sessions in experiment data
are abandoned to ensure an effective division of training and test datasets. Additionally, different
from previous studies, we extract the body data of clicked and candidate documents to enrich the
behavior information.

4.2 Baselines

To evaluate the performance of our model, we select several state-of-the-art ad-hoc search models
and personalized search models as baselines. They are as follows:
KNRM [57]. It is an ad-hoc model that matches queries and documents based on their interac-

tions by utilizing kernel-pooling to extract soft-match features.
Conv-KNRM [14]. It is devised based on KNRM to model n-gram soft matches with an addi-

tional convolutional layer. This model boosts the matching accuracy by learning contextual infor-
mation of surrounding words.
BERT [36]. It concatenates query-document sequence and feeds it into the pre-trained BERT

model.We take the representation of the “[CLS]” token from the last layer as thematching features.
SLTB [4]. It uses learning to rank algorithms to integrate click features, topical features, time

features, and position features into the personalized task.
HRNN [19]. It uses hierarchical RNN and query-aware attention to exploit sequential informa-

tion and generates a dynamic user profile based on the current query. This work highlights the
more important sessions according to the present information need.
PEPS [58]. This work solves the problem of personalized search without building a user interest

profile. It enhances personal word embeddings from the global word embeddings by taking her
individual search history as the training data.
HTPS [64]. This model focuses on clarifying the user’s information need by disambiguating the

current query. It uses hierarchical transformers to encode history with context-aware representa-
tion learning to complete this idea.
PSSL [65]. This work aims at reducing the dependency of sufficient data in many personalized

works through data representation enhancement. It applies a self-supervised learning framework
with the technology of contrastive sampling. Note that it also utilizes document body contents to
cover more details.
DIMPS (Dynamic Interest Modeling for Personalized Search). Our proposed model with a de-

tailed description in Section 3.
DIMPS w/o. c. As the baseline models do not model candidate documents in their personaliza-

tion models, for a fair comparison, we exclude the candidate documents’ participation in interest
profiling. In this way, the benefits of DIMPSw/o. c only come from its personalizationmodel rather
than its more complex relevance modeling. Specifically, we discard the input of the candidate doc-
ument at the user-level transformer and summarize the outputs of the history sequence IH as the
learned user profile. Then we compute the cosine similarity between the user profile and the can-
didate document representation as the personalized ranking score. Note that the current query
is still sent to the dynamic interest modeling transformer. As the “w/o. c” model is designed to
explore the effects of the candidate document in interest modeling, we reserve the influence of the
current query.
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Table 3. A Summary of the Baseline Models Discussed in the Article

Model Description Document Representation

Adhoc Search Model

KNRM [57] An ad-hoc model that matches queries and
documents based on their interactions by
utilizing kernel-pooling to extract soft
match features.

An embedding layer to map each word in
the document titles.

Conv-KNRM [14] Based on KNRM to model n-gram soft
matches with an additional convolutional
layer.

An embedding layer followed by
convolutional layers where filters compose
n-grams from document titles.

BERT [36] It concatenates query-document sequence
and feeds it into the pre-trained BERT
model.

An embedding layer to map each word in
the document titles.

Personalized Search Model

SLTB [4] Based on learning to rank algorithms with
click features, topical features, time
features, and position features.

A representation function to map document
URLs to sparse vectors, and a text-based
classifier on titles and bodies to obtain
topical features.

HRNN [19] It uses hierarchical RNN and query-aware at-
tention to exploit sequential information and
generate a dynamic user profile.

Calculated as the weighted average of the
title word representations, which are
mapped by an embedding matrix,
multiplied by TF-IDF weights.

PEPS [58] It enhances personal word embeddings
from the global word embeddings by taking
her individual search history as the training
data.

A global embedding matrix and a personal
embedding matrix to map each word in the
document titles.

HTPS [64] It uses hierarchical transformers to encode
history with context-aware representation
learning to disambiguate the current query.

An embedding layer to map each word in the
document titles.

It applies a self-supervised learning
framework with contrastive sampling to
reduce the dependency of sufficient data.

An embedding layer to map each word in
the document titles and bodies followed by
a transformer-based encoder to generate
document vectors.

A summary of the baseline models is shown in Table 3. Descriptions of their document-
representing approaches are also attached. Most works simply map documents through a word
embedding matrix before sending them for user interest profiling. Besides, a large percentage of
works, except for SLTB and PSSL, solely use titles to represent documents. We assume that it is
the large content and cluttered information that impedes the further exploitation of documents. In
this article, we address this problem by dynamically extracting corresponding intents and current
intents from the documents.

4.3 Model Settings and Evaluation Metrics

To achieve a balance between effectiveness and efficiency, we performedmultiple experiments and
set the final parameters as follows: The search history includes 10 search behaviors. The passage
length is 31. The first 15 passages of each clicked document list are sent to the document pruning
parts. The number of top-selected passages fed into each intent-oriented document encoding part
is 3. The dimension of document and query vectors is 384. The transformer encoder is one layer
with a hidden size 150. The number of heads in multi-head self-attention is 2. We train the model
for 2 epochs to get a satisfactory result. The learning rate is 1e-4 for the first epoch and 1e-5 for the
second epoch. To compare the performance of all baselines and DIMPS, we use Mean Average
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Table 4. Overall Performance of All Models

Type Model MAP MRR P@1 P-improve
Adhoc Search Ori. .7399 .7506 .6162 -

KNRM .4916 .5001 .2849 .0655
Conv-KNRM .5872 .5977 .4188 .1442
BERT .6232 .6326 .4475 .1778

Personalized SLTB .7921 .7998 .6901 .1177
HRNN .8065 .8191 .7127 .2404
PEPS .8221 .8321 .7251 .2545
HTPS .8224 .8324 .7286 .2552
PSSL .8301 .8398 .7338 .2688

Our DIMPS .8421† .8512† .7532† .2939†

DIMPS w/o. c .8370 .8467 .7461 .2647
†indicates the model outperforms all baselines significantly with paired t-test at p < 0.05

level. Best results are shown in bold.

Precision (MAP), Mean Reciprocal Rank (MRR), and Precision@1 (P@1) to evaluate the
ranking results. Besides, to alleviate the position bias problem, we calculate the percentage of
improved pairs (P-improve) on inverse document pairs following previous works [19, 31].

—MAP: The value describes the percentage of correctly predicted candidate documents, mea-
sured between 0 and 1. Higher values indicate more accurate results.

—MRR: The value measures the positions of the correct answers in the ranking list. Larger
values indicate better ranking quality.

— P@1: The value measures the precision of the top 1 item in the ranking list. The higher the
value, the better the ranking.

— P-improve: It is designed under the observation that the user tends to click documents
higher in the list, which may leave relevant but low-ranked documents not examined. We
measure the actual improvements on inverse document pairs [23] to alleviate such positive
bias. Higher values represent larger improvements.

5 RESULTS

We evaluate the overall performances of all baselines and our DIMPS model on the B dataset. The
results are reported in Table 4. We can observe that:
(1) Our proposed dynamic interest modeling model DIMPS outperforms all the baseline models,

including ad-hoc models and personalized models, with paired t-test at p < 0.05 level on the B
dataset. Especially for state-of-the-art model PSSL, we gain significant improvements in terms of
all metrics. Our model improves the results by 1.11% in MAP and 1.14% in MRR. Besides, it out-
performs PSSL by 2.51% in the more objective metric P-improve. These results prove that building
dynamic intent-oriented behaviors is a more effective way for personalized search.
(2) The “DIMPS w/o. c” also reduces the accuracy. We believe it verifies our assumption that

learning current intents from candidate documents benefits re-ranking. Further, preventing the
candidate documents from drawing connections to historical intent representations may lead to
great information loss. However, it still outperforms the state-of-the-art method, proving the ad-
mirable ability of our dynamic document profiling approach to build user interest.
(3) Among all the personalized models that adopt the body content of documents, models with

dynamic representation strategy (i.e., our methods) bring better performance gains than the model
with static representation strategy (i.e., PSSL). Although the SOTA model PSSL also leverages the
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body content, it simply encodes the entire text as final document representations, which includes
too much noise for the model to extract accurate user interests. This indicates that without the
dynamic adaption to user intents, just incorporating bodies is not that efficient in improving per-
sonalized results.
(4) In general, all personalized search models outperform ad-hoc search models, which demon-

strates the contribution of user behaviors for reflecting the real information need. In addition, it is
noted that among all evaluation metrics, the improvement of P@1 is more significant than others.
One possible reason is that by learning from users’ search history, personalized models are more
effective in handling re-finding behaviors, while in terms of other behaviors, their performance
is limited due to the lack of relevant logs. Unlike most personalized search models which adopt
static behavior representations to profile user interests, we focus on building dynamic interests
by exploring the potential in user behaviors of providing information about both current and
future interests.
In a word, it is proved that dynamically modeling interests by building historical intent-oriented

and current intent-oriented document representations is helpful for understanding user preferences

and re-ranking documents. To further analyze the functions of the main components in our model,
we will conduct an ablation analysis and show a visualized example.

6 ANALYSIS

In this section, we conduct sets of experiments to deeply investigate the functionality of the major
components in our DIMPS. To be more specific, we try to understand the following topics:

— The necessity and performance of the three intent-oriented components: document pruning,
document encoding, and interest modeling;

— The effectiveness of the query-aware attention mechanism in the document encoding part
for capturing corresponding intents, and the possibility of employing alternative passage
aggregation patterns, like attending the inter-passage correlations as well;

— The effectiveness of capturing interactions among all the intent representations in the dy-
namic interest modeling stage. We wonder if the accuracy will deteriorate when abandoning
or indirectly capturing such interactions;

— The effects of the number of selected passages in the document pruning part;
— The effects of the history length;
— The ability of our intent-oriented method to model interests when the queries are too am-
biguous to express real user intents;

— If there exists a case supporting our assumption that dynamically representing documents
according to historical and current intents will help build accurate user interests, and the
DIMPS are capable of implementing this idea;

— The efficiency-effectiveness performance of the DIMPS;
— The possibility of applying the document pruning module on other personalized models;
and

— The possibility of applying the candidate document-aware interest modeling on other per-
sonalized models.

6.1 Ablation Analysis

Our dynamic interest modeling strategy is based on the intent-oriented document encoder, which
includes the following parts: the historical intent-oriented document encoding and the current
intent-oriented document encoding. To verify the contribution of each part, we conduct several
ablation experiments. The results are illustrated in Table 5.
DIMPS w/o. DP.We delete the DP (document pruning) part in the document encoder.
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Table 5. Performance of Ablation Models

Model MAP MRR P@1 P-improve
DIMPS w/o. DP .8390 .8483 .7481 .2838
DIMPS w/o. HIE .8400 .8496 .7514 .2857
DIMPS w/o. CIE .8403 .8496 .7510 .2830

DIMPS .8421 .8512 .7532 .2939

DIMPS w/o. HIE. We strip off the HIE (historical intent-oriented document encoding)

part in the document encoder, which results in the discard of the historical intent-oriented docu-
ment representations in the dynamic interest modeling module.
DIMPS w/o. CIE.We strip off the CIE (current intent-oriented encoding) part in the docu-

ment encoder, which results in the discard of the current intent-oriented document representations
in the dynamic interest modeling module. Note that for the candidate documents, we reserve its
CIE part to reserve information.
The results of the ablation analysis are presented in Table 5. It is clear to be seen that all ablation

models damage the results of the original DIMPS. When deleting the document pruning part, the
model shows theworst performance. This proves that our passage selection algorithm does provide
relatively clear and useful intent-oriented information for the model to learn. Whereas, DIMPS
w/o. DP still outperforms baseline models with fixed document representations like PSSL, HRNN,
and PSGAN with great improvements, which indicates the effectiveness of our dynamic interest
modeling structure. As we prune the documents to make them adapt to the intents, the model
DIMPS further promotes the re-ranking results. This illustrates that documents indeed contain
information related to both the corresponding and future interests, and our document pruning
mechanism offers a practical way to extract useful features.
As for the document encoding sub-module, without the historical intent-oriented encoding, the

MAP,MRR, P@1, and P-improvemetrics drop 0.21%, 0.16%, 0.18%, and 0.82%. This demonstrates the
usefulness of extracting historical intent-related features in building user profiles. Moreover, the
performance also loses significantly when the current intent-oriented encoding part is abandoned,
with a decline of 0.18%, 0.16%, 0.22%, and 1.09% inMAP,MRR, P@1, and P-improve. This shows that
clicked documents containmany features directly related to current intents, while explicitlymodel-
ing them from the passage level could support the model to better understand search needs and re-
rank documents. It is notable that the current intent-related features, which are overlooked by pre-
vious studies, are proved to be as informational as the historical ones. Moreover, even when strip-
ping one of the two components in our model, the results still obviously outperform the baseline
model PSSL, demonstrating the effectiveness of our methods for modeling intent-oriented interest.
To sum up, stripping off any main component in the document representation procedure will

impede the learning of user interest. Further, it is observed that extracting current intent clicked
documents is as effective as solely extracting corresponding historical ones, which accords with
our assumption: there exists rich information within clicked documents related to users’ current
intent but overlooked by previous studies.

6.2 Effects of theQuery-Aware Aggregation in the Document Encoder

To explore the function of the query-aware attention mechanism in the document encoder, for
passage-level evidence we test our model with three different aggregation patterns:

(1) w/o. q. The passage vectors and the title vector are simply summarized without the
query-aware attention;
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Table 6. Results with Different Aggregation Patterns for Passage-Level
Evidence

Model MAP MRR P@1 P-improve
w/o. q .8411 .8502 .7515 .2877
self-attention .8425 .8516 .7544 .2920

self-attention w/o. q .8407 .8502 .7520 .2883

DIMPS .8421 .8512 .7532 .2939

(2) self-attention. The passage vectors and the title vector are fed into a self-attention layer
together with the corresponding query. The output vectors of the passages and the title are
summarized to represent the whole document;

(3) self-attention w/o. q. The passage vectors and the title vector are fed into a self-attention
without the corresponding query. The output vectors of the passages and the title are
summarized to represent the whole document. The results are reported in Table 6.

As expected, models with query-aware attention obtain better accuracy, which shows the
effectiveness of using corresponding queries to extract intent-related features in documents. The
self-attention model achieves the best results. We believe this proves the interactions among
passages are useful clues for the model to understand search interests and the corresponding
query still provides critical information for the organization of such clues. To balance efficiency
and effectiveness, we abandon the relatively expensive self-attention models in our DIMPS.

6.3 Effects of the Dynamic Interest Modeling

After the intent-oriented document representation, we have extracted historical and current
intents from the history, the current query, and the candidate document. Next, we model user
interests by attending to the dependencies among those intent representations. The reason
for directly attending dependencies among the history, the current query, and the candidate
document lies in two aspects:

— The contribution of different historical representations for interest profiling can be addressed
with the help of the current representations (i.e., the current query and its potential clicked
documents: candidate documents);

— The candidate documents may include complementary information for current intents
which are useful for interest profiling.

In this section, we are going to explore the functionality of the aforementioned dependency
modeling strategy. To be specific, we set three model variations as follows:

(1) Independent HC. The relatedness of the current behavior to each historical behavior is not
modeled. We discard the inputs of the candidate document as well as the current query,
which represents current intents, at the user-level transformer. Instead, we take the summa-
rized outputs of the history sequence IH as the unified historical interest. For the current
intents, we concatenate the candidate document and the current query and send them to an-
other transformer. The outputs are summarized as the current interest. Further, we append
it and a “[CLS]” token to the unified historical interest and send them to a transformer. The
output of the “[CLS]” token is taken as the predicted user profile. In the re-ranking stage,
this predicted user profile is taken as the user profile I in Equation (8).

(2) Compared. This experiment is designed to investigate how the impact of negative samples
deteriorates the ranking quality, and the effectiveness of using the predict token. The depen-
dency modeling strategy is the same with DIMPS, but without the notation of “predicted
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Table 7. Results of Different Sequence-level Interest Modeling
Strategies

Model MAP MRR P@1 P-improve
independent HC .8358 .8449 .7426 .2895
compared .8372 .8475 .7482 .2572

DIMPS .8421 .8512 .7532 .2939

Fig. 5. Results with different numbers of selected passages.

interest vector”. We discard the input of the “[CLS]” token at the sequence-level transformer.
Instead, we summarize the outputs of history sequences IH (history-intent) as the user pro-
file, and then compare its cosine similarity regarded the outputs of the candidate document
for the personalized score.

The experimental results shown in Table 7 match our expectations. All three models damage the
ranking quality of DIMPS. The “independent HC” gains the lowest accuracy, demonstrating that
the model fails to take advantage of the intent-oriented information from the history without the
attention to current behaviors. Whereas, with the communications among historical and current
intents ensured, the “compared” model still suffers from considerable drops on all metrics. The
major reason lies in the uncertainty of the candidate documents’ satisfactoriness. If an unsatisfied
candidate document is fed to the network, its representations will be inclined to (1) the correct
current intent because of the intent-oriented document encoder and (2) historical intents because
the dynamic interest modeling poses the impact of the history to it. Therefore, as we would like to
use candidate documents as complementary intent representations, unlike most user profile-based
personalized methods, we set a “[CLS]” token to reflect how the predicted search sequence accords
with user interests.

6.4 Experiments with Different Numbers of Selected Passages

To analyze our model’s performance regarding the number of selected passages in the document
pruning module, we set the top size K at 2, 3, 4, and 5, respectively. From Figure 5, we observe that,
in general, more selected passages help the model to capture user intents. However, the accuracy
deteriorates when setting theK larger than 3, indicating the inclusion of more noise when learning
from long documents. Moreover, it also verifies the necessity of pruning documents according to
corresponding intents as well as the functionality of our pruning strategy to extract such intents.
As the balance of efficiency and effectiveness, we take the K for 3 in our DIMPS model.

6.5 Experiments with Different Numbers of Historical Behaviors

To investigate the impact of history length in DIMPS, we test the model with different numbers of
historical search behaviors. The results plotted in Figure 6 show that when the behavior numbers
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Fig. 6. Results with different numbers of historical behaviors.

Fig. 7. Results on ambiguous and non-amibiguous queries

are lower than 10, the accuracy grows as lengthening the history. However with a long history,
when increasing the behavior number the accuracy tends to drop more significantly. Specifically,
the MAP gap between behavior numbers 10 and 15 is 1.45%, while the MAP gap between behavior
numbers 15 and 20 is 2.28%. We suppose this is because, in the long history, the text related
to current intents in the clicked documents is more sparse, which results in much noise in the
selected current intent-oriented passages. For a longer history, the intent-oriented document
encoder should be further adjusted to ensure effective information extraction. In future work, we
may exclusively design the intent-oriented document encoder for long-term history, with less
expensive structures compared to the current short-term ones.
In addition, our lowest accuracy still outperforms the SOTA method PSSL, which requires 50

historical searches. This phenomenon also proves that our DIMPS does not require a long user
history to achieve adorable personalized results.

6.6 Experiments with Ambiguous and Non-AmbiguousQueries

We first divide the dataset into ambiguous and non-ambiguous queries, the intents of the former
are more ambiguous with words that could be interpreted into diverse meanings like “MAC” while
the latter are more clear. Click entropy [17] is an effective measurement for the queries’ ambiguity.
Previous studies [17, 44] have shown that a larger click entropy often indicates more potential for
search results personalization because of the larger ambiguity. We categorize the queries with the
cutoff of click entropy at 1.0. Figure 7 shows the performance improvement in MAP over BM25 by
the state-of-the-art model PSSL, our proposed dynamic interest modeling model DIMPS, and the
two ablation models.
It is noted that all personalized models boost the original ranking on both groups. Generally,

the ambiguous queries (click entropy≥1) have higher improvements than non-ambiguous queries
(click entropy<1). The results demonstrate the effectiveness of all methods for clarifying search
intent. Besides, all the dynamic interest modeling methods consistently outperform PSSL on both
query categories. Specifically, our DIMPS outperforms the baseline model PSSL by 1.00% when
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click entropy<1 and 2.44% when click entropy≥1. Likewise, a greater drop can be seen when click
entropy≥1 between DIMPS w/o. DP and PSSL. Similar performance gap is observed between the
other two ablationmodels and the PSSL. This demonstrates the contribution of the proposed intent-
oriented dynamic interest modeling strategy in disambiguating queries. Particularly, if we strip off
the current intent-oriented encoding parts, the performance drops more noticeably on ambiguous
queries than on non-ambiguous queries. This confirms that the clicked document contains infor-
mational clues for the deduction of users’ current intent, which accords with our assumption. A
similar phenomenon can be seen on DIMPSw/o. DP.We believe this shows the necessity of dynam-
ically extracting supplemental pieces in the clicked history, especially under ambiguous queries.
Next, to verify the function of our intent-oriented document encoder and interest modeling

module in detail, we will show a visualized example.

6.7 Case Study

As we stated before, static document representations are noisy and broad which hinders us from
capturing accurate user intents and re-ranking documents. In this article, we implement a dynamic
intent-oriented document encoder and a dynamic interest modeling module to construct intent-
aware interest sequences. Table 4 demonstrates the effectiveness of this kind of dynamic interest
modeling in improving personalization. To further analyze how the representing and modeling
work, we show an example by sampling one user’s query log in the B dataset. We visualize the
attention weights applied to all behavior representations by the current query in the final history-
level transformer. Furthermore, we also represent the attention weights applied to passage-level
representations by the current query in the document encoding part.
In this case, the user enters “tenderness of the abductor” to get information about a muscle

problem. As shown in Figure 8, all three vectors from each behavior are assigned different weights
by the issued query. We focus on the representations of search position 4 with the query word
“hand muscle”, which does not reveal direct relations with the current query. However, the clicked
document includes much information about muscle problems, which means this is a behavior
highly related to the current intent.
From Figure 8, we can observe that:

— The position 4’s query representation q4 obtains a small weight, which accords with intu-
itions. This verifies that, without dynamic document profiling, like previous methods the
model cannot capture the interest’s underlying documents.

— Both position 4’s historical intent-oriented representationD4 and the current intent-oriented

representation D̃i gain larger weights compared to its query representation. This indicates
that our model successfully leverages the additional features from the intent-oriented docu-
ment encoder, and correctly considers them contributing to depicting user interests.

Now we have proved that in dynamic interest modeling, the model successfully emphasizes
the informational parts that benefit the user profiling. To further analyze how the relevance of
the current intent is attended in the current intent-oriented encoding, in Figure 8, we also show
the attention weights at position 4 among the three selected passage representations and the title
representation. It is noted that:

— The second passage P̃3,2 that includes a detailed description of muscle problems related to ab-
ductor tenderness are applied the largest weights, which verifies our current intent-oriented
encoding attends important information about current search intent from historical data.

It is obvious that either the document representation itself (consists of several passage repre-
sentations), or its importance for interest modeling, is dynamically decided by the current query.
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Fig. 8. The weights of a part of past search history applied by the current query “tenderness of the abductor”.
A lighter area indicates a larger weight. qi represents the ith query vector in the user’ search history. Di

refers to the historical intent-oriented document representation corresponding to the ith search. While D̃i

is the current intent-oriented document representation of the ith search. P̃i, j is the jth passage-level intent-
oriented representation from the current intent-oriented encoding part of the ith search. Corresponding
keywords are shown in the sub-figure.

From the weights of this case, we can see that such fine-grained modeling of a document depends
on its contribution to user profiling. That means, our model is effective at fine-grained modeling
of documents in personalization, leading to its adorable ability to improve personalized ranking
quality.
In conclusion, the visualization of weights on passage-level intent-oriented representations

demonstrates that our intent-oriented encoding module can extract features related to the cur-
rent intent from the history data, while the weights of all behavior representations verify that our
interest modeling module is capable of highlighting relatively important parts when building the
search interest.

6.8 Efficiency-Effectiveness Analysis

To extract features related to the current intents, we profile each historical clicked document set
according to the current query. This means we need to run the pruning part and the encoding
part on each historical interaction. None of the computations about the current intent are reusable
because each new query requires full recomputation. Hence, we pay great attention to reducing the
computational cost. For example, the whole procedure of document pruning and passage encoding
is performed offline, without the need to learn with current queries. The fast TF-IDF is used to
extract query-related passages. The selected passages are also previously prepared by pre-trained
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Table 8. A Computational Complexity Summary of the Baseline Personalized Models Discussed in the
Article

Model Computational Complexity Description

HRNN O(ND2 + ND) O(ND2) is the complexity from its
recurrent networks, and O(ND) is
from its query-aware dynamic
attention.

PEPS O(L2D + LD2) The multi-head attention contextual
representation has the complexity of
O(L2D). O(LD2) is from the GRU-
based query reformulation module.

HTPS O(NL2D + N 2D) O(NL2D) is from its word-level trans-
former. O(N 2D) is from its trans-
former encoder on history.

PSSL O(N 2D) It is from its transformer encoders on
user history.

DIMPS O(NKD + N 2D) O(NKD) is the complexity of the
query-aware document encoding.
O(N 2D) is the complexity of the
interest modeling.

DIMPS self-attention O(NK2D + N 2D) O(NK2D) is the complexity of the
self-attention document encoding.
O(N 2D) is the complexity of the
interest modeling.

deep learning models. During the learning procedure, we discard the modeling of inter-passage
interactions but utilize simple query-aware attention to build document profiles. What’s more,
the model also shows its superiority over baselines even fed with a small number of historical
behaviors.
All the above efforts lead to satisfactory results over efficiency as well as effectiveness. In this

section, we first analyze the computation complexity in theory for all personalized baselines
and the proposed model. Second, we compare the query latency of the DIMPS “self-attention”
model, DIMPS without passage encoding, and the DIMPS original model, to represent the effects
on computational cost in the document profiling stage. Third, we compare the query latency
between the state-of-the-art model PSSL and our proposed model under different history lengths.
Overall Complexity Analysis.

We list the computational complexity of all the deep-learning personalized baselines in Table 8
as follows: Note that the query latency that affects the user is in real applications, so we do not
analyze the complexity of the pre-training or offline preprocessing stage of the models. N is the
number of search behaviors in the user history.D is the representation dimension.K is the number
of passages in each intent-oriented pruned document. L is the sequence length of queries or
documents.
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Table 9. Efficiency and Effectiveness of DIMPS with Different Document Encoding
Strategies

Model MAP MRR P@1 Queries per second
DIMPS self-attention .8425 .8516 .7544 92,783
DIMPS Emb .8407 .8502 .7520 154,465

DIMPS .8421 .8512 .7532 101,968

Our DIMPS model has comparable computational complexity with all the baselines. Thanks
to the offline document pruning stage, using document passages instead of titles does not bring
unacceptable expenses.
Efficiency-Effectiveness Analysis for DIMPS

In this section, we exploit the efficiency and effectiveness of our DIMPS model with different
document encoding strategies. Specifically, we test the following two model variants:

— Self-Attention. It is the model mentioned in Section 6.2. The query-aware attention in the
document encoder is replaced by self-attentionmodels. Thismodel has shown a better ability
to capture relevance among passages and gains better ranking results in Table 6. In this
section, we will further analyze its efficiency.

— Emb. The transformer-based encoding part described at the beginning of Section 3.1.2 is
abandoned. While, we generate passages and query vectors by mapping each word through
a pre-trained embedding table, which is fine-tuned during the training, and summarize all
the word representations. The embedding matrix is obtained by training a word2vec [33]
model following [19, 31, 64]. The embedding size is 100. We set this experiment to explore
our model’s performance when the offline transformer encoding part is too expensive to
employ in real applications.

We provide the costs of two models in Table 9. All the experiments are conducted on a 256-GB
memory server with a single Titan V GPU.
As for the self-attention model, it is shown that the accuracy improvement is not significant but

the cost grows more obviously. Besides, we also give theoretical analysis on efficiency in Table 8.
It is shown that the computational cost of self-attention models, with the complexity ofO(NK2D),
gains considerable increase with more input passages. On the contrary, the DIMPS model with
query-aware attention, with the complexity of O(NKD), would be far less expensive. We did not
test the model with a history longer than 20 or passage numbers larger than 3 because the doc-
ument pruning part would be costly as these numbers grow. But as the document pruning can
be performed offline, it is possible that in real-life applications these numbers would be much
larger. At last, we adopt the efficient dynamic query-aware mechanism into DIMPS to ensure our
model structure is not too complex to apply in real-life applications, where longer inputs could be
preferred.
As for the Emb model, it yields better results on effectiveness and efficiency over PSSL in the

next section. This proves that our model’s superiority is not heavily dependent on the pre-trained
passage encoding part. Even if generate passage vectors during training, the computational cost
and accuracy are still adorable.
Moreover, the tf-idf document pruning part can be deleted to save cost since the DIMPS w/o.

DP in Section ?? still achieves competitive performance over PSSL.
The Comparison between DIMPS and PSSL

The comparison of query latency between our method and the state-of-the-art model PSSL is
shown in Figure 9, where we test the two models under different history lengths. Historical be-
havior numbers are denoted in Figure 9. All the experiments are conducted on a 256-GB memory
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Fig. 9. Effectiveness and efficiency of our proposedmodel and PSSLwith different history lengths. Compared
to the SOTA model PSSL, our DIMPS model gains better accuracy and costs comparable computational
resource.

server with a single Titan V GPU. To ensure a fair comparison, the PSSL model is implemented by
its authors’ published code. The dataset used in this section is also the same as the one used in the
PSSL paper [65].

We can see that our method has comparable query latency with PSSL, while significantly out-
performing it in terms of ranking quality. As expected, modeling interest from more historical
behaviors increases the computational cost. The increases of DIMPS are larger than PSSL, it is be-
cause the DIMPS needs to perform document profiling for each behavior, while PSSL only needs
to add the behavior to the history-level transformer encoder. Whereas, all of the DIMPS models
show obvious advantages in performance over the PSSL models. In this figure, the best efficiency-
effectiveness balance is achieved with a history of length 10, which indicates our intent-oriented
extraction strategy is more suitable for short-term history. We believe this is because a longer his-
tory tends to reflect more long-standing user characteristics, while its fine-grained evidence is not
so informational for user profiling.
In summary, compared to PSSL, our model shows better effectiveness and comparable efficiency.

6.9 Applications of the Document Pruning

In this article, we design a document pruning approach to prune document contents according
to the queries. In this way, we can leverage passage-level information to capture more acceptable
user interests. As the results shown in Table 6, the model without query-aware attention still out-
performs previous methods. This implies the document pruning module effectively extracts useful
features, while simply using the titles or the entire text of the documents indeed brings much noise.
Naturally, we wonder if the performance of other personalized methods will be improved with the
utilization of the query-aware document pruning module. Hence, in this section, we apply the
document pruning for two baselines, HTPS and PEPS. We choose the two models for experiments

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 96. Publication date: February 2024.



96:26 Y. Bai et al.

Table 10. Results of Baselines with Document Pruning

Model MAP MRR P@1 P-improve
HTPS w/o. DP .8207 .8304 .7219 .2773
HTPS DP .8226 .8331 .7268 .2759
PSSL w/o. DP .8299 .8295 .7329 .2709
PSSL DP .8301 .8398 .7338 .2740

because they characteristically follow the popular user profiling paradigm shown in Figure 1(a):
building a user profile from the sequence of past queries and clicked documents.
To be specific, we prune the clicked documents according to their corresponding historical

queries. The experiments are noted as “DP” in the table. We do not prune the document according
to the current interest, because the current intent-oriented features need to be specially modeled,
which is not included in the baseline models. The pruned passages are encoded to vectors as in Sec-
tion 3.1.1. Then, the vectors are appended to the original title word embeddings of the documents.
That is, they are treated as additional words from the documents in the baseline models.

For comparison, we also experiment with the baselines with the first passages of the documents.
The experiments are noted as “w/o. DP” in the table.

The number of passages is set as 3. The length of history is 20. Note that the history lengths
is not the same as the ones in the original papers. Because PSSL does not measure the length
by the number of clicked behaviors, it just sends a certain number of queries and all the clicked
documents.While, the HTPS uses 50 past behaviors as user history, which is quite time-consuming
for our document-pruning strategy. The models in this section are implemented according to the
code published by their authors.
The experiments shown in Table 10 illustrate that both the “DP” models outperforms “w/o.

DP”models. Specifically, for HTPS the document pruning improves the accuracy by 0.19% onMAP,
while for PSSL, it improves 0.02% on MAP. This verifies that our model-free document pruning al-
gorithm could help the models to build a more accurate user profile by the query-aware pruned
passages.

6.10 Applications of the Candidate Document-Aware Interest Modeling

In our DIMPS, we send the candidate document into the interest modeling procedure to capture the
interactions between the candidate document and user behaviors. The inferiority of “independent
HC” in Table 7 and “DIMPS w/o. c” in Table 4 compared to DIMPS indicates the effectiveness of
such candidate document-aware interest modeling strategy. Similarly, we would like to investigate
the functionality of this strategy on other personalized methods. Like in Section 6.9, we choose
the two typical user profiling baselines HTPS and PSSL for experiments.
In implementation, we append the candidate document representation, used in their original

models, to the last of the history sequence. The rest of the interest modeling procedure remains
unchanged. The candidate document-aware models are denoted as “ca”. Comparison of the tested
models and original models is shown in Table 11. The models in this section are implemented
according to the code published by their authors.
It is observed that the candidate document-aware strategy improves the performance of HTPS,

but deteriorates the performance of PSSL. The deterioration may come from the neglect of the
relationship between history and documentation in PSSL’s pre-training stage. Besides, from the
“compared” model in Section 6.3 we can see the ways of getting ranking scores influence the perfor-
mance of candidate document-aware modeling. To conclude, we believe that incorporating candi-
date documents by appending them to the history sequence could lead to improvements for some
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Table 11. Results of Baselines with Candidate
Document-Aware Interest Modeling

Model MAP MRR P@1 P-improve
HTPS .8224 .8324 .7286 .2552
HTPS ca .8236 .8340 .7288 .2758
PSSL .8301 .8398 .7338 .2688
PSSL ca .8280 .8379 .7315 .2715

methods, but it needsmore special consideration for some sophisticated scenarios. The dependency
between history and candidate documents should be further studied to design a more functional
candidate document-aware interest modeling strategy. We would leave this to our future work.

7 CONCLUSION

In this article, we address the personalized search problem by building intent-aware dynamic
document representation to construct more accurate user profiles. To implement this idea, we
propose a dynamic interest modeling strategy from passage-level evidence. First, we explicitly
model features related to corresponding and current intents from documents. Furthermore, we
organize documents and their corresponding queries into a sequence and build a dynamic user
profile. Finally, we evaluate the learned profile to re-rank the candidate documents.
Experiments on the large-scale dataset illustrate our model’s superiority over the state-of-

the-art methods. Besides, we perform ablation experiments on the two main components in our
dynamic intent-oriented document encoder. Results demonstrate our model’s ability to capture
search intents from history. The analysis of our passage encoding and sequence modeling is also
presented with experimental results. It is confirmed that using queries to guide the extraction of
corresponding intents from passage-level evidence is an effective way for document representa-
tion, while capturing the full interactions among history, current query, and candidate documents
is necessary for better re-ranking. Then we test our model’s performance on ambiguous and non-
ambiguous queries respectively, to test its capacity to build intents even with inaccurate search
words. Furthermore, by presenting the visualization of weights, we also verify our model’s effec-
tiveness in modeling dynamic intent-aware documents as well as the whole search sequences to
depict a better user profile. We also conduct efficiency-effectiveness analysis between the state-of-
the-art model and our model with varying history lengths as well as one another passage encoding
strategy. Results have proved the possibility of deploying DIMPS into real-world applications. Be-
sides, we test the functionality of the document pruning module on several baselines. The improve-
ments verify that our document pruning can offer efficient document vectors for other personalized
approaches, alleviating the noise problem caused by using the entire text of the documents.
In future work, we are interested in designing an exclusive intent-orient interest modeling strat-

egy for long-term history to improve the performance of our model. Second, we want to explore
how the ranking quality changes when substituting some of the components in the offline doc-
ument pruning and passage encoding stage, which would be beneficial in finding the tradeoff
configurations under different search requirements.
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