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1 INTRODUCTION

As previous studies showed [12, 33], search queries are usually short and ambiguous. For example,
when the user issues “Apple,” she may want to learn information about fruit apples or the Apple
company. Personalized search [2, 15, 17, 24–26, 41, 48, 50–52] and search result diversification
[1, 6, 13, 14, 20, 21, 23, 28, 31, 34, 45, 46, 49] are two mainstream methods to eliminate ambiguity
and provide more satisfactory search results.
Personalized search tries to capture the profile of users from their search history. In this

way, it can mine out the documents that the user is most likely to be interested in and provide
personalized results for different users. As shown in Figure 1, the personalized IR system will
rerank programming-related documents ahead for a programmer when she issues “JAVA.”
However, the drawback is that it may return redundant results, e.g., the first two documents are
both related to “JAVA program language tutorial,” while the user may prefer other documents
covering her interests after viewing the first document. It also reveals that personalization cannot
capture the intrinsic diversity of user preferences. In contrast, search result diversification aims
to diminish ambiguity by improving the probability of satisfying the intents of different users.
Specifically, it reduces the similarity between result documents while keeping their relevance
to the current query. As Figure 1 illustrates, the diversified system returns documents related to
“JAVA language” or “JAVA island” in the top-ranked results. This result has high diversity, yet, if
we can infer that the user is a programmer from her search log, then the documents related to
“JAVA island” may not be what she desires. Thus, the limitation of search result diversification
is that it neglects the user’s historical information and cannot provide exact results that meet
the user’s personalized preferences. Factually, personalization and diversification have their own
advantages and disadvantages in different scenarios, they should be integrated to capture the
strengths of both while complementing their weaknesses.
Recently, there have been someworks [8, 22, 30, 36] on the integration of diversification and per-

sonalization. However, most of the efforts simply introduced a user variable to the existing diver-
sification function without an in-depth exploration of the relationship between the two methods.
Different from existing works, we think that the proportion of personalization and diversification
should not be fixed but dynamic in different situations. Correspondingly, there is a challenge in
how to measure the weight properly for controlling personalization and diversification dynam-
ically. As previous works have studied [15, 51], people usually find information that has been
searched before, which is called refinding behavior. Intuitively, the refinding degree is a reasonable
factor to balance their importance. A high refinding degree means that the user uploads a query
similar to the ones she issued before, hence, personalization is critical to providing accurate user
interests in such a case. Otherwise, we should focus on diversification, as less favorable informa-
tion can be extracted from her history for the issued query. Besides, as mentioned before, the user’s
preferences are varied, so the diversity of user interests should be considered in personalization.
By integrating personalization and diversification, the IR system can consider the personalized rel-
evance and diversity of user interests simultaneously. Thus, it provides more satisfactory results.
For the same example shown in Figure 1, with a document about “JAVA program language tuto-
rial” being ranked first, the integrated system ranks other programming-related documents that
the programmer prefers to click on, e.g., “JAVA program language download,” at the top.
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Fig. 1. An example to demonstrate the necessity of integrating personalization and diversification.

To achieve it, we propose a novel framework, namely, PnD, to consider personalization and
diversification simultaneously in search result ranking. In summary, PnD greedily selects the
local optimal document based on a final score to rerank the results. The final score is produced
by aggregating the signals that measure diversity, personality, and ad hoc relevance. Specifically,
after generating the user’s profiles from her historical search, we first extract virtual subtopics
of the current query, candidate documents, and profiles to explicitly model their fine-grained
representations. Second, we use the similarity of the query to the user’s profiles as the refinding
degrees to dynamically determine the importance of personalization. Third, for modeling the
diversity of the candidate document relative to previously selected documents, we need to
measure the subtopic coverage of selected documents following existing diversification meth-
ods [1, 21, 31]. Therefore, we develop a modified RNN structure to update the representations of
the current query and the user’s profiles based on the selected documents. This process enables
the representations of the current query and user profiles to forget the covered information of
selected documents. Thus, we can view the similarity of the updated representations with the
candidate representation as three novelty scores that measure the candidate’s novelty, which
includes relevance and diversity, from personalized and general (current query) perspectives.
Finally, we assign the refinding degrees to personalized novelty scores and aggregate all novelty
scores as the final score for reranking. As we analyzed above, the user’s interests are varied,
which leads to complex behaviors. Thus, we think that the users’ click feedback reflects rel-
evance and diversity simultaneously. Correspondingly, we optimize our model based on the
users’ click feedback and aim to rerank clicked documents, i.e., satisfactory documents, at
the top.
The main contributions of our work are as follows:

(1) We propose a novel framework that dynamically integrates personalization and diversifica-
tion based on refinding behavior to provide more satisfactory results;

(2) To apply ourmodels atop query logs, we learn virtual subtopics of profiles and queries, which
can model users’ and queries’ various needs explicitly and prompt the performance of our
model;

(3) We design a modified RNN structure for modeling the coverage of selected documents on
the subtopics of the query and user’s profiles, based on which we can measure the scores of
remaining documents more reliably.
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The rest of this article is organized as follows: Related works are introduced in Section 2. In
Section 3, we explain the structure of the proposedmodel.We demonstrate the experiment settings
in Section 4. Then, we present the experiment results and analysis in Section 5. We conclude the
whole article and propose further improvements in Section 6.

2 RELATEDWORK

2.1 Personalized Search

Personalized search attracts much attention due to its ability to tailor the ranking results based on
the user’s personality, thereby improving ranking quality and user satisfaction.

2.1.1 Traditional Methods. Traditional personalized search models are almost unsupervised
[15, 35] and based on manual features [3, 38, 40]. For example, P-Click[15], proposed by Dou et al.,
is a typical method based on click data. In the view of the authors, when the user issues a previously
searched query, the documents that were frequently clicked are more important than the rarely
clicked ones. Considering the importance of topic features for personalizing search results, some
works construct user profiles in explicit or implicit topic space. Chirita et al. [9] utilized the Open
Directory Project (ODP), which is the directory of artificially annotated topics, to categorize the
documents and capture user references. Then, results are re-ranked based on the distance between
user topic nodes and document topic nodes. Owing to the coverage limits of the manual topics,
Thanh et al. [39] employed Latent Dirichlet Allocation (LDA) [4] to extract topic-based features
and construct user profiles in the latent topic space. Benefiting from the advanced learning to rank
model LambdaMART [5], significant improvement has been achieved by several works [38, 43].

There are some disadvantages to using heuristic rules and features, such as their time-
consuming nature and limited coverage. With the development of machine learning, many su-
pervised methods have been proposed and shown superior performance.

2.1.2 Machine Learning-based Methods. SLTB [2] is a feature-based model that aggregates the
multiple manual features to rerank the results via a learning-to-rank method. Considering the im-
portance of the user’s search history to model the user’s current search intent, many researchers
have explored such valuable information to solve various tasks, e.g., document retrieval [32],
session-based ranking algorithms [18, 29, 42], and so on. In the field of personalized search, Ge et al.
proposed HRNN [17] to construct users’ long-term and short-term profiles based on a hierarchical
RNN structure from their search logs. The authors further introduced the attention technique to
learn the importance of historical sessions relative to the current query to gain a reliable represen-
tation of the user’s long-term profile. To mine out the high-quality negative samples for improving
the ranking ability of the trained personalized model, Lu et al. employedGenerative Adversarial
Networks (GAN) for personalized search and proposed PSGAN [25]. Considering the impact of
time span on personalization, Ma et al. proposed PSTIM [26] to mine out more accurate personal-
ized intents. Yao et al. devised PEPS [48] to eliminate ambiguity in the stage of word embedding.
It learned for each user an individual word embedding matrix that only contains the aspects that
the user is interested in. Instead of learning user profiles that may introduce historical noise, Zhou
et al. [50] proposed to learn a disambiguation representation of the current query directly. Consid-
ering the user histories provide rich contextual information for disambiguating the issued query,
the authors applied the transformer encoder [37] to capture more specific user intents and provide
satisfactory ranking results. Dou et al. have proven the effectiveness of re-finding behaviors for
personalized search. For further utilization of this information, RPMN [51] is designed to iden-
tify more complex and potential refinding behaviors. It constructed memory networks from three
perspectives to support the refinding of these aspects.
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2.2 Search Result Diversification

Instead of capturing the specific intents of the user, search result diversification aims to meet
different users’ intents by providing search results covering various aspects. According to whether
subtopic information is applied, search result diversification approaches can be categorized into
explicit and implicit ones. According to whether the algorithms are learnable, they can be divided
into unsupervised and supervised approaches.

2.2.1 Unsupervised Methods. Search result diversification has to consider the dissimilarity
between the next document and selected documents, thus, most algorithms greedily choose the
current optimal document. MMR [6] is a typical implicit diversification method that greedily
selects the next optimal document and constructs the reranked results. It measures the relevance
of the candidate documents to the query and views the similarity of the candidate to the previously
ranked documents as diversity. Then, MMR linearly combines relevance and diversity using
a tradeoff factor to generate the ranking score. To consider subtopics explicitly, IA-select [1]
and xQuAD [31] are proposed. Rather than calculating the diversity implicitly by document
similarity, they regard the subtopic coverage as the diversity indicator, hence explicitly improving
the diversity of the ranking results. Dang et al. [13] further introduced term-level subtopics to
promote the efficiency of the algorithm. Ozdemiray et al. [27] proposed to rerank the results for
each aspect of the query, then conducted a ranking aggregation to produce the final diversified
result. Wu et al. [44] designed a fusion-based algorithm to integrate multiple IR search system
results. In fact, the query subtopics are usually hierarchical rather than an equal list. Therefore,
Hu et al. [20] applied hierarchical intents to calculate diversity and provide ranking results more
accurately.

2.2.2 Supervised Methods. Different from unsupervised approaches that use heuristic rules for
diversification, supervised approaches introduce learnable parameters to construct a more effec-
tive algorithm. R-LTR [53] applies trainable weight to yield relevance and diversity scores. Xia et al.
devised a novel loss function to escalate the gap between the ideal ranking and negative rankings,
namely, PAMM [45]. As the manual novelty features are limited, they improved R-LTR and PAMM
into PAMM-NTN and R-LTR-NTN [46] by introducing a neural tensor network (NTN) to model
the novelty. As previous supervised methods are implicit without considering subtopics explicitly,
Jiang et al. proposed an explicit supervised approach, DSSA [21]. It builds the representation of
the selected document sequence using an RNN module. The importance of subtopics is weighted
based on the similarity between the subtopics and the document sequence. Liu et al. [23] proposed
DVGAN, which conducts diversification based on GAN. Greedily producing ranking lists is the
common paradigm of preceding methods, while it inevitably yields sub-optimal results rather than
global optimal ones. To tackle this problem, Qin et al. proposed DESA [28]. It applies transformers
to measure diversity and produce the ranking score of all candidate documents simultaneously.

2.3 Personalized Search Result Diversification

The goals of search result personalization and diversification seem to be completely opposed. The
former tries to find the most satisfying aspect for the current user, and the latter aims to cover
as many aspects as possible to meet the diverse intents of all users. However, some studies re-
cently found that they are not opposed but can be combined to provide better results. Radlinski
et al. [30] conducted query-query reformulation to generate R (q), the set of queries related to the
current query q but different from each other. The personalized diversity result is generated from
the original results of queries in R (q). Valle [36] improved traditional diversification methods by
introducing a user variable u to score functions. Chen et al. [8] conducted personalized diversity
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based on personalized query suggestion diversification. Liang et al. [22] applied a structured SVM
model to implement personalized diversification.
Different from previous works that directly inherit the paradigm of diversification, we design

our framework based on deep analysis. As users’ behaviors are complex and diverse, we believe
the clicks on the documents reflect the user’s satisfaction, including relevance and diversity. Thus,
the main target of our model is improving user satisfaction. As we mentioned above, the manual
features are time-consuming and limited, and the deep learning-based model can make up for it
by learning high-dimensional features automatically. Thus, we devise our model based on deep
learning.

3 OUR PROPOSED METHOD

Most of the existing methods that are applied to disambiguate the search query focus on the two
mainstream approaches, personalization, and diversification, while the former will lead to results
redundancy and the latter cannot capture accurate user intents. Different from them, we proposed
a model that integrates personalization and diversification to make their advantages and disadvan-
tages complementary and return search results that fully meet the user’s information needs.

3.1 Problem Definition

In ad hoc search, the engine learns document relevance to the query and returns a candidate doc-
ument listD = {d1,d2, . . .} when the user u enters a query q. Different from the traditional ad hoc
search, our model focuses on integrating personalization and diversification and aims to iteratively
find the optimal document from Equation (1):

dt,∗ = argmax
d ∈Dt

P (d |q,Dt ,St ,u). (1)

Note that our model greedily selects local-optimal documents to build ranking results. For the
t th ranking position, there are t − 1 previously selected documents, which are denoted as St =
{di,∗ |i ∈ [1, t−1]}, and the remained candidate documents construct a t th step candidate document
set, Dt ,Dt ∪ St = D. We denote the local optimal document at t th ranking position as dt,∗,
where dt,∗ ∈ Dt . After selecting a document in the t th step, the model will consider its impact
on measuring the novelty of remaining documents by updating the representation of the current
query and the user profile, respectively.
Usually, there are numerous users in the real world, and they have different search intents. To in-

corporate the user’s personality, we apply the long-term and short-term history of the user to learn
her profiles. User behavior over a period of time usually has similar search intents, so this period
of time is called a session. We first recognize the user’s historical behaviors in the current session
as her short-term history, i.e., Hs = {(qi ,Di ) |i ∈ [1,m]}, wherem denotes the number of issued
queries in the current session, qi denotes the ith query, and Di denotes the sets of correspond-
ing clicked documents. The long-term history Hl = {(qi ,Di ) |i ∈ [1,n]} contains the historical
behaviors before the current session, where n denotes the number of issued queries.
Under the initial representation of the current query q0, our model learns the short- and long-

term profiles S0, L0 from Hs and Hl , which represent the user’s initial profiles. We apply subtopic
learning layers to extract the virtual subtopic lists of the query, user profiles, and candidate docu-

ments for producing their fine-grained representations, i.e., q̂0, Ŝ0, L̂0, and d̂0.
After selecting a document in the t th step, themodel will measure its coverage across the diverse

personalized interests and query aspects by updating the representations of the user profiles and
the current query, respectively. Specifically, suppose that we have selected the t th documents, the

model will update q̂t−1, Ŝt−1, L̂t−1 to q̂t , Ŝt , L̂t . In such a way, q̂t , L̂t , and Ŝt denote the uncovered
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Table 1. Notations Used in Our Framework

Notation Explanation

u Current user.
q The entered query.
D Set of all candidate documents.
St Set of selected candidate documents.
Dt Set of remaining candidate documents.

d , d̂ Representation of document d , d̂ considers virtual subtopics.

d̂t,∗ Representation of the selected document at t th step considering virtual subtopics.
q0 Initial representations of query.
S0 Initial representations of the short-term profile.
L0 Initial representations of the long-term profile.
q̂0 Initial representations of the query considering virtual intents.

Ŝ0 Initial representations of the short-term profile considering virtual intents.

L̂0 Initial representations of long-term profile considering virtual intents.

q̂, Ŝ , L̂ Representations at the t th step, based on virtual subtopics.

intents of the query and profiles after selecting t documents and will be used in the next steps for

ranking the remaining documents. In the rest of this article, we will abbreviate q̂t , Ŝt , L̂t to q̂, Ŝ , L̂
to save space, and q̂0, Ŝ0, L̂0 refer to the initial representations of the query and profiles. Since our
model considers the diversity of user preferences, wewill call the personalization-related part
“diversified personalization” to make the content easier to understand. Accordingly, we
refer to the query-related part as “general diversification.” The score function in Equation (1)
can be transformed as:

P (d |q,Dt ,St ,u) = ζ
(
fд (d,q), r

S fS (d, S ), r
L fL (d,L), rel(q,d )

)
, (2)

where ζ denotes anMLP, which is used to aggregate different signals and produce the final score of
d . fд (d,q) denotes the general novelty score, which is produced by the general diversification part
without considering personality. Our model uses it to measure general diversity while maintaining
ad hoc relevance. The diversified personalization parts yield two signals, fS (d, S ) and fL (d,L),
which consider the candidate document’s relevance to the user’s short- and long-term interests
that have not been covered by selected documents. Thus, we call them personalized novelty scores.
rL and rS represent the similarity between the query and the profiles, i.e., the degree of refinding.
They are used to adjust the weights of personalization-related components. rel(q,d ) denotes the
additional relevance of document d to query q, which is produced by aggregating some relevance
features. We show our notations in Table 1. The content of our model will be introduced in detail
in the following subsections.

3.2 Overview of Our Model

Our model is proposed to reasonably integrate personalization and diversification. When the user
u issues the query q, it reranks the documents she wants at the top. As described in the problem
definition, we achieve it by following these steps:

(1) Virtual subtopics learning. We design a “subtopic learning layer” to extract virtual
subtopics from the current query, user profiles, and documents. The lists of subtopics are
viewed as their fine-grained representations and used in subsequent steps.

(2) Calculation of refinding degree, which measures the refinding degrees by the similarity
between the current query and the user’s profiles. The refinding degrees are used to weigh
the personalization part of our model. Steps (1) and (2) construct the “weighting process” of
Figure 2.
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Fig. 2. The architecture of PnD. The gray circle with “gate” represents the “reset” gate introduced in Sec-
tion 3.5. The gray square with “SL” denotes the subtopic learning layer introduced in Section 3.3. Note that

the representations of selected document d̂i,∗ and candidate document d̂ are generated in the same process
by the SL structure, but we have no space to draw them explicitly.

(3) Diversity modeling, which updates the representation of the query, profiles in the greedy
document selection to forget the aspects covered by the selected documents. These updated
representations contain aspects that have not been covered by selected documents, and their
similarity with remaining candidate documents can measure the novelty of candidates to
produce reliable ranking scores.

(4) Aggregated result scoring, which calculates and aggregates a general novelty score, two
personalized novelty scores, and an ad hoc relevance score to select the local optimal docu-
ment. We repeat Steps (3) and (4) until all candidate documents are reranked.

The overall model structure of PnD is shown in Figure 2. We will explain each component in
detail as follows.

3.3 Virtual Subtopics Learning

As the user interests and query aspects are various, explicitly applying the subtopics is conducive
to generating their fine-grained representations, which will introduce richer information. How-
ever, the dataset containing users’ click feedback always lacks subtopic information. Furthermore,
manual subtopics are also time-consuming and narrow in coverage. To solve this problem, we
devise a “subtopic learning layer” (SL) to capture virtual subtopics of queries, documents, and
user profiles. We call them virtual subtopics, as we do not know their exact meaning.

3.3.1 Modeling the Virtual Subtopics. Since the initial representations of the short-term profile
and long-term profile, S0 and L0, are produced from the user’s search log and the current query via
a hierarchical transformer [50], we deem that they contain all the interests of the user about the
query. To capture the fine-grained user interests in specific aspects, we apply a learnable matrix
with nonlinear activation to map the original representation to a specific space, and the obtained
vector represents a subtopic that contains the user interest in this aspect. We construct c learnable
matrices Mi , i ∈ {1, . . . , c} to decode virtual subtopics of the user’s profiles from c aspects. In
this way, the representation of the profile is represented as a c × h matrix, where h denotes the

ACM Transactions on Information Systems, Vol. 42, No. 3, Article 81. Publication date: January 2024.
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dimension of the subtopic vector:

Ŝ0 =
[
Ŝ1

0
, Ŝ2

0
, . . . , Ŝc

0
]
, Ŝi = ϕ (MT

S,iS
0), Ŝ0 ∈ Rc×h , Ŝi ∈ R1×h , (3)

L̂0 =
[
L̂1

0
, L̂2

0
, . . . , L̂c

0
]
, L̂i = ϕ (MT

L,iL
0), Ŝ0 ∈ Rc×h , Ŝi ∈ R1×h , (4)

where ϕ denotes the activation layer; we apply LeakyReLU in this article. Note that we build
subtopic layers with different parameters for short- and long-term profiles, as they capture the
user’s preferences from different perspectives. We also apply a different subtopic learning layer to

yield q̂0 and d̂ , as the information they contain is word-level.

3.3.2 Guaranteeing Diversity of Virtual Subtopics. To prevent the learning of homogeneous vir-
tual subtopics, thus affecting the coverage of subtopics, we further construct an auxiliary task
to ensure the diversity of the produced virtual subtopics. Inspired by Reference [54], we calcu-
late the intra-list similarity (ILS) of the given subtopic set to represent its diversity. Take the
query subtopics [q̂01, q̂

0
2, . . . , q̂

0
c ] as an example. We calculate the similarity of every pair of virtual

subtopics and normalized it as below:

ILS(q̂0) =
2
∑c

i=1

∑c
j=i+1 sim(q̂0i , q̂

0
j )

c (c − 1) . (5)

sim() denotes the similarity function; we initialize it by cosine similarity. For the virtual subtopics
of user profiles and candidate documents, we employ the same function to calculate the corre-
sponding intra-list similarity. Thus, we devise the loss function to promote the diversity of virtual
subtopics as follows:

Ldiv = ILS(q̂0) + ILS(L̂0) + ILS(Ŝ0) + ILS(d̂0). (6)

This loss function is utilized to construct the final loss function for optimizing our model, which
will be introduced in Section 3.7.

3.4 Calculation of Refinding Degree

As we mentioned above, the proportion of personalization and diversification is not fixed, but dy-
namically based on the refinding degree. It denotes the degree to which the current query is related
to the user’s search history, thus, we can view the similarity between the user’s profiles and the
query as the refinding degree. The high similarity means that the user has searched for relevant
queries before, so we should assign a high weight to diversified personalization. Otherwise, we
should focus on diversification, since the search history can not provide favorable information.
Then, we calculate the similarity between the current query and the profiles. rS denotes the simi-

larity between q̂0 and Ŝ0, and rL denotes the similarity between q̂0 and L̂0. As the new representa-
tions of the query and profiles are lists of subtopics, we should consider the matching information
between each subtopic pair. Therefore, we can capture the fine-grained similarity score between
the query and profiles. Inspired by KNRM [47], we construct a similarity function to calculate the
matching score between two lists of subtopics. We first build a cross-matching matrix MS of q̂0

and Ŝ0, i.e.,

MS
i j = cos(q̂0i , Ŝ

0
j ); (7)

cos(x ,y) =
< x ,y >

‖x ‖2‖y‖2 . (8)
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It can capture the rich matching information between the query and short-term profile at the
subtopic level. Then, we apply k RBF kernels to integrate the matching score from k aspects:

fo (M
S ) =

∑

i

log
���
∑

j

exp ��−
(MS

i j − uo )2
2σ 2

o

��
�	� , o ∈ {1, . . . ,k }, (9)

where k , uo , and σo are hyper-parameters. Following existing work, the value of k is set to 11 in
our model, uo is evenly distributed in (−1, 1) based on k and σo is 0.1 in our framework.

Finally, we aggregate thek matching scores to yield rS by anMLP layerϕ with tanh as activation:

rS = ϕ
(
f1 (M

S ), . . . , fo (M
S ), . . . , fk (M

S )
)
. (10)

We use Fk to represent the steps above and rL is calculated by the same function:

rS = Fk (q̂
0, Ŝ0), rL = Fk (q̂

0, L̂0). (11)

Note that the refinding degrees, rS and rL , are generated based on the original representations of

the query and user’s profiles, q̂0, Ŝ0, and L̂0. It means that the importance of the personalization
parts will not change in the document selection process.

3.5 Diversity Modelling

Suppose that Ŝ0 and L̂0 represent the initial short- and long-term profiles, which contain multiple
aspects that user u prefers, and q̂0 represents the original subtopics that query q contains. To
enhance the novelty of the results, we hope our model can choose the local optimal document
based on the subtopics not covered by previously selected documents. Thus, the query should
forget the information related to the selected documents. Inspired by the gate mechanism from
LSTM [19]. It uses the gate mechanism to forget and learn information based on the input state.
In our study, we construct a “reset gate” to update q̂t−1, which can model the subtopic coverage
of the newly selected document and enable q̂t−1 to forget this information by a reset vector, thus
the updated representation q̂t only contains the aspects that have not been covered by selected
documents. Note that in the process of the reset gate, all the lists of subtopics are flattened as a
ch−dimension vector.

q̂t = gate(q̂t−1, d̂t,∗) = r ⊗ q̂t−1; (12)

r = f2 (W
T
2 f1 (W

T
1 [q̂t−1; d̂t,∗] + b1) + b2), (13)

where d̂t,∗ ∈ Rch represents the t th selected document. ⊗ denotes the Hadamard product. r ∈
(−1, 1)ch represents the reset vector to update the last hidden state. We apply a learnable linear

layer withW1,b1 as parameters to learn the coverage information of d̂t,∗ on q̂t−1, and the second
layer withW2,b2 is used to map the information to the reset vector. f1 and f2 denote activation
functions. This process can capture the nonlinear interaction between the document and the query.
Thus, it can learn the coverage on subtopics of the query and update the hidden state.

As we mentioned above, we should consider the user’s diverse preferences to avoid redundant
personalized ranking results and satisfy the comprehensive intents of the user. To achieve it, we
build the same structures with different parameters to capture the impact of selected documents

on the user’s personalized interests and update the representation of Ŝ and L̂ iteratively.
We call the RNN structure based on the reset gate “RRNN.” Through it, we will obtain the latest

representations of the query, long- and short-term profiles. They contain the remaining aspects af-

ter selecting t documents. The update processes of L̂, q̂, and Ŝ correspond to the parts of “Diversified
Personalization on Long-term Profile,” “General Diversification,” and “Diversified Personalization
on Short-term Profile” in Figure 2.
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3.6 Aggregated Result Scoring

As we explained in the previous chapter, the latest representations of q̂, Ŝ , and L̂ only contain
the aspects that have not been covered by selected documents. Thus, the matching scores of the
candidate to them can be viewed as the degree to which the user’s or query’s remaining intents are
satisfied. We call them novelty scores, as they measure the relevance and diversity of the candidate
simultaneously.We apply similar functionswith Equation (11) to produce the general novelty score
ff (d,q), the long-term personalized novelty score fL (d,L), and the short-term personalized novelty
score fS (d, S ) as below:

fд (d,q) = Fk (d̂, q̂); fL (d,L) = Fk (d̂, L̂); fS (d, S ) = Fk (d̂, Ŝ ). (14)

Note that we omit t − 1 in q̂, Ŝ , and L̂ for simplification. We further introduce an additional com-
ponent to measure the ad hoc relevance of d , rel(d,q). More specifically, rel(d,q) = ϕ ( f (d,q)),
where ϕ (·) denotes an MLP layer, and f (d,q) denotes the relevance features between document d
and query q. We use the same feature set as Reference [51].

Finally, the novelty scores and the ad hoc relevance score can be integrated to produce the final
score of d . To control the importance of the personalization part, we multiply the personalized
novelty scores by refinding degrees. The document with the highest final score will be selected
as the next optimal document. MMR (Maximal Marginal Relevance) is a typical integration
pattern that combines relevance and diversity scores linearly based on a tradeoff factor λ. As a
hyper-parameter, λ is designed manually and may not be optimal. To find proper tradeoff factors,
we use a learnable matrixW3 to aggregate the scores. Consistent with Equation (2), we have:

P (d |q,Dt ,St ,u) = ζ (s ) = tanh(W T
3 s ), (15)

where ζ is an MLP layer with tanh(·) as activation function and s is a vector consists of scores we
obtained, i.e.,

s =
(
fд (d,q), r

S fS (d, S ), r
L fL (d,L), rel(q,d )

)T
.

3.7 Optimization of Our Model

Section 3.3.2 has demonstrated an auxiliary task of our optimization that ensures the heterogene-
ity of the virtual subtopics. In fact, the main task of our model is reranking the candidate doc-
uments and providing more satisfactory ranking results for the user, so employing a learning-
to-rank loss function to train our model is indispensable. In previous works on personalized
search [17, 25, 48, 50], researchers always thought that the clicked documents only revealed the
relevance between documents and queries. However, human behaviors and their motivations are
complex and diverse. When a user is searching for desired documents, she may neglect the redun-
dant documents, because she has browsed another similar document before, despite the fact that
these redundant documents can satisfy her original information need. It means that users’ click
behaviors are not just decided by the relevance of documents, but also depend on the di-
versity of results. Thus, we can view clicked documents as satisfactory documents that
reflect the user’s satisfaction with relevance and diversity, and non-clicked documents
as unsatisfactory ones. The training samples of our model can be viewed as pairwise samples.
We denote them as x = (q,H ,C = {d1 |i ∈ [1, t − 1]}, (da ,db )),y = {0, 1}, where C denotes the
previous t − 1 documents, which are sampled from the original ranking. H represents the user’s
search history, and da and db denote a pair of candidate documents for the t th position. y is the
ground truth label. Under selecting the C , if da is a better choice than db at the t th position, then
y = 1, otherwise, y = 0. Our model generates the final scores of da and db based on the input data,
and calculate P (da ,db |q,H ,C ), which denotes the probability that da is better than db . For brevity,
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we will refer to P (da ,db |q,H ,C ) as P (da ,db ). We have:

P (da ,db ) =
1

1 + exp(−(score(da ) − score(db ))) , (16)

where score(da ) denotes P (da |q,Dt ,St ,u). Thus, we can use binary classification loss to construct
our loss function:

Lrank = −
∑

q∈Q

|Δq |∑

o=1

yo log(P (doa ,d
o
b )) + (1 − yo ) (log(P (dob ,doa ))), (17)

whereQ represents all the queries and Δq = {(q,H , S, (doa ,dob ))} denotes the set consists of all pairs
w.r.t. query q, yo is the ground truth that doa is better than do

b
.

Therefore, the final loss function of our proposed model combines the diversity loss function,
Ldiv , which is introduced in Section 3.3.2, and the ranking loss function, Lrank :

L = λ1Lrank + λ2Ldiv , (18)

where λ1 and λ2 are hyper-parameters that control the importance of two loss functions.

4 EXPERIMENT SETTINGS

4.1 Dataset

We evaluate our model and baselines based on a large-scale search log collected from an English-
language commercial search engine between 1 January, 2013, and 28 February, 2013. Each piece of
data contains an anonymous user ID, a session ID, a query string, query issued time, top retrieved
URLs and corresponding document contents, click labels, documents’ dwelling time, and so on.
During the collection of this dataset, the search engine was not equipped with personalization, so
the click-through was ensured not to be biased toward other personalization signals. The dataset
contains 5,317 users and 2,665,625 queries. Considering the noise in click-through, e.g., the user
may fault-click a document or find it is not the right one and close it quickly, we view a document
that has a dwell time longer than 30 seconds or is clicked on the last as a satisfactory document
following Reference [48]. The sessions are constructed by treating 30 minutes of inactivity as the
boundary. Moreover, to construct the historical search of users, we segment the users’ data in the
first six weeks as the basic search history, which is used to filter users with inadequate search
logs, and the last two weeks as experimental data. Note that the long-term history is not only
built based on the first six weeks but also on all the search behaviors before the current session
to ensure the timeliness and adequacy of user histories. Since we consider the personalization of
search results, the division strategy of our dataset is applied to the search logs of each user rather
than the entire search logs. Specifically, we divide the experimental data of every user into the
training set, valid set, and test set according to the ratio of 4:1:1. The statistics information of the
experimental data is shown in Table 2. Note that there exist some publicly available datasets for
personalized search, i.e., AOL, ORCAS, and WEBIS logs. However, AOL only contains clicked doc-
uments for each query without actual original ranking results. Though there are methods to crawl
candidate documents for queries to build pseudo original ranking lists, However, considering that
users usually browse documents from top to bottom, a real original ranking list is critical to infer-
ring the user’s diverse interests, since some aspects of her interests may be satisfied by previously
reviewed documents. Therefore, such fake original ranking lists make it hard to model the user’s
diverse interests, which may not be suitable for evaluating our method. Similarly, the ORCAS and
WEBIS logs both lack user identifiers. Moreover, WEBIS only contains 13,651 queries and 16,739
clicks, which may prevent sufficiently optimizing our model. Thus, even if it may introduce some
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Table 2. Basic Statistics of the Experiment Dataset

Item Train Valid Test
#data pair 579,862 124,525 149,854
#queries 82,067 17,356 21,150
#sessions 66,157 14,176 21,150
Avg query length 13.0 12.9 15.8
Avg session length 2.74 2.73 2.83
Avg #click per query 1.19 1.18 1.19

reproducibility limitations, we conduct our experiment on a large-scale commercial query log with
actual original rankings to guarantee the reliable analysis of real user behaviors.

4.2 Baselines

For evaluating the performance of our models, we select some personalization, diversification, and
personalized diversification methods to compare with our models.
(1) Ad hoc baselines:
Original We use the original ranking result of the commercial dataset as the ad hoc baseline

result.
(2) Personalized Search Methods:
P-Click [15]. Dou et al. proposed P-Click to conduct the personalized search. It calculates the

relevance of documents to the query and the user based on the click feature.
SLTB [2]. SLTB applies LambdaMART [5] to optimize a personalized ranking model based on

102 features extracted from the user search log, including query-doc-user Features features, query-
history features, and so on.
HRNN [17]. HRNN dynamically models the user’s short-term and long-term profiles from her

search history using hierarchical RNN structures. To further consider the discrepant importance of
each historical behavior, the authors conduct the attention mechanism to capture a more reliable
and stable long-term user profile.
HTPS [50]. HTPS learns personalized information from user history by constructing a

transformer-based structure, thereby disambiguating the issued query sentences and capturing
accurate user intents.
PEPS [48]. PEPS proposes an alternative method for personalizing search results. It builds a

personalizedword embeddingmatrix for each user, which only contains the aspects that the user is
interested in. Then, the K-NRM is utilized to calculate the similarity between the word embeddings
of the query and the document.
(3) Diversification Method:
MMR [6]. MMR is a typically unsupervised implicit method for search result diversification. It

calculates the relevance score and diversity score of documents and linearly combines them by
trade factor λ.

IA-Select [1]. IA-Select was proposed to consider the subtopic to satisfy the diverse intents of
different users.
xQuAD [31]. xQuAD is another explicit diversification method that follows the MMR paradigm

to combine relevance and diversity linearly.
R-LTR-NTN [46]. R-LTR-NTN is a supervised method. It introduces the neural tensor net-

work (NTN) structure, which is learnable, to model the dissimilarity between a document and
selected documents as the novelty of the document and applies the ranking algorithm of R-LTR
[53] to train the model.
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DESA-IM [28]. DESA is a search result diversification model that discards the paradigm of
greedy ranking. It applies the transformer structure to diversify the search result. We selected the
implicit part of DESA, DESA-IM, as the representative of diversification methods to conduct the
experiment.
(4) Personalized Diversification Method.
P-IA-Select & P-xQuAD [36]. Vallet introduced a user variant u to existing heuristic diversity

methods, IA-Select and xQuAD, hence improved them to personalized diversity methods, P-IA-
Select and P-xQuAD.
Pnd. In this article, we propose a framework that integrates search result personalization and

diversification in a deep-learning manner.

4.3 Implement Details

For baselines, we implement the best parameters based on their papers. In our experiment, the
hyper-parameter configuration is as follows: The dimension of the word embedding is 100; for
the profile generator, the hidden size of the transformer is 256; and the number of heads in multi-
head self-attention is 8. For the subtopic learning layer, the number of project matrices, c , is 8,
the activation is LeakyReLU, and the dimension of the virtual subtopic, h, is 32. For the reset gate,
its hidden size is 128, and the activation functions of the first and second layers are LeakyReLU
and Tanh. For our similarity function Fk , the number of RBF kernels is 11, with the mean value
uo evenly distributed in (−1, 1) based on k and the variance σo is set to 0.1. The learning rate is
5e-4, and the weight decay coefficient is set to 1e-5. We apply the Adam algorithm to optimize our
model.

4.4 Evaluation Metrics

4.4.1 Metrics of Personalization. In this article, we believe that the click data reflects the
users’ satisfactionwith results, which includes relevance and diversity. Therefore, we can
select the personalization metrics, which also focus on click data, to evaluate the overall
performance of models. Following previous works on personalization, we choose three widely
used metrics, MAP, MRR, and P@1. Their calculations are shown as follows:
MAP. Mean average precision (MAP) is a widely used metric in information retrieval. It con-

siders the rank and relevance of the result documents, since people not only want to search for
satisfactory documents but also hope that they can be ranked at the top. Considering that there
are M queries and the number of clicked (relevant) documents of jth query is nj , the formulation
of MAP is:

MAP =
1

M

m∑

j=1

1

nj

nj∑

i=1

i

Pos(i )
, (19)

where Pos(i ) represents the position of the ith relevant document.While considering the relevance,
MAP is also concerned about the position: A relevant document with a lower position contributes
less to MAP. This property is in line with users’ expectations.
MRR. Indeed, many people finish the browser after finding the first relevant document, thus,

the first relevant document is rather important.Mean reciprocal rank (MRR) is the metric that
focuses on the position of the first relevant document, rp:

MRR =
1

M

M∑

i=1

1

rp
, (20)

whereM denotes the number of all queries.
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Fig. 3. The processing flow of the first pseudo-subtopic generation method.

P@k.More generally, we should paymore attention to the specific position, as users will neglect
documents with low positions even if they are relevant. Precise@k (P@k) allows us to consider the
top-k documents only. Assuming that the number of relevant documents on the top K of results is
Ni for the ith query, the formula of P@k is shown as:

P@k =
1

M

M∑

i=1

Ni

k
. (21)

In this article, we select P@1 to focus on the performance of the top-1 results.

4.4.2 Metrics of Diversification. Since the dataset we use is common for personalized search
and lacks subtopic information, we have to construct pseudo subtopics to further evaluate the
diversity of results explicitly. To ensure the reliability of the evaluation, we adopt two methods:

(1) Following Reference [16], given the candidate documents of the query, we apply a hierarchi-
cal clustering algorithm to them to produce an intent hierarchy. Then, we utilize a pruning
technique to aggregate similar nodes whose similarity exceeds the threshold α = 0.35. The
yielded clusters denote the pseudo subtopics of the query. An example is shown in Figure 3.

(2) Following Reference [11], we view each query q as a seed and mine out the queries that
occurred in the same session, i.e., “co-session” relationship, and undertake this expansion
twice. Then, we construct the graph on these queries, each node denotes a query in the set,
and two queries that have the same clicked documents, i.e., “co-click” relationship, will be
linked by an edge. Finally, we apply a clustering algorithm to yield query clusters, which
represent subtopics of q. The processing flow is shown in Figure 4.

After that, we choose two common metrics, ERR-IA@10 [7] and α-NDCG@10 [10], for evalua-
tion of diversity. Their computations are presented below.
ERR-IA. The idea of ERR is similar to that of MRR; the difference is that ERR takes into account

the diversity between documents.

PP(k ) =
k−1∏

i=1

(1 − r (i ))r (k ), (22)

ERR =
n∑

k=1

ϕ (k )PP(k ). (23)
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Fig. 4. The processing flow of the second pseudo-subtopic generation method.

r (i ) stands for the probability that the ith document can satisfy the user. PP (k ) denotes the proba-
bility that the top-k documents can satisfy the user. ϕ (k ) denotes the position function, and n is the
number of top results that are used to calculate the metric value. ERR-IA is the improved version
of ERR that considers the intent-aware (IA) component.

PP-IA(k, s ) =
k−1∏

i=1

(1 − r (i, s ))r (k, s ), (24)

ERR-IA =
1

m

m∑

s=1

n∑

k=1

ϕ (k )PP-IA(k, s ), (25)

where r (i, s ) denotes the relevance of the ith document to the sth subtopic. In this article, we
produce the r (i, s ) based on the cosine similarity between the document and the subtopic.
α-NDCG. α-NDCG is an updated version of NDCG, which is a classical metric in information

retrieval. The main idea of NDCG is that (1) the higher the relevance of documents, the higher the
influence the evaluation result will have. (2) The higher the position of relevant documents, the
higher the influence, too. Given a ranking list R of a set of candidate documents D, and its optimal
ranking R∗, the DCG of top-k results on R is that:

DCG(R,k ) =
k∑

i=1

2r (i ) − 1
log(i + 1)

, (26)

where r (i ) denotes the relevance score of the ith document in R. NDCG is the normalization of
DCG:

NDCG(R,k ) =
DCG(R,k )

DCG(R∗,k )
. (27)

To evaluate the diversity and subtopic coverage of the ranking list, α-NDCG introduces the intent-
aware component and models the redundancy by introducing the penalty factor of redundancy α .
Its DCG value is yielded as follows:

eDCG(R,k ) =
m∑

s=1

k∑

i=1

r (k, s ) (1 − α )C (k−1,s ), (28)

C (k − 1, s ) =
k−1∑

j=1

r (j, s ), (29)

where r (k, s ) evaluates the relevance of the kth result to the sth subtopic andC (k − 1, s ) measures
the relevance of the top k-1 documents to the sth subtopic. If the sth subtopics have been covered
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Table 3. Overall Performances of Baselines and Our Model

Task Model MAP MRR P@1
Ad hoc Search Original .7399 −10.0% .7506 −9.8% .6162 −15.9%

Personalized
Search

P-Click .7509 −8.66% .7634 −8.3% .6260 −13.7%
SLTB .7921 −3.65% .7998 −3.9% .6901 −4.8%
HRNN .8065 −1.90% .8191 −1.6% .7127 −1.7%
HTPS .8220 −0.01% .8318 −0.04% .7291 0.55%
PEPS .8221 – .8321 – .7251 –

Search
Result

Diversification

MMR .4212 −48.77% .4304 −48.28% .2044 −71.81%
IA-Select .7137 −13.19% .7247 −12.91% .5738 −20.87%
xQuAD .7280 −11.45% .7388 −11.21% .5942 −18.05%
R-LTR-NTN .6881 −16.30% .7036 −15.44% .5824 −19.68%
DESA .6128 −25.46% .6235 −25.07% .4383 −39.55%

Integrated

Methods

P-IA-Select .7374 −10.30% .7478 −10.13% .6102 −15.85%
P-xQuAD .7386 −10.16% .7491 −9.97% .6123 −15.56%
PnD .8279† +0.72% .8379† +0.71% 7343† +1.27%

“†” indicates the model outperforms all baselines significantly with a paired t-test at the p < 0.05 level. The best

results are shown in bold.

by previous results, then α-NDCGwill restrain the contribution of the kth document in the aspects
of the sth subtopic. α-NDCG is normalized in the same way as NDCG by

α-NDCG =

DCG(R,k )
DCG(R∗,k ) .

5 EXPERIMENT RESULTS

5.1 Overall Performance

Compared to all the baselines, the overall evaluation results are shown in Tables 3 and 4. From the
tables, we can observe that:

(1) On the personalized metrics, our model significantly outperforms all baselines in
terms of satisfaction with a paired t-test at the p < 0.05 level. Different from baselines,
our model first obtains the user’s initial profiles and learns their virtual subtopics. Then,
the RRNN component models the selected document’s coverage of the aspects that the user
is interested in. It prompts the model to capture more comprehensive user intents, which
enhances the relevance of results while maintaining diversity. Thereby, more satisfactory
results can be produced. And this result also implies that personalization and diversification
are not contrary but can complement each other and prompt the satisfaction of the results
in a reasonable way.

(2) Ourmodel outperforms all personalizedmethods on diversifiedmetrics.Meanwhile,
our model shows comparable performance with some diversification approaches. Obviously,
the results of diversifiedmethods have high diversity but show a sharp decline in satisfaction.
Therefore, we deem that higher diversity is not always better, offering unwanted
documents will negatively impact the users’ satisfaction. Different from pure diver-
sification methods, our model incorporates the users’ click data, which provides accurate
information about users’ satisfaction. Consequently, it performs well on both. The above
results verify that personalization and diversification can be integrated to provide more fa-
vorable results and also confirm that human behavior is complex, thus, the click-through
reflects the user’s preferences and diversity needs simultaneously. Note that those super-
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Table 4. Overall Performances of Models on Diversification

Task Model ERR-IA1 α-NDCG1 ERR-IA2 α-NDCG2

Ad hoc Search Original .5196 .3269 .3197 .1915

Personalized
Search

P-Click .5197 .3269 .3201 .1917
SLTB .5198 .3270 .3202 .1917
HRNN .5184 .3258 .3201 .1916
HTPS .5200 .3274 .3199 .1916
PEPS .5201 .3271 .3007 .1832

Search
Result

Diversification

MMR .5353 .3325 .3085 .1865
IA-Select .5516 .3403 .3377 .1984

xQuAD .5515 .3403 .3309 .1957
R-LTR-NTN .5435 .3361 .3203 .1917
DESA .5456 .3369 .3110 .1877

Integrated

Methods

P-IA-Select .5216� .3278� .3229� .1931�

P-xQuAD .5216� .3278� .3230� .1931�

PnD .5233� .3284� .3216� .1923�

Superscript 1 of the diversity metrics denotes the first subtopic mining method, and 2 denotes the second one.

“�” means the integrated model outperforms all the personalized baselines on diversification. The best results

are shown in bold.

vised diversification methods perform worse than heuristic ones; the reason may be that
they are highly dependent on data.

(3) Compared with other integrated methods, our model significantly outperforms in
satisfaction and shows comparable performance in diversity. Also, the results show
that all integrated methods perform better in diversity than personalized ones and in satis-
faction than diversified ones. This result suggests that these integrated approaches have a
certain ability to balance personality and diversity, but they cannot perform better on both
aspects, which means that they lack the ability to capture the in-depth relationship between
personalization and diversification. However, the thorough analysis of these two approaches
that went into building ourmodel allowed it to integrate themmore dependably and produce
results that were more satisfying.

5.2 Ablation Analysis

To verify the effectiveness of the components in our framework, we conduct an ablation analysis
on these structures. Specifically, we remove one component once to produce an incomplete model
and train it on the same dataset to compare with the integral model.
Pnd w/o. SL. For verifying the effectiveness of virtual subtopics, We abandon the subtopic

learning layer (SL) and generate matching scores by cosine similarity function.
PnD w/o. RRNN. To test the effectiveness of RRNN. We deactivate it and calculate novelty

scores based on the original representations of the query and profiles.
PnDw/o. DPM. We discard the diversified personalizationmodules (DPM) to analyze their

importance.
PnD w/o. GDM. To verify the usefulness of general diversification, we remove the general

diversification module (GDM) and construct the PnD w/o. GDM.
PnD w/o. WP. We abandon theweighting process (WP) to evaluate the benefit of dynamical

fusion.
The results of ablation are shown in Table 5. We observe that all ablation strategies underper-

form the complete framework in satisfaction and diversity. It reveals that each component plays
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Table 5. Ablation Results

Model MAP ERR-IA1

PnD .8279 – .5233 –
w/o. SL .8208 −0.86% .5225 −0.15%
w/o. RRNN .8222 −0.70% .5207 −0.50%
w/o. DPM .8240 −0.48% .5223 −0.19%
w/o. GDM .8250 −0.36% .5228 −0.10%
w/o. WP .8223 −0.69% .5220 −0.25%

an indispensable role in our model to return more satisfactory results for users. Specifically, we
give the following analysis:

(1) We find that the deficiency of the SL leads to a significant drop in MAP compared with the
complete model. The reason is that the subtopic learning layer can capture a fine-grained
representation of the virtual subtopics from multiple aspects and consider them explicitly.
Based on this, we can learn more exact user intents, which contribute to improving the
effectiveness, especially in personalization. However, the removal of SL has little impact on
diversification. We infer that RRNN has good expression ability in implicit representation
even if there is no virtual subtopic. Therefore, the function of the virtual subtopic is mainly
to accurately capture user interests.

(2) With regard to w/o. RRNN, the experimental results show that it has a significant influence
on both personalization and diversification, especially on the latter. A reasonable explanation
for this phenomenon is that after clicking a related document, the user’s information need
on this aspect is satisfied; if she decides to continue browsing, then she will be inclined to
click the documents related to other preferences. Without RRNN, our model cannot mine
out the various satisfactory documents from diverse aspects, which will harm performance
and lead to redundancy. This result confirms our assumption that there is inherent diversity
in user interests, thus, it is insufficient to consider relevance purely.

(3) The performance of w/o. PDM and w/o. GDM agrees with the assumption that personalized
diversification and general diversification jointly promote our model to capture user intents.
Once we discard the PDM, our model cannot capture accurate user intents. It may cause
documents that are unrelated to users’ interests to be ranked at the top. If we abandon the
GDM, then the probability of meeting the user’s intents will be affected while the degree of
refinding is low, influencing the performance of our model.

(4) From the ablation studies, we find that the deficiency of the weighting process is also harm-
ful to user satisfaction with ranking results. This experimental result verifies our assump-
tion that diversification and personalization show different importance in different scenarios,
thus, they should be dynamically integrated based on the degree of refinding to providemore
satisfactory results.

5.3 Visualization Experiments

The above ablation studies elucidate the indispensability of our modules. Furthermore, to analyze
the process of our key modules in-depth, we devise some visualization experiments and demon-
strate our analysis as follows:

5.3.1 Effect of Virtual Subtopics. The subtopic learning layer is designed to learn fine-grained
and diverse intents; we hope our selected documents can cover more important virtual subtopics
to improve satisfaction. We randomly select a query, “best mpg cars” and visualize the coverage

ACM Transactions on Information Systems, Vol. 42, No. 3, Article 81. Publication date: January 2024.



81:20 S. Wang et al.

Fig. 5. The visualization of virtual subtopics coverage.

of reranked documents on virtual subtopics in Figure 5. sj denotes the jth virtual subtopic, and
d1 denotes the document ranked first. The darker the cell, the lower the relevance between the
document and subtopic. It can be seen that each document has different levels of coverage for
different subtopics. When earlier documents adequately cover a subtopic, the later ones will focus
more on other subtopics to meet the user’s other intents. For example, in the left figure of Figure 5,
the first document, d1, is most relevant to s5, so for the second document, our model selects the
one that pays more attention to s6, which can reflect the diversity of the ranking results. This
phenomenon is in line with our assumption. We notice that some subtopics are highly relevant
to most documents, since the corresponding cells are bright, while some subtopics are irrelevant
to most documents. We infer three reasons: (1) The subtopic number is the general value for all
queries, while the user intent may contain fewer subtopics, resulting in the candidate documents
focusing on some main subtopics. These bright subtopics may represent the user’s main interests,
and the dark subtopics are the aspects that the current query is not related to.

5.3.2 Effect of RRNN. The RRNN module is devised to update the representations of user in-
terests and query aspects after selecting a local optimal document. To visualize the change of
representations at each step, we concatenate the virtual subtopics into a vector and project it on
2-dimensional space, which is shown in Figure 6. The number on the figure indicates the num-
ber of steps. It illustrates that in both parts, the representation of the hidden state in each step is
different from the others. In other words, after each selection, the hidden state will be updated,
which prompts the model to focus on the other subtopics that have not been covered. We notice
that the distance between adjacent points falls as the number of steps increases. Our analysis is
that with the growth of the step number, less information can be forgotten, thus the spacing gets
smaller overall. This phenomenon is consistent with our expectation of diversification. In the case
of occasional larger spacing, the reason may be that the document selected at this step covers less
important but more diverse subtopics; as our model considers relevance and diversity simultane-
ously, it cannot be selected ahead.

5.4 Quantity Setting of Virtual Subtopics

The previous results show that the application of virtual subtopics is in favor of both satisfaction
and diversity. To further analyze the impact of its quantity setting on effectiveness, we conductmul-
tiple experimentswith different quantity settings and display their performance on personalization
and diversification. The results are presented in Figure 7. The Y-axis represents the percentage of
performance decline compared to the optimal setting. It can be found that with the growth of the
number of virtual subtopics, the overall performance presents a trend of first increasing and then
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Fig. 6. The visualization of user interests at each step.

Fig. 7. Performance trends for subtopic quantity settings.

Table 6. Two Ranking Results Produced by Our Model

query distracted driving accident deid blood vessel broken in eye

d1 distracted driving nhtsa distracted driving nhtsa
skip main (click)

subconjunctival hemorrhage broken blood vessel
eye overview mayo (click)

d2 many crashes minimal fines distracted driving
new york (click)

causes broken eye blood vessels livestrong com
broken (click)

d3 yakima car accident lawyer mariano morales law
encourages (non-click)

treatment broken blood vessels eye ehow treat-
ment broken (non-click)

d4 distracted driving motor vehicle safety cdc injury
center (non-click)

ohio lions eye research foundation category bro-
ken blood (non-click)

decreasing. The reason may be that when the number is small, the model could capture more bene-
ficial information as the number of subtopics increases, while once the number exceeds a threshold,
too many subtopics will introduce noisy information, which will negatively affect performance.

5.5 Case Study

To confirm that our model is able to provide ranking results meeting diversified user intents, we
illustrate two case studies in Table 6.
We present the issued query and the top-four ranking documents. It can be found that for the

query “distracted driving accident deid,” the first document (clicked) is the description of “dis-
tracted driving” provided by the National Highway Traffic Safety Administration (NHTSA),
which is an official website. The second document (click) deals with fines for traffic accidents. These
two documents are both related to distracted-driving accidents while showing the fine-grained di-
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versity in the perspective of subtopics. Similarly, for the query “blood vessel broken in eye,” the
first document is related to an overview of blood vessel broken eyes, while the second one is about
the cause of this disease. These two case studies suggest that when the user issues a query, she
may be interested in various subtopics of this query; in other words, the user’s interests are also
diverse. The ranking results of our model reveal the ability of our method to model the diversity
of user interests and provide satisfactory results for the user.

6 CONCLUSION

In this article, we propose a novel framework that integrates search result personalization and di-
versification dynamically based on the refinding degree. We further consider the diversity of users’
interests in personalization to satisfy the user’s needs comprehensively. To model the influence of
selected documents on novelty, we devise the RRNN model based on the “reset” gate. Moreover,
we design the “subtopic learning layer” to learn the virtual subtopics and consider the subtopics
explicitly. Experiment results verify the effectiveness of our model for both personalization and di-
versification. The flexibility of our framework is pretty high, and the profile generator, embedding
matrix, and weighting process are all replaceable. In the future, we can replace these components
with more advanced structures to improve the performance of our framework.
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