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Research on search result diversification strives to enhance the variety of subtopics within the list of search
results. Existing studies usually treat a document as a whole and represent it with one fixed-length vector.
However, considering that a long document could cover different aspects of a query, using a single vector to
represent the document is usually insufficient. To tackle this problem, we propose to exploit multiple passages
to better represent documents in search result diversification. Different passages of each documentmay reflect
different subtopics of the query and comparison among the passages can improve result diversity. Specifically,
we segment the entire document into multiple passages and train a classifier to filter out the irrelevant ones.
Then the document diversity is measured based on several passages that can offer the information needs
of the query. Thereafter, we devise a passage-aware search result diversification framework that takes into
account the topic information contained in the selected document sequence and candidate documents. The
candidate documents’ novelty is evaluated based on their passageswhile considering the dynamically selected
document sequence. We conducted experiments on a commonly utilized dataset, and the results indicate that
our proposed method performs better than the most leading methods.
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1 INTRODUCTION

Search result diversification is an essential research topic in the information retrieval area. Con-
sidering that accurately capturing users’ genuine search intentions solely through brief and vague
queries poses a challenge, diversification methods can improve the search results by offering di-
verse documents that cover different subtopics of a query. In terms of incorporating subtopics,
most search result diversification approaches fall into two categories: explicit methods and implicit
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Fig. 1. Example of multiple passages and the corresponding subtopics within a document. Different passages
within a single document can cover different subtopics of the query. Specifically, passages P1, P2, and P3 cover
the subtopics of major battles, famous generals, and movies in the Civil War, respectively.

methods. The explicit approaches [15, 23, 38] assess the documents’ diversity from the perspective
of the query. In this way, a query is extended to multiple query aspects (a.k.a subtopics), and the
search results’ diversity is evaluated based on their coverage of these subtopics. While the implicit
methods [10, 40, 48, 57] model diversity from the document side, namely punishing the redundant
documents and encouraging the novel documents, without explicitly involving subtopics. Both
explicit and implicit methods have their own merits and can achieve excellent performance.
Most implicit methods [40, 47, 48, 57] either treat the document as several handcraft ad hoc

features (e.g., TF-IDF and BM25) or a pre-trained document representation (e.g., doc2vec). From
our perspective, both representation approaches view a document as a whole. As a result, signals
from different parts of the document are mixed up, which is a drawback for the ranking models to
sense different subtopics contained in the diverse documents. Besides, it is not suitable to compress
different documents into a fixed-length vector, since the document length can vary largely. Inspired
by the explicit way of expanding the query into multiple subtopics, in this work, we propose to
present a document as multiple passages and model document diversity at the passage level for
implicit methods.
There are several advantages of presenting documents as multiple passages compared with the

traditional ways of search result diversification. First, it is more appropriate to present subtopic
information. Different passages may contain various subtopic information in a long document.
For example, as shown in Figure 1, a document relevant to the query “Battles in the Civil War”
contains three passages P1, P2, and P3, each of which covers a distinct subtopic. If we adopt
the widely used presentation approaches by encoding the whole document as a single vector,
then information from different passages (or subtopics) will be hard for the model to sense.
Hence, in the search result diversification tasks, passages are more suitable units for presenting
subtopic information than documents (in traditional ways), as diverse documents often covermany
subtopics. Second, it is more capable to preserve document content. The traditional ad hoc features
mainly model documents at the term level (such as BM25), while passages are coherent seman-
tic units that can better preserve the contents. Compared with the term-level features, passage
representations contain context information that is relevant to the queries. Third, it is more flexi-
ble to present documents of different lengths. The traditional one vector representation approach
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can overwhelm the popular document encoders (like BERT [17]) in the case of long documents.
Although some methods [3, 5, 20] have been proposed to alleviate this problem, a more straightfor-
ward approach is to divide the long documents into passages. In this way, short documents have
fewer passages while long documents have more passages. The effects of the passages are also
validated in IR [7, 9, 21, 30, 37, 44].

Given that search result diversification is NP-hard [1], most explicit and implicit methods adopt
a greedy selection strategy, namely continuously choosing the most novel document from the re-
maining candidate documents concerning the current sequence of selected documents. Therefore,
measuring whether each specific sub-intent of the query has been satisfied by the selected docu-
ments is an essential part of this greedy framework. In this article, we focus on the implicit search
result diversificationmethods and propose a Passage-Aware Diversificationmodel (PAD)with
the greedy framework.
More specifically, the diversification is done in the steps as follows. (1) We train a passage rele-

vance classifier to evaluate the quality of passages and select the most representative passages for
each document based on the relevance scores. This approach ensures that only a limited number
of passages are provided to the diversification model, thereby maintaining efficiency to an accept-
able level. (2) We design a context-aware passage interaction framework that can automatically
aggregate the passage information to form document representation considering the selected doc-
uments at each step of the greedy selection process. The next selected document should cover
those query intents that are less satisfied by the list of selected documents until now. In the frame-
work, we devise three passage-aware encoders, namely the global passage encoder (GloEnc),
the selected documents encoder (SelEnc), and the candidate document encoder (DocEnc), to
discover the rich information contained in the passages. The GloEnc will provide a global view of
the passages from all documents, while the SelEnc will aggregate the passage information from
the selected document sequence. The features from the SelEnc reflect the current satisfied state of
the query, which is important for the model to select the novel documents that cover the subtopics
with lower satisfaction. Besides, to comprehensively leverage the different passage representations,
we do not directly use the linear combination of the passage representations as the final document
representation. Considering that the document novelty is dynamically changed depending on the
selected document sequence, we take the features from the selected sequence into account and de-
sign a DocEnc to automatically generate the document diversity features from multiple passages
with an attention mechanism. (3) Each candidate document’s novelty score is then measured by
comparing its passage-aware representation outputted by DocEnc with the representations of the
current selection states outputted by SelEnc.
Our experiments are conducted on the widely utilized TREC Web Track dataset. Experimental

results show that our PAD model outperforms existing methods, demonstrating the effectiveness
of modeling passages in search result diversification.
Our contributions can be summarized as follows:

(1) We propose to exploit several essential passages to better represent diverse documents that
cover multiple subtopics in search result diversification. We reveal that modeling passages
can capture the fine-grained interaction between the documents and, hence, improve diver-
sification quality.

(2) We develop a relevance classifier to identify whether a passage is relevant to the query.
With the classifier, we are able to select important passages from a document other than
simply including all passages, which reduces the noise and improves the efficiency of the
diversification model.

(3) We devise a passage-aware framework that can automatically derive the document diversity
from the passage relationships via passage interactions between the selected documents and
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Table 1. Types of Search Result Diversification Methods

Implicit Explicit and Ensemble

Supervised PAD (Our approach), KEDIV,
DALETOR, Graph4DIV, NTN, PAMM,
R-LTR, SVM-DIV,

GDESA, DESA, DVGAN, DSSA

Heuristic MMR HPM2, TPM2, HxQuAD, TxQuAD, PM2,
xQuAD, IA-Select

Our approach is in bold.

candidate documents, which is helpful to dynamically capture the documents that cover the
less satisfied query intents.

2 RELATEDWORK

2.1 Search Result Diversification

Previously proposed search result diversification approaches mainly cover three categories: im-
plicit methods, explicit methods, and ensemble methods. As discussed in Section 1, implicit ap-
proaches focus on document novelty, while explicit methods leverage subtopics to evaluate docu-
ment diversity. The ensemble approaches exploit these two types of features for diversified rank-
ing. The rough categorization of these methods is shown in Table 1. Heuristic methods leverage
some handcrafted signals to measure the novelty of different documents, while supervised meth-
ods mainly exploit the document representations to automatically extract diversity features for
diversified learning to rank with human-annotated diversity labels.
(1) Implicit Methods. The groundbreaking work of the search result diversification is themax-

imalmarginal relevance (MMR) [10], which took the diversity and relevance of documents into
account and adjusted their weights via a tunable parameter λ. The calculation of document di ’s
MMR score is shown as follows:

MMR(di ,q) = λSim(di ,q) − (1 − λ)max
dj ∈S

Sim(di ,dj ), (1)

where S is the selected document sequence and Sim(.) is the function measuring the similarity of
documents and queries. The combining way of evaluating a document’s diversity and relevance
is adopted by most following researches [23, 34, 38, 40, 57]. Early research [39] found that novelty
can break the tie between similarly diverse results. Recent diversification researches focus more on
supervised approaches. For example, Yue and Joachims [55] leveraged structural-SVM to predict
the document sets that cover different subtopics based on word-level features. Zhu et al. [57] took
search result diversification as relational learning to rank (R-LTR) based on several classical
human-designed document features. PAMM [47] learned to enlarge the predicted score margin
between the positive document rankings and negative rankings. Xia et al. [48] leveraged a neural
tensor network (NTN) to automatically generate diversity features from document representa-
tions to reduce the workload of manually designing novelty features. Yan et al. [51] proposed a
differentiable loss to optimize the diversified ranking model. Yu [54] proposed a probabilistic scor-
ing function to determine document’s rank position. Graph4DIV [40] is an implicit graph-based
method that presents the document relationship on the graph. Other methods introduce external
sources (e.g., Knowledge Graph) to model document diversity. For example, KEDIV [41] exploits
the knowledge base to measure the relations of the queries and documents in the search result
diversification. Graph4DIV and KEDIV focus on the document relationship modeling and achieve
good performance. Different from these two approaches, we exploit multiple passages and their
relations to measure document diversity in this article.
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Compared with the methods above, our PAD is also an implicit method. However, PAD can
leverage the passage-level information to consider the inner-document passage structure and inter-
document relationship during the diversification process, which is helpful in capturing a more
fine-grain selection status in the selection procedure.
(2) ExplicitMethods. Further fromMMR, Santos et al. [38] explicitly calculated the document’s

probability on different query aspects (a.k.a subtopics) in the diversification task. Besides, Dang
and Croft [15] proposed that the proportions of different aspects in the final result list should be
consistent with the popularity of subtopics. Several methods (e.g., TxQuAD [16] and HPM2 [22])
are proposed based on the framework of xQuAD [38] and PM2 [15], which leveraged document
terms or hierarchical structure to improve the diversity. Although some methods (e.g.TPM2
and TxQuAD [16]) model document diversity at the word level, the sequential information of
the passages contained in the documents is ignored. Besides, some explicit methods consider
document coverage to different query aspects. For example, Ozdemiray and Altingovde [33]
adopted score and rank aggregation techniques in diversification. Our method PAD takes the
passage, the continuous semantic units, into account and leverages the passage difference to
measure the document diversity.
Apart from the heuristic methods, explicit supervised diversification approaches also acquire

excellent performance. For example, Yigit-Sert et al. [53] exploited several query performance pre-
dictors to evaluate the document’s coverage on different subtopics. Besides, DSSA [23] is a repre-
sentative supervised explicit method that uses RNN and attention to automatically measure the
coverage of the document’s subtopic during the greedy selection. Different from DSSA, our im-
plicit approach models the diversity of the documents based on passages of the documents, which
enables our model to detect different passages that answer different query intents.
(3) Ensemble Methods. DVGAN [27] and DESA [34] are ensemble approaches that leverage

both implicit (document dissimilarity) features and explicit (subtopic) features. DVGAN measured
the document diversity under a Generative Adversarial Network, while DESA exploited the
subtopic features to evaluate the diversity of the entire document ranking at once. The implicit
part of DESA and DVGAN is similar to most implicit methods. Based on the DESA, Qin et al.
[35] introduced a greedy selection strategy to further improve the diversity ranking capability of
DESA. Ouyang et al. [32] leveraged graph neural network to automatically model the relations
of the documents. Compared with our model PAD, they all model the document as a whole. We
are dedicated to improving the document representations for implicit methods in this article.
The passage-level features proposed by our approach can also be further used to enhance these
document-level methods.
(4)OtherMethods. There are also methods [18, 49, 50] exploring other ranking strategies apart

from the greedy strategy. For example, inspired by the browsing behaviors of users, MDP-DIV [49]
exploited the Markov decision process in the dynamic document ranking procedure. Following
MDP-DIV, M2Div [18] explored the possible rankings utilizing the Monte Carlo tree search within
the framework of the MDP process. Moreover, Xu et al. [50] presented a pairwise policy gradient
strategy for evaluating two document rankings, aiming to improve overall ranking quality. Liang
et al. [26] considered diversification and personalization jointly. Compared with these document-
level methods, we propose leveraging passage tomeasure document diversity and devise a passage-
aware diversification framework to model passage-level features.

2.2 Passage-based Ranking Methods

Considering that some popular pre-trained language models (e.g., BERT) face the difficulty of rep-
resenting long documents, some content will be neglected if we only encode the document within
one vector during the representation procedure. Although many efforts have been paid to develop
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Table 2. Symbols and Descriptions in PAD

Symbols Descriptions

q,Q a query, and the entire query set, q ∈ Q
D the query q’s documents set, supposing |D| = n
S the selected document set for the query q, S = ∅ at initial state
C the remnant candidate document set, C = D \ S, C = D at initial state
Ps the passage set of the selected documents
Pi the passage set of di used for diversity ranking
Ri the ith document di ’s relevance features
Hi the ith document di ’s diversity features
◦ the element-wise product of two vectors
[; ] the concatenation of features

long-document encoders [3, 5, 20], splitting the documents into several passages and modeling
them in the ranking process is also a promising direction [2, 21].

Previous studies [6, 7, 9, 24, 28, 30, 37, 44] have shown the effects of passage-based retrieval
methods. For example, Krikon et al. [25] incorporated the similarity between passages from differ-
ent documents into the ranking process. Wu et al. [45] focused on modeling context information
for the document ranking task at the passage level. IDCM [21] is an intra-document cascading
model that selects the top-k passage before the passage ranking. Dai and Callan [14] leveraged
BERT [17] to encode passages from the documents and used several scores (first, best, and sum of
all passages) for ranking. Similarly to these studies, we also utilize passages to comprehensively
model documents. However, our emphasis lies in the diversification task, specifically targeting the
modeling of document diversity at the passage level.

3 OUR PROPOSED METHOD: PAD

Search result diversificationmethods aim to identify diverse documents that address various query
intents. However, most existing methods [23, 34, 40, 48, 57] treat a document as a whole. In this
way, contents that cover different subtopics within a document will disturb each other. Therefore,
it is hard for the subsequent ranking models to detect the subtopic information contained in the
document representations.
In this article, we propose a passage-aware search result diversification approach PAD, which

provides a passage view of the documents for the diversified ranking models and generates the
context-aware passage representations according to the dynamic selected document list during
the diversification process.
Specifically, we split the documents into lists of passages and train a classifier to infer the rel-

evance of each passage to the query. With the help of the classifier, we are able to filter out the
irrelevant passages and obtain top-k important passages to represent each candidate document.
Furthermore, we model the interactions of intra-document passages and inter-document passages
based on the attention mechanism during the greedy selection procedure.

3.1 Problem Formulation

The symbols and their explanations in this article are provided in Table 2. Supposing D (|D| = n)
is the initial document set retrieved by a query q (q ∈ Q), since search result diversification is
NP-hard [1], most diversification approaches can be described as a sequential selection. That is,
choosing the most diverse document di from the document set D according to the ranking score
f (di ) continuously. To avoid redundancy and improve the diversity of the final document ranking
R, diversified ranking models should not only consider the document set D but also consider the
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Fig. 2. The Architecture of PAD. Supposing document d1 is the selected document (in yellow) at the current
state, the diversity featureHi of candidate document (ingreen)di is generated based on passage interactions.
The interaction operation “◦” stands for the element-wise product of two vectors.

selected document sequence S. Hence, the scoring function f can be formulated as f (q,di ,S).
Note that S = ∅ at the first step. Therefore, a search result diversification task is to figure out the
function f that can well reflect the novelty of the document d considering the selected sequence
S at each step. Different from previous methods, we model document novelty and result diversity
at the passage level.
Formally, considering a document set D retrieved by a query q, PAD selects the most essential

passage set Pi = {pi1, . . . ,pik } from a passage set {p(i,1), . . . ,p(i,t )} for each document di using
a passage classifier. At the step t , we can measures the diversity and relevance of each document
di in the candidate set C, considering the passages set Pj of each selected document dj from the
selected passages Ps (Pj ⊂ Ps ). The list of passages from the selected document sequence S is
Ps =

⋃
j Pj for dj ∈ S. The scoring function f could be described as f (q,Pi ,Ps ), which can be

derived from both the diversity score f div(Pi ,Ps ) and the relevance score f rel(q,di ).

3.2 The Architecture of PAD

As shown in Figure 2, PAD comprises three main modules: a GloEnc, a SelEnc), and a candidate
DocEnc. The global passage encoder performs the global interactions of all the passages and the
query, while the selected documents encoder generates the representation of selected passages at
each greedy selection step. The candidate document encoder will finally aggregate the information
within each candidate document based on the attention mechanism.

Given that document diversity is evaluated based on the relevance [10], PAD incorporates both
diversity score and relevance score for final ranking as well as most research [23, 27, 34, 38, 40, 47,
48, 57]. Formally, the ranking score of the document di is calculated as the sum of diversity score
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f div(q,di ,S) and relevance score f rel(q,di ) as follows:

f (q,di ,S) = λf div(q,di ,S) + (1 − λ)f rel(q,di ), (2)

where λ and (1 − λ) are the weights of diversity and relevance. Different from the most existing
methods, our diversity score function f div(di ,S) = f div(Pi ,Ps ) is derived from the selected docu-
ments sequence S at passage level.1 For a fair comparison, we employ the same relevance features
Ri as the previous work [23, 27, 34, 40]. The relevance score f

rel(di ) is obtained from the relevance
feature Ri that includes BM25 and TF-IDF,

f rel(di ) = MLP(Ri ). (3)

The diversity score f div(Pi ,Ps ) is calculated from the passage-aware diversity feature H,

f div(Pi ,Ps ) = MLP (Hi ) , (4)

where the document di ’s diversity feature Hi = [Xs ;Zi ;Xi ; Pi ] is generated from several passage-
level features. The diversity features Hi contain the currently selected state Xs , document-level
representation Zi , features from the original passage representations Xi , and features Pi from
the passage representations after interacted with query q. At each time step t , Hi is dynamically
changed according to the selected passage set Ps and the passage set Pi of document di . Note
that we omit the notation t to reduce redundancy. To capture the dynamic satisfaction degree
concerning the multiple query intents and select the next novel document, the selected state rep-
resentationXs and the document representationZi are dynamically captured by PAD (more details
in Section 3.5).
The key components of our diversified scoring process are briefly introduced as follows:

(1) Passage Selection. Considering that not all the passages are relevant and the irrelevant pas-
sages can influence the novelty measure of documents, it is necessary to distinguish the
relevant passages from the irrelevant ones in the search result diversification task. There-
fore, we develop a passage classifier to judge which passage is relevant to the given query q.
For each passage, we use the concatenation of query and passage as the input of the passage
classifier. For a long document di that has t passages in total, we can obtain top-k essen-
tial passages for the downstream diversity ranking model, which is helpful to reduce noise
brought by irrelevant content (illustrated in Section 3.3).

(2) Passage-aware Diversification. Since we use the passage-level document representations in
this article, we also devise a corresponding passage-aware diversification framework that
can automatically compare different passages and aggregate passage-level similarity to
document-level diversity features. To accomplish this, we leverage the attention mechanism
to automatically learn the diversity features of the document di . More specifically, the global
passage encoder will model the relationship of all passages, while the selected documents en-
coder is expected to capture the dynamic state of the query considering that the information
needs will be partially satisfied by the selected passages. The candidate document encoder
will generate the context-aware document presentations by considering all intra-document
passages and the current state of the query (elaborated in Section 3.4).

3.3 Passage Selection

As discussed in Section 1, passages can offer a more fine-grained view for the model to figure out
the contents that answer different query intents. From our perspective, it is unnecessary to offer
the user documents that are irrelevant to the given query. Therefore, search result diversification

1We omit the query q in all equations for notation convenience.
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Fig. 3. The selection process of the passages.

should be considered under the relevance restriction. Similarly, irrelevant passages will bring more
noise to confuse the diversified ranking model. For the convenience of denoising and capturing the
real query intents contained in the passages, we select the most essential and representative pas-
sages for diversified ranking. We will introduce the process of passage segment, passage classifier,
passage representation, and passage evaluations next.
Passage Segment. The passage segment and selection procedure are shown in Figure 3. For

the convenience of processing and the input limitation of the document encoder, we leverage
a fixed-length sliding window to split the document into several passages.2 Supposing the total
token number of the input document di is |di |, the window size isw , and the overlap between two

neighbor passages in the document is o (o < w), then the total passage number t = 1 + � |di |−w
w−o �.

After the passage segment, the documents are split into several passages with the same length
of w (short ones will be padded). Hence, we can obtain the initial passage set {p(i,1), . . . ,p(i,t )} to
present the document di . Since the whole passage set have irrelevant passages, the passages will
be further evaluated in the next steps.
Passage Classifier.Considering the powerful semantic understanding capability of pre-trained

language models (e.g., BERT [17]), we develop our passage classifier based on the popular pre-
trained model BERT. Given that the diversity ranking datasets lack passage-level relevance anno-
tations, we turn to training our passage relevance classifier on external resources. Specifically, we
fine-tune BERT on the MS MARCO passage ranking dataset to obtain an effective passage classi-
fier. Consistent with the previous studies [14, 45], we use the concatenation of the query and the
passage as the input of the classifier and leverage the representation of “[CLS]” token for classifica-
tion. Supposing the token sequence of each passage p is [t1, . . . , tw ], the token sequence of query
q is [q1, . . . ,qm], and the input of the passage classifier is the concatenation of query and passage
tokens, namely [[CLS],q1, . . . ,qm , [SEP], t1, . . . , tw , [SEP]]. The relevance score si of the passage
p(i,c) is calculated as follows:

sc = σ

(
MLP

(
BERT
[CLS]

(q,p(i,c))
))
, (5)

2The experiments will show that this passage splitting method is simple yet effective. Note that our method is compatible

with other advanced passage splitting algorithms. We leave this exploration in our future work.
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where σ is the non-linear activation function (e.g., sigmoid) and the output score si is a non-
negative real number that scales from 0 to 1. The relevance score si is derived from the vector
of the [CLS] token in the input sequence. The passage p(i,c) trends to be irrelevant to the query q
when the sc is closer to zero, while passage p(i,c) is more relevant to the query if the score is closer
to one.
Passage Representation. Similarly to the Passage Classifier, the representation of the passage

pi is obtained from the BERT. The representation Ei of the passage pi = [ti1, . . . , tiw ] is the “[CLS]”
token representation of the BERT with the input sequence of the passage pi as follows:

Ei = BERT
[CLS]

([CLS]; ti1; . . . ; tiw ; [SEP]), (6)

where the input length of the passage pi is smaller than the max input limitation of BERT (512)
to avoid information loss. With the encoder BERT, the semantic features of the passage pi are
contained in the vector Ei , which will be further used by our passage-aware diversity ranking
framework PAD.
Passage Evaluation. The input of the passage selection procedure are the initial passages set

{p(i,1), . . . ,p(i,t )} of the documentdi and the passage numberk , and the output is the set of themost
essential k passages Pi = {pi1, . . . ,pik }. Note that we use all the passages for the short documents
that t < k , namely Pi = {p(i,1), . . . ,p(i,t )}. The set Pi is the passage set used by the diversity
ranking model. Considering that the passage classifier judges the relevance of passage pi at the
semantic view, we also adopt traditional retrieval metrics (e.g., BM25) to select the most essential
passages. Specifically, we can derive the relevance score {s1, . . . , st } of each query and passage
pair from the passage classifier. The BM25 score of each passage can be calculated as {b1, . . . ,bt }.
Specifically, the BM25 score used for selecting passages is normalized via the maximal BM25 score
within the same query. Therefore, both the classifier score and BM25 score scale from zero to one.
In our implementation, we use the sum of the scores from the passage classifier and BM25 as
the final passage selection scores. The output of the passage selection module is the passage set
Pi = {pi1, . . . ,pik } used by the following diversity ranking module.

3.4 Passage-aware Diversification

Modeling the document’s relationship is a crucial task in search result diversification. As intro-
duced in Section 3.2, we model the document’s diversity at the passage level. Therefore, how to
derive the document relationship from the passages is our focus in this section. There are several
differences from the existing document-level diversification approaches: (1) Some passages within
the same document may cover different query intents, (2) the satisfaction degree of query infor-
mation needs can be sensed at the passage level, and (3) the document’s novelty is determined by
its passages’ novelty considering the selected passage list.
To accommodate these query-specific characteristics, we designed a passage interaction frame-

work that can (1) automatically aggregate the passage information to form the document repre-
sentation, (2) capture the multiple intents that have been covered by the passages of the selected
document sequence, and (3) flexibly encode passage’s novelty via context-aware passage features.
We implement these functions with three components of PAD: the GloEnc, SelEnc, and candidate
DocEnc. They will be introduced as follows.
Supposing the number of the initial document setD isn for the given queryq, we can obtain top-

k essential passages Pi = {pi1, . . . ,pik } for each document di ∈ D after the passage selection. The
input of the PAD is E = [Eq ,E10, . . . ,Enk ] ∈ RS×D , which includes the initial query representation
Eq and passages representations [Ei0,Ei1, . . . ,Eik ] for each document di . Hence, S = 1 + n ×
(k + 1) is the input sequence length and D is the dimension of the distributed representations of
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passages and query. Note that we add a document-specific representation Ei0 for each document
di ∈ D from random initialization to identify the document. We apply Transformer Encoder [42]
to model the interactions of the passages. Besides, we also add position embeddings and segment
embeddings for the input sequence. GloEnc, SelEnc, and the candidate DocEnc are several layers
of the InterLayer(·). The interaction layer InterLayer(·) is intended for the model to automatically
sense the diversity features from the passage representations. The layer numbers of these three
encoders are Lд , Ls , and Ld , respectively.

(1) Global Passage Encoder. The global passage encoder GloEnc is designed to conduct global
interactions of all passages. Given the initial input E = [Eq ,E10, . . . ,Enk ], the representations are
updated by GloEnc as follows:

X = GloEnc(E), (7)

where X = [Xq ,X10, . . . ,Xnk ] is the updated representations of the query and passages after Lд
layers of the InterLayer(·).With the global encoder GloEnc, the passages can have interactionswith
the queryq and passages from other documents, which will provide a global view of all documents’
diversity at the passage level. Concretely, the GloEnc is a stack of Lд passage interaction layers as
follows:

GloEnc(E) = InterLayer
Lд
G
(· · · InterLayer1G (E)), (8)

where the interaction layer InterLayer(·) is implemented via attention mechanism. The details
of the passage interaction calculations will be described later in this section. It is worth noting
that we add segment embeddings and position embeddings to distinguish passages from different
documents and different positions. Concretely, for passage pic , the document di ’s cth passage, we
add the document-specific segment embedding [Di ] and position-specific embeddings [Posc ] to
the original BERT representation of passage pic and get the input representation Eic . The segment
embeddings and position embeddings are generated via random initialization, which is used to
identify different passages.
(2) Selected Document Encoder. The selected document encoder is expected to capture the

states of the query intents covered by the selected documents. Hence, the inputXsp of the SelEnc is
part of the updated representation X, containing Xq , and all the passages representations Xjt , t ∈
[0, . . . ,k],dj ∈ S. The query and the passages of the selected documents are used to generate the
current state representation Xs via Ls layers InterLayer,

Xs = SelEnc
q

(Xsp ), (9)

where Xs is the updated query representation of Xq generated by the SelEnc. Similarly to GloEnc,
the SelEnc is implemented with several interaction layers with an attention mechanism. Specifi-
cally, the SelEnc consists of Ls layers of InterLayer,

SelEnc(Xsp ) = InterLayerLs
S
(· · · InterLayer1S (Xsp )), (10)

After Ls layer interactions, the passages information contained by the selected document sequence
S is sensed and absorbed by the query representation Xs , which is used to represent the current
selection state in the iterative selection. Because the selection state featuresXs are generated from
the selected document sequence S, the subtopic information contained by the passages from S
will be encoded in the selection state Xs , while the representations of the passages that cover
less-satisfied subtopics will be more different from the state Xs .

Because we hope to obtain the context-aware passage representations, we implement the in-
teractions between the selected state Xs and each candidate passage representation Xic of pic
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(pic ∈ Pi ,di ∈ C) with an element-wise product operation. They are calculated as follows:

Yic = Xs ◦ Xic , (11)

where ◦ stands for the element-wise product of two vectors, c ∈ [0, . . . ,k]. Then the passages
representation Yic will contain the information from the current state Xs at each selection step.
After the interactions with the current selection state Xs , the passage representations of the docu-
ment di are updated to Yi = [Yi0,Yi1, . . . ,Yik ] from Xi = [Xi0,Xi1, . . . ,Xik ]. Compared with Xi ,
the representations Yi are context-aware passage-level document diversity features, which will be
further used to generate document-level diversity features by the candidate DocEnc.
(3) Candidate Document Encoder.With the context-aware passage representations Yi of the

candidate document di , we can evaluate the novelty of the candidate documents at the passage
level. Considering that some passages will become more redundant with respect to the selected
document sequence S, we leverage a candidate DocEnc to automatically aggregate context-aware
information from k passage representations [Yi1, . . . ,Yik ] for the candidate document di . The
document-level diversity features Zi of the document di is calculated as follows:

Zi = DocEnc
di

(Yi ), (12)

where Yi = [Yi0,Yi1, . . . ,Yik ], Zi is the representation of document di ’s identifier, namely the
updated representation of Yi0 by the DocEnc. The task of the DocEnc is to fuse the most novel in-
formation contained by thek passages of the candidate documentdi . Different from directly adding
up all the passage representations, we hope the DocEnc can focus more on the novel passages in
the search result diversification task. Therefore, we do not adopt the linear combination of all
the passages to represent the documents. Similarly with the previous two encoders, the DocEnc
leverages the self-attention mechanism to automatically discover the novel passages within the
candidate document as follows:

DocEnc(Yi ) = InterLayerLd
D
(· · · InterLayer1D (Yi )), (13)

where the candidate DocEnc consists of Ld interaction layers. After the interactions of DocEnc, the
document-level diversity features Zi are encoded with the representative information from the k
relevant passages of the document di concerning the selection states Xs .
(4) Interaction Layers. The interaction layers adopted by the GloEnc, SelEnc, and DocEnc are

InterLayerG (·), InterLayerS (·), and InterLayerD (·), respectively. These interaction layers are similar
to the Transformer encoder layers, which are based on a self-attention mechanism. The subscripts
G, S , and D of these three types of layers are used to identify different encoders. In other words,
we do not share the parameters of these three interaction layers. Given the ith InterLayer output
O(i), we can obtain the (i + 1)-th layer output O(i+1) from the (i + 1)-th interaction layer as follows:

O(i+1) = InterLayeri+1(O(i)), (14)

where the input of the first global interaction layer is the original passage representations, namely
O(0) = E. The interaction layers are implemented with multi-head self-attention mechanism and
they can be calculated as follows:

O(i+1) = LayerNorm(U(i) + FFN(U(i))), (15)

U(i) = LayerNorm(O(i) +MultiHead(O(i))), (16)

where FFN(·) is a fully connected feed-forward network with activation function (i.e., ReLU),
LayerNorm stands for the layer normalization operation [4]. SinceQ = K = V in the self-attention,
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the multi-head self-attention function MultiHead(Q,K,V) is denoted as MultiHead(V) for conve-
nience. Given the head number h, the output of MultiHead(V) is the concatenation of each head’s
output aj , j ∈ [1,h],

MultiHead(Q,K,V) = [a1; . . . ; ah], (17)

where aj = Attn(QWQ
j ,KW

K
j ,VW

V
j ), W

Q
j ,W

K
j , and WV

j are all trainable parameters. The self-

attention used in this article is the scaled dot-product attention function,

Attn(Q,K,V) = Softmax( QK√
dk

)V. (18)

where Q,K,V are the query, key and value matrices and dk is the feature dimension of the input
Q, K, and V.
With the self-attention mechanism, the output passage representations will be updated with

the sequence information. Hence, for the three encoders GloEnc, SelEnc, and DocEnc, passage
representations will be encouraged to focus on the whole document sequence D, the selected
passage sequence Ps , and the candidate document di ’s passage sequence Pi . Therefore, we can
generate the diversity features of each candidate document di from the passage representations
with the global view, the selected document view, and the candidate document view.

3.5 Diversity and Relevance Features

As shown in Equation (2), the final ranking score of the documentdi consists of the relevance score
f rel(q,di ) and diversity score f div(q,di ,S). The diversity features Hi and the relevance features Ri
of the document di used for generating these scores are introduced as follows.

(1) Diversity Features. The diversity feature Hi for each candidate document di is the con-
catenation of the features from the context-aware passage interactions shown in Figure 2. More
specifically, Hi = [Xs ;Zi ;Xi ; Pi ].

Xs : The current state presentation at each selection step. Considering that some query intents (or
subtopics) are partly satisfied when some documents are selected, the query information needs to
change dynamically during the selection procedure. Therefore, it is necessary to represent the
current status of query satisfaction when considering document diversity. Xs is generated by the
SelEnc, which considers all the passages contained by the selected documents. Xs helps capture
the passage-level dynamic needs of the query during the selection procedure.
Zi : The document representation from the candidate DocEnc after interacting with the selected

status Xs . Zi is automatically generated via PAD with the self-attention mechanism, which con-
tains the information aggregated from the essential passages belonging to document di . Given that
Zi = DocEnc(Yi ) and Yi is the context-aware representations of the document di ’s passages, Zi is
a dynamic representative novelty feature of the document di according to the selected document
sequence S.

Xi : The origin representation of the document di from the passage set Pi . Considering that
Pi is the essential passage set concerning query q, it is necessary to take their representations

into account. Specially, we adopt Xi =
∑k
c=0 Eic , where Eic is the initial representation of passage

pic ∈ Pi . Compared with Zi , Xi offers an original passage aspect for the ranking model.
Pi : The interaction representation of document di . Given that we need to focus on the relevance

of the passages in the search result diversification task, we use the element-wise product to im-

plement the interactions of query and passages. Specifically, Pi =
∑k
c=0 Pic , where Pic = Eic ◦ Eq .

The interaction representation Pi of the document di is a complement to the document diversity
features at the passage level.
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(2)Relevance Features.As illustrated in Equation (3), we use the relevance feature Ri to derive
the relevance score of the document di . Consistent with the previous work [23, 27, 34, 40], Ri is
an 18-dimension traditional relevance feature, including BM25, PageRank, and TF-IDF. For a fair
comparison, the relevance features are kept the same with DSSA.

3.6 Training and Optimization

Our approach involves two training processes: the training of the passage relevance classifier and
the training of the diversification. Each process will be discussed in detail below.
(1) Passage Classifier. The training pair of the passage classifier is generated based on the

binary label of the relevance judgment. For example, given the query q, passage p, and a relevance
label y(q,p) of pair (q,p), we can derive the training sample (q, p, 1) for positive sample, while (q, p,
0) stands for a negative one. The passage classifier is trained with a binary cross-entropy loss based
on the training samples. Supposing the training sample set T has |T | (q,p) training pairs and the
relevance label set of these pairs is Y (y(q,p) ∈ Y). The training loss of the passage classifier can
be derived as follows:

Lc = − 1

|T |
∑

(p,q)∈T

(
y(q,p) × log

1

1 + e−r (p,q)
+ (1 − y(q,p)) × log

e−r (q,p)

1 + e−r (q,p)

)
, (19)

where r (q,p) is the prediction score of the passage classifier. The classifier can be implemented
via the pre-trained language models. For example, we can use BERT to model the relations of the
query q and passage p as follows:

r (q,p) = MLP(BERT
[CLS]

([CLS]; q; [SEP]; p; [SEP])), (20)

where the outputs of the classifier are generated via an MLP layer with the input of “[CLS]” token
representations. The input of the BERT classifier is the concatenation of the query q and passage
p token sequence. The special token “[SEP]” is added to separate query tokens from the passage
tokens.
(2) Diversity Ranking. The search result diversification can be considered with the greedy

selection strategy. For example, given the query q (q ∈ Q), the corresponding document setD, the
current selected document sequenceS, and the remnant candidate document set C (C = D\S), we
can evaluate the diversity of the candidate documents concerning the selected document sequence
S. Specifically, leveraging the diversity metric function M(·) (e.g., ERR-IA [11]), we can select a
positive document d+ and a negative document d− from the candidate document C, which means
d+ can bring more novel information to the search results than d−. In other words, if we append
the document d+ to the sequence S, then the ranking sequence [S,d+] is more diverse than the
sequence [S,d−]. Formally, we can measure the importance of the positive-negative sample with
a weightw derived from the diversity metric functionM(·) as follows:

w = |M([S,d+]) −M([S,d−])|, (21)

As elaborated on in Equation (2), the ranking score of the document di is f (q,di ,S). The output
scores of the training pair (q,S,d+,d−,w) are f (q,d+,S) and f (q,d−,S). The loss of the diversity
ranking models can be calculated with list-pairwise loss [23],

Ldiv(q,S,d+,d−,w) = −w log

(
1

1 + e−(s+−s−)

)
. (22)

where s+ = f (q,d+,S) and s− = f (q,d−,S) are the output scores of our diversity ranking model
PAD. Supposing the training sample set of query q is Oq , the optimization of the model can be
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calculated as follows:

f = argmin
∑
q∈Q

∑
o∈Oq

Ldiv(q,So ,d
+
o ,d

−
o ,wo), (23)

where o = (q,So ,d
+
o ,d

−
o ,wo) is a training sample of Oq and f is the document diversity scoring

function of the PAD. With Equation (23), the parameters of the PAD are optimized through the
generated training samples.

4 EXPERIMENTS

4.1 Dataset and Evaluation

The experiments are conducted on the widely used ClueWeb09 [8] dataset, which contains about
50 million web pages in English. The topic (query) sets come from TRECWeb Track 2009 to 2012.3

There are 200 queries in total, and 198 of them are used for search result diversification, because
query #95 and query #100 do not have diversity judgments. The human-labeled subtopic number
of these ambiguous queries ranges from 3 to 8, and the subtopics within a query have the same
weights. We also found a passage-level dataset TREC Dynamic Domain Track [52] related to our
method. However, for a fair comparison, we still conduct our experiments on ClueWeb09. We will
consider more datasets for future exploration.
The evaluation metrics in this article have been widely used in previous methods [23, 27, 34, 40,

47, 48, 51, 57], including α-nDCG [12], ERR-IA [11], NRBP [13], and S-rec [56].
We adopt the metric α-nDCG to select the best model in our experiments. α-nDCG is a classical

diversity ranking metric proposed by Clarke et al. [12]. Supposing the query q has m subtopics
and n candidate documents related to these subtopics. The human-assessed relevance label of doc-
ument di concerning subtopic t is J (i, t), which can be 0 or 1. The α discounted cumulative gain
(α-DCG) of the ranking sequence is calculated as follows:

α-DCG =
n∑
i=1

m∑
t=1

J (i, t)(1 − α)C(i,t )

log2(1 + ri )
, (24)

where α ∈ (0, 1] reflects the possibility of assessor error, ri is the ranking position of the document
di , and C(i, t) =

∑
j :r j<ri J (j, t) is the number of documents that cover subtopic t and rank higher

than document di . For the convenience of the comparison, we can normalize α-DCG by dividing
the metric of the ideal ranking,

α-nDCG =
α-DCG

α-DCGideal
. (25)

We can obtain the result α-nDCG@k of the ranking list by only counting the top-k documents. It
is worth noting that α-DCGideal is the ideal metric of the entire ranking list rather than the top-k
results.

4.2 Experiment Settings

For a fair comparison, the experiment settings are consistent with the previous studies [23, 27,
34, 40]. The diversity judgments of the documents are treated as binary. The initial document
rankings are retrieved via the Lemur service.4 The top 50 documents provided by Lemur are used
for search result diversification, and all the metrics are derived from the top 20 documents in the
result list output by themodel. Fivefold cross-validation is used in the experiment, and the reported
metrics are the average metrics of the five folds. The subtopics used by explicit methods, such as

3https://trec.nist.gov/data/web09.html
4Lemur service: http://boston.lti.cs.cmu.edu/Services/clueweb09_batch/
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DSSA [23], DESA [34], and DVGAN [27], are the query suggestions from the commercial search
engines, which are released by Hu et al. [22].

4.3 Baseline Approaches

To evaluate the effectiveness of our method, we compare PADwith four types of baseline methods:
(1) non-diversified methods, (2) explicit methods, (3) ensemble methods, and (4) implicit methods.

Lemur and ListMLE. These are two ranking methods that do not consider the diversity of the
documents. The results of the Lemur are generated by the Lemur service. Besides, ListMLE [46] is
a listwise learning-to-rank approach.
xQuAD, HxQuAD, TxQuAD, PM2, HPM2, and TPM2. Theese are representative explicit

heuristic methods. xQuAD [38] is a probability-based framework that measures the diversity from
the subtopic coverage distribution of the documents, while PM2 [15] manipulates the diversified
document ranking list according to the popularity of the subtopics. HxQuAD and HPM2 [22] are
two methods that use hierarchically organized subtopic lists to improve xQuAD and HPM2, while
TxQuAD and TPM2 [16] are term-level approaches based on xQuAD and PM2. DSSA [23] is a
supervised explicit method that leverages RNNs to encode the selected document sequence during
the greedy selection.
DESA and DVGAN. These are supervised ensemble approaches that utilize both the document

features and subtopic features. DESA [34] leverages the subtopics and document representations
to generate the ensemble features with a decoder. DVGAN [27] uses a generator to produce the
explicit subtopic features and exploits a discriminator to learn document similarity features.
R-LTR, PAMM, DALETOR, NTN, and Graph4DIV. Theese are several competitive super-

vised implicit methods. R-LTR [57] is an LTR approach that leverages document similarity tomodel
document diversity. PAMM [47] and DALETOR [51] are two supervised methods that propose ap-
proximate loss functions based on the metric functions. The neural tensor network [48] can be
applied to R-LTR and PAMM, respectively. Graph4DIV [40] is an implicit method that models doc-
ument relationships by a graph. We reproduced DALETOR based on its paper. More specifically,
we adopt a document interaction network with a α-DCG loss with latent cross.

4.4 Implementation Details

Given that the ClueWeb09 dataset lacks passage-level relevance labels, we fine-tune the BERT [17]
model on the MS MARCO [31] passage dataset to obtain the passage relevance classifier. The
classifier is trained on the training dataset and tuned on the validation dataset of the MS MARCO
dataset. Since the classifier is not trained or finetuned on the ClueWeb09 dataset, the results from
the classifier are used by all the folds in cross-validation in the diversification, which will not lead
to a data leakage problem.
To ensure a fair comparison, we have closely followed the experimental settings of prior works,

including DSSA [23], DESA [34], DVGAN [27], and Graph4DIV [40]. In explicit methods, the
subtopics we use are derived fromGoogle query suggestions, which can be found in Reference [22].
Consistent with the previous approaches [23, 34, 35], we adopted the first-level subtopics. It is im-
portant to note that all subtopics are given equal weight, and the human-annotated relevance for
each subtopic is treated as a binary value in our experiments. Given that our primary focus in this
article is on modeling document diversity, we have utilized the widely accepted relevance features
that were made available by Jiang et al. [23] on GitHub, which have also been adopted in previ-
ous research.5 The baseline methods, such as DESA,6 Graph4DIV,7 are reproduced based on their

5https://github.com/jzbjyb/dssa
6https://github.com/qratosone/GDESA
7https://github.com/su-zhan/Graph4DIV
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Table 3. Performance Comparison of All Approaches

Category Method α-nDCG ERR-IA NRBP S-rec

Ad hoc
Lemur .369� .271� .232� .621�

ListMLE .387� .287� .249� .619�

Explicit

xQuAD .413� .317� .284� .622�

TxQuAD .410� .308� .272� .634�

HxQuAD .421� .326� .294� .629�

PM2 .411� .306� .267� .643�

TPM2 .399� .291� .250� .639�

HPM2 .420� .317� .279� .645�

DSSA .456� .356� .326� .649�

DSSA (BERT) .457� .352� .319� .656�

Ensemble
DESA .464� .363� .332� .653�

DVGAN .465� .367� .334� .660

Implicit

R-LTR .403� .303� .267� .631�

PAMM .411� .309� .271� .643�

R-LTR-NTN .415� .312� .275� .644�

PAMM-NTN .417� .311� .272� .648�

DALETOR .397� .305� .271� .607�

Graph4DIV .468 .370 .338 .666
PAD (ours) .482 .386 .357 .670

The best result is in bold. The symbol � indicates significant improvements obtained by PAD

in t -test with p-value< 0.05.

public code repositories. The training samples are generated by the list-pairwise method proposed
by Jiang et al. [23], which is widely used by manymethods [34, 35, 40, 41]. Besides, our dataset divi-
sion is also kept the same with these baseline methods for a fair comparison. The diversity metrics
have been calculated for the top 20 documents within the initial sequence of 50 documents across
the fivefold results.
The training batch size of the passage relevance classifier is 32, and we adopt the optimizer

AdamW [29] with the warm-up mechanism. The layer numbers Lд , Ls , and Ld of the passage
interaction layers are set at 1, 3, and 3 based on the experimental results. The head number of
the multi-head attention is 8. Our model is selected based on the α-nDCG@20. At each fold, four
subsets are used for training, and the rest is used for testing. The results are the average over
the five folds. The parameter λ is tuned from [0.1, . . . , 0.9], and we use λ = 0.5 according to the
results. Our diversity ranking model is trained with batch size 8, learning rate 1e-3, and dropout
rate 0.5. The learning rate is tuned from 1e-6 to 1e-3. More details about our method can be found
at https://github.com/su-zhan/PAD.

4.5 Experimental Results

The overall results of our model and the baseline methods are shown in Table 3. According to
the results, PAD outperforms all the diversification baselines in terms of α-nDCG, ERR-IA, and
NRBP, which clearly demonstrates the effectiveness of our model. We also have the following
observations.
(1) PAD outperforms all implicit methods in terms of α-nDCG, ERR-IA, and NRBP. R-LTR-NTN

and PAMM-NTN are two representative implicit methods that learn a document’s novelty function
automatically. The advantages acquired by PAD demonstrate that the attentionmechanism is more
suitable to capture the dynamic information needs of the query during the selection. DALETOR is a
recent competitive method with a novel loss function that directly optimizes the diversity metrics.
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However, it seems to be sensitive to the initial document ranking in our experiments. Compared to
DALETOR, the large improvement gained by PAD shows the effectiveness of greedy selection and
passage representations. The combination of passages and selected documents encoder can model
the sequence of the selected documents more precisely, which helps select the novel passages at
each step. Graph4DIV is a competitive implicit approach that models the relation of the documents
based on the signals from a relation classifier. Although PAD does not acquire significant improve-
ment over Graph4DIV, it still demonstrates superior performance across all evaluationmetrics. It is
important to highlight some notable details in this comparison. First, PAD outperforms Graph4DIV
by a substantial margin, particularly with a 1.4% improvement in terms of alpha-nDCG@20. The
p-value of the two-tailed t-test between the two methods is 0.05836, slightly exceeding the signifi-
cance threshold of 0.05. Second, Graph4DIV relies on human judgment for document relations in
the training period, which contributes to its impressive performance. In contrast, PAD does not de-
pend on additional information like Graph4DIV, making it applicable in situations where subtopic
annotations are unavailable. This indicates the benefits of leveraging multiple essential passages
as document representation in search result diversification.
(2) PAD outperforms the explicit methods by a large margin. Concretely, PAD significantly out-

performs the unsupervised explicit approaches, such as xQuAD, and PM2, which demonstrates
the superiority of supervised methods. Compared with DSSA, PAD achieves better performance
without using subtopics, showing the effectiveness of enhancing document representations with
passages. We adopt BERT embeddings as passage representations on PAD for BERT is a recent
popular encoder. To demonstrate the effects of BERT embeddings, we use them in DSSA and the
results are reported in Table 3. The performance of DSSA with BERT embeddings is denoted as
DSSA (BERT). Given that DSSA with BERT embeddings achieves similar performance compared
with the original DSSA, PAD can still outperform DSSA with different document representations,
which indicates that BERT embeddings do not appear to have a substantial impact on the final
ranking performance. Furthermore, since obtaining the real search intents of the users is still a
challenging task, how to mine the information from the documents could be a promising direction
for implicit search result diversification approaches. Hence, fully utilizing the passages and their
relationships may overcome the disadvantages of lacking subtopics.
(3) PAD can also outperform two ensemble methods. DESA is an ensemble framework that

leverages both implicit (document) features and explicit (subtopic) features for direct diversity
ranking. Different from the direct ranking adopted by DESA, the greedy selection of PAD acquires
higher scores in terms of all metrics, which implies that capturing the information needs of the
query is an essential part of search result diversification. DVGAN is the most advanced ensemble
method that combines the features of a generator and a discriminator. Compared with DVGAN,
the advantages of PAD lie in the more precise modeling of the document’s content.
It is worth noting that the subtopics from a search engine are suboptimal to explicit/ensemble

methods. However, offering the human-annotated search intents as subtopics to the explicit and
ensemble models will result in a data leakage problem. All the methods, including implicit models
and explicit models, cannot perceive the real subtopics in the inference period, which is reasonable
in practice (mining the exact subtopics of a given query is a challenging task). Therefore, both
implicit and explicit approaches are fairly compared. Both of them have their own advantages:
implicit approaches do not depend on external subtopic resources like Google Suggestions, while
leveraging better subtopics in explicit methods could potentially lead to higher performance.
Since the p-value of PAD and Graph4DIV is slightly more than 0.05, we add a further wins and

losses analysis in the experiments. The comparison results are shown in Table 4. The experimental
results support that PADhas advantages over Graph4DIV inmore query cases, especially in faceted
queries, which is consistent with the example shown in Figure 1.
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Table 4. Wins and Loses Analysis of PAD
Compared with Graph4DIV

Category Win Tie Lose

All queries 94 20 84

Ambiguous queries 25 8 24
Faceted queries 69 12 60

Table 5. Performance of PAD with Different Settings

α-nDCG ERR-IA NRBP S-rec

PAD .482 .386 .357 .670

w/o GloEnc .471 .373 .342 .667
w/o Xi .462 .363 .332 .660
w/o Pi .462 .366 .333 .658
w/o Xs .466 .368 .337 .665

w/ Head Passages .467 .371 .340 .660
w/ Random Passages .471 .373 .341 .669

w/ doc2query .468 .374 .345 .658

Best results are in bold.

4.6 Effects of Different Settings

To figure out the effects of different settings in our method, we conduct the ablation study by
removing the components one by one from the entire model. The performance of the PAD with
different settings is shown in Table 5.
(1) Global Interactions in PAD. The performance of PAD without a global passage encoder

(denoted as w/o GloEnc) degrades across all metrics, which illustrates the importance of global
interactions. Moreover, the results of PAD without GloEnc are still superior to most baselines
in Table 3. It demonstrates that modeling the relationship between the selected and candidate
documents is an essential part of search result diversification. Meanwhile, the good results show
that PAD is robust as the SelEnc and candidate DocEnc can still workwell evenwithout the GloEnc.
(2) Ablation of diversity features. Since the diversity feature Hi of Section 3.5 is the concate-

nation of multiple representations, it is necessary to investigate the effects of these features. Given
that Hi = [Xs ;Zi ;Xi ; Pi ], Zi is the fundamental representation for identifying document di in the
selection process, we only remove the other three features: Xi (w/o Xi ), Pi (w/o Pi ), and Xs (w/o
Xs ). All the metrics decline when any feature is eliminated, validating the usefulness of these fea-
tures in PAD. Compared with Zi , Xi and Pi contain passage information of document di with only
local interactions (as shown in Figure 2). Together with Zi , Xi , and Pi , our method is able to sense
both local and global features at passage level. In Figure 2, passage representations of documents
are first processed by a GloEnc in our method PAD. The GloEnc will provide a global view of each
passage within all passages from different documents. And the passage vectors will interact with
other passages from other documents.
(3) Passage Selection. Given that k passages are used to represent a document in the diversity

ranking process, the selection of the passages will also impact the experimental results. Therefore,
we compare the results of the PAD with different passage selection strategies. Considering that
the positions of the passages may contain additional information, we select k passages at the be-
ginning of the documents (denoted as w/ Head Passage). On the contrary, we randomly sample k
passages from inside the documents (denoted as w/ Random Passage) for comparison. According
to the results, these two strategies are incapable of achieving the same level of performance as
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Table 6. Effects of Different Passage Segment and Selection

Category Parameters α-nDCG ERR-IA NRBP S-rec

Origin (5, 256, 16) .482 .386 .357 .670

First
Passage

(1, 128, -) .432 .327 .287 .665
(1, 256, -) .440 .340 .304 .655
(1, 512, -) .444 .343 .308 .659

Window
Size

(5, 128, 16) .473 .376 .345 .662
(5, 512, 16) .476 .379 .349 .669

Overlap (5, 256, 0) .475 .380 .349 .668

the original selection strategy (illustrated in Section 3.3), which indicates the superiority of our
selection strategy. Specifically, compared with the head-passages selection strategy, the random
selection strategy gets better metrics. From our perspective, content that covers different subtopics
may scatter in different parts of the document. Therefore, the random selection strategy has more
chances to obtain passages that answer different query intents. It also implies the necessity of
selecting representative passages for diversity ranking.
Notably, the accuracy and F1 of the passage classifier are 0.749 and 0.736, respectively. Since the

passage-level relevance is absent in the ClueWeb dataset, the results of the passage classifier are
evaluated on the validation set ofMSMARCO. Given the large space of the classifier’s performance,
we expect that a better classifier can further enhance our PAD.

(4) Passage Extension. Apart from using the original passage content from the documents, we
also explore the effects of PAD with the passage extension methods like doc2query [19]. Differ-
ent from the traditional methods, doc2query initially employs the document content to predict
potential queries, and then these predicted queries are appended to the documents before ranking.
Similarly, we exploit docT5query to generate the queries for each passage used in PAD and append
them to the passages. The docT5query is an excellent approach that uses T5 [36] to generate pre-
dicted queries. For the convenience of comparison, we use the T5 model released on Github in our
experiments.8 The results of PAD with predicted queries are denoted as w/ doc2query in Table 5.
Although equipped with a powerful generated model like T5, the results are not as good as the
original PAD. One possible explanation for this is that the doc2query models are not fine-tuned for
the ClueWeb dataset, and they may not distinguish subtle differences between various subtopics,
potentially introducing more noise to the passage content.

5 DISCUSSION

In this section, we further investigate the effects of different passage segment approaches and
different passage numbers in search result diversification. We focus on these questions: (1) What
is the influence of different passage segments and representations? and (2) How many passages
are necessary to represent a document?

5.1 Effect of Passage Segment and Selection

The experimental results of the PAD with different passage segments and selection are shown in
Table 6. We mainly focus on the passage number k , segment window size w , and overlap o of two
neighbor passages. The experimental results reported in Table 3 are conducted with parameters
(k,w,o) = (5, 256, 16).

(1) Effect of the First Passage. Different from most search result diversification methods,
our PAD models the document’s diversity based on multiple passages. To demonstrate the ben-

8https://github.com/terrierteam/pyterrier_doc2query
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efits brought by passage-level modeling, we compare PAD with the single representation baseline
models. As shown in Table 6, we use the first passage to represent the document with the window
size as 128, 256, and 512 (denoted as (1,128,–), (1,256,–), and (1,512,–), respectively). PAD outper-
forms the single passage baseline models by a large margin, which validates the effectiveness of
leveraging multiple passages to model document diversity. Furthermore, the baseline model with
the parameter (1, 512,−) is slightly better than the other two in terms of α-nDCG, ERR-IA, and
NRBP, which may result from more sufficient information brought by the larger passage size. This
could also account for the improvement brought by the multiple passages.
(2) Influence of theWindow Size.To figure out the effect of thewindow sizew of the passages,

we fix the passage number k and overlap o and tune the window size from 128 to 512. As shown in
Table 6, the models with a window size of 256 and 512 perform better than the one with a window
size of 128. A possible reason is that more content is used to generate passage representations. Even
with different passage sizes, PAD can still outperform the strongest baseline Graph4DIV in terms
of α-nDCG, ERR-IA, and NRBP, which demonstrates the robustness of our model. Interestingly,
PAD with passage size w = 256 is slightly higher than that with w = 512. The potential reason
is that a large passage may cover more than one subtopic, which supports our assumption that
different passages may cover different subtopics. Therefore, selecting a suitable passage size leads
to a better document representation in search result diversification.
(3) Effect of the Overlap. Given that finding the complete passage structure within the doc-

ument could be a more complicated task, we simply divide the documents into equal-length pas-
sages. To avoid that some essential token sequences may be split, we set an overlap parameter o
to control the overlap length of two neighbor passages. The experimental results decline with the
parameter (5, 256, 0), which shows the effects of the overlap mechanism.

We conduct our experiments in the same dataset with many previous baseline methods, such
as DSSA, DVGAN, and DESA. We agree that it is a good idea to use natural paragraphs. However,
the baseline methods remove the HTML tags of the web pages and treat the content as a whole.
To keep the same experiment settings with them, we follow the same pre-processing procedure.
We understand that HTML tags could offer extra information to segment passages. However, the
actual situations are much more complicated, because different web pages are organized in dif-
ferent styles. Therefore, considering the convenience and universal usage, we adopt the current
passage segment method in PAD. Moreover, a more complicated passage segment method is also
compatible with our method. Besides, the performance of PAD is expected to be better with natural
paragraphs, which can be a promising direction for future study.

5.2 Effect of Passage Number

Since we leverage multiple passages to represent the documents in search result diversification,
the passage number is an essential factor in the diversity ranking process. We tune the passage
number k from 1 to 10 under the same settings. In general, the model’s performance with more
passages is better than the model with fewer passages according to the results. Specifically, the
results of the baseline model with parameter (1, 256, 16) are much lower than the original one,
which demonstrates the potential drawback of using insufficient document representations.

The distributions of the subtopic number and passage number are shown in Figure 4(a) and
Figure 4(b), respectively. Since the subtopics contained in the documents are much fewer than the
passages of the documents. It is necessary to distinguish which passage is relevant to the query.
Note that the subtopic in Figure 4(a) is the real search intents labeled by humans, different from the
subtopics (e.g., Google Suggestions) used by explicit search result diversificationmodels. Moreover,
the document number with three passages is the highest in Figure 4(b), and the majority of the
documents have more than three passages. Hence, the model cannot cover the most content with a
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Fig. 4. The number distributions of subtopics and passages are shown in (a) and (b), respectively.

Fig. 5. The effects of the PAD with different passage number.

passage number less than three, which demonstrates the necessity of leveraging multiple passages
to better represent documents.
The changing tendency of α-nDCG@20 with different passage numbers is shown in Figure 5.

The performance of other metrics has a similar trend. In our experiments, the model with five
passages obtains the best results in terms of α-nDCG@20. Additionally, α-nDCG increases while
the passage number increases from 1 to 5. However, models with a passage number of more than
5 could achieve competitive performance. The tendency shown in Figure 5 reveals the general
effects of passages that using more passages benefits the diversity ranking model than only using
one passage. Considering that the subtopic number covered bymost documents is less than 5 (from
Figure 4(a)), usingmore passages (more than 5)may also introducemore irrelevant passages, which
is a possible reason why the metric decline with passage number more than 5.

5.3 Effects of Different Query Types

To investigate the effects of our method on different types of queries, we calculate the ranking
metrics of PAD on ambiguous queries and faceted queries, respectively. The results are shown in
Table 7. In the ClueWeb dataset, PAD gets higher performance in faceted queries (0.522 in terms
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Table 7. Effects of PAD on Different Types of Queries

Category Number α-nDCG ERR-IA NRBP S-rec

All queries 198 .482 .386 .357 .670

Ambiguous queries 57 .385 .277 .243 .590
Faceted queries 141 .522 .433 .407 .702

Table 8. Effects of Only Modeling Relevance in Search Result Diversification Task

Category Methods α-nDCG ERR-IA NRBP S-rec

Diversity-aware Method PAD .482 .386 .357 .670

Relevance Methods

selected passages mean (BERT) .334 .231 .188 .600
selected passages max (BERT) .364 .265 .227 .610
selected passages mean (E5) .290 .189 .145 .552
selected passages max (E5) .299 .195 .149 .573

of α-nDCG) than ambiguous queries (0.385 in terms of α-nDCG). In the case of faceted queries,
relevant documents can cover different facets of the general queries, in which our passage-aware
diversification method PAD can model different parts of the document content. Credit to the ca-
pability of modeling passage-level relationships, PAD can acquire better performance on faceted
queries than ambiguous queries. Since most queries are faceted queries, it is worthwhile modeling
the relations within documents, such as passage relations.
Apart from the faceted queries, our method PAD is also compatible with ambiguous queries. For

example, in a long document relevant to an ambiguous query, our method PAD can sense the most
relevant parts related to the query credit to a passage selection module, which is our advantage
compared with document-level methods. Based on the passage relevance and relations of different
passages, our passage-aware method can better model document-level relevance and novelty.

5.4 Effects of Passage Relevance

In the framework of PAD, we first leverage a classifier to filter irrelevant passages and model
document diversity in the following diversified ranking component. Therefore, PAD models both
passage relevance and diversity. Hence, we investigate the performance of the model with only
passage relevance scores. Therefore, we compared our diversity-aware method PAD with sev-
eral relevance-only methods that use passage relevance scores to rank documents. The results
are shown in Table 8. It is worth noting that the four relevance methods are different from our
method PAD, because they could not sense the diversity relations of the passages. More specifi-
cally, the four compared methods use the mean or maximum of the relevance scores of the selected
passages as the documents’ ranking scores. The relevance scores of the passages are calculated as
the cosine similarity of the passage embeddings and query embeddings. We adopt two models,
BERT [17] and E5 [43], to generate these embeddings. The E5 model used in our experiments is
downloaded from HuggingFace.9 In general, the four relevance-modeling baseline methods get
much lower performance than PAD. According to the results, the effects of E5 are slightly lower
than BERT, which is already used in the selection procedure of PAD. The experimental results are
shown in Table 8. Compared with the original PAD, only modeling passage relevance gets much
lower scores in all diversity metrics, which implies that only modeling passage relevance is not
enough in the search result diversification task.

9https://huggingface.co/intfloat/e5-base-v2
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Table 9. Effects of Different Passage Selection Strategies in PAD

α-nDCG ERR-IA NRBP S-rec

PAD .482 .386 .357 .670

w/ BERT selection .473 .376 .346 .663
w/ BM25 selection .475 .378 .347 .667

w/ MMR selection .478 .381 .352 .671

5.5 Effects of Different Selection Strategies

The inclusion of a passage selection stage in our method is indeed critical for several reasons. First,
the length of documents can vary significantly across different instances, resulting in a varying
number of passages. This attribute makes uniform processing in a ranking model less practical.
Second, not every passage within a document is relevant to the query, and neglecting to select
the relevant passages could introduce considerable noise into downstream ranking models. Last,
using all passages extracted from a document could overwhelm a ranking model, resulting in un-
necessary computational costs. Hence, selecting the most essential top-k passages is a necessary
step in our method.
To further investigate the effects of different passage selection strategies, we also examine the

performance of PAD with three different selection methods. Considering that the BERT-based
classifier focuses on modeling the passage’s semantic relevance while BM25 reflects the token
matching degree, we adopt both scores to select passages. In this section, we demonstrate the
effects of only using BERT classifier scores (denoted asw/ BERT selection) or BM25 scores (denoted
as w/ BM25 selection), respectively. As shown in Table 9, merely leveraging BM25 scores or BERT
scores cannot acquire the same good results as PAD does. Moreover, both strategies used in PAD
can still have high performance, which demonstrates the robust framework of our method.
What if we consider passage diversity in the passage selection procedure? To answer this ques-

tion, we apply an MMR module to PAD. More specifically, we not only leverage passage relevance
scores but also passage similarity scores from cosine similarity of passage BERT embeddings to
filter representative passages. The experimental results (denoted as w/ MMR selection) are shown
in Table 9. The S-rec metric of PAD with an MMR selection (0.671) is a little higher than the origi-
nal PAD version (0.670), while the other three metrics decline with an MMR selection. A possible
reason is that an MMR selection strategy is beneficial to obtain more diverse passages that cover
more subtopics (reflected in the S-rec metric). However, the side effect of this strategy is that more
irrelevant passages are also chosen and passed to the next phase, which accounts for the decrease
of α-nDCG, ERR-IA, and NRBP. According to the experimental results, the effects of passage rel-
evance are greater than diversity. Considering the additional amount of computation and effects
brought by MMR, we choose the original selection strategy of PAD.

5.6 Runtime Efficiency

To demonstrate the efficiency of PAD, we record the inference time of our ranking model with
different passage numbers k . As shown in Figure 6, the average processing time of each query is
16.7 ms for PAD with only one passage, while PAD with 10 passages needs 61.2 ms to diversify
the results of one query. The process time of PAD with k = 10 is only 3.66 times that of PAD with
k = 1. However, PAD achieves best results in terms of α-nDCG@20 with 5 passages, which needs
32.4 ms (only 94.01% more in process time compared with one passage) to process a query. Com-
pared with the inference time of Graph4DIV (21.4 ms with 0.468 in terms of α-nDCG), a 5-passage
PAD achieves 0.482 in terms of α-nDCG (1.4% improvement) with 32.4 ms. According to the ex-
perimental results, we can balance effectiveness and time cost by leveraging five passages in PAD.
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Fig. 6. The process time influenced by the passage number k.

Since introducing too many passages can also bring more noise, a high-performance PAD with a
few passages does not come with a lot of extra time overhead. In general, PAD could achieve large-
effectiveness (Figure 5) improvement with an acceptable degree of time cost (Figure 6). Therefore,
leveraging multiple passages to model document diversity is both effective and efficient in practice.

6 CONCLUSIONS

In this article, we propose an implicit approach PAD to model the document’s diversity through
multiple passage interactions. To obtain the representative passages of the documents, we leverage
a passage relevance classifier to select the top-k passages. Furthermore, we model the passage’s
global interactions via the GloEnc. Then the selected document state will be aggregated by the
SelEnc. The document representation is automatically learned by the DocEnc from the passages
that belong to it. Together with the context-aware features from the SelEnc and DocEnc, PAD
selects the novel candidate document at each step. The experimental results show the efficiency
and effectiveness of ourmodel. In the future, wewill exploremore utilization of passages in explicit
search result diversification.
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