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ABSTRACT
Search result diversification aims to provide a diversified document
ranking list so as to cover as many intents as possible and satisfy the
various information needs of different users. Existing approaches
usually represented documents by pretrained embeddings (such as
doc2vec and Glove). These document representations cannot ade-
quately represent the document’s content and are hard to capture
the intrinsic user’s intent coverage of the given query. Moreover,
the limited number of labeled data for search result diversification
exacerbates the difficulty of obtaining more efficient document
representations. To alleviate these problems and learn more effec-
tive document representations, we propose a Contrastive Learning
framework for search result DIVersification (CL4DIV). Specifically,
we design three contrastive learning tasks from the perspective of
subtopics, documents, and candidate document sequences, which
correspond to three essential elements in search result diversifica-
tion. These training tasks are employed to pretrain the document
encoder and the document sequence encoder, which are used in the
diversified ranking model. Experimental results show that CL4DIV
significantly outperforms all existing diversification models. Fur-
ther analysis demonstrates that our method has wide applicability
and can also be used to improve several existing methods.
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1 INTRODUCTION
Search result diversification focuses on tackling the ambiguity of
short queries andmeeting the diverse information needs of different
users. For example, users issuing “Starbucks” may expect results
about “Starbucks beverage menu” or “the nearest Starbucks store”.
To cope with this problem, search result diversification models
return relevant and diverse documents to cover more subtopics and
better satisfy users’ search intents with “ten blue links”.

Pioneering work for diversifying search results dates back to
MMR [3], which employed a hyperparameter 𝜆 to balance documents’
relevance and diversity. The diversity was measured by the docu-
ments’ dissimilarity. Following MMR, some studies [10, 28] measured
documents’ diversity by modeling their coverage of user intents
in an unsupervised manner. These methods required extensive
hyperparameter tuning and heavily relied on manually designed
functions. To tackle these problems, researchers [36, 42] switched
to supervised learning and constructed approximate ideal rankings
as ground-truth rankings. This enabled automatic learning of di-
verse ranking functions and direct optimization of the loss function,
resulting in significant performance improvements. With the devel-
opment of deep learning, recent works [25, 38] further leveraged
deep neural networks to train advanced models. Yet, most previous
studies focus on designing elaborate network architectures or effec-
tive loss functions. A fundamental factor—the quality of documents’
initial representations—has been neglected for a long time.

Previous works adopt pretrained initial document representa-
tions such as doc2vec [16] and Glove [23], which can help distin-
guish documents at a coarse-grained semantic level, but may fail to
identify the subtle difference of subtopic coverage between docu-
ments for a query that is necessary for search result diversification.
Even if the interaction between features is carefully designed, the
unpolished initial document representation will inevitably impact
the quality of the final ranking. Further complicating the case is
the limited labeled training data available for this task. With insuf-
ficient training data, it is hard to train superior supervised models
with rough initial document representations. Although most ex-
isting models [30, 38] assume that the training data is sufficient
to train a diversification model, the fact is disappointing: the Web
Track dataset contains only about 200 annotated queries in total.
This problem becomes extremely prominent in neural-based mod-
els [25, 30], as they usually require a large amount of training data.

The above problems motivate us to reconsider more effective
models of document representation targeted for search result diver-
sification. Recently, contrastive learning has shown its effectiveness

171

https://orcid.org/0000-0001-8952-7666
https://orcid.org/0000-0002-9781-948X
https://orcid.org/0000-0002-9432-3251
https://orcid.org/0000-0002-9777-9676
https://doi.org/10.1145/3616855.3635851
https://doi.org/10.1145/3616855.3635851
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616855.3635851&domain=pdf&date_stamp=2024-03-04


WSDM ’24, March 4–8, 2024, Merida, Mexico. Zhirui Deng, Zhicheng Dou, Yutao Zhu, and Ji-Rong Wen

in many information retrieval (IR) tasks, such as dense retrieval [17]
and video search [41]. With sufficient training samples automati-
cally generated from raw data and carefully designed pretraining
tasks, the model can learn the intrinsic correlation of data and gen-
erate more robust data representations. Nevertheless, introducing
contrastive learning to search result diversification is challenging
since search result diversification models need to figure out the
subtle subtopic differences and inherent semantic correlation be-
tween documents under a specific query. Moreover, search result
diversification models are required to re-rank a document sequence.
Therefore, it is important to consider the differences between docu-
ments at the document sequence level.

Inspired by this, we propose a Contrastive Learning framework
for search result DIVersification (CL4DIV). We devise three con-
trastive learning tasks, denoted as subtopic-based (SUB), document-
based (DOC), and sequence-based (SEQ) contrastive learning, to
build training pairs from different perspectives and pretrain docu-
ment representation models. Specifically, for the subtopic-based
contrastive learning task, our target is to compare the similarity
between documents from a fine-grained subtopic coverage perspec-
tive, which simulates the general process of (explicit) diversification
models. We leverage T5 [27] to generate subtopics for each docu-
ment automatically, which avoids introducing additional annotation
costs. Next, to model the intrinsic semantic correlation within a
document and learn more robust document representations, we
propose document-based contrastive learning, which comprises
random passage deletion, random passage exchange, and dropout.
They can reflect the potential variations of documents. Moreover,
to measure the relationship between documents from the over-
all document sequence perspective, we design sequence-based
contrastive learning. The document replacement and document
reorder operations are conducted to generate augmented docu-
ment sequence pairs. By comparing similar/dissimilar document
sequences, the model can identify critical information for search
result diversification.

We adopt the three tasks to pretrain the document encoder and
document sequence encoder. The two pretrained encoders are fur-
ther combined with an attention-based implicit diversified ranking
model to score documents simultaneously. Experimental results
show that, even with a simple diversified ranking network architec-
ture, CL4DIV can still significantly outperform all existing methods.
This clearly demonstrates the superiority of applying contrastive
learning for search result diversification. Our further experiments
show that the proposed method is also compatible with several
existing models, and can greatly improve their performance. This
validates the wide applicability of our method.

Our main contributions are three-fold:
(1) We propose a contrastive learning framework to enhance

data representations in search result diversification. This is the first
time that contrastive learning is applied to this task.

(2) We propose three contrastive learning tasks from different
perspectives. They are all designed based on the characteristics
of search result diversification and contribute to learning better
representations for documents and document sequences.

(3) Our comprehensive experiments validate that our pre-training
method can be easily combined with various existing models, which
demonstrates the applicability and robustness of our approach.

2 RELATEDWORK
2.1 Search Result Diversification
Search result diversification methods can be empirically divided
into implicit methods and explicit methods.

Implicit Methods. Implicit methods [30, 40] compare the simi-
larity between documents and do not require subtopics during the
test stage of the diversified ranking. MMR [3] is the fundamental of
most implicit methods which combines the ad-hoc query-document
relevance and the dissimilarity between documents with a parame-
ter 𝜆. Depending on MMR, R-LTR [42] addressed diversification as a
learning problem and built supervised training signals. PAMM [36]
used a maximal marginal relevance model for ranking and directly
optimized evaluation metrics. NTN [37] automatically learned a non-
linear novelty function. Due to the advancement of deep neural
networks, Graph4DIV [30] measured documents’ similarity based
on their intent coverage and used a GNN to compute document’s di-
versity features. DALETOR [38] devised diversification-aware losses
to approach the optimal ranking. MO4SRD [39] scored documents
with a probability distribution and directly optimized evaluation
metrics. KEDIV [31] introduced entities and their relationships from
an external knowledge base and leveraged them to model the di-
versity of documents. Among the models that do not introduce
external knowledge, Graph4DIV is the state-of-the-art method.

Explicit Methods. xQuAD [28] introduced sub-queries to esti-
mate the satisfaction of the document to the uncovered aspects.
PM2 [10] optimized proportionality by iteratively determining the
topic that best maintains the overall proportionality. Based on
xQuAD and PM2, plenty of unsupervised explicit approaches [11, 14]
were proposed. HxQuAD/HPM2 [14] adopted hierarchical subtopics
to model users’ intents while TxQuAD/TPM2 [11] directly modeled
term-level subtopics to relieve the difficulties in subtopic mining.
Subsequently, researchers [15] incorporated supervision signals
and proposed a list-pairwise loss which can significantly improve
the performance. DESA [25] adopted the self-attention mechanism
to learn the implicit and explicit diversity features and estimate
documents’ novelty simultaneously. Based on DESA [25], GDESA [26]
incorporated global interaction and document selection to approach
global optimal ranking results. To tackle the challenge of lack of
high-quality training samples, DVGAN [18] leveraged GAN to gener-
ate more training samples effectively.

Subtopics in previous models were either manually annotated
or provided by existing search engines (e.g., Google suggestions).
In this paper, we propose an implicit method to generate subtopics
with a T5 model automatically.

2.2 Pretraining for IR
Since pretrained language models [12, 24] have been proposed, they
have been widely implemented and tailored for many IR tasks [20,
21]. PROP [20] adopted the query likelihood model to build fake
query-document pairs for ad-hoc retrieval. By constructing such
pairs, the model can measure the relevance between query and
document more accurately and generate better ranking. Recently,
contrastive learning [5] has been verified as a promising pretraining
method that generates self-supervised signals from unsupervised
data. Through training data representations with self-supervised
auxiliary tasks, the model can achieve better performance on the
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Figure 1: The architecture of CL4DIV containing two stages.
The pretraining stage includes three contrastive learning
tasks to pretrain the document encoder and the document
sequence encoder. At the diversified ranking stage, the two
encoders are initialized with the pretrained parameters to
produce the final document ranking scores.

downstream tasks. COCA [43] designed three data augmentation
strategies to enhance the representation of documents and user
behavior sequences for session search.

In this paper, we focus on search result diversification and design
contrastive learning tasks to build training pairs from unsupervised
data to enhance the quality of data representations.

3 METHODOLOGY
Search result diversification aims to provide a document ranking
covering more users’ intents. Most existing methods utilize rough
initial document representation (e.g., doc2vec [16] and Glove [23])
which cannot capture the subtle subtopic differences between doc-
uments and suffer from the data sparsity problem. In this paper, we
devise three contrastive learning tasks to optimize data representa-
tion. These tasks consider three essential elements of diversification,
i.e., subtopics, documents, and document sequences. Our CL4DIV
is illustrated in Figure 1. It consists of a pretraining stage and a
diversified ranking stage. The former leverages three contrastive
learning tasks to pretrain the document encoder and the document
sequence encoder, while the latter initializes the two encoders with
pretrained parameters to diversify document ranking.

3.1 Problem Formulation.
Given the current query 𝑞 and its initial ad-hoc ranking list D =

{𝑑1, . . . , 𝑑𝑛} that contains 𝑛 candidate documents, search result
diversification models re-rank these documents and generate a
diversified document ranking list R, in which novel documents are
ranked higher and redundant ones are ranked lower.

Not only should search result diversification models consider
modeling the query-document relevance like ad-hoc retrieval, but
also focus on the diversity of documents. Since enumerating all
possible document lists is an NP-hard problem, we follow previous
studies [25, 38] and adopt an attention-based diversified ranking
model to score all candidate documents simultaneously rather than
greedy selection [30], i.e., iteratively selecting the most novel and
relevant document, to reduce the computational complexity.

3.2 Architecture of Diversified Ranking Model
Before introducing how to apply contrastive learning to search
result diversification, we first describe the network architecture of
our diversified ranking model, which is shown on the right side of
Figure 1. First, each candidate document 𝑑𝑖 ∈ D (𝑖 ∈ [1, 𝑛]) is en-
coded by a document encoder to obtain a document representation
e𝑖 . Then, a document sequence encoder is used to model the relation-
ship between documents and compute a contextualized document
representation r𝑖 . Next, similar to existing methods [25], we com-
pute the document ranking score 𝑆𝑑𝑖 based on the concatenation of
r𝑖 and the relevance features f𝑖 through a multi-layer perceptron
(MLP). Finally, we generate the diversified document ranking by
re-ranking the candidate documents according to their scores.

In this architecture, as shown in the left side of Figure 1, the doc-
ument encoder is pretrained by the subtopic-based and document-
based contrastive learning tasks (Section 3.3.1 and 3.3.2), while the
document sequence encoder undergoes pretraining by the sequence-
based contrastive learning tasks (Section 3.3.3). It is worth noting
that our contrastive learning framework is flexible and compati-
ble with several existing methods (e.g., Graph4DIV [30], DESA [25]
and DALETOR [38]) by replacing their document encoder and doc-
ument sequence encoder by our pretrained ones. Experiments in
Section 4.5.2 show the improvement provided by our framework.

The details of each component are introduced as follows.
(1) Document Encoder. The document encoder encodes each

document 𝑑𝑖 ∈ D into a vector. To learn semantic representations
that can more accurately reflect the novelty of documents, we
apply a Transformer [32] encoder DocE as the document encoder.
Specifically, we compute document 𝑑𝑖 ’s representation as follows:

𝑑′𝑖 = [CLS]𝑑𝑖[SEP], e𝑖 = DocE(𝑑′𝑖 )[CLS] . (1)

We use the [CLS] token as the document’s representation.
(2) Document Sequence Encoder. In search result diversifi-

cation, it is crucial to compare the documents’ similarities and
determine which one is more novel and should be ranked higher.
Therefore, we apply another Transformer encoder SeqE as the doc-
ument sequence encoder to enhance the interaction between docu-
ments. Concretely, for the representation [e1, . . . , e𝑛] of documents
[𝑑1, . . . , 𝑑𝑛], we update their representation as:

r1, . . . , r𝑛 = SeqE(e1, . . . , e𝑛) . (2)

With the self-attention mechanism in the Transformer, r𝑖 can con-
sider its relationship with other documents. Therefore, we can treat
r𝑖 as the contextualized diversified document representation.

(3) Relevance Features. We use the same 18-dimension rele-
vance features f𝑖 as previous works [15, 18, 30], and details can
be found in [15, 42]. The relevance features represent the query-
document relevance, which is critical for diversification task [26].

(4) Ranking Score Calculation. After obtaining the diversified
document representation and relevance features, we can calculate
the final document ranking score through an MLP as:

𝑆𝑑𝑖 = MLP( [r𝑖 ; f𝑖 ]), (3)

where [;] is the concatenation operation.
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Figure 2: Three contrastive learning tasks in CL4DIV: Subtopic-based, Document-based, and Sequence-based. We devise different
contrastive losses to optimize the parameters of the document encoder and the document sequence encoder.

3.3 Contrastive Learning Tasks
Current diversification methods are limited by their reliance on
coarse document representation. Moreover, the data sparsity prob-
lem has long plagued the diversified ranking task, which directly
impacts the training of document representation. Contrastive learn-
ing can mine the intrinsic content correlations in and between data
samples and construct training samples in an unsupervised manner
to learn high-quality data representation, which naturally fits our
purpose. In this section, wewill introduce three contrastive learning
strategies tailored for search result diversification and explain how
we use them to pretrain the document encoder and the document
sequence encoder and apply them to the diversified ranking stage.

3.3.1 Subtopic-based Contrastive Learning. Comparing the simi-
larity between documents and determining their novelty are criti-
cal steps for search result diversification. If two documents cover
the same subtopics, their contents are intuitively similar. In other
words, a document is more novel if it contains a greater number
of subtopics not covered by other documents. Motivated by this
observation, we first design subtopic-based contrastive learning,
as shown in the left side of Figure 2, to reduce the representations’
distance between two documents covering identical subtopics.

Subtopic-based Document Similarity. In search result diver-
sification, the subtopic coverage information of each document is
often manually labeled. However, due to the high cost, it is imprac-
tical to perform human annotation on a large number of documents.
To tackle this problem, inspired by docTTTTTquery [22], we pro-
pose to use a generativemethod to obtain the subtopic of documents
automatically. Specifically, we initialize a T5 [27] model by the re-
leased checkpoint of docTTTTTquery.1 Then, we use this T5 model
to generate𝑚 queries 𝑞𝑖,1, . . . , 𝑞𝑖,𝑚 as subtopics for document 𝑑𝑖 :

𝑞𝑖,1, . . . , 𝑞𝑖,𝑚 = T5(𝑑𝑖 ). (4)

By this means, the long document is represented by several short
subtopics. This method has two advantages: (1) the short queries
can summarize the main content of the document, which greatly
1https://huggingface.co/castorini/doc2query-t5-base-msmarco

reduces the noise in the subsequent similarity calculation; and (2)
the documents are viewed from the perspective of a subtopic, which
naturally aligns with the goal of search result diversification.

To enhance the document encoder’s capability of identifying
similar and dissimilar documents in terms of subtopics, we design
a contrastive learning method based on document pairs. In partic-
ular, considering two documents 𝑑𝑖 and 𝑑 𝑗 , both of which have𝑚
subtopics [𝑞𝑖,1, · · · , 𝑞𝑖,𝑚] and [𝑞 𝑗,1, · · · , 𝑞 𝑗,𝑚], we represent them
by a pretrained BERT model as:2

y𝑖 = BERT[CLS] ([CLS]𝑞𝑖,1 [SEP]𝑞𝑖,2, . . . , [SEP]𝑞𝑖,𝑚), (5)
y𝑗 = BERT[CLS] ([CLS]𝑞 𝑗,1 [SEP]𝑞 𝑗,2, . . . , [SEP]𝑞 𝑗,𝑚), (6)

where the [SEP] tokens are added to separate each subtopic. Again,
we use the representation of the [CLS] token as the subtopic-based
document representation. Then, we compute the similarity between
the documents 𝑑𝑖 and 𝑑 𝑗 by a cosine function as follows:

𝑦𝑖, 𝑗 = cos (y𝑖 , y𝑗 ) =
y⊤
𝑖
· y𝑗

|y𝑖 | |y𝑗 |
. (7)

Note that this similarity measures the documents’ relationship from
the aspect of subtopics. Other similarity calculation methods such
as inner product are also practicable.

Contrastive Learning Objective. Based on the subtopic-based
similarity scores, we can sample positive document pairs as:

𝑅(𝑑𝑖 , 𝑑 𝑗 ) = 1, if 𝑦𝑖, 𝑗 > 𝛼, (8)

where 𝑑𝑖 and 𝑑 𝑗 construct a positive document pair for contrastive
learning, and 𝛼 is a threshold hyperparameter.

Given 𝑁 positive pairs of documents in a mini-batch, for a pos-
itive pair (𝑑𝑖 , 𝑑 𝑗 ), we treat the other 2(𝑁 − 1) documents within
the same mini-batch as their negative samples. Following previous
studies [6, 43], the contrastive learning loss LSUB is defined as:

LSUB = − log
exp(sim(e𝑖 , e𝑗 )/𝜏)

exp(sim(e𝑖 , e𝑗 )/𝜏) +
∑

e−∈𝐷−
exp(sim(e𝑖 , e−)/𝜏)

,

2Checkpoint of pretrained BERT: https://huggingface.co/bert-base-uncased
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where the similarity function sim(·) is also implemented by the
cosine function as Equation (7). 𝜏 is a temperature hyperparameter.
e𝑖 and e𝑗 are the representations of 𝑑𝑖 and 𝑑 𝑗 computed by the
document encoder denoted in Equation (1).

3.3.2 Document-based Contrastive Learning. In addition to subtopics,
the document’s actual content is crucial for determining its novelty.
However, existing diversification methods often represent docu-
ments using pretrained embeddings (e.g., doc2vec [16] or Glove [23]).
Such representations are trained on fixed document content, mak-
ing it not robust for potential variations. Inspired by recent data
augmentation studies [1, 9, 17, 41], as shown in the middle of Fig-
ure 2, we design three augmentation strategies to handle minor
content variations and employ contrastive learning to enable the
model to focus on the overall content thereby learning more robust
document representation.

Document-based Augmentation Strategies. We devise three
augmentation strategies to modify document content.

(1) Random passage deletion. This method randomly deletes a
passage in a document. The remaining part can be treated as a par-
tial view of the original content, forcing the model to learn a more
robust representation without relying on complete information.

(2) Passage position exchange. This approach randomly exchanges
the position of two passages in a document. Some documents do
not have “strict” orders, so this operation helps the model focus on
learning content representation rather than its passage orders.

(3) Random dropout masking. Following SimCSE [13], we utilize
the standard dropout [29] in the document encoder and pass a
document to the encoder twice with random dropout masks. This
operation can improve uniformity and keep steady alignment [33]
which further enhances the robustness of representations.

Contrastive Learning Objective.We treat the original docu-
ment and its augmentation as a positive pair while using other doc-
uments in the same mini-batch as negative samples𝐷− . Specifically,
for a document 𝑑 , we randomly select an augmentation approach
and obtain a document pair (𝑑 , 𝑑′), where 𝑑′ is the augmented doc-
ument. We encode the two documents with the document encoder
DocE(·) to obtain their representation e and e′. The loss function
LDOC is defined as:

LDOC = − log
exp(sim(e, e′)/𝜏)

exp(sim(e, e′)/𝜏) + ∑
e−∈𝐷−

exp(sim(e, e−)/𝜏) .

3.3.3 Sequence-based Contrastive Learning. Search result diversifi-
cation focuses on returning a ranked document list and improving
its subtopic richness. In addition to comparing the relationship of
documents, themodel should also consider the overall novelty of the
document list (sequence). Therefore, we propose sequence-based
contrastive learning to enhance the document sequence represen-
tation. Given the initial document sequence D, a straightforward
idea is to directly add some variations on D. However, the limited
number of training sequences in existing diversification datasets
renders solely relying on these sequences insufficient for effective
training. To cope with this problem, we perform 𝑘 times random
shuffling operation on the initial sequences, resulting in 𝑘 different
sequences. The premise that this design can be implemented is

that our diversified ranking model is a position-invariant attention-
based model. It can score all candidate documents simultaneously,
so it is robust to the initial positions of documents.

Sequence-based Augmentation Strategies. Based on the shuf-
fled document sequences, we propose two sequence augmentation
strategies to generate contrastive learning training samples.

(1) Document replacement. Our first strategy is to replace a doc-
ument in the sequence with another one. To guarantee query-
document relevance and better measure the relationship between
documents, we choose to select a document that is similar to the
original one for replacement rather than using a random document.
Similar to Section 3.3.1, we use subtopic-based document similar-
ity to select similar documents. For a specific document 𝑑𝑖 in the
candidate document sequence 𝑆 = [𝑑1, . . . , 𝑑𝑖 , . . . , 𝑑𝑛], we select an-
other document 𝑑 𝑗 where 𝑦𝑖, 𝑗 > 𝛼 to replace it and generate a new
sequence 𝑆 ′ = [𝑑1, . . . , 𝑑 𝑗 , . . . , 𝑑𝑛]. We believe that D′ is similar to
D regarding subtopic coverage.

(2) Document reorder. We also randomly swap the position of
two documents in the document sequence. This strategy is similar to
passage position exchange in document-based contrastive learning.
We consider that themodel should paymore attention to the novelty
of each document rather than their positions in the sequence.

Contrastive Learning Objective. We treat the original se-
quence and its augmentation as a positive pair and leverage con-
trastive learning to pull close their representation. In particular,
for a document sequence 𝑆 = [𝑑1, . . . , 𝑑𝑛], we randomly choose a
strategy and apply it to obtain an augmented document sequence
𝑆 ′ = [𝑑′1, . . . , 𝑑

′
𝑛]. We first encode each document in the document

sequence pair (𝑆 , 𝑆 ′) with a document encoder DocE(·) and acquire
their representation [e1, . . . , e𝑛] and [e′1, . . . , e

′
𝑛]. Then, the two

representations are encoded by the document sequence encoder
SeqE(·), defined in Equation (2), to acquire the updated represen-
tation [r1, . . . , r𝑛] and [r′1, . . . , r

′
𝑛]. We concatenate the updated

representations and produce the document sequence representa-
tions of (𝑆 , 𝑆 ′) by s = [r1; . . . ; r𝑛] and s′ = [r′1; . . . ; r

′
𝑛]. We define

the loss function LSEQ as follows:

LSEQ = − log
exp(sim(s, s′)/𝜏)

exp(sim(s, s′)/𝜏) + ∑
s−∈𝑆−

exp(sim(s, s−)/𝜏) . (9)

Similarly, the document sequence pair (𝑆 , 𝑆 ′) is regarded as a posi-
tive pair and other document sequences in the same mini-batch are
treated as the negative sample s− in the negative sample set 𝑆− .

3.4 Training and Optimization
The training of our model has two stages.

Pretraining. We optimize the loss of three pretraining tasks
includingLSUB,LDOC, andLSEQ to pretrain the document encoder
and the document sequence encoder.

Diversified Ranking. Following previous works [15, 25, 30],
we leverage a list-pairwise loss to generate more training samples
and optimize the model parameters of the diversified ranking part.
Specifically, for a sample pair (𝑟1, 𝑟2), it can be represented as (𝐶 , 𝑑1,
𝑑2), where 𝐶 is the same previous document sequence context of
document 𝑑1 and 𝑑2. (𝐶 , 𝑑1) and (𝐶 , 𝑑2) are the document sequence
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𝑟1 and 𝑟2, respectively. The loss function can be defined as follows:

L =
∑︁
𝑞∈Q

∑︁
𝑜∈𝑂𝑞

|Δ𝑀 | (𝑦𝑜 log(𝑃12) + (1 − 𝑦𝑜 ) log(1 − 𝑃12)), (10)

where 𝑜 is the sample pair in all sample pairs 𝑂𝑞 of query 𝑞, 𝑦𝑜 = 1
is positive and 0 is negative, 𝑃12 = 1

1+exp(𝑆𝑑1−𝑆𝑑2 )
is the probability

of being positive and 𝑆𝑑1 and 𝑆𝑑2 is calculated by Equation (3).
Δ𝑀 = 𝑀 (𝑟1) −𝑀 (𝑟2) is the weight of this sample, and the larger
the positive-negative rankings’ gap, the more important the sample.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Following previous studies [15, 18, 25, 30], we conduct experiments
on the ClueWeb09 dataset [2], which consists of 200 queries of Web
Track dataset from 2009 to 2012. Among the 200 queries, queries
#95 and #100 are discarded as they have no diversity judgment.
Each of the remaining 198 queries contains 3 to 8 subtopics, which
are manually annotated users’ intents. The binary relevance rating
is given at the subtopic level. We leverage subtopics generated by
T5 rather than labeled intents to build more self-supervised training
data. Consistent with TREC Web Track and existing methods [15,
18, 30], we use the top 50 results of Lemur as the initial document
ranking and compute all evaluation metrics based on the top 20
results of the diversification model.3 For significance testing, we
employ a two-tailed paired t-test with 𝑝-value < 0.05, which is the
same as that used in existing works [18, 25, 30, 42].

To align with previous work [18], we use the official diversity
evaluation metrics ofWeb Track, including ERR-IA [4], 𝛼-nDCG [7],
and NRBP [8]. These metrics measure the diversity of document
ranking by explicitly rewarding novelty and penalizing redundancy.

4.2 Baselines
To verify the effectiveness of our model CL4DIV, we compare it
with several baseline methods including:

(1) Lemur and ListMLE [35] are representative non-diversified
models. For a fair comparison with previous studies [15, 30], we use
the same results of Lemur produced by the Indri engine. ListMLE
is a typical learning-to-rank model without considering diversity.

(2) xQuAD [28], PM2 [10], HxQuAD, HPM2 [14], TxQuAD, and TPM2 [11]
are typical unsupervised explicit diversification methods. They all
use a parameter 𝜆 to combine the relevance score and the diversity
score of a document. HxQuAD/HPM2 adopts hierarchical subtopics
with an additional parameter 𝛼 . TxQuAD/TPM2 leverages terms
to model the query intent. Following [42], we use ListMLE as the
prior relevance ranking for these models.

(3) DSSA [15], DVGAN [18], DESA [25] and GDESA [26] are super-
vised explicit methods. We use list-pairwise loss [15] to train the
DSSA. GDESAwas an extension model of DESAwith greedy selection.

(4) MO4SRD [39], R-LTR [42], PAMM [36], NTN [37], DALETOR [38],
and Graph4DIV [30] are typical implicit methods. We reproduce
MO4SRD with Lemur results based on their released code.4 We do
not add relevance features because the 𝑒𝑟 𝑓 (·) in MO4SRD will cause
the loss to become NaN after adding them. For R-LTR and PAMM, we

3Lemur Service: http://boston.lti.cs.cmu.edu/Services/clueweb09_batch/
4MO4SRD: https://github.com/wildltr/ptranking

tune ℎ𝑠 (𝑅) from minimal, maximal, and average to achieve optimal
performance. Moreover, for PAMM, we tune the number of positive
rankings 𝜏+ and negative rankings 𝜏− per query. R-LTR-NTN and
PAMM-NTN are NTN based on R-LTR and PAMM, respectively. It is worth
noting that the vanilla DALETOR does not use relevance features. To
align with previous works [25, 30, 42], we add the relevance features
and train DALETOR based on the top 50 results of Lemur with the
diversification-aware loss. Graph4DIV is currently the state-of-the-
art method, and we use their released code to implement it.5

4.3 Implementation Details
We use the HuggingFace’s Transformers [34] for implementation.
For the document encoder, we use the same architecture asBERTbase
and initialize it with BERT parameters. The heads’ number, hid-
den size, and the layer number of the document sequence encoder
are set as 8, 400, and 2. The threshold 𝛼 , subtopic number𝑚, and
shuffling times 𝑘 are set as 0.99, 20 and 50. We use AdamW [19]
optimizer in both stages. The SUB and DOC tasks are trained with
a learning rate of 7e-5 and a batch size of 16 for 3 epochs. For the
SEQ task, we train it with the learning rate of 1e-3 and the batch
size of 1,048 for 1 epoch. For tasks SUB, DOC, and SEQ, we sample
about 88k, 88k, and 1.4m contrastive pairs. The temperature 𝜏 in
LSUB, LDOC, and LSEQ is set as 0.4, 0.1, and 0.8 and their weights
are set as 0.3, 0.7 and 1.0. To process 50 candidate documents at
once efficiently, we set the maximum document length for the two
encoders as 256 and divide each document into 8 passages for the
DOC task. In the ranking stage, we set batch size and learning
rate as 4 and 0.03 and tune learning rate from 0.03 to 1e-6. We use
five-fold cross-validation based on 𝛼-nDCG to select the best model.
Our code and more implementation details are released at Github.6

4.4 Overall Experimental Results
The overall results are shown in Table 1. We find that CL4DIV sig-
nificantly outperforms all existingmodelswhich demonstrates
its superiority. We further have the following observations.

(1) CL4DIV outperforms all other implicit methods by a signif-
icant margin across all evaluation metrics. In terms of 𝛼-nDCG,
the improvement over the state-of-the-art method Graph4DIV is
1.8%. Graph4DIV is a greedy framework that constructs an intent
graph to depict the relationship between different documents and
employs graph neural networks for diversity features learning. In
contrast, CL4DIV only uses two encoders and has a much simpler
structure and faster ranking speed. The improvement obtained by
CL4DIV demonstrates that our self-supervised pretraining frame-
work for document representation learning is highly effective. It
can capture the relationship between documents at a more granular
level, resulting in better diversified document ranking.

(2) Intriguingly, CL4DIV also significantly outperforms all explicit
methods. Concretely, the absolute value of 𝛼-nDCG is improved
by 1.7% over the strong baseline GDESA. Remember that CL4DIV is
a purely implicit method, meaning it does not rely on any explicit
feature (e.g., subtopics provided by Google suggestions or humans
or T5) during the inference stage. This substantial improvement can
be attributed to the proposed three contrastive learning tasks. By

5Graph4DIV: https://github.com/su-zhan/Graph4DIV
6Our open source code: https://github.com/DengZhirui/CL4DIV/
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Table 1: Performance of all methods. The best result is in
bold. † indicates CL4DIV significantly outperforms all other
methods in two-tailed paired t-test with 𝑝-value < 0.05.

Category Method ERR-IA 𝛼-nDCG NRBP

Ad-hoc Lemur .271 .369 .232
ListMLE .287 .387 .249

Explicit

xQuAD .317 .413 .284
TxQuAD .308 .410 .272
HxQuAD .326 .421 .294
PM2 .306 .411 .267
TPM2 .291 .399 .250
HPM2 .317 .420 .279
DSSA .356 .456 .326
DESA .363 .464 .332
DVGAN .367 .465 .334
GDESA .369 .469 .337

Implicit

MO4SRD .283 .367 .252
R-LTR .303 .403 .267
PAMM .309 .411 .271
R-LTR-NTN .312 .415 .275
PAMM-NTN .311 .417 .272
DALETOR .364 .461 .333
Graph4DIV .370 .468 .338
CL4DIV (Our) .393† .486† .364†

Table 2: Results of ablation studies. We remove (1) three
contrastive learning tasks, and (2) relevance features. We
also report the performance of Graph4DIV as a comparison.

Method Variant ERR-IA 𝛼-nDCG NRBP

CL4DIV

Full .393 .486 .364
(1) w/o SUB .381 .477 .352
(1) w/o DOC .385 .480 .357
(1) w/o SEQ .381 .478 .352
(2) w/o REL .303 .397 .268

Graph4DIV
Full .370 .468 .338
(2) w/o REL .291 .387 .254

comparing similar documents/document sequences, the document
encoder’s and document sequence encoder’s ability to model the
novelty of documents can be greatly enhanced.

4.5 Discussion
We conduct a series of additional experiments to investigate the
various aspects of CL4DIV in depth.

4.5.1 Ablation Studies. We conduct ablation studies to explore the
impact of different modules in CL4DIV. First, we study the influ-
ence of our proposed three contrastive learning tasks, i.e., subtopic-
based (w/o SUB), document-based (w/o DOC), and sequence-based (w/o
SEQ). Then, we remove the relevance features (w/o REL) to investi-
gate their effect. Since the relevance features are commonly used

Table 3: The results of equipping other baselines with our
proposed contrastive learning tasks. Percentages in (·) are
improvements by our contrastive learning tasks.

Method ERR-IA 𝛼-nDCG NRBP

DALETOR .364 .461 .333
+BERT .373 .471 .342
+BERT+CL .393 (+2.0%) .485 (+1.4%) .366 (+2.4%)

Graph4DIV .370 .468 .338
+BERT .376 .473 .346
+BERT+CL .392 (+1.6%) .487 (+1.4%) .364 (+1.8%)

DESA .363 .464 .332
+BERT .373 .468 .344
+BERT+CL .387 (+1.4%) .482 (+1.4%) .359 (+1.5%)

CL4DIV .393 (+2.0%) .486 (+1.7%) .364 (+2.2%)
-CL .373 .469 .342

in existing methods [15, 18, 25, 30, 42], we also report their influ-
ence on the best baseline method Graph4DIV as a comparison. The
results are shown in Table 2, and we can see:

(1) Removing any contrastive learning task leads to performance
degradation. This demonstrates that all three proposed tasks are
beneficial for search result diversification. (2) Both contrastive learn-
ing of subtopic-based (SUB) and sequence-based (SEQ) contribute
a lot to the final performance. Eliminating either of them results in
a considerable drop in all metrics (e.g., 𝛼-nDCG: 0.486 → 0.477 and
NRBP: 0.364→ 0.352). This is consistent with our assumption, as the
two tasks correspond to two essential components in search result
diversification: (a) measuring the documents’ novelty via subtopic
coverage, and (b) evaluating the diversity of documents from the
entire candidate document list perspective. (3) When the relevance
features are discarded, the performance of both Graph4DIV and
CL4DIV decreases. This demonstrates the importance of relevance
modeling in search result diversification. Essentially, the relevance
of documents is the basis for diversification. Existing studies have
also reported similar findings [26]. Nevertheless, even without rele-
vance features, CL4DIV is still superior to Graph4DIV. This validates
again the benefit of our contrastive learning tasks.

4.5.2 Method Generalizability. In this work, we propose a con-
trastive learning method for search result diversification. To con-
trast documents at a finer-grained, we initialize the document en-
coder with BERT, train it with contrastive learning tasks, and ob-
tain the contextualized representation. In contrast, most existing
methods (e.g., DALETOR [38], DESA [25], and Graph4DIV [30]) apply
doc2vec embeddings to represent documents. To validate the gener-
alizability of our method, we equip several strong baseline methods
with the BERT representation (denoted as “+BERT”) and our con-
trastive learning pretraining strategy (denoted as “+BERT+CL”) and
test their performance. We also validate the performance of our
single diversified ranking model which leverages BERT as initial
document representation by removing all contrastive learning tasks
(denoted as “-CL”). Results are shown in Table 3 and we can observe:
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Figure 3: Results of CL4DIV with different hyperparameters.

First, our contrastive learning tasks can bring improvement for
all diversification methods. For example, DALETOR’s performance
can be enhanced by more than about 3% in terms of all metrics.
This demonstrates that our method is both effective and highly
compatible. Second, although the performance can be enhanced
by using the BERT representation, the improvement is less than
if our contrastive learning tasks are used. This indicates that the
superiority of our method stems from our proposed contrastive
learning tasks rather than merely using BERT’s parameters.

4.5.3 Impact of Different Hyperparameter Settings. In our method,
the threshold 𝛼 and the number of generated subtopics𝑚 are two
important hyperparameters. In this section, we conduct experi-
ments to explore their impact on the final document ranking

The threshold 𝛼 is an essential hyperparameter for determining
the positive document pairs in SUB tasks. In the SEQ task, a larger
𝛼 will restrict the document replacement operation replacing with
documents that are more similar. Results in Figure 3 (a) show that
the final performance can be gradually improved as𝛼 increases from
0.8 to 0.99. This implies that identifying more similar sequences
benefits our contrastive learning method. However, a larger 𝛼 will
also result in fewer documents that can be used for training, i.e.,
fewer similar sequences can be generated. This will also hurt the
performance of contrastive learning (decreases when 𝛼 > 0.99).

As for the subtopic number𝑚, according to the results in Fig-
ure 3 (b), generating more subtopics can represent document con-
tent more comprehensively and assist the model in measuring the
similarity between documents more accurately. The performance
starts to degrade whenmore than 20 subtopics are generated. This is
because more subtopics will lead to redundancy, which will disrupt
the document similarity computation.

4.5.4 Analysis of Generated Subtopics. We employ a T5 model to
generate subtopics for each document instead of relying on the
annotated users’ intents. To verify the quality of the generated
subtopics, we conduct both quantitative and qualitative analyses.

First, we directly compare the generated subtopics of each docu-
ment with their corresponding annotated users’ intents. The word-
level F1 / Rouge-L score is used to evaluate the results. After calcu-
lation, we discover that all documents have an average F1 score of
about 0.25. This result indicates that there is still a big gap between
our generated subtopics and the human labels. Yet, our method
can still provide promising results. Therefore, we speculate that
if more accurate subtopics can be generated (e.g., using recently
proposed large language models), our method may obtain further
improvement. Second, we randomly select two queries and their

Table 4: Examples of subtopics generated by T5.

Query #173: Hip fractures Doc: clueweb09-en0060-60-20130

Practical geriatrics: ... Americans spend more than $10 billion in direct
costs of care[1] for the 250, 000 hip fractures that occur each year[2] ...
Surgeons perform 125, 000 hip replacements[3] annually ...
Generated subtopics:
[1] how much money do people spend on hip replacements each year
[2] how many hip fractures each year
[3] what is the primary treatment for hip fracture for older adult

Query #97: South Africa Doc: clueweb09-en0004-80-05666

South Africa bed and breakfast accommodation ... Popular major
towns[1] : Cape Town, Somerset West, ... Featured Listing[2,3] : The
stanville inn is a selected service budget hotel ... Featured Listing[2,3] : ...
Generated subtopics:
[1] what is South Africa’s major cities
[2] where are the famous hotels in South Africa
[3] hotels to stay in South Africa

candidate documents. The results are shown in Table 4, where the
key information is highlighted in blue. Considering the first query
“Hip fractures”, the generated subtopics cover the key document
content (marked in blue). However, we also find that T5 gener-
ates some duplicated subtopics. For example, for the query “South
Africa”, the second and the third subtopic convey similar meanings.
This result is consistent with our quantitative analysis. Although
the performance of using T5 to generate subtopics is far from ideal,
we can still get good results. We plan to investigate more powerful
generative models as the subtopic generator in the future.

5 CONCLUSION AND FUTUREWORK
In this work, we proposed a two-stage self-supervised pretraining
framework with contrastive learning to facilitate diversification-
oriented data representation. First, we designed three contrastive
learning tasks from the perspectives of subtopics, documents, and
document sequences. The first two tasks helped the document
encoder learn the fine-grained subtopic coverage differences of
documents and focused on the main content of documents. The last
task utilized the relationship between documents to enhance the
document sequence encoder. Second, we employed the pretrained
parameters to initialize the two encoders and further train them
with diversified ranking objectives. Experimental results demon-
strate the benefit of introducing contrastive learning to relieve
rough data representation problems in search result diversification.

In the future, we plan to model longer documents and apply
large language models for better document representation.
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