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ABSTRACT
Users’ queries are usually vague, and their search intents tend to
be ambiguous, thereby needing search clarification to clarify users’
current intent by asking a clarifying question and providing sev-
eral clickable sub-intent items as clarification options. However, in
addition to drilling down the current query, users may also have
exploratory needs that diverge from their current intent. For ex-
ample, a user searching for the query “Cartier women watches”
may also potentially want to explore some parallel information
by issuing queries such as “Rolex women watches” or “Cartier
women bracelets”, named exploratory queries in this paper. These
exploratory needs are common during the search process yet can-
not be satisfied by current search clarification approaches which
typically stick to the sub-intents of the query. This paper focuses
on mining exploratory queries as additional options to meet users’
exploratory needs in conversational search systems. Specifically, we
first design a rule-based model that generates exploratory queries
based on the current query’s top retrieved documents. Then, we
propose using the data generated by the rule-based model to train
a neural generation model through multi-task learning for further
generalization. Finally, we borrow the in-context learning abil-
ity of the large language model to generate exploratory queries
based on prompt engineering. We constructed an evaluation dataset
based on human annotations and conduct an extensive set of ex-
periments. The results show that our proposed methods generate
higher-quality exploratory queries compared with several baselines.
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1 INTRODUCTION
Conversational search [28, 33] is a natural language-based search
approach to help users obtain information from the Web, using a
conversational interface to realize human-like communication. In a
conversational search system, users’ queries tend to be ambiguous
or faceted [3], hindering the search engine from understanding the
user’s potential search intent. Search clarification [30, 37, 41] has
been proposed as an effective way to mitigate this issue. The grey
part in Figure 1 shows an example of search clarification. After a
user issues the query “Cartier women watches”, the search engine
will ask a clarifying question and provide several clarification items
of sub-intents such as “Cartier women watches price” to clarify the
user’s search intent. Search clarification focuses on specializing the
query by appending a term, like “price” and “style” in Figure 1 for
clarifying users’ potential search intents. Existing studies usually
mine these clarification items from the query log [37] by applying
some query suggestion techniques [1, 5, 6, 20].

However, in addition to such clarification need, users also have
exploratory needs [4, 10, 15, 25] in some cases. For example, when an
applicant aiming at studying abroad issues “study abroad resume”,
she may also be interested in other relevant materials by issuing fur-
ther queries “study abroad recommendation letter” or “study abroad
personal statement”. For another example, a user who searches for
“Cartier women watches” is likely to issue exploratory queries such
as “Rolex women watches” or “Breitling women watches”, to com-
pare different brands before making a purchase. These exploratory
queries are different from clarification items in existing search clari-
fication studies. They modify a term1 included in the original query
to horizontally represent its parallel intents.

We believe that mining these exploratory queries in the context
of conversational search is important. First, as mentioned in ex-
isting studies [4, 10, 15, 25], users’ exploratory search behaviors
are common in real-world search systems. Boldi et al. [4] reported
that users’ exploratory search behaviors constituted 48-56% of a
Yahoo! search log, even bigger than clarification behaviors (30-38%).
Therefore, displaying an additional exploratory pane (yellow part
in Figure 1) is a good extension of the existing search clarification in
conversational search scenario. Second, these exploratory queries
provide new topics or broader information space to users, which
enhances the diversity of clickable options and improves the users’
search experience from new perspectives.

1In this paper, we define that a term is a word or a phrase in a query.
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Cartier women watches

What do you want to know about Cartier women watches?

Cartier women watches style

What other brands are you also interested in?

Rolex women watches Breitling women watches

What other accessories are you also interested in?

Cartier women bracelets Cartier women necklaces

Cartier men watches Cartier unisex watches

What other genders are you also interested in?

Cartier women watches price …

…

…

…

Exploratory Pane

Clarification Pane

Figure 1: An application of our exploratory queries in search
clarification. The grey part is the search clarification pane
and the yellow part represents our exploratory search pane.

Despite the importance and usefulness of exploratory queries, it
is less emphasized in previous studies of conversational search [37,
40, 41]. In this paper, we make the first step to mining exploratory
queries to meet users’ exploratory needs, extending the scenario
of mining sub-intents as the clickable options in the clarification
pane shown in Figure 1. To this end, we first define the exploratory
query as the reformulation of the original query with replacing
a term in the original query with another term. For example, the
query “Cartier women watches” may be reformulated as “Rolex
women watches”. This is different from search clarification which
just focuses on specializing the query by appending a term after
the query for mining the query’s sub-intents (like “Cartier women
watches price”). On the other hand, since a query contains multiple
keywords, it may correspond to multi-group exploratory queries.
Taking the query “Cartier women watches” as an example, replac-
ing the terms “Cartier”, “women” and “watches” respectively results
in other brands of women watches (e.g., “Rolex women watches”,
“Breitling women watches”), Cartier watches for different genders
(e.g., “Cartier men’s watches”, “Cartier unisex watches”) and other
accessories for women (e.g., “Cartier women bracelets”, “Cartier
women necklaces”). We believe that presenting exploratory queries
in groups delivers more comprehensive and understandable ex-
ploratory intents for users, compared with clarification items pre-
sented in a flat list. Besides, it also allows the system to ask an
exploratory question for each group as shown in Figure 1 to improve
users’ search experience and invoke their exploratory behaviors.
In this paper, we focus on generating the exploratory queries and
leave the generation of exploratory questions as future work.

The key to generating exploratory queries is to mine multi-
ple groups of terms parallel to the ones occurring in the original
query. We observe that these parallel terms are usually organized
in list styles in the query’s top retrieved documents. For exam-
ple, in the top retrieved documents of the query “Cartier women
watches”, “watches” will be listed with other types of accessories
(e.g., “bracelets“) using “<li>” tags in the Cartier official website.
Besides, to help users filter watches by gender, “women” will be
listed with “men” and “unisex” under the “<select>” tag. Due to the
design of HTML pages, list structures contained in top retrieved
documents naturally contain parallel information, which has been

revealed by previous studies [8, 9, 16, 41]. In this paper, we pro-
pose leveraging the list structures in top retrieved documents
to generate multi-group exploratory queries. Due to the lack
of large-scale human-annotated exploratory query data required
for training a parallel term generation model, we first design a
Rule-based Parallel Reformulation model RPR that extracts list
items from top retrieved documents, uses them to conduct par-
allel reformulation to obtain exploratory query candidates, and
then ranks these candidates based on various human-designed fea-
tures. Besides, since rule-based methods are prone to suffer from
low generalization ability, we further train an Exploratory Query
Generation model EQG using the data generated by RPR as weak
supervision signals for further generalization. We design the gener-
ation task and an additional classification task to ensure the quality
of generated results in a multi-task learning manner. Finally, by
borrowing the strong few-shot and in-context learning ability of
the large language models (LLMs), we propose another LLM-based
exploratory query Generation method LLMG based on prompt en-
gineering. We reveal that even with an LLM, the list items extracted
by RPR are also essential for exploratory query generation.

To evaluate our models, we aggregate the human-written and
model-generated exploratory queries into a pool and employ three
annotators to judge the quality of these exploratory queries in a
pool-based manner to construct the evaluation data2. The results
show that the rule-based parallel reformulation model RPR signif-
icantly outperforms several baselines and the exploratory query
generation model EQG further improves the results of RPR. Addi-
tionally, our proposed LLMG outperforms all the models with the
support of list items extracted from top retrieved documents. We
further perform an ablation study to prove the effectiveness of each
component in our models and conduct a case study to intuitively
compare the exploratory queries generated by different methods.

The main contributions are summarized as follows:
(1) We propose to mine multi-group exploratory queries to meet

users’ exploratory needs in conversational search, which is different
from meeting users’ clarification needs.

(2) We design a rule-based parallel reformulation model to gen-
erate exploratory queries based on list items extracted from top
retrieved documents.

(3) Based on extracted list items, we further propose a gener-
ative model trained with multi-task learning and an LLM-based
generation method with prompt engineering.

(4) We build an evaluation dataset for our task, design evaluation
approaches, and conduct extensive experiments to demonstrate the
effectiveness of our proposed methods.

2 RELATEDWORK
2.1 Search Intent Mining
Search clarification, query suggestion and query facets mining are
popular approaches to assist users in expressing their potential
information needs. Search clarification [30, 37, 41] provides sev-
eral clarification options and a clarifying question to clarify users’
potential information needs of the ambiguous or faceted query.
Query suggestion [1, 5–7, 13, 20, 27, 31], as a core utility for many

2The evaluation data is available at: https://github.com/8421BCD/EvalData

1387



Mining ExploratoryQueries for Conversational Search WWW ’24, May 13–17, 2024, Singapore, Singapore

industrial search engines, aims to recommend a set of relevant or al-
ternative queries that are likely to be clicked by users. Query facets
mining [8, 9, 14, 16, 17] is a technique that identifies and extracts
different facets of users’ search queries to help specify their search
intents. The techniques mentioned above mainly focus on special-
izing users’ queries by appending some terms after the query to
clarify their sub-intents. However, in addition to sub-intents, users
may also desire to explore other contents beyond their current
information needs, which we refer to as exploratory needs in Sec-
tion 1. In this paper, we deviate from these traditional methods that
stick to users’ sub-intents and focus on recommending exploratory
queries to satisfy users’ exploratory needs.

2.2 Exploratory Search
Exploratory search [35] is a complex information-seeking process
to tackle the situation when the user’s information need is vague
or not well-defined. It has been studied by many works. Ksikes et
al. [18] designed a faceted search system for exploratory search.
Lissandrini et al. [21] produced query suggestions based on knowl-
edge graph to help users do exploratory searches. Previous stud-
ies [10, 15] have also shown that users usually have exploratory
interests and tend to reformulate their search queries in a parallel
way. Besides, Ma et al. [25] observed and analyzed users’ search
logs and found that there are many search goal shift phenomena in
the exploratory search process. Inspired by these works, in this pa-
per, we focus on generating exploratory queries to further improve
users’ exploratory searches in conversational search systems.

2.3 Structured Information in Search Results
Search results often contain rich and contextual structured infor-
mation which have been utilized in many relevant studies. For
example, Dou et al. [8, 9] and Kong et al. [16, 17] mined query
facets by extracting list structures from search results. Additionally,
Zhao et al. [40, 41] demonstrated the effectiveness of using list
structures extracted from search results to generate clarifying ques-
tions. Overall, these studies demonstrate the importance of utilizing
structured information in HTML documents, especially list-shaped
structures, for various tasks. We deem that these list structures in
top retrieved documents usually illustrate parallel information and
are also helpful for generating exploratory queries.

3 METHODS
As we mentioned in Section 1, top retrieved documents contain
rich list structures that help to generate exploratory queries. In this
section, we propose three methods (RPR, EQG, and LLMG, shown in
Figure 2) for exploratory query generation. In RPR, we first retrieve
top-n documents of the original user query 𝑞o, then extract all
list structures and plain texts from these documents. After that,
we perform parallel reformulation for 𝑞o using the extracted list
items to obtain a set of exploratory query candidates and rank all
these candidates based on various human-designed features. To
improve the generalization of the generated exploratory queries, we
further propose EQGwhich is a BART-based [19] weakly supervised
generation model trained with multi-task learning strategy. We
also propose an LLM-based method LLMG to generate exploratory
queries based on our well-designed prompts.

3.1 Rule-based Parallel Reformulation
The RPR algorithm uses the list items extracted from top retrieved
documents to reformulate the original user query 𝑞o, so as to obtain
corresponding exploratory query candidates. It then uses various
human-designed features to rank the candidates and finally divide
them into different groups. The algorithm consists of four compo-
nents: (1) Top Documents Retrieval (2) Lists and Texts Extractor (3)
Parallel Reformulation and Ranking (4) Candidates Grouping.

3.1.1 Top Documents Retrieval. We first obtain the top-n search
results (snippets, document URLs, etc.) of the original user query
𝑞o using Bing’s Web Search API. Then, we crawl the HTML of each
document URL for further lists and plain text extraction.

3.1.2 Lists and Texts Extractor. As mentioned in Section 1, the list
structures in HTML documents usually illustrate parallel relations.
For example, “watches”, “bracelets” and “necklaces” (all belonging
to the accessories of Cartier) will be listed together using “<li>”
tags in an HTML page. Intuitively, when a query term appears in
one list, the other items in this list are likely to be parallel to this
term. Thus, these list items are important data resources for parallel
reformulation. Additionally, the plain texts in HTML documents are
paragraphs that contain contextual unstructured natural language
information, which is highly relevant to the user query and may
also contain exploratory queries (see Texts extracted by RPR in Fig-
ure 2). Thus, in addition to list structures, we also extract the plain
texts in documents as auxiliary information for parallel reformula-
tion. We implement the efficient and effective algorithm proposed
in [8] to extract list structures from HTML tags, repeat regions,
etc. We represent all the extracted lists as 𝐿 = {𝐿1, 𝐿2, . . . , 𝐿𝑀 },
where each list contains several items 𝐿𝑖 = {𝐿𝑖,1, 𝐿𝑖,2, . . . , 𝐿𝑖,𝑚}. We
simultaneously extract HTML plain texts 𝑇 = {𝑇1, . . . ,𝑇𝑖 , . . . ,𝑇𝐾 }
for each retrieved document, where 𝑇𝑖 denotes the concatenated
text of all paragraphs in the 𝑖-th document.

3.1.3 Parallel Reformulation and Ranking. In this part, we use the
list items extracted above to generate exploratory query candidates
and rank them based on various manual features. We first gather all
the items from all extracted lists in 𝐿 to obtain the whole item set
𝐼 . Then we replace each term in the original query with each item
in 𝐼 , obtaining the corresponding exploratory query. For example,
an exploratory query “Cartier women bracelets” is obtained by
replacing “watches” in the query “Cartier women watches” with
the item “bracelets”. The process of parallel reformulation can be
reformulated as: 𝑞o

𝑒,𝑡−→ 𝑞, which denotes that exploratory query 𝑞
is obtained by replacing the term 𝑡 in original query 𝑞o with item 𝑒 .
Note that for the sake of time efficiency, each time we only replace
one term in 𝑞o to obtain one exploratory query candidate. We apply
CoreNLP [26] tool to extract the terms in 𝑞o and filter out those
termswith no practical meaning, such as conjunctions, prepositions,
and functionwords.We design various features for each exploratory
query candidate 𝑞 including list co-occurrence feature 𝐹 l, concept
feature 𝐹 c, popularity feature 𝐹p, and item feature 𝐹 i. In the rest of
this section, we will introduce their definitions and calculations.

(1) List Co-occurrence Feature 𝐹 l. Items in the same list often
share similar characteristics and are conceptually parallel to each
other (such as “watches”, “bracelets”, and “rings”). Intuitively, the
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Cartier[BOS] women bracelets [QSEP] Cartier women sweaters … [EOS]

Cartier men watches

Query Cartier women watches

Documents

2. Text Extractor2. List Extractor

�1: watches, bracelets, rings, ...
Lists

�1: The price of Cartier women 
necklaces is …

Texts

3. Parallel Reformulation 
and Ranking

Ranked List
1. Cartier women bracelets
2. Rolex women watches
3. Cartier women necklaces
…

Rolex women watches 

Cartier women bracelets
Cartier women necklaces
…

Exploratory Groups

1. Top Documents Retrieval

4. Candidates
    Grouping

Bart Encoder

Cartier[BOS] women bracelets [QSEP] Cartier women necklaces … [EOS]

Sample

bracelets, Rolex, necklaces, …

Distractor group

Ground-truth group

Bart Decoder

Prompt
Task description

We define parallel reformulation as a 
process of replacing terms in query…

Demonstrations
Demonstration 1: For query “huawei pc”…
Demonstration 2: For query …

Input
Given the query “Cartier women watches”, 
what exploratory queries can be obtained 
after replacing term “watches”? …

Auxiliary Information
We provide some list items to aid you in this 
task: bracelets, Rolex, necklaces,…

Output
Cartier women bracelets
Cartier women necklaces
Cartier women rings
Cartier women earrings
…

 Prompt Designer

Cartier [SEP] [SEP]women [MASK] watches bracelets Rolex[ISEP] …

Prompt Design

Generation

Top List Items

�2: Not only for women, Cartier 
men watches are… 

�2: women, men, unisex, ...
�3: Cartier, Rolex, Breitling, …
… …

ℎ

ℎdis

…

…

Positive
Negative

Generation Layer Classification Layer

Cartier women bracelets …

ℎ ℎ EOS 
dis

ℎ EOS 
 

Masked QueryMasked Term

Cartier women [MASK]watches

Construct Input
(1) RPR (2) EQG

(3) LLMG

Figure 2: An overview of our proposed models (1) RPR, (2) EQG, and (3) LLMG. RPR generates exploratory queries based on list
structures and plain texts extracted from the top retrieved documents. Then, we fine-tune EQG using data generated by RPR
through a mask-and-fill strategy. A classification task is designed to enhance the generation task in the training stage. Finally,
we introduce the LLMG method, which uses well-designed prompts to generate exploratory queries based on LLM.

more frequently item 𝑒 and replaced term 𝑡 appear in the same list,
the stronger the conceptual parallel between them and the greater
the likelihood that the exploratory query 𝑞 is a suitable candidate
for 𝑞o. Thus, we have:

𝐹 l (𝑞) = 𝑎l · tanh
(
𝑏l ·

∑︁
𝑖

occ(𝑒, 𝑡, 𝐿𝑖 )
)
, (1)

where 𝑎 and 𝑏 are the adjustment coefficient and importance coeffi-
cient respectively, and tanh(·) is used to control the weight of each
feature. The occ(𝑒, 𝑡, 𝐿𝑖 ) is a binary function, where occ(𝑒, 𝑡, 𝐿𝑖 ) = 1
when 𝑒 and 𝑡 both occur in 𝐿𝑖 . Otherwise, occ(𝑒, 𝑡, 𝐿𝑖 ) = 0.

(2)Concept Feature 𝐹 c. In addition to list structures, knowledge
graphs like Concept Graph [34, 36] can also help judge whether
the item 𝑒 is conceptually similar to the replaced term 𝑡 (note that
𝑞 is obtained by replacing term 𝑡 in 𝑞o with item 𝑒). In a Concept
Graph, each instance usually corresponds to multiple concepts. For
example, the concepts of “Cartier” include company, brand, jewelry
brand, watch brand, etc. Therefore, the more similar the concept set
of item 𝑒 and replaced term 𝑡 are, the more likely they are parallel
to each other. Then the Concept Feature 𝐹 c can be calculated as:

𝐹 c (𝑞) = 𝑎c · tanh
(
𝑏c ·

|𝐶 (𝑒) ∩𝐶 (𝑡) |
|𝐶 (𝑒) ∪𝐶 (𝑡) |

)
, (2)

where 𝐶 (𝐴) denotes the concept set of 𝐴 in Concept Graph.
(3) Popularity Feature 𝐹p. A more popular exploratory query

is more likely to be clicked by users. Thus, we also compute the
popularity feature for each candidate 𝑞. We claim that contents of

retrieved documents naturally contain popular information and
candidates that frequently occur in the plain texts of top retrieved
documents are more likely to be popular with users. Then feature
𝐹p can be formulated as follows:

𝐹p (𝑞) = 𝑎p · tanh
(
𝑏p ·

∑︁
𝑖

𝑁 (𝑞,𝑇𝑖 )
)
, (3)

where 𝑁 (𝑞,𝑇𝑖 ) denote the frequency of 𝑞 occurring in 𝑇𝑖 . Since the
length of 𝑇𝑖 can be very large, we implement the function 𝑁 (𝑞,𝑇𝑖 )
based on an efficient string-searching algorithm Aho–Corasick [2].

(4) Item Feature 𝐹 i. If a candidate 𝑞 appears as a list item in 𝐿,
then it is more likely for 𝑞 to be a useful and faithful exploratory
query to the user. However, 𝑞 (e.g., “Cartier unisex watches”) some-
times does not match any list item exactly, but its terms can appear
in some list items (e.g., “unisex Cartier watches”, “Cartier watches
for unisex”), which can also prove the usefulness and faithfulness
of 𝑞. Thus an exploratory query 𝑞 with more terms appearing in
any list item is more likely to be a useful and faithful candidate.
Therefore the item feature 𝐹 i is defined as follows:

𝐹 i (𝑞) = 𝑎i · tanh
(
𝑏i ·max

𝑗,𝑘

𝑞 ∩ 𝐿𝑗,𝑘

|𝑞 |

)
, (4)

where |𝑞 | means the word set size of 𝑞 and 𝐿𝑗,𝑘 means the 𝑘-th item
in the 𝑗-th list.

We add these features together to get the final score of each
candidate 𝑞 and rank all the candidates based on their final scores:

score(𝑞) = 𝐹 l (𝑞) + 𝐹 c (𝑞) + 𝐹p (𝑞) + 𝐹 i (𝑞) . (5)
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To ensure the quality of generated exploratory queries, we use a
hyperparameter 𝜏 to filter out candidates with score(𝑞) ≤ 𝜏 .

3.1.4 Candidates Grouping. We divide the exploratory queries in
the ranked list into different groups according to their replaced
term 𝑡 . For each group 𝑄 , following previous studies of search
clarification [37, 38], we only keep the top-5 candidates as the final
exploratory queries. Finally, we obtain 𝑄 = {𝑞1, . . . , 𝑞𝑘 }, where
𝑘 ≤ 5 and 𝑞𝑖 represents the 𝑖-th exploratory query.

3.2 Exploratory Query Generation Model
The generation of RPR merely relies on the search results and sev-
eral human-designed features, which could suffer from data sparsity
problems in some cases. For example, when the query’s search re-
sults contain few relevant documents, RPRmay fail to extract useful
list items for exploratory query generation. To mitigate this issue,
we intend to use the pre-trained language model BART to improve
the generalization ability of RPR. The reason is that: our exploratory
query generation task can be treated as a mask-and-fill problem
(replacing the term in the query with a “[MASK]” token and fill-
ing the “[MASK]” with a term which is parallel to the replaced
one). While the BART model (implicitly captured a large amount of
knowledge) could fill the “[MASK]” with more appropriate terms
after fine-tuning. Thus, we intend to design a BART-based language
model EQG that generates exploratory queries based on the masked
query and further generalizes RPR.

Intuitively, the reformulated parts of the exploratory queries in
one group should have conceptual consistency. For example, in the
exploratory group [Cartier women bracelets, Cartier women neck-
laces, Cartier women rings], the terms “bracelets”, “necklaces”, and
“rings” all belong to the accessories of Cartier. To further improve
the quality of generated results from a group level, we propose to use
an additional classification task that distinguishes the ground-truth
group from a distractor group. The framework of EQG is illustrated
in Figure 2 (bottom right).

3.2.1 Generation Task. In this part, EQG aims to generate a group
of exploratory queries through a mask-and-fill strategy. For each
group 𝑄 extracted by RPR, we replace the term to be reformu-
lated in the original query 𝑞o with a “[MASK]” token to obtain
corresponding masked query 𝑞mo (see Figure 2). Then we provide
two additional pieces of information to prompt model the poten-
tial terms that can be used to fill in the “[MASK]” token: (1) The
masked term (denoted as 𝑡m); (2) The list items contained in top-𝑣
exploratory queries in the ranked list (such as bracelets, rolex, etc.),
denoted as 𝑆 = {𝑠1, . . . , 𝑠𝑣} (𝑣 is set as 100 in this paper). Then
the BART learns to fill the masked query 𝑞mo with terms that are
conceptually parallel to the masked term 𝑡m. We concatenate the
masked query 𝑞mo , masked term 𝑡m and top-𝑣 list items 𝑆 together
as the input to the BART encoder (separated by “[SEP]”):

𝐸i = 𝑞mo [SEP] 𝑡m [SEP] 𝑠1 [ISEP] 𝑠2 [ISEP] . . . 𝑠𝑣, (6)

where “[ISEP]” is used to separate list items. We concatenate all ex-
ploratory queries in the ground-truth group𝑄 using token “[QSEP]”
as the generation target. Then we borrow the cross-entropy loss

from Seq2Seq model [32] to calculate the generation loss L𝑔𝑒𝑛 as:

Lgen =

|𝑄 |∑︁
𝑖=1

|𝑞𝑖 |∑︁
𝑗=1

− log𝑝 (𝑞𝑖, 𝑗 |𝐸o, 𝑞𝑖,1, . . . , 𝑞𝑖, 𝑗−1), (7)

where 𝐸o denotes the BART encoder’s output.

3.2.2 Classification Task. As discussed, the exploratory group should
have conceptual consistency. In this part, we design a classification
task on the BART decoder by allowing the model to distinguish
between the ground-truth group and the distractor group, thereby
improving the quality of generated exploratory queries.

To obtain the distractor group, we randomly select one exploratory
query in𝑄 and replace the term to be reformulated with a randomly
sampled list item (e.g., “sweaters”) from the whole item set 𝐼 (see
Figure 2). The BART decoder inputs two sequences (i.e., the concate-
nation of exploratory queries in ground-truth group and distractor
group) and outputs their hidden states ℎ and ℎdis respectively. Then
we pass the representations of their “[EOS]” token through a classi-
fication layer to get two values 𝑣 and 𝑣dis:

𝑣 = MLP(ℎ[EOS]), 𝑣dis = MLP(ℎdis[EOS]) . (8)

Finally, we provide a binary label and apply a cross-entropy loss
to calculate the classification loss:

Lcls = − log
exp(𝑣)

exp(𝑣) + exp(𝑣dis)
. (9)

The final training objective combines the generation loss Lgen
and classification loss Lcls:

L = Lgen + 𝜆Lcls, (10)

where 𝜆 is a parameter to control the importance of two losses.

3.2.3 Inference. For each query, we first run RPR to obtain the
masked query 𝑞mo and masked term 𝑡m for each exploratory group
and the top-𝑣 list items 𝑆 . Then, EQG generates each group based
on corresponding masked query 𝑞mo , masked term 𝑡m, and top-𝑣 list
items 𝑆 . We use beam search to collect exploratory queries for each
group and keep a maximum of 5 exploratory queries in each group.

3.3 LLM-based Exploratory Query Generation
Recently, with the increasing application of LLMs in conversational
search [42], we believe that they can also be applied in exploratory
query generation scenarios. In this part, we design LLMG to further
validate the effects of extracted list items on exploratory query
generation based on LLM. We designed task-specific prompts to
instruct an LLM to generate one group of exploratory queries at a
time (same as EQG in Section 3.2).

3.3.1 Prompt Design. Previous studies have shown that the perfor-
mance of LLMs tends to be sensitive to the design of prompts [24].
To make our prompt more robust, we design our prompts in two
steps following [22]: (1) Prompt Description. We design the original
promptwhich includes our task description, several demonstrations,
and the input which consists of the original query (e.g., “Cartier
women watches”) and the term to be replaced (e.g., “watches”)
provided by RPR. Besides, we add the top list items of the query
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(extracted by RPR) to the prompt as auxiliary information. (2) Multi-
Step Optimizations. We provide the LLM with our prompt respec-
tively and ask “Could you give me some advice on improving the
prompt?”, and optimize the prompts according to the LLM’s sugges-
tions. Besides, we also test the prompt on some samples, analyze
the quality of the generated results, and then further optimize the
prompt. We perform these two optimization strategies iteratively
until the quality of the generated results no longer improves.

3.3.2 Generation. Similar to EQG, we first run RPR to obtain the
top list items and the exploratory groups which indicate the terms
that could be replaced in the original query. Then we construct
the prompt and feed it to the LLM for generation. We tell LLM to
generate at most 5 queries at a time while ensuring the usefulness,
faithfulness, and readability of the results. To further prove the
effectiveness of the list items in the generation, we abandon the top
list items (i.e., Auxiliary Information) from the current prompt to
obtain a new prompt for LLM generation, denoted as LLMG (-list).

4 EXPERIMENTAL SETTINGS
4.1 Data
MIMICS [38] is a search clarification dataset that includes a large
number of real Web search queries sampled from Bing query logs.
We intend to sample queries from MIMICS for the training, valida-
tion, and evaluation of our models. For the training data of EQG,
we randomly sample 40k queries from MIMICS and generate about
60k pieces of weakly supervised training data using RPR, with
approximately 1.5 terms replaced for each query on average.

As we do not find any publicly available dataset for the vali-
dation and evaluation of our task, we randomly sample 50 and
100 queries from the MIMICS dataset to build our validation and
evaluation data in a pool-based manner. We ensure that there is
no overlap between the queries used for training, validation, and
evaluation. For each query, we first ask a subject to manually write
corresponding exploratory queries after a comprehensive survey
on some resources (such as Wikipedia and search results of the
query). Then we aggregate exploratory queries generated by all
models (including the ablation models in Section 5.2) as well as the
human-written ones to form a pool. Note that such aggregation
follows the classic Cranfield experiments [23], which ensures a fair
evaluation of all models.

To select high-quality exploratory queries as the final ground
truth, we hired three annotators who have Master’s degrees with
compensation. To ensure the quality of the annotations, we ex-
plained our task in detail to help them fully understand our task.
Specifically, we ask the annotators to evaluate these exploratory
queries in terms of three aspects: usefulness, faithfulness, and
readability. We give them the definition and some examples in Ta-
ble 1 to help them better understand these aspects. If an exploratory
query satisfies all three aspects, then a Good label should be given.
Otherwise, they are asked to give a Bad label. We also provide
the annotators with the Bing search results of each query to help
them better judge the faithfulness of each exploratory query. The
final label of each exploratory query is determined by the majority
vote among the three annotators. The value of Fleiss’ kappa among
the three annotators is 91.63%, which shows an almost perfect

agreement. Finally, we manually create exploratory groups for each
query (such as “Cartier women [MASK]” for the query “Cartier
women watches”) and assign the exploratory queries whose final
labels are Good in the pool to corresponding created groups as the
ground-truth.

4.2 Evaluation Metrics
To evaluate the generated multi-group exploratory queries, we first
assign each output group 𝑄 to a ground-truth group 𝑄 ′ which
covers the maximum number of exploratory queries in𝑄 . Then, for
each group pair (𝑄 ′, 𝑄), we adopt four sets of evaluation metrics
which have been widely adopted in clarification options generation
task [11, 12, 29]: (1) Term overlap. These metrics include Term
Precision, Term Recall, and Term F1-measure that have been applied
for the evaluation of query facet extraction models [16]. (2) Exact
match. They calculate the precision, recall, and F1-measure of
generating the exact exploratory query that appears in the ground-
truth group. (3) Set BLEU score. BLEU is defined to evaluate the
similarity between a single candidate text and a group of references.
We implement the Set BLEU score for 1-gram and 2-gram tomeasure
the lexical similarity between the generated exploratory group
(i.e., 𝑄) and the ground-truth group (i.e., 𝑄 ′). (4) Set BERT-Score.
Since the above three evaluation metrics just measure the lexical
similarity, following previous studies, we also implement Set BERT-
Score [39] to compute the semantic similarity between 𝑄 ′ and 𝑄 .
We calculate the mean performance of all generated groups for each
mentioned metric, which serves as the final result for each query.

4.3 Implementation Details
We apply Bing Search API v7 to obtain the top-n search results
for RPR in Section 3.1.1, and the number of search results 𝑛 is 50.3
The parameters of the RPR model (including adjustment coefficient
𝑎x, importance coefficient 𝑏x and the hyperparameter 𝜏) are tuned
by grid search with the step of 0.1 on the validation set. We apply
Pytorch to implement the EQG model and initialize its parameters
based on the pre-trained BART-base model. In all experiments, the
batch size is set as 6, and the max length of the input and output is
set as 512 and 64 respectively. The parameter 𝜆 is set as 1.0. We use
AdamW optimizer to optimize the model with a learning rate of
5 × 10−5. We utilize GPT-3.5-turbo with OpenAI API for LLMG.4

5 EXPERIMENTAL RESULTS
5.1 Overall Results
In this part, we choose two BART-based models applied in previ-
ous studies [29] as our baselines: (1) BART (q). It only takes the
concatenation of masked query 𝑞mo and the replaced term 𝑡m as
input and generates the exploratory queries. (2) BART (qs). BART
(qs) takes the concatenation of masked query 𝑞mo , masked term 𝑡m,
and snippet texts as input. Like EQG, the two baselines are also
trained using the data generated by RPR. Our aim in comparing
our approach with BART (qs) is to demonstrate that the extracted
list items are more effective in generating exploratory queries than
snippets are. The experimental results are shown in Table 2.

3Bing Search API: https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
4GPT-3.5-turbo: https://platform.openai.com/playground?model=text-davinci-003
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Table 1: The definition of evaluation aspects and several examples of Good and Bad exploratory queries.

Aspect Definition

Usefulness The exploratory query is parallel to the original user query and can meet users’ exploratory needs.
Faithfulness The exploratory query should make sense and provides faithful information that users can trust.
Readability The exploratory query is free of grammatical errors, smooth and easy to understand.

Examples

Query: shirts for men Query: Cartier women watches
Good jackets for men, pants for men Good Cartier women necklaces, rolex women watches
Bad (useless) cars for men, white shirts for men Bad (useless) Cartier ladies watches
Bad (unfaithful) best for men, kids for men Bad (unfaithful) Cartier women shirts, Cartier women sweaters
Bad (unreadable) jackets for men for men, jack for men Bad (unreadable) Cartier women women necklaces

Table 2: Exploratory query generation evaluation results and ablation studies. "†" indicates the model outperforms the best
baseline significantly with paired t-test at 𝑝-value < 0.05 level. The best results are in bold.

Term Overlap Exact Match Set BLEU Set BERT-Score

Model Precision Recall F1 Precision Recall F1 1-gram 2-gram Precision Recall F1

BART (q) 0.4916 0.2092 0.2816 0.3803 0.1244 0.1778 0.2362 0.1293 0.2348 0.2361 0.2354
BART (qs) 0.5404 0.2426 0.3235 0.4453 0.1564 0.2222 0.2574 0.1588 0.2468 0.2472 0.2470
RPR 0.6354 0.2836 0.3768 0.5749 0.2169 0.2981 0.2824 0.2000 0.2702 0.2698 0.2700
EQG 0.6628 0.3043 0.4037 0.5934 0.2241 0.3101 0.3179 0.2058 0.2847 0.2842 0.2844
LLMG (-list) 0.6521 0.3199 0.4139 0.6087 0.2540 0.3453 0.3316 0.2109 0.2703 0.2708 0.2706
LLMG 0.7057† 0.3352† 0.4382† 0.6690† 0.2703† 0.3747† 0.3587† 0.2293† 0.2936 0.2939 0.2937

RPR w/o. 𝐹 l 0.5047 0.2249 0.2938 0.4128 0.1489 0.2014 0.2379 0.1494 0.2251 0.2248 0.2249
RPR w/o. 𝐹 c 0.5488 0.2527 0.3300 0.4540 0.1723 0.2338 0.2459 0.1639 0.2469 0.2465 0.2467
RPR w/o. 𝐹 p 0.6198 0.2467 0.3379 0.5652 0.1824 0.2604 0.2214 0.1758 0.2293 0.2289 0.2291
RPR w/o. 𝐹 i 0.6012 0.2553 0.3404 0.5313 0.1877 0.2580 0.2366 0.1697 0.2385 0.2382 0.2383
EQG w/o. CT 0.6232 0.2735 0.3683 0.5455 0.1911 0.2709 0.3011 0.1775 0.2727 0.2725 0.2726

The results show that: (1) Our RPR outperforms the two BART-
based baselines and our EQG further improves RPR on all evaluation
metrics. This illustrates that, compared with the rule-based method
RPR, our well-designed EQG has a better ability to find more appro-
priate parallel terms, and thus generate higher-quality exploratory
queries. (2) Our BART-based model EQG outperforms BART (qs)
significantly, illustrating that the extracted list structures are more
effective in generating exploratory queries compared with snippet
texts. (3) Our LLM-based method LLMG consistently outperforms
all themethodswith p-value< 0.05 onmostmetrics, which indicates
the significance of the improvements. In addition, after removing
the list items from the prompt, there is a noticeable performance
drop on LLMG (-list), which proves that the extracted list items can
help LLM generate better exploratory queries.

5.2 Ablation Studies
One of our main conclusions is that the human-designed features
used in RPR are important to generate high-quality exploratory
queries as weak supervision signals to train EQG. To prove the
effectiveness of these features, we conduct an ablation study by
removing the four features mentioned in Section 3.1 one by one
(denoted as RPR w/o 𝐹 x). We also drop the classification task from
EQG (denoted as EQG w/o CT) to demonstrate its effectiveness.
The results are shown in the bottom part of Table 2.
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Figure 3: Experiments with different query lengths.

It can be seen that removing any component will damage the
results on all evaluation metrics. As for RPR, abandoning the List
Co-occurrence Feature 𝐹 l causes the most decline in almost all met-
rics, which further confirms that list structures in search results
contain important information for parallel reformulation. Similar
to 𝐹 l, removing Concept Feature 𝐹 c also results in an obvious drop
in the evaluation metrics. This is because the structure knowledge
in Concept Graph also contributes to measuring the parallel re-
lationship. Besides, the Popularity feature 𝐹p and Item feature 𝐹 i
also play an important role in RPR by judging the quality of each
candidate exploratory query. As for EQG, after abandoning the
classification task, its performance also declines. For example, it
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Figure 4: Experiments with top results quantity.

declines by about 5.8% on term overlap precision and 8.04% on
exact match precision. In summary, the ablation study proves the
effectiveness of each component in our models.

5.3 Experiments with Different Query Lengths
In this section, we intend to investigate the performance of our
models on queries of different lengths. Due to the average length of
our evaluated queries being 2.64, we divide the evaluated queries
into two sets based on a length of 3. The experimental results are
shown in Figure 3. The results indicate that most models have bet-
ter performance on short queries (length ≤ 3). The reason is that
parallel reformulation for longer queries requires more semantic
constraints, which leads to greater generation difficulty. For ex-
ample, “levi’s skirts” could be an appropriate exploratory query
of “levi’s shirts”. However, “levi’s skirts for men” is absolutely
an unfaithful and wrong exploratory query of “levi’s shirts for
men”, because it ignores the gender constraint “for men”. Besides,
our proposed models (RPR, EQG, and LLMG) outperform baselines
significantly on queries of different lengths, which further confirms
the effectiveness of list structures in exploratory query generation.

5.4 Experiments with Number of Search Results
We further utilize different numbers of search results (from 10 to
50) to investigate the influence of the quantity of search results
on the performance of our rule-based model RPR. We use the met-
ric Exact Match for comparison. Experimental results are shown
in Figure 4. The figure shows that the quantity of search results
does affect the quality of generated exploratory queries. As the
quantity of search results increases, the quality of the generated
exploratory queries improves. This is because more search results
contain more list structures and thus generate more exploratory
queries. Besides, more search results can also provide more evi-
dence for ranking these exploratory queries and thus improve the
quality of exploratory queries in the final output. The results also
show that the improvement decreases when the quantity of search
results increases, especially when it exceeds 40. This means that
using top-50 results is enough.

5.5 Case Study
To compare the generated results of different models intuitively,
we sample two real user queries and generate corresponding ex-
ploratory queries with different models. Table 3 shows the gen-
erated exploratory queries in groups. The reformulated parts in

Table 3: Examples of exploratory queries generated by dif-
ferent methods.

Query: double java

Model Exploratory queries

BART (q) 3 java, 4 java, 2 java
BART (qs) index java, float java, string java
RPR float java, long java, string java
EQG float java, long java, int java
LLMG (-list) quadruple java, multiple java, triple java
LLMG float java, long java, int java

Query: vests for men

BART (q) vests for kids
BART (qs) vests for kids
RPR vests for kids, vests for brands
EQG vests for kids, vests for kids & baby
LLMG (-list) vests for kids, vests for women, vests for boys
LLMG vests for kids, vests for women, vests for babies

queries are marked in bold. For the query “double java”, BART
(q) can hardly understand the meaning of the query and fails to
generate other data types in java. With the support of snippets,
BART(q+s) improves BART (q) but still generates irrelevant ex-
ploratory query “index java”, which underperforms our models.
Besides, without the list items in the prompt, LLMG (-list) fails to
understand the meaning of “double”, generating some uncommon
or even wrong results (“quadruple java”). For the second query
“vests for men”, its exploratory queries should be vests for other
people. Both BART (q) and BART (qs) only generate “vests for kids”,
which lacks diversity. EQG improves RPR’s “vests for brands” by
generating “vests for kids & baby”. Compared with other baselines,
our LLM-based methods (LLMG (-list) and LLMG) generate more
diverse exploratory queries such as “vests for women”.

6 CONCLUSION
In this paper, we propose generating exploratory queries to meet
users’ exploratory needs in conversational search. We first design
a rule-based parallel reformulation model to generate exploratory
queries based on list structures extracted from top retrieved docu-
ments. Then we propose to train a generative model in a multi-task
learning manner for further generalization. Finally, we propose
using LLMs for generation based on our well-designed prompts.
We conduct several experiments on our annotated evaluation data
and the experimental results not only validate the feasibility of
utilizing list items to generate parallel queries but also demonstrate
the effectiveness of our models.
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