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Abstract
Generative document retrieval is a novel retrieval framework,
which represents documents as identifiers (DocID) and re-
trieves documents by generating DocIDs. It has the advantage
of end-to-end optimization over traditional retrieval methods
and has attracted much research interest. Nonetheless, the de-
velopment of efficient and precise DocIDs for document rep-
resentation remains a pertinent issue within the field. Exist-
ing methods for designing DocIDs tend to consider only the
relevance of DocIDs to the corresponding documents, while
neglecting the ability of the DocIDs to distinguish the corre-
sponding documents from similar ones, which is crucial for
the retrieval task. In this paper, we design learnable descrip-
tive and discriminative document Identifiers (D2-DocID) for
Generative Retrieval and propose the paired retrieval model
D2Gen. The D2-DocID is semantically similar to the corre-
sponding documents (descriptive) and is able to distinguish
similar documents (discriminative) in the corpus, thus en-
hancing retrieval performance. We use a contrastive learning
assisted generative retrieval task to enable the model to un-
derstand the document and then complete the generative re-
trieval. We then design a DocID selection method to select
DocIDs based on the retrieval model’s understanding of the
documents. Our experimental results on the MS MARCO and
NQ320k dataset illustrate the effectiveness of the approach.

Introduction
Information retrieval (IR) techniques play a crucial role in
various domains, including search engines, social media and
recommendation systems. Traditional IR paradigms con-
sists of two methods: sparse retrieval and dense retrieval.
The former, such as BM25 (Robertson and Zaragoza 2009),
rely on bag-of-words representations, while the latter, like
DPR (Karpukhin et al. 2020), utilize semantic embeddings.
However, both of these approaches require separate steps for
representation and retrieval, which can limit their efficiency
and effectiveness.

In recent years, generative information retrieval has
emerged as a promising end-to-end retrieval paradigm and
has attracted significant research interest. In generative doc-
ument retrieval, queries are directly mapped to the identi-
fiers of relevant documents (DocID), making DocIDs the
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key bridge between the queries and the documents. This
paradigm differs from traditional approaches in the training
and inference phases. In the training phase, it takes gener-
ating the correct DocID as the optimization goal instead of
queries and documents similarity metrics. And in the infer-
ence phase, it generates DocIDs for the queries end-to-end
instead of searching for the most similar results by compar-
ison. Therefore, the design of DocIDs is crucial for gen-
erative document retrieval (Zhang et al. 2023; Wang et al.
2023). Effective document identifier design can significantly
impact the performance and efficiency of generative IR sys-
tems (Tay et al. 2022; Zhou et al. 2022; Wang et al. 2022b).

Existing DocIDs can be categorized in terms of data type,
generation method, and data structure type (Li et al. 2024).
The data type of DocIDs can be either numeric (Zhuang
et al. 2022; Chen et al. 2023; Tay et al. 2022) or text (Wang
et al. 2023; Zhang et al. 2023). The numeric DocIDs can
be assigned a nice semantic structure. For example, DocIDs
with the same prefix can represent semantically similar doc-
uments (Tay et al. 2022). The text DocIDs are readable and
can utilize the internal knowledge of pre-trained models. Us-
ing titles and URLs as DocIDs (Zhou et al. 2022; De Cao
et al. 2020) is a straightforward way to indicate the seman-
tics of documents. SE-DSI (Tang et al. 2023) uses synthetic
queries as DocIDs, getting rid of the reliance on structural
information. Zhang et al. (2024a) propose using term sets
rather than term sequences as DocIDs to address the false
pruning problem during generation. The generation meth-
ods of the above DocIDs are static, meaning that the DocIDs
are pre-defined before optimizing the generative retrieval
model, whereas some other DocIDs are learnable (Sun et al.
2024; Yang et al. 2023; Zhang et al. 2024a; Wang et al. 2023;
Liu et al. 2024).

However, existing methods did not take into account the
discriminative nature of DocIDs in a corpus. The function
of DocIDs is to help accurately retrieve the target docu-
ment from a corpus. Therefore, the identifiers of the same
document should differ depending on the corpus in which
it is stored. Specifically, a good DocID should not only
be semantically associated with the corresponding doc-
ument, but also be distinguished from the semantics of
other similar documents in the corpus in order to reduce
the confusion of the generative retrieval engine. To address
this challenge, we design learnable descriptive and dis-
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Figure 1: Overview of our D2Gen model optimization pipeline, which includes document understanding, descriptive and dis-
criminative DocID selection and retrieval task learning.

criminative document identifiers (D2-DocID) based on n-
grams. Specifically, as shown in the Document Understand-
ing stage in Figure 1, we first use a retrieval learning task
assisted by contrastive learning to equip the generative re-
trieval model with document comprehension, which means
that the focused n-grams of a document will have higher at-
tention scores when encoding it. Inspired by SE-DSI(Tang
et al. 2023), we use synthetic queries to initialize the Do-
cIDs. Then, in the DocID Selection stage, we extract all n-
grams within the document and obtain a document-ngram
semantic relevance matrix based on the attention scores,
where each row of the matrix represents a document in the
corpus, each column of the matrix represents an n-gram, and
a value in the matrix represents the attention score of the n-
gram in the document. This is a huge sparse matrix, since
each document is only relevant to a very small proportion
of n-grams. This matrix includes semantic information of
all documents in the corpus. Inspired by TF-IDF (Ramos
et al. 2003), we design the ngram Relevance-Inverse Doc-
ument Relevance (NR-IDR) method to efficiently analyze
and select DocIDs at the corpus level. Specifically, for each
n-gram in a document, we separately compute the NR-IDR
score based on the above matrix, which reflects the rele-
vance of the n-grams to the document as well as their dis-
tinguishability from other documents. Then, we sequentially
de-duplicate and filter the specified number of n-grams with
the highest NR-IDR scores as DocID for this document. Our
experiments demonstrate the effectiveness of such DocIDs
with different generative retrieval models.

To further exploit the advantage of D2-DocID, in Re-
trieval Learning Stage, we use query and data augmentation
to continually train the generative retrieval model based on
the newly selected D2-DocID. Data augmentation, such as
document fragments and synthetic queries, is widely used in
generative retrieval model training(Wang et al. 2022b; Tang
et al. 2023; Zhang et al. 2024a). However, the generated
queries may suffer from poor quality and homogenization.
We design a query filtering method based on query quality
and diversity to obtain controlled, high-quality and diverse
data augmentation, which enables the generative model to
understand DocIDs from multiple perspectives and increase
its robustness. We use the newly generated D2-DocID to up-
date the DocID tags in the Document Understanding stage,
thus iteratively learning and updating the DocIDs.

The main contributions of this paper are threefold:

(1) We design descriptive and discriminative DocIDs for
generative retrieval, which not only describe the semantic
information of documents, but also distinguish between sim-
ilar documents, thus improving generative retrieval results.

(2) We design a generative retrieval model D2Gen, which
can explicitly understand documents and iteratively learn
and generate the DocIDs.

(3) The effectiveness of the method is validated on
MS300k and NQ320k. For example, on MS300k, our
method outperforms the best baseline by 4.5% on R@1.
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Related Work
Text Retrieval
Text retrieval techniques can be broadly classified into two
main approaches: sparse retrieval and dense retrieval. Sparse
retrieval methods, such as BM25 (Robertson and Zaragoza
2009), SPLADE (Formal, Piwowarski, and Clinchant 2021)
and UniCOIL (Lin and Ma 2021), rely on bag-of-words rep-
resentations and have been widely used in traditional in-
formation retrieval systems. These methods represent doc-
uments and queries as sparse vectors based on term fre-
quencies and inverse document frequencies. Dense retrieval
methods, like DPR (Karpukhin et al. 2020), E5 (Wang et al.
2022a) and RepLLaMA (Ma et al. 2024), utilize semantic
embeddings to represent documents and queries in a dense
vector space. Dense retrieval methods aim to encode the se-
mantic meaning of text and have shown promising results in
various retrieval tasks. However, both sparse and dense re-
trieval approaches require separate steps for representation
and retrieval, which can limit their efficiency and effective-
ness in certain scenarios.

Generative Retrieval
Generative Retrieval revolutionizes information retrieval by
directly mapping queries to DocIDs using generative mod-
els, eliminating separate indexing and retrieval stages. The
design of docids is crucial for system performance, with two
main types: numeric DocIDs (Zhuang et al. 2022; Chen et al.
2023; Tay et al. 2022) and text DocIDs (Wang et al. 2023;
Zhang et al. 2023; Bevilacqua et al. 2022). The numeric Do-
cIDs can be assigned a nice semantic structure. The spe-
cific construction process is firstly obtaining the semantic
embedding of documents, then categorizing the articles by
clustering (Tay et al. 2022; Wang et al. 2022b; Chen et al.
2023) or calculating PQ values (Zhou et al. 2022), and fi-
nally designing the DocIDs according to the categories. The
semantic DocIDs of similar documents often have the same
prefix, and this semantic structure can help to improve the
effect of the retrieval engine (Tay et al. 2022). The text Do-
cIDs are readable and can utilize the internal knowledge of
pre-trained models. Ultron (Zhou et al. 2022), SE-DSI(Tang
et al. 2023), etc. use static DocIDs. NOVO (Wang et al.
2023), TSGen (Zhang et al. 2024a) design learnable and set-
based DocIDs that makes the decoding process more flex-
ible. However, they do not fully utilize the corpus back-
ground to make DocID discriminative and distinguish simi-
lar documents. Therefore, we design the descriptive and dis-
criminative DocIDs (D2-DocID)

Methodology
In generative retrieval, each document D in a corpus C =
{D1, D2, · · · , D|C|} is represented by its identifiers I(D),
which is called DocID. When processing a query Q, a gen-
erative model generates the DocID of the relevant docu-
ments D for it. In this paper, we design learnable Descriptive
and Discriminative Document Identifiers D2-DocID, and the
paired retrieval model D2Gen. D2-DocID is a sequence of
extracted n-grams of length 1-3 in the corresponding docu-
ment. The model contains the following three modules.

(1) Document Understanding. The n-grams composing
the DocIDs should be able to represent the semantics of the
document, therefore, a good representation model is needed
to represent the document. In order to extract the key in-
formation in a whole document, we design specialized op-
timization methods to help the generative retrieval model
learn the end-to-end retrieval task while learning to extract
key information from documents. The model’s ability to ex-
tract information is critical for the next step of document
identifier selection.

(2) DocID Selection. For each document, we extract all
its n-grams of length 1-3 as DocID candidates. We use the
pre-trained model from the first step to obtain the document-
ngram semantic relevance matrix for the entire corpus. Each
row of this matrix represents a document, and each column
represents an n-gram. The values of the matrix stand for the
semantic relevance of the document to the n-gram, which
is the average of the attention score in the last layer of the
encoder. This is a large sparse matrix because only n-grams
that appear in a document are scored. Next, in order to obtain
a DocID that can both represent the semantics of the cor-
responding document and distinguish it from other similar
documents in the corpus, we design a corpus-aware ngram
filtering function to compute the relative relevance of the
ngrams to the document, and accordingly obtain k n-grams
to compose the DocID.

(3) Retrieval Learning. To adapt the retrieval model to
the DocIDs generated in the second step, we take them as
new DocIDs to continue to train the model. In this step, we
use filtered synthetic queries for data augmentation and mix
them with the queries as training data.

The details of each step will be introduced in the remain-
ing part of this section.

Document Understanding
To train the model to extract key semantics from documents,
we design contrastive learning assisted retrieval tasks to en-
hance the model’s document understanding ability.

We use the encoder-decoder architecture to extract doc-
ument semantics. Give the training dataset D = {(Q,D)},
the query Q is encoded by the encoder model, and the gen-
eration probability of the DocID is estimated as follows:

ei = Decoder(Encoder(Q), id<i), (1)
P (idi|q, id<i; Θe,d) = Softmax(Lmhead(ei)), (2)

where ei is the output embedding of the decoder given the
prefix DocID idi. Θe,d represents the trainable parameters in
the encoder and the decoder of the retrieval model. Lmhead
is the language model head, which is a linear layer used to
map the output of the Transformer model to the size of the
vocabulary table. thereby generating the probability distri-
bution of the next word. The retrieval loss Lr can then be
expressed as:

Lr(Θe,d) =
l∑
i

logP
(
idi
∣∣q, id<i; Θe,d

)
, (3)

where l represents the length of DocId.
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For any (Q,D) ∈ D, we use the encoder of the retrieval
model to compute their embedding and design the compari-
son loss as follows:

hq = MeanPooling(Encoder(Q)), (4)
hd = MeanPooling(Encoder(D)), (5)

Lc = − log
es(hq,hd)/τ

es(hq,hd)/τ +
∑

(q,d−)/∈C e
s(hq,hd)/τ

, (6)

where hQ and hD are the embedding representations of the
query Q and the document D, respectively. (Q,D−) is the
negative instance. s(hq, hd) stands for cosine similarity. We
want the encoder of the retrieval model to produce similar
embeddings of (Q,D) pairs, and thus more adapted to the
retrieval task. We merge the objective functions to train the
model:

Lp = Lr + λ ∗ Lc. (7)

DocID Selection
For every document D in the corpus C, we utilize the en-
coder of the retrieval model D2Gen to compute its correla-
tion with each n-grams in the document separately. Specif-
ically, the computation process is as follows. For each doc-
ument D, we use the nltk toolkit to get the n-gram set
GD of documents and tokenize the documents as D =
(d1, d2, · · · , dn). Every n-gram g ∈ GD corresponds to sev-
eral tokens of the document, denoted as g = (di, · · · , dj).
We feed D into Encoder and the correlation between g and
D can be computed as:

Rel(D, g) = MP(Att(Encoder(D))[di : dj ]), (8)
where Att stands for Attention Score of the last layer of the
model and MP stands for Mean Pooling. Then, we traverse
all the documents C and record the relevance score in the
matrix M, i.e.,

M[D, g] = Rel(D, g), for every D ∈ C, g ∈ GD. (9)
In this way, we obtain the doc-ngram correlation matrix M,
which is a sparse matrix because a single document contains
very few n-grams out of the total n-grams and we set the
position in M that is not assigned a value to None.

This matrix records the relevance between all the docu-
ments in the corpus and their n-grams. Next, we design a
matrix analysis method called ngram relevance-inverse doc-
ument relevance (NR-IDR) to select DocIDs. Through the
NR-IDR method, we can select descriptive and discrimina-
tive DocIDs. Descriptive means that the selected DocIDs
are semantically similar to the documents and can represent
the document content, while discriminative means that sim-
ilar document identifiers in the corpus can be distinguished
from each other, thus leading to more accurate retrieval re-
sults. The NR-IDR method is designed as follows:

We denote the set of n-grams formed by all documents of
copurs C as G = (g1, g2, · · · , g|G|). For any n-gram gj ∈ G,
we compute its inverse document relevance IDR[j] by:

IDR[j] = log

(
1

Meank∈Ij (M[k, j])

)
= log

(
|Ij |∑

k∈Ij
M[k, j]

)
,

(10)

where Ij represents the index of the row of M whose ele-
ment in column j does not have the value None, which can
be formulated as:

Ij =
{
k ∈ [0, |C|)

∣∣M[k, j] ̸= None
}
. (11)

According to Equation (10), IDR[j] is determined by the
average relevance of gj with all relevant documents. Simi-
lar to TF-IDF, the lower the IDR value of gj , the higher the
average relevance with all relevant documents, which also
indicates the lower discriminative power of gj . The opposite
is also true. Then, we compute ngram relevance-inverse doc-
ument relevance (NR-IDR) score for any document Di and
any of its n-grams gi as follows:

NR-IDR[i, j] = M[i, j] ∗
√

TF[i, j] ∗ IDR[i]. (12)

NR-IDR score evaluates n-grams comprehensively from the
perspectives of semantic relevance to documents, counting
frequency, and inverse document relevance. The higher the
NG-IDR score of a (D, g) pair is, the higher the relevance
of the n-gram g to the document D is, and the higher the
differentiation of g from other documents is.

We then select DocIDs based on the NR-IDR score.
Specifically, for any document Di, we sort the set of ngrams
GDi

based on NR-IDR[i, :] and sequentially de-duplicate
and select top ng ngrams as the DocID of Di. Specifically,
our de-duplication approach is that, for an n-gram, if each
of its word prototypes duplicates a word prototype of an al-
ready selected DocID, then skip this n-gram and continue to
determine the next one.

Retrieval Learning
In this section, we present the construction of training data
and the training and inference process.

Training Data Construction Work such as NCI (Wang
et al. 2022b), Ultron(Zhou et al. 2022) and DSI-QG(Zhuang
et al. 2022) tends to use shorter pseudo-queries as training
data. Multi also uses passages to generate pseudo queries
and filter based on dense retrieval capabilities. However,
our experiments finds that automatically generated pseudo
queries often have homogeneity problems. We use document
fragments to generate pseudo queries, and innovatively pro-
pose a filtering method based on query diversity and quality
to build diverse data sets.

Specifically, for each document D ∈ C, we first divide it
into joint passages P = {p1, p2, · · · }, where each passage
consists of s = 3 sentences, and the overlap is o = 1 sen-
tence. Subsequently, we generate pseudo queries based on
the original text D and the passages P . We generate nd = 10
pseudo queries from the original text D , denoted as Qd =
{q1, q2, · · · }, and np = 3 pseudo queries from each passage,
denoted as Qp = {qij}, where 1 ≤ i ≤ |P | , 1 ≤ j ≤ nd.
Then we take Q = Qd∪Qp as the original pseudo-query set.
Subsequently, in order to improve training efficiency, we use
query-filter to filter pseudo queries and select diverse pseudo
queries with retrieval capabilities as training input.

In detail, we denote the selected pseudo query set as Qs

and initialize Qs as an empty set. We first utilize a dense
retrieval model Mβ to retrieve each query q ∈ Q in the
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Dataset #Docs #Train Queries #Test Queries
MS300k 324,311 367,008 5,193
NQ320k 109,712 307,373 7,830

Table 1: Statistics of the document retrieval datasets.

document corpus C, and calculate the MRR@10 value of
each query as a measure of the retrieval capability of the
query, denoted as mrrq , and sort based on MRR@10. Then
we traverse each query q ∈ Q and calculate its semantic
similarity score simq with all queries in Qs respectively:

simq = max
q′∈Qs

[Mβ(q) · Mβ(q
′)] . (13)

If semantic similarity simq of query q is less than the sim-
ilarity threshold λ1 and the MRR@10 value mrrq is greater
than the threshold λ2, then we set Qs = Qs ∪ {q}, and
continue processing the next query. Finally, we use Qs as a
representative pseudo query set for document d as input of
the training data and the docid of d as output, together with
the original training dataset, to compose the training dataset.

Training and Inference We continue to use the same
encoder-decoder structure as in Section and inherit its pa-
rameters. We then optimize the retrieval performance of the
model using the newly generated DocID in Section . We mix
real queries and selected synthetic queries to train the model
based on the following generative retrieval loss Lgr:

Lgr(Θe,d) =

l∑
i

logP
(
idi
∣∣q, id<i; Θe,d

)
. (14)

Experiment Setup
Datasets and Evaluation Metrics
Datasets We experiment on two widely recognized
datasets: MS MARCO (Bajaj et al. 2016) and Natural Ques-
tions (NQ) (Kwiatkowski et al. 2019). MS MARCO con-
tains 300k query-document pairs, in which the queries are
extracted from Bing’s query logs and the documents are
extracted from web documents retrieved by Bing. Natu-
ral Questions contains 320k query-document pairs extracted
from Wikipedia, in which the queries are real and the docu-
ments are Wikipedia pages. Following NOVO (Wang et al.
2023), we eliminate duplicate documents in NQ based on
document titles and use the training set and the validation
set divided in NQ as our training set and testing set. For
MSMARCO, however, the documents come from web pages
and do not have structural information as regular as NQ, so
we eliminate duplicate documents in MSMARCO based on
the URLs as Ultron (Zhou et al. 2022) does, and use the
training set and the dev set divided in MS MARCO as our
training set and testing set. We named the processed datasets
NQ320k and MS320k respectively, and Table 1 summarizes
their statistical information.

Evaluation Metrics Following existing studies (Zhang
et al. 2024a; Tay et al. 2022), we adopt the widely used
MRR@K (M@K) and Recall@K (R@K) to measure the re-
trieval performance.

Baselines
For traditional retrieval methods, we compare sparse re-
trieval, such as BM25, UniCOIL, SPLADEv2 (Formal et al.
2021), and dense retrieval, such as DPR (Karpukhin et al.
2020), ANCE (Xiong et al. 2020), GTR-BASE (Ni et al.
2021). We also compare with generative retrieval methods.
In order to validate the effects of D3, we choose genera-
tive retrieval models with different kinds of DocIDs. Specif-
ically, DSI (Tay et al. 2022), NCI (Wang et al. 2022b) use
Kmeans-based semantic numeric DocID, GENRE (De Cao
et al. 2020) and Ultron (Zhou et al. 2022) use tiltes or urls.
SEAL(Bevilacqua et al. 2022) and MINDER use multi Do-
cIDs for one document, the former using all n-grams of a
document, and the latter using titles, synthetic queries and
n-grams. GENRET(Sun et al. 2024) uses a learned numeric
DocID, NOVO (Wang et al. 2023) and TSGen (Zhang et al.
2024a) use collection DocIDs instead of sequences.

Implementations
We use T5-base as the base model with the structure of trans-
former encoder-decoder. We use nltk to split words and se-
lect N-grams in the range 1-3. We choose the number of
n-grams ng = 3 to compose the DocIDs on both datasets
and analyze it in the ablation experiments with different ng .
On MS300k, we choose similarity threshold λ1 = 0.99,
MRR threshold λ2 = 0.1 to improve the diversity of the
synthetic queries so as to reflect the document from multiple
perspectives, while on NQ320k, we set similarity threshold
λ1 = 0.99, MRR threshold λ2 = 0.6 to improve the retrieval
performance of the query.

Experimental Results
Main Results
Table 2 shows the results of our experiments on MS
MARCO and NQ320k. We have the following observations.

Firstly, our model D2Gen significantly outperforms
previous generative retrieval models on the MS300k. For
example, on MS300k, it outperforms NOVO by +3.9% on
M@10; We also get outstanding results on the NQ320k.
For example, it performs best on the R@1. Differences in
advancement on the two datasets are reasonable. The more
significant improvement of D2Gen on MS300k is due to the
fact that MS300k’s corpus is multi-sourced, while NQ’s cor-
pus is only from Wikipedia. In comparison, MS300k lacks
uniform structural information, and we design D2-Docid to
understand documents and extract key semantics, and design
accurate document identifiers, which significantly improves
retrieval performance. The corpus of NQ300K is highly
structured, and the headline can often summarize the doc-
uments well, which limits the improvement of D2-DocID.
The results demonstrate the high retrieval ability of D2Gen,
especially on a corpus consisting of multi-source, unstruc-
tured documents.

Secondly, our DocIDs achieve significantly superior re-
sults compared to other DocID types. Existing work has
tried many kinds of document identifiers. For example, NCI
uses clustering-based semantic identifiers, Ultron uses ti-
tle+URL, and SEAL uses substrings as document identifiers.
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MS300K NQ320K

Category Method M@10 M@100 R@1 R@10 R@100 M@10 M@100 R@1 R@10 R@100

Sparse
BM25† 0.248 0.255 0.186 0.391 0.573 0.480 0.487 0.376 0.704 0.881
UniCOIL 0.425 0.435 0.284 0.766 0.951 0.710 0.713 0.619 0.862 0.926
SPLADEv2 0.443 0.452 0.328 0.779 0.956 0.726 0.731 0.624 0.873 0.954

Dense
DPR 0.424 0.433 0.271 0.764 0.948 – 0.599 0.502 0.777 0.909
ANCE 0.451 0.455 0.299 0.785 0.953 – 0.602 0.502 0.785 0.914
GTR-Base† 0.576 0.581 0.471 0.785 0.912 0.658 0.663 0.567 0.836 0.936

Generative

DSI† 0.318 0.327 0.239 0.507 0.643 0.588 0.592 0.542 0.706 0.804
NCI 0.408 0.417 0.301 0.643 0.851 – 0.731 0.659 0.852 0.924
GENRE 0.361 0.368 0.266 0.579 0.751 0.653 0.656 0.591 0.756 0.814
Ultron 0.432 0.437 0.304 0.676 0.794 0.726 0.729 0.654 0.854 0.911
SEAL 0.393 0.402 0.259 0.686 0.899 – 0.677 0.599 0.812 0.909
MINDER 0.431 0.435 0.289 0.728 0.916 0.709 0.713 0.627 0.869 0.933
TSGen 0.502 0.505 0.384 0.781 0.931 0.771 0.774 0.708 0.889 0.948
GenRet 0.581 – 0.479 0.798 0.916 – 0.759 0.681 0.888 0.952
NOVO 0.592 - 0.491 0.808 0.925 – 0.767 0.693 0.897 0.959

D2Gen 0.615* 0.620* 0.513* 0.813* 0.915 0.772 0.774 0.710 0.876 0.936

Table 2: Evaluation of the retrieval performance on NQ320K and MS300K. The methods marked with † are from our imple-
mentation, and the others are from their official implementation and (Zhang et al. 2024b). * indicates significant improvements
over MINDER and TSGen on MS300K and NQ320K respectively with p-value ≤ 0.05.

These approaches attempt to represent a document with a
short sequence, and our D2Gen can significantly outperform
them on both datasets by deeply analyzing document seman-
tics and generating descriptive and discriminative identifiers.
It is worth noting that model effectiveness is also affected by
other factors such as optimization methods and training data.
To illustrate the effect of our Docid more convincingly, we
control the variables and validate it further in the following
section.

Thirdly, Compared with traditional retrieval methods,
D2Gen has a significant advantage in the metric of small
cutoffs. For example, on the MS300k, the model outper-
formed the GTR by 26% on M@10. Compared with tradi-
tional retrieval methods, our approach can balance excellent
retrieval performance and semantic representation, meaning
that the model directly generates readable DocIDs represent-
ing the semantics of the corresponding documents. This is
heuristic for further end-to-end application to RAGs.

Analysis on Effectiveness of D2-DocID
In the previous section, we briefly discussed the superior-
ity of D2Gen. In order to further prove that the improve-
ment of the DocID indeed brings about an improvement in
retrieval ability, and not an illusion brought about by the
improvement of other factors such as the model’s optimiza-
tion method, we designed the following experiment. We se-
lected two generative retrieval models that are innovative in
their optimization methods, and training data, respectively,
and verified D2-DocID by replacing the document identi-
fiers they use with D2-DocID. In addition, we also replaced
the DocID used in D2Gen for comparison.

As shown in Table 3, D2-DocID outperforms other Do-
cIDs on both their primitive model and ours. This demon-
strates the generalizable help of D2-DocID on the retrieval

Model DocID M@10 R@1 R@10

Ultron

Title+URL 0.400 0.296 0.678
PQ 0.454 0.316 0.731
Atomic 0.469 0.328 0.741
D2-DocID 0.538 0.431 0.757

SE-DSI Pseudo-query 0.469 0.375 0.665
D2-DocID 0.536 0.434 0.742

D2Gen
Title+URL 0.579 0.489 0.758
Pseudo-query 0.585 0.486 0.782
D2-DocID 0.607 0.504 0.810

Table 3: Evaluation of the D2-DocID on different models
with their docids on MS300k.

power of generative retrieval.

Ablation Studies
Our ablation experiments on MS300k for the factors influ-
encing the D2Gen are shown in Table 4.

• DocID selection. In order to validate the effectiveness
of the document-ngram relevance matrix and the NR-
IDR method, we compared the selection of DocIDs us-
ing the TF-IDF, relevance ranking, and NR-IDR meth-
ods. TR-IDR outperforms the TF-IDF method, which il-
lustrates that the document-ngram relevance matrix char-
acterizes the semantics of the documents better than the
document-word frequency matrix, and verifies the effec-
tiveness of its semantic representation. NR-IDR outper-
forms the Relevance Ranking method, which illustrates
that the discriminative nature of DocID is critical for re-
trieval enhancement.
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Factor Setting M@10 R@1 R@10

N-gram
Selection

TF-IDF 0.586 0.480 0.800
NR-IDR∗ 0.607 0.504 0.810

Iterations 1∗ 0.603 0.497 0.809
2 0.610 0.505 0.817

Pipeline w.o. Lr 0.592 0.485 0.801
D2Gen∗ 0.607 0.504 0.810

N-gram
Number

2 0.594 0.491 0.796
3* 0.607 0.504 0.810
6 0.603 0.497 0.809
9 0.580 0.473 0.793

Similarity
Threshold

0.99∗ 0.616 0.513 0.817
0.9 0.607 0.504 0.810

Table 4: Ablation studies on MS300k. The default settings
of the ablation studies are marked with *.

• Iterations. We compare the effect of the number of iter-
ations of model learning and iterative DocID updates on
the results. The results show that iterative learning leads
to a improvement, while iterating once has achieved re-
sults beyond the other baselines. This suggests that after
one iteration, the model is already able to learn the doc-
ument and extract the semantics adequately. The model
retrieval ability was further improved after the model was
iterated for multiple rounds. The reason is that multiple
rounds of iteration of the model helps it to understand the
document in more detail.

• Pipeline. We design contrast learning-assisted retrieval
tasks to help retrieval models gain document comprehen-
sion. To verify the effect of contrast loss, we compare the
model to a pipeline without contrast loss. It can be ob-
served that the contrast loss does play a positive role on
the retrieval performance.

• N-gram number. We compare the effect on the retrieval
ability of using different numbers of n-grams to compose
the DocID. The results show that using the number of n-
grams of 3 works best on MS300k at one iteration, and
more or less n-grams reduce the retrieval ability. This is
because when the number of n-grams is too small, the
DocID cannot adequately represent the document seman-
tics, and the problem of DocID duplication is more seri-
ous. Whereas when the number of n-grams is too large,
the model decoding difficulty increases and the model is
prone to illusions. So choosing the right length of DocID
is important for the model retrieval ability.

• Similarity Threshold. We explored the effect of dif-
ferent similarity thresholds in data augmentation on
retrieval performance. The experiments show that too
much differentiation instead leads to a decrease in the
results, which may be due to the fact that the generative
model is confused by the widely differing datasets.

Case Study
In this section, we will show the descriptive as well as the
discriminative nature of DocID through concrete examples.

Title: T-Mobile To Go Refill - PIN
URL: http://www.callingmart.com/products/wireless/ Product-
Detail?ID=35
Body: ... To Go Prepaid (PAY AS YOU GO) has great rates and
popular phones like the Sidekick II. The Sidekick pricing plan
is a great deal, especially for teens. For only a $1 per day ...
DocID: T Mobile, Refill, Sidekick

Title: Exchange a device under warranty
URL: https://support.t-mobile.com/docs/DOC-1656
Body: ... Be warned: If you don’t return the defective device
within seven (7) days, T-Mobile charges a non-return fee. Be
sure to return it as soon as possible ...
DocID: T Mobile, Mobile charges, defective device

Title: Can i keep my tmobile phone number if i switch to
sprint?
URL: https://answers.yahoo.com/question/index?qid=2009021
5171615AA4IIyV
Body: ... Best Answer: Yes, you absolutely can keep your num-
ber when switching wireless carriers. DO NOT cancel your ser-
vice with T-Mobile. Simply go into a Sprint store and give them
your T-Mobile phone number and account number ...
DocID: phone number, T Mobile, to sprint

Table 5: Case study of D2-DocID on NQ320k. The doc-
uments presented talk about different perspectives on the
same object. D2Gen demonstrates its descriptive and dis-
criminative capabilities.

As seen in table 5, all three documents narrate topics re-
lated to T-mobile, and D2-DocID both reflects this key se-
mantics and distinguishes where the documents differ. The
first focuses on refills, so the DocID includes “refill” as well
as an example of a discount, “Sidekick”. The second fo-
cuses on after-sales, so the DocID includes the topics such
as “charges” when over seven days and “defective devices”.
The third focuses on replacing T-mobile with sprint, so the
DocID includes the document’s focus on keeping the “phone
number” and changing ”to sprint”.

Conclusion and Future Work

In this paper, we design descriptive and discriminative doc-
ument identifiers for generative retrieval, which can both
represent document semantics and distinguish between sim-
ilar documents to improve retrieval performance. We also
propose a paired generative retrieval model: D2Gen. we
design document comprehension-assisted retrieval tasks to
help the retrieval model understand documents, and extract
DocIDs based on the corpus characteristics using the NR-
IDR method. we also preserve document information more
comprehensively by means of data augmentation through di-
versity filtering. Through experiments, we demonstrate the
high retrieval performance of D2Gen on two widely used
datasets and the generalization of D2-DocID across different
models. In the future, we would like to continue to explore
how comparative learning and document understanding can
help in generative retrieval. Moreover, we will try to apply
D2Gen to retrieval-augmented generation (RAG).
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