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Abstract
Search clarification is a critical user interface for open-domain con-
versational Web search, where generating high-quality facets for
ambiguous or multi-facet queries significantly guides disambigua-
tion and enhances the user’s interaction experience. Recently, in-
context learning with Large Language Models (LLMs) has emerged
as a promising approach for facet generation by leveraging static
or similarity-based demonstrations as prompts. However, existing
methods predominantly rely on query similarity, failing to account
for the multi-dimensional nature of query intents. This limitation
can lead LLMs to generate incorrect or suboptimal facets misaligned
with user needs. To address this challenge, we propose an intent-
covering framework that improves clarification facet generation
by selecting demonstrations that comprehensively cover the di-
verse intents underlying a given query. Specifically, we first train
a generative model with beam search to predict potential intents
and construct an intent-document graph to capture their semantic
relationships. We then introduce a heuristic greedy algorithm that
optimizes demonstration selection by maximizing intent coverage.
Furthermore, since the order of demonstrations significantly affects
generation quality, we develop a re-ranking model to optimize their
sequence for better contextual alignment. Experiments demonstrate
the superiority of our approach over strong baselines in various
lexical and semantic evaluation metrics. Additionally, we conduct
an in-depth analysis of how the number, order, and contextual
relevance of demonstrations influence generation performance.

∗Zhicheng Dou is the corresponding author.
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1 Introduction
Search clarification is a fundamental component of conversational
search and Web information retrieval (IR) systems [1, 3, 29, 49, 56].
When users issue ambiguous or faceted queries, the system can
proactively generate clarifying questions and suggest candidate
facets to refine the search intent. For instance, as illustrated in Fig-
ure 1(a), for the faceted query “Google Chrome browser”, facets
such as “Windows 10”, “Windows 7”, and “Windows XP” specify
different operating systems. Similarly, for the ambiguous query
“volcano”, the system seeks to clarify whether the user is referring
to the movie Volcano or a geographical entity like Volcano Park. No-
tably, even semantically similar queries can correspond to distinct
user intents, underscoring the necessity of robust facet generation
techniques. These facets not only serve as potential queries that
users may resubmit but also play a critical role in intent exploration.
Moreover, they enhance user engagement in conversational search
interfaces [35] and improve search result quality through diversifi-
cation [39], personalization [44], and exploratory search [25, 28].

Existing studies have explored various approaches for generating
clarification aspect facets, demonstrating significant effectiveness.
Early methods include rule-based approaches [7, 8] and machine-
learning-based models [14, 15], which extract query facets from
search result pages using manually crafted rules. With the advent of
pre-trained language models (PLMs), several PLM-based methods
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Which operating system are you looking for?
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google chrome exe
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“google chrome browser”
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(a) Web Search Clarification for Different Queries

(b) Independent Potential Intents (IPIs) for Different Queries
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Figure 1: Examples of query facets and our defined Indepen-
dent Potential Intents (IPIs) of a query. The same color of
IPIs means that they share the same topic.

have been introduced for facet generation, including NMIR [10],
PINMIR [11], and BART-based models [27, 35]. More recently, Large
Language Models (LLMs) have been leveraged for aspect facet gen-
eration through In-Context Learning (ICL) [26, 38], capitalizing on
their extensive open-domain knowledge and strong intent com-
prehension capabilities. Notable examples include GPT-3 [35] and
GPT-3.5 Turbo [27], which typically generate high-quality facets by
incorporating static or similar demonstrations in the form of (query,
facets) within a carefully constructed natural language prompt.
These advancements highlight the growing role of LLMs in refin-
ing conversational search by improving intent disambiguation and
enhancing user interaction quality.

However, using LLMs for facet generation with static in-context
demonstrations often underperforms fine-tuned PLM-based models,
as these demonstrations are not tailored to the specific query [27,
35]. As a result, LLMs primarily learn the format and structure of
facet generation rather than adapting contextually to query-specific
semantics, leading to mismatches between generated and ground-
truth facets. To mitigate this issue, recent studies have explored
demonstration selection strategies based on term- or semantic-level
similarity [23], as well as diversity-based selection [17], in various
natural language generation tasks. Additionally, some approaches
focus on training retrievers to select and rank demonstrations based
on LLM performance [21, 34]. However, it is particularly challeng-
ing that retrieving query-similar demonstrations does not guarantee
facet alignment, as query facets often exhibit amulti-dimensional
nature. Consequently, the selected demonstrations may still con-
tain irrelevant facets, leading to suboptimal generation quality.

We argue that the multi-dimensional nature of query facets is a
key factor contributing to inaccuracies in LLM-generated predic-
tions. A single query can correspond to multiple valid facet sets,
yet evaluation datasets typically consider only one as ground truth.
For example, as shown in Figure 1(b), the query “google chrome
exe” can be refined along different dimensions: (1) [64-bit, 32-bit],
(2) [Windows 7, Windows 8, Windows 10, Windows XP], and (3)
[update, download, install, fix]. However, in MIMICS dataset [50],
only the first dimension is treated as ground truth because search
clarification prioritizes most likely follow-up intents—users
searching “google chrome exe” are more likely to refine it with “32-
bit” or “64-bit” than with other facets. Given this multi-dimensional
nature, we propose that demonstrations should maximize the
coverage of potential query intents to encompass as many
ground-truth facets as possible. To achieve this, we introduce In-
dependent Potential Intents (IPIs), a structured representation of a
query’s independent possible facets. These IPIs contain the ground-
truth facets while maintaining diversity. As shown in Figure 1(b),
Windows, install, and 64-bit are all IPIs of “google chrome exe”, but
they may not co-occur in a single ground-truth facet set due to co-
herency constraints [56]. IPIs thus serve as an effective foundation
for generating coherent and comprehensive facet groups [54].

Given the criteria for demonstration selection to cover user in-
tents, two key challenges arise: obtaining IPIs and designing
a selection algorithm. To address the first challenge, we train
a Seq2Seq intent prediction model, which differs from existing
PLM-based approaches that directly generate facet groups. Instead,
our model takes a query and relevant document snippets as in-
put and outputs a single independent IPI per inference step. To
obtain multiple IPIs, we apply beam search to extract the top-𝑘 IPIs
with highest probabilities for each query. Based on the predicted
IPIs, we introduce RDS (Rule-based Demonstration Selection), a
heuristic algorithm that greedily selects optimal demonstrations by
maximizing IPI coverage while leveraging co-occurrence relation-
ships within top search result snippets. Additionally, recognizing
that demonstration order significantly impacts generation qual-
ity, we propose DRM (Demonstration Re-ranking Model) to refine
the sequence of selected demonstrations, further improving facet
generation effectiveness.

Following previous studies, we obtain MIMICS-Click [50] as the
demonstration set and apply MIMICS-Manual for evaluation. We
implement various kinds of PLM- and LLM-based methods as base-
lines. Furthermore, we also compared our proposed methods with
three common demonstration retrieval methods: random selection,
selection with BM25 similarity, and selection with SBERT similarity.
The experimental results show that, first, our proposed heuristic
method RDS shows significant improvement compared with all
PLM-based and LLM-based baseline methods. The re-ranker DRM
further improves the generation effectiveness by rearranging the
order of the demonstrations. We further conduct additional ex-
periments to analyze (1) whether the input including in-context
documents influences the experimental results, (2) how the genera-
tion effectiveness varies with the demonstration number, and (3)
how the demonstration order affects the experimental results.

The contributions of this work include:
•We introduce a novel demonstration selection criterion forWeb

search clarification, maximizing IPI coverage for a given query.
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• We fine-tune a BART model to generate IPIs and design a
heuristic method (RDS) along with an effective re-ranking model
(DRM) to optimize demonstration retrieval and ordering.
• Our approach achieves state-of-the-art performance on MIM-

ICS, outperforming existing PLM- and LLM-based baselines.

2 Related Work
Clarification for Conversational Search. Aliannejadi et al.

[1] first introduced the idea of clarifying questions in conversa-
tional search systems by selecting questions to elicit user responses.
However, in Web search systems, query complexity poses a signifi-
cant challenge, as a limited number of questions cannot capture the
broad range of user intents. More recently, Zamani et al. [49, 51]
highlighted the critical role of clarification in Web search and intro-
duced the MIMICS dataset [42, 50], which facilitates research on
automatically generating clarifications. In this setting, clarifying
questions [45] and facet-based aspect items [7, 14, 15] are dynam-
ically generated rather than selected [1], or predefined by rules
as in conversational recommender systems [19]. This distinction
reinforces the open-domain nature of search clarification. Mean-
while, domain-specific clarification methods [30, 31, 43, 47] have
demonstrated effectiveness in question-answering systems, yet they
remain inadequate for the vast diversity of Web search queries.

Other Clarification Scenarios. Clarification extends beyond
Web search to community question-answering (CQA) platforms
like StackExchange [30, 31] and Conversational Recommender Sys-
tems (CRS), which aim to infer user preferences through multi-turn
interaction. Sun and Zhang [40] first formalized CRS by identify-
ing key challenges. Subsequent studies have explored strategies to
improve CRS by leveraging reinforcement learning, retrieval-based
methods, and hybrid recommendation [2, 4, 16, 19, 22, 48, 52, 57, 58].
Beyond mainstream open-domain and closed-domain clarification
scenarios, search clarification has also been applied to interactive
classification tasks and multi-turn image guessing games such as
the 20-Questions task [37, 46, 48, 53]. These emerging applications
highlight the growing importance of adaptive clarification mecha-
nisms across different domains.

Retrieving Demonstrations for LLMs. In-Context Learning
(ICL) has become a cornerstone prompting strategy for guiding
Large Language Models (LLMs) to generate high-quality outputs.
In early studies, Liu et al. [23] demonstrated that retrieving seman-
tically similar demonstrations significantly outperforms random or
static selection. Consequently, most ICL-based approaches bench-
mark against random selection and similarity-based retrieval [6, 9,
20]. Beyond these fundamental strategies, several refinements have
been proposed for task-specific optimization. For instance, Levy
et al. [17] introduced a diversity-driven selection strategy in seman-
tic parsing, ensuring that demonstrations cover a broad spectrum
of potential outcomes. Kim et al. [13] proposed an LLM-generated
demonstration strategy, where the model itself generates exemplars
prior to inference. Additionally, demonstrations can be retrieved
using a well-trained retriever, further improving selection quality
and task performance [21, 34]. These advancements underscore
the importance of intelligent demonstration retrieval in enhancing
LLM effectiveness across various NLP tasks.

3 Methods
As discussed in Section 2, various ICL methods have been used
to enhance LLM generation. However, without considering the
query’s multi-dimensional potential intents, LLMs can be misled
by irrelevant metrics like semantic similarity [23] or diversity [17],
leading to irrelevant facet generation. Based on this, we propose
that demonstrations should cover as many high-probability po-
tential intents as possible. To achieve this, we define Independent
Potential Intents (IPIs) as a list of possible query facets and intro-
duce a Seq2Seq model, BART-IPI, to obtain them. We then design a
heuristic method RDS to select demonstrations from a demonstra-
tion pool by considering the coverage of IPIs and the co-occurrence
relation between IPIs. Although RDS exceeds all PLM- and LLM-
based baseline methods for facets generation, we also discover that
the demonstration order influences the generation quality effec-
tively. However, RDS only focuses on covering the IPIs greedily,
which cannot provide a good demonstration order. Based on our
observation, we further train a re-ranker DRM based on the LLM’s
feedback to re-rank the demonstrations for better generation.

3.1 Task Formulation
Our target is to predict a set of facets for a given user query. A
query represents the user’s information needs. When the query is
sometimes ambiguous or faceted [49], each facet can correspond
to a potential intent that help the user reformulate her intents, as
shown in Figure 1(a) and 2(a).

Given a training set 𝑇 = (𝑞𝑖 , 𝑆𝑖 )𝑖∈[1,𝑁 ] containing query-facets
pairs and a test query 𝑞, our goal is to select 𝑘 pieces of examples
from 𝑇 as 𝐸 = (𝑞𝑖 , 𝑆𝑖 )𝑖∈[1,𝑘 ] , where 𝑘 << 𝑛. These demonstra-
tions are filled into a natural language prompt as 𝑃 which is then
concatenated with the test query [𝑃 ;𝑞] as the pre-context of an
LLM. Finally, the LLM outputs the predicted facets set 𝑆 . Figure 2(c)
shows the whole process. The task can be formulated as:

𝐸 = 𝑅(𝑞) = [(𝑞𝑖 , 𝑆𝑖 , )]; 𝑃 = 𝑝𝑟𝑜𝑚𝑝𝑡 (𝐸); 𝑆 = 𝐿( [𝑃 ;𝑞]), (1)

where 𝑅(·) is a demonstration selection method to select 𝑘 pieces
of demonstration, 𝑝𝑟𝑜𝑚𝑝𝑡 (·) is the process of forming a natural
language prompt automatically, and 𝐿(·) is an LLM.

3.2 BART-IPI
Web search clarification aims to generate a clarifying question
𝑄 and several candidate facets 𝑆 given an ambiguous or faceted
query 𝑞. These facets form a high-coherency set representing an
aspect that the user may be interested in [51]. However, existing
methods are difficult to generate a coherent set 𝑆 in one try [35, 55].
Therefore, for either PLM-based methods or some LLM-based ICL
methods [27, 35], the effectiveness is still limited. To solve this
problem, we propose that we can learn to generate only a single
facet at a time, and then use sampling strategies like beam search to
sample and select the top 𝑘 facets with the highest probability [54],
as shown in Figure 1(b). It can be seen that the generated beams are
very likely to contain ground truth facets, but unlike generating a
set of 𝑆 at once, the independent facets generated in this way have
no grouping information. In fact, according to the co-occurrence
information in MIMICS, we can put each facet into a different
group [54]. For example in Figure 1, the same-color facets are prone
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(a) Generating Clarification Facets for Conversational Search (b) Gx for Different Kinds of Queries (“volcano” and “gta download”)
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Figure 2: In this figure, we show (1) several example of search clarification generation, (2) query-facet graphs for different kinds
of queries, and (3) the inference flow of our framework.
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q [SEP] q- [SEP] S-
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Figure 3: The framework of our proposed RDS and DRM.

to be in a good clarification pane. For the query “google chrome exe”,
different operating systems are in the same group, and different
Windows version operating systems are in another group as well.

Even in the absence of explicit grouping information, the top-𝑘
candidate facets generated via beam search are highly likely to
contain ground-truth facets [54]. These independently generated
facets, with high recall, serve as valuable candidates for identifying
the most relevant facets for a given query. In this paper, we define
these independent facets as Independent Potential Intents (IPIs)
that are highly likely to include ground-truth facets of the query.
To generate IPIs, we designed a Seq2Seq model BART-IPI based on
BART [18]. Unlike previous approaches that train BART to generate

entire facet sets in a single pass [35, 55], we split the (𝑞, 𝐷 → 𝑆)
data into multiple (𝑞, 𝐷 → 𝑠), each 𝑠 representing a facet in 𝑆 .
In this way, for 400k pieces of (𝑞, 𝐷 → 𝑆) data in the MIMICS
data set, after splitting, we get 1.25M pieces of (𝑞, 𝐷 → 𝑠) data.
We use 90% of this data to train the BART-IPI and use 10% for
validation. At inference, we apply beam search to retrieve the top-𝑘
highest-probability IPIs. Specifically, the BART-IPI model is trained
to minimize the following objective function:

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

log𝑃 (𝑓𝜃 (𝑥𝑖 ) |𝑓𝜃 (𝑥<𝑖 )) (2)

where 𝑓𝜃 (·) is the BART-IPI model parameterized by 𝜃 .
Additionally, we apply data processing to mitigate noise in the

MIMICS dataset. To address singular-plural inconsistencies, we
use NLTK to normalize plural facets to their singular forms, en-
suring the facets’ consistency. Next, we deduplicate the generated
facets. We then incorporate local and global statistics: facets are
weighted based on document frequency and facet occurrence fre-
quency in MIMICS-Click (the training dataset). After processing,
we generated the corresponding top-100 IPIs for each test query in
the MIMICS-Manual dataset. By conducting statistical analysis, we
find that 51.7% of the ground truth facets in MIMICS-Manual ap-
pear in the top-50 high-probability IPIs corresponding to the query,
significantly outperforming the Recall values of existing models
evaluated on the MIMICS dataset.

3.3 RDS
Given the predicted IPIs for a query, we propose a heuristic Rule-
based Demonstration Selection (RDS) method that iteratively
traverses the demonstration candidate set to greedily maximize
coverage of the IPIs and their co-occurrence relations. Specifically,
first, for a given query 𝑞, we construct a graph𝐺 comprising nodes
including query 𝑞, its top-retrieved document snippets 𝐷 , and its
predicted IPIs 𝐼 , as illustrated in Figure 2. To capture potential
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semantic dependencies, we introduce edges between IPI nodes
whenever two IPIs co-occur within the same document. This graph
encodes both the possible user intents underlying the query and
the relational structure among these intents.

Next, since semantic similarity is deemed crucial in demon-
stration selection [17], we rank these demonstrations based on
sim((𝑞 [SEP] 𝐷), (𝑞𝐸 [SEP] 𝐷𝐸 )) where 𝑞 is the test query and 𝑞𝐸
is one of the demonstration queries. 𝐷 and 𝐷𝐸 means the corre-
sponding document snippets of 𝑞 and 𝑞𝐸 retrieved by Bing search
engine API respectively. We use BERT-base to get the embedding
of the text. All demonstration candidates for the query 𝑞 are then
sorted according to this similarity score.

After that, we select top-𝑁 demonstrations and iterate these
demonstrations. In this paper, we set 𝑁 = 100. Our aim is to select
demonstrations that cover as many IPIs as possible. Specifically,
for the 𝑖-th demonstration, if the demonstration 𝐸𝑖 covers more
IPIs than one demonstration 𝐸𝑥 that has been selected, then we
replace 𝐸𝑥 with 𝐸𝑖 . On the other hand, if a new demonstration
covers the same IPIs but covers more edges in 𝐺 , we also replace
the old demonstration with the new one. Since in each iteration,
various demonstrations can satisfy to be selected, we record all
satisfying demonstrations and fetch the one in which the facets
have the highest average position in the IPIs of 𝑞. This process is
iterated until 𝑘 demonstrations are selected. In brief, we try to find
𝑘 demonstrations that can maximize the coverage of the edges and
nodes in graph 𝐺 . An illustration can be found in Figure 3(b) and
the whole detailed process of RDS is shown in Algorithm 1.

3.4 DRM
The order of demonstrations significantly impacts generation ef-
fectiveness. However, RDS, introduced in Section 3.3, lacks the
capability to further modify the ranking of selected demonstrations,
instead relying on a greedy approach to cover the query-IPI graph
𝐺 . To address this limitation, we propose re-ranking the selected
demonstrations. To validate the importance of demonstration or-
der, we conduct an experiment using 4 demonstrations per query,
generating 24 possible permutations for each. By inputting these
permutations into the LLM and evaluating the resulting facet predic-
tions using the termmatch F1 metric, we identify the best and worst
permutations for each query. The aggregated results across all test
queries, presented in Table 1 as RDSmin and RDSmax, demonstrate
the substantial impact of demonstration ordering.

Our analysis focuses on two key metrics: term overlap F1 and
exact match F1. The results reveal that RDS (0.1861, 0.1700) sig-
nificantly outperforms RDSmin (0.1074, 0.1007) but underperforms
RDSmax (0.2838, 0.2559). This indicates two critical findings: First,
demonstration order substantially impacts facet generation effec-
tiveness, with a performance gap of approximately 0.18 in term
overlap F1 and 0.15 in exact match F1 between optimal and worst
arrangements. Second, RDS’s current implementation leaves room
for improvement as it lacks consideration for demonstration order-
ing. Motivated by these observations, we propose the supervised
Demonstration Re-ranking Model (DRM), which processes
queries and facets from demonstrations as input, learns scoring pat-
terns, and incorporates LLM feedback through pair-wise training.

Algorithm 1: RDS
input :Query 𝑞, Demonstration number 𝑘
output :A set of facets 𝑆

- Get top-retrieved snippets 𝐷 with Bing search API ;
- Generate IPIs 𝐼 using BART-IPI ;
- Build intent-covering graph 𝐺 for the query 𝑞;
- Obtain demonstration set 𝐺𝐸 =< 𝑞𝐸 , 𝑆𝐸 , 𝐷𝐸 >;
- Rank demonstrations with BERT similarity, select top-100;
- Set selected demonstration set 𝐸 = [], facets set 𝐹 = {};
for 𝑖 ← 1 to 𝑙𝑒𝑛(𝐺𝐸 ) do

if Count(𝐺𝐸 [𝑖], 𝐼 ) == 0: Continue;
else

if Count(𝐺𝐸 [𝑖], 𝐹 ) == 𝑙𝑒𝑛(𝐺𝐸 [𝑖]): Continue;
for 𝑗 ← 1 to 𝑙𝑒𝑛(𝐸) do

if Count(𝐺𝐸 [𝑖], 𝐸) == 𝑙𝑒𝑛(𝐺𝐸 [𝑖]): Continue;
for 𝑗 ← 1 to 𝑙𝑒𝑛(𝐸) do

if Count(𝐸 [ 𝑗], 𝐼 ) < Count(𝐺𝐸 [𝑖], 𝐼 )
𝐺𝐸 [𝑖].replace(𝐸 [ 𝑗]); 𝑢𝑝𝑑𝑎𝑡𝑒(𝐹 );

for 𝑗 ← 1 to 𝑙𝑒𝑛(𝐸) do
if Count(𝐸 [ 𝑗], 𝐼 ) == Count(𝐺𝐸 [𝑖], 𝐼 ) and
Edge(𝐸 [ 𝑗], 𝐼 ) < Edge(𝐺𝐸 [ 𝑗], 𝐼 )
𝐺𝐸 [𝑖].replace(𝐸 [ 𝑗]); 𝑢𝑝𝑑𝑎𝑡𝑒(𝐹 );

foreach 𝑒 in 𝐸 do
if Count(𝐺𝐸 [𝑖], 𝐹 ) == 0

𝐸.append(𝐺𝐸 [𝑖]); 𝑢𝑝𝑑𝑎𝑡𝑒(𝐹 );

- Build a prompt and apply the LLM to generate the facets;

To this end, we first sample 25k pieces of data from MIMICS-
Click [50]. We then get the top-4 demonstrations using the BERT
similarity for each query. After that, we utilize 24 kinds of permu-
tations of demonstrations to generate 24 prompts for a query. We
calculate the TermMatch F1 score over the 24 results, and select the
permutation with the highest score as the optimal sequences. Then,
we use the optimal sequences generated by these 25,000 queries to
train a pair-wise ranking model. We further fetch 5,000 pieces of
randomly sampled data fromMIMICS dataset [50] as the evaluation
set. The training process is to optimize the pair-wise loss:

𝐿𝑝 = −log(Sigmoid(𝑠 (𝑑+) − 𝑠 (𝑑−))) (3)

where 𝑠 (·) is an encoder to score the demonstration 𝑑 composed
of the issued query 𝑞, the demonstration query 𝑞𝐸 , and the demon-
stration facets 𝑆𝐸 in the form of “𝑞 [SEP] 𝑞𝐸 [SEP] 𝑆𝐸” as shown in
Figure 3. We apply BERT-base as the encoder. After training the
ranking model, we apply point-wise strategy to inference the score
of each demonstration in MIMICS-Manual for evaluation.

4 Experiments
4.1 Data
In this paper, we focus on Web search clarification, one of the most
prominent open-domain search clarification scenarios. To the best
of our knowledge, MIMICS [42, 50] is the only publicly available
dataset for training and evaluation in this domain. Following prior
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studies [10, 11, 35, 55], we use MIMICS-Click for training (demon-
stration pool for selecting in-context examples in this paper) and
MIMICS-Manual for evaluation. Each instance in MIMICS consists
of a query 𝑞, a set of facets 𝑆 , and a clarifying question 𝑄 . Addi-
tionally, we retrieve the top-10 search result snippets from Bing1
as contextual documents 𝐷 for each query. Furthermore, we train
BART-IPI on MIMICS-Click using the mapping (𝑞, 𝐷) → 𝑆 and
perform inference on MIMICS-Manual with the trained model.

4.2 Evaluation Metrics
We evaluate generation quality by comparing the lexical and se-
mantic similarity between generated and ground-truth facets. The
ground-truth facets in the MIMICS dataset are based on real-world
search logs, reflecting users’ actual needs. Therefore, although facet
selection is not directly associated with more intuitive metrics
like search accuracy or user satisfaction, we argue that evaluating
facets can serve as an indirect but meaningful reflection of these
metrics [35, 36]. Following previous studies [10, 11, 35], we use
three lexical similarity metrics: (1) Term overlap (P, R, and F1) to
measure term-level similarity, (2) Exact match (P, R, and F1) to as-
sess exact matches between generated and ground-truth items, and
(3) Set BLEU (1 to 4) to calculate n-gram overlap. Additionally, we
apply (4) Set BERT (P, R, and F1) to evaluate the semantic similarity,
which make up for the limitation of the previous three metrics that
can just measure the lexical similarity.

4.3 Baseline Methods
Many studies have focused on generating clarifying facets for
queries, including rule-based methods [7, 14, 15], PLM- and LLM-
based methods [27, 35], etc. In this paper, we implement the known
state-of-the-art approaches for Web search clarification and catego-
rize existing methods into three baseline groups.

PLM-basedmethods. PLM-basedmethodsmainly indicatemodels
based on BERT [5] and BART [18]. These methods including several
facets obtaining paradigms like Labeling, Classification, Extraction
(BERT-based), and Generation (BART-based), which are all trained
with MIMICS-Click data. Read [35] for more details.

LLM + static demonstrations. The second group is LLM with
static demonstrations. In other words, the demonstrations are the
same for different queries. We fetch the results from two existing
studies which use GPT-3 and GPT-3.5 Turbo as the base model
respectively [27, 35]. In this two, the demonstrations stay consistent
with their paper and will not be modified according to the query.

LLM + demonstration retrieval. We implement three basic demon-
stration selection strategies which are widely applied in existing
in-context learning studies: (1) Random: The 𝑘 demonstrations are
randomly selected from the demonstration set. (2) BM25 [33]: The
demonstrations in the demonstration set are ranked by the BM25
score between the test data (𝑞𝑥 , 𝐷𝑥 ) and each demonstration, then
the top-𝑘 demonstrations are selected. (3) SBERT [32]:The demon-
strations in the demonstration set are ranked by the BERT similarity
between the test data (𝑞𝑥 , 𝐷𝑥 ) and each demonstrations, then the
top-𝑘 demonstrations are selected. (4) BM25-d and SBERT-d: It is

1MIMICS Dataset: https://github.com/microsoft/MIMICS

shown that the diversification of demonstration is effective in some
NLP tasks [17]. Therefore, we also apply this strategy as baseline to
BM25 and SBERT. Specifically, when we choose demonstration, in
addition to considering similarity, we also keep the facets of each
demonstration from overlapping, thereby improving the diversity
of facets. To this end, we first sort the demonstrations by similarity,
and then, starting from the first demonstration, we record the facets
set of the selected demonstrations. If the new demonstration facets
have duplicates with this set, the demonstration is skipped.

4.4 Demonstration Features
In addition to demonstration selection, we are also interested in
the impact of three important characteristics of demonstrations:
•Demonstration Order : The order of demonstrations significantly

influence the generation quality. So we arrange the permutation of
all demonstrations and calculate the results correspondingly.
• Demonstration Context: In some BART-based models [35], con-

sidering top-retrieved document snippets to generate facets is better
than using the query only [35]. Since LLM naturally has powerful
natural language understanding capabilities, we want to explore
whether providing these contextual documents to LLM will have a
greater impact on the experimental results.
• Demonstration Number: The number of demonstration may

have an impact on the experimental results. We set the demonstra-
tion number 𝑘 from 1 to 5 and set 𝑘 = 4 in our main experiment.

The related experiments are conducted and analyzed in Sec-
tion 4.7, 4.8, and 4.9, respectively.

4.5 Implementation Details
For the LLM base model, we apply the GPT-3.5 Turbo2. We apply
the API to implement the model. The prompt we use is shown in
Figure 4. We select BART-base for BART-IPI and BERT-base as the
encoder for training DRM. The two models are implemented with
Transformers and PyTorch. We select the AdamW optimizer with
a learning rate of 1 × 10e-4. To control the learning progress of
BART-IPI, we observe the proportion of BART-IPI covering facets
on a held-out set with 20k queries after each epoch training on
MIMICS-Click, and stop training when the proportion begins to
decrease. When processing the IPIs, we use Stanza3 for stemming
and deduplication. For demonstration number 𝑘 , we select 𝑘 from
1 to 5 to observe the changes in the experimental results.

4.6 Experimental Results and Analysis
The experimental results are shown in Table 1. For all baseline meth-
ods and our proposed methods (except for RDSmin and RDSmax),
we denote the best result for each metric as bold and the second
best result for each metric as underlined. We also conduct signifi-
cance test (t-test) to measure whether our proposed methods can
outperform strong baselines significantly (denoted with “†”). We
can conclude form the table from multiple dimensions that:
• Performance of PLM-based Methods: In our analysis of

PLM-based approaches, we observe varying performance across

2GPT-3.5-turbo: https://platform.openai.com/playground?models=gpt-3.5-turbo
3https://stanfordnlp.github.io/stanza/
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Table 1: Evaluation results for aspect items generation (set 𝑘 = 4). The best result for each metric is marked in bold and the
second best result for each metric is underlined. “†” denotes that the proposed method (RDS and DRM) achieves significant
improvement compared with all baseline methods with 𝑝 < 0.05.

Term Overlap Exact Match Set BLEU Set BERT

Type Model Prec Recall F1 Prec Recall F1 1-gram 2-gram 3-gram 4-gram Prec Recall F1

PLM

Labeling 0.1071 0.1436 0.1169 0.0859 0.1328 0.1008 0.2423 0.1448 0.1076 0.0946 0.5987 0.5973 0.5979
Classification 0.0547 0.0572 0.0539 0.0476 0.0545 0.0489 0.1025 0.0613 0.0482 0.0409 0.4942 0.4925 0.4933
Extraction 0.0411 0.0645 0.0469 0.0269 0.0491 0.0339 0.1914 0.0918 0.0479 0.0363 0.4601 0.4599 0.4598
Generation-𝑞 0.0683 0.0548 0.0577 0.0577 0.0459 0.0492 0.1932 0.0884 0.0549 0.0463 0.5315 0.5423 0.5384
Generation-𝑞𝐷 0.1706 0.1599 0.1570 0.1489 0.1325 0.1350 0.2857 0.1833 0.1446 0.1283 0.6131 0.6133 0.6130

LLM GPT-3 0.0713 0.1199 0.0842 0.0548 0.0861 0.0648 0.2157 0.1225 0.0853 0.0721 0.5553 0.5551 0.5550
GPT-3.5-Turbo 0.0629 0.1102 0.0746 0.0356 0.0546 0.0420 0.2242 0.1222 0.0792 0.0664 0.5861 0.5865 0.5861

Baselines

Random 0.0623 0.0987 0.0717 0.0431 0.0667 0.0507 0.2222 0.1209 0.0777 0.0644 0.5788 0.5781 0.5783
BM25 0.1076 0.1535 0.1201 0.0903 0.1266 0.1020 0.2597 0.1649 0.1217 0.1061 0.5931 0.5924 0.5926
BM25-𝑑 0.1275 0.1693 0.1382 0.1095 0.1437 0.1201 0.2770 0.1816 0.1388 0.1234 0.6162 0.6148 0.6154
SBERT 0.1095 0.1541 0.1223 0.0942 0.1293 0.1057 0.2637 0.1671 0.1253 0.1078 0.6012 0.6004 0.6006
SBERT-𝑑 0.0999 0.1367 0.1099 0.0832 0.1114 0.0922 0.2578 0.1576 0.1142 0.0998 0.6025 0.6015 0.6019

Our

RDS 0.1702 0.2256† 0.1861† 0.1537 0.2041† 0.1700† 0.3086† 0.2190† 0.1804† 0.1617† 0.6177 0.6162 0.6168
RDSmin 0.0944 0.1396 0.1074 0.0886 0.1263 0.1007 0.2558 0.1619 0.1195 0.1014 0.5798 0.5786 0.5791
RDSmax 0.2680 0.3261 0.2838 0.2379 0.2947 0.2559 0.3316 0.2586 0.2279 0.2102 0.5932 0.5917 0.5924
DRM 0.1841† 0.2418† 0.2011† 0.1698† 0.2267† 0.1814† 0.3095† 0.2175† 0.1823† 0.1639† 0.6165 0.6137 0.6144

(1) Task Description
  Generate 2 to 5 aspects of the query based on the query and given documents.
(2) Demonstrations
  Here are some examples to illustrate:
    · query: q1
    · documents: D1= {d11, d12, ··· , d1|D1|} (optional)
    · aspects: S1= {S11, S12, ··· , S1|S1|}
    · query: q2
    · documents: D2= {d21, d22, ··· , d2|D2|} (optional)
    · aspects: S2= {S21, S22, ··· , S2|S2|}
    ··· ···
    · query: qk
    · documents: Dk= {dk1, dk2, ··· , dk|Dk|} (optional)
    · aspects: Sk= {Sk1, Sk2, ··· , Sk|Sk|}
(3) Instruction
  Now, it's your turn. Generate 2-5 aspects given the following query and its 
corresponding documents. Please follow the formate of above examples and only 
output the aspects:
  · query: {query}
  · documents: {str(docs)} (optional)
(4) IPIs (optional)
  You must choose aspects from these candidates: {ipis}. The generated aspects 
should be a group of potential user search intents. Now generate 2 to 5 aspects:

Figure 4: Our prompt for generating facets. The (4) IPIs are
optional and are not used in our experiments.

different methods. While simple classification and extraction meth-
ods show limited effectiveness, specific techniques such as label-
ing and generation-𝑞 demonstrate considerably stronger results.
Notably, the Generation-𝑞𝐷 method, which solely utilizes concate-
nated query and snippet texts for item generation, achieves the
best outcomes among the PLM-based methods. This suggests that
integrating both query and snippet contexts directly into the gen-
eration process can significantly enhance the PLM’s capability to
produce relevant and accurate aspect items.
• Performance of LLM-based Baselines: Our analysis reveals

that although LLMs possess extensive open-domain knowledge,
they still exhibit underwhelming performance in the task of facets
generation. However, we observe a significant enhancement in

Table 2: Experimental results when different LLMs are ap-
plied as the base model in DRM (set 𝑘 = 4).

Base Model TF EF BLEU-2 BF

Mistral-7B 0.1426 0.1173 0.1841 0.6131
LLaMA2-7B 0.1377 0.1154 0.1868 0.6090
DeepSeek-V3 0.1774 0.1659 0.2173 0.6140
DeepSeek-R1 0.1853 0.1709 0.2188 0.6129
GPT-3.5-Turbo 0.1861 0.1700 0.2190 0.6168
GPT-4-Turbo 0.1905 0.1732 0.2210 0.6159

performance when transitioning from static demonstrations to
demonstration retrieval methods. This improvement underscores
the crucial role of in-context learning abilities of LLMs and their sig-
nificant reliance on the provided demonstrations. Additionally, the
BM25-𝑑 method outperforms the standard BM25, suggesting that
beyond semantic similarity, diversity in demonstration selection is
vital. This insight provides crucial guidance for selecting demon-
strations, indicating that a balanced consideration of both semantic
relevance and diversity can significantly enhance the effectiveness
of LLMs in the facets generation task.
• Comparison Between PLM-based and LLM-based Meth-

ods: In comparing PLM-based and LLM-based methods, it becomes
evident that LLM-based approaches generally exhibit lower perfor-
mance across most evaluation metrics when compared to finely-
tuned PLM-based methods. This observation underscores the ef-
fectiveness of PLM-based models which, through fine-tuning, have
been specifically optimized for particular tasks, leading to higher
precision and effectiveness. In contrast, despite their broad knowl-
edge base and inherent flexibility, existing LLM-based methods
struggle to match this level of specialized performance, particularly
in structured tasks like aspect item generation. This contrast high-
lights the trade-offs between the generalizability of LLMs and the
targeted efficiency of PLM-based approaches.
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Figure 6: Comparison for different number of demonstrations.

DeepSeek-V3: 0.1774, 0.1659, 0.2173, 0.6140 DeepSeek-R1: 0.1853,
0.1709, 0.2188, 0.6129 •OurMethods: We can observe that our pro-
posed method RDS demonstrates superior performance over exist-
ing baselines across nearly all evaluationmetrics. This demonstrates
the effectiveness of RDS, which can be attributed to the fact that RDS
selects demonstrations based on the coverage and co-occurrence
of IPIs. In this way, RDS can address the multi-dimensional nature
of query facets by optimizing the demonstration inputs, thereby
significantly enhancing the LLM’s capability in facets generation.

Furthermore, the comparison between RDSmin and RDSmax re-
veals a significant variance in results, underscoring the sensitivity
of LLMs to the order of provided demonstrations. Our subsequent
model, DRM, capitalizes on this observation by re-ranking demon-
strations, which leads to further improvements in performance.
This refinement highlights the importance of demonstration order
in enhancing the effectiveness of LLMs, ensuring that the most
contextually relevant and beneficial demonstrations are prioritized.
• Different Base LLMs: Since different base LLMs may have

different influence on the generation results, we choose three open-
source LLMs (Mistral-7B, LLaMA2-7B, andDeepSeek-V3), two close-
source LLMs (GPT-3.5-Turbo and GPT-4-Turbo), and one cutting-
edge Large Reasoning Model DeepSeek-R1, as the base models for
generation in DRM. We test the results on Term Match F1 (TF),
Exact Match F1 (EF), BLEU-2, and BERT F1 (BF) as shown in Table 2.
It can be seen that, the generation ability of the closed-source
model is significantly better than that of the open-source model
in almost all evaluation metrics. A potential solution to improve

the performance of the open-source models is to apply Supervised
Fine-Tuning (SFT) or instruction tuning with clarification data in
MIMICS dataset. Besides, there is a trend that the generation ability
can be improved with the increase of the model size.

4.7 Impact of Demonstration Order
Considering that LLMs may respond differently depending on the
order of demonstrations presented in the prompt [12, 24, 41], we
also conduct a full permutation of the order of demonstrations
within the prompt. Analyzing the impact of demonstration order,
we observe an interesting phenomenon that RDSmax consistently
outperforms RDSmin across various metrics. This suggests that
organizing demonstrations based on their maximum relevance to
the task at hand leads to better facets generation performance. The
higher scores in RDSmax indicate the effectiveness of this approach
in leveraging relevant information effectively.

4.8 Impact of In-context Documents
As illustrated in Figure 5, the analysis across three metrics reveals
distinctive patterns in performance with and without the inclusion
of documents. For the Random method, there is a negligible differ-
ence between scenarios with and without documents, indicating
that the presence of documents does not significantly influence
the outcomes. However, for BM25, SBERT, and particularly our
proposed method RDS, the performance is notably better with-
out including documents. Specifically, RDS shows a significant im-
provement in results when documents are not included. This may
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be attributed to the irrelevant information within the documents,
which could interfere with the ability of LLMs. This observation
suggests that providing only the query and corresponding aspects
as demonstrations to the LLM is more effective for this task. By
focusing demonstrations strictly on relevant query-aspect pairs,
the LLM can generate facets more effectively, avoiding the noise
and distractions presented by lengthy documents.

4.9 Impact of Demonstration Number and
Specific Heuristics for IPI Coverage

We further study how the experimental results varywith the demon-
stration number 𝑘 increases from 1 to 5, and how the heuristics for
IPI coverage can influence the results. To this end, we run RDS and
two variants (RDS-noFreq which do not consider statistics men-
tioned in Section 3.3, and RDS-cand which adds IPIs as a part of
the prompt shown in Figure 4) when the demonstration number is
from 1 to 5 respectively. We record the term match F1, exact match
F1, and Set BLEU-2 score for each setting of 𝑘 . The experimental
results are shown in Figure 6. It can be seen that, with the increase
of 𝑘 , all three metrics show an overall upward trend, but the rate
of increase gradually slows down. This observation suggests a di-
minishing return on additional demonstrations beyond a certain
point, highlighting the importance of optimizing the number of
demonstrations to strike a balance between performance gains,
computational efficiency, and model responsiveness.

5 Discussion
This paper focuses on in-context learning specifically for the Web
search clarification task, demonstrating superior performance on
the MIMICS dataset compared to general in-context learning meth-
ods. It should be emphasized that our primary objective is not to
develop a universal in-context learning approach. Although the
proposed method may not directly generalize to other tasks, its
core concept can be adapted and transferred to other domains with
appropriate modifications. For instance, in conversational recom-
mender systems, the method could be similarly applied to predict
which product attributes should be inquired about in the next user
interaction [4, 22]. However, given the fundamental differences in
task objectives, such applications fall outside the scope of this paper
and are better suited as directions for future research.

6 Conclusion
Search clarification serves as a crucial component in conversa-
tional Web search systems. This work studies enhanced in-context
demonstration selection for LLMs to improve their capability in
generating clarification facets. Our approach introduces several key
innovations: First, departing from conventional static or similarity-
based demonstration selection methods, we define Independent
Potential Intents (IPIs) for queries using our proposed BART-IPI
model. Building upon this foundation, we develop two methods:
(1) a heuristic-based Relevance-Driven Selection Model (RDS) that
employs a greedy algorithm to select demonstrations covering the
IPIs of the current query, and (2) a supervised Demonstration Re-
ranking Model (DRM) that applies pair-wise learning-to-rank to
refine RDS-selected demonstrations. Experimental results on the

MIMICS dataset demonstrate that our methods significantly out-
perform both existing PLM-based and LLM-based approaches in
clarification facet generation. Furthermore, we conduct compre-
hensive additional experiments to validate the effectiveness and
robustness of our proposed methods.
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