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Abstract
Knowledge-intensive tasks often require complex reasoning and
contextual understanding over long contexts. However, the learn-
ing and deployment of long-LLMs remains a challenging problem
despite recent progresses. In this work, we propose that the short
LLMs have great potentiality for solving knowledge-intensive tasks
that have long context, i.e. they can be solved by purely working
with oracle short-contexts within the input long-context. On top of
this argument, we propose a framework called DCISO (DynamiC
knowledge-Intensive task SOlver), which enables a short-LLM to
address the knowledge-intensive tasks with long context via dy-
namic context browsing. In our framework, the short-LLM prompts
itself to reason for two critical decisions: 1) how to access to the ap-
propriate part of context within the input, 2) how to make effective
use of the accessed context. By adaptively accessing and utilizing
the context based on the presented tasks, DCISO can serve as a
general framework to handle diversified knowledge-intensive long-
context problems. We comprehensively evaluate different types of
tasks from popular long-context benchmarks, where DCISO is able
to achieve a substantially improved performance. Our codes will
be released at this repository.
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1 Introduction
Large language models (LLMs) are widely adopted for real-world
applications. Many of the applications are knowledge-intensive
tasks associated with long-sequence inputs, such as long-document
question answering and summarization. As such, the LLMs are com-
monly expected to have a long working context (a.k.a. long-LLMs)
in order to confront such demanding scenarios [4]. Unfortunately,
the learning and deployment of long-LLMs are still challenging
in multiple perspectives. Particularly, many existing LLMs are ini-
tially introduced with a limited size of context (e.g., 2K for Llama-1
[37], 4K for Llama-2 [37], 8K for Llama-3 1). Although the initial
short-LLM can be fine-tuned to establish a much longer context,
it is likely to take substantial costs; and more seriously, it is ex-
tremely resource-consuming to deploy the long-LLMs. The contin-
ually training may also compromise the LLMs’ general capability
over short contexts [25, 27]. In fact, it remains an open problem
to explore new solutions which may tackle knowledge-intensive
long-context tasks both effectively and efficiently.

In this paper, we propose that the short LLMs have great poten-
tiality for solving knowledge-intensive tasks that have long context.
That is to say, the knowledge-intensive tasks, despite associated
with long-sequence inputs, can be addressed by merely working
with short-contexts in a strategic way. For example, the reading
comprehension or summarization of a book can be solved based on
the extraction of necessary key facts from the book.
1https://llama.meta.com/llama3/
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Figure 1: Illustration for DCISO. The LLM is prompted to reason for how to access to proper context and how to utilize the
accessed context to solve the task. Toy Examples. (A) Brute-force solution. Despite correctness, it is unnecessarily expensive
due to the processing of the entire context simultaneously. (B) Naive RAG. It is hard to handle problems like information
aggregation, which leads to the incomplete answer. (C) DCISO leverages RAG to tackle the problem, which produces the correct
answer in a small cost. (D) DCISO processes the long-context via sequential scan, which correctly solves the problem based on
the comprehensively collected information.

The above argument is akin to the working patterns of human
beings and modern computers, where arbitrary long-form problems
can always be decomposed and solved on top of a limited memory
capacity [2, 5]. However, even if the above argument holds, it is
still non-trivial to solve the knowledge-intensive tasks purely based
on short contexts. This is because different tasks call for distinct
ways of accessing and utilizing information from the long context;
therefore, there can hardly be any fixed rules to handle all pos-
sible situations. To address this challenge, we propose a method,
called DCISO, where short-LLMs are employed to solve general
knowledge-intensive tasks in a dynamic decision-making manner.
DCISO operates with two critical reasoning steps. One is the rea-
soning of Access, where the LLM prompts itself to plan for how
to access the appropriate part of context within the input. The
other one is the reasoning of Utilize, where the LLM figures out
how to make effective use of the accessed context. Thanks to the
above design, DCISO is able to adaptively handle diversified long-
context tasks according to their unique nature. For example, given
a knowledge-grounded QA problem, the LLM may directly access
to the knowledgable context through retrieval, and generate the
answer in the form of RAG. Besides, it may sequentially scan the
long context chunk-by-chunk if the task calls for the aggregation
of specific information from the entire input.

The following toy examples are presented to better illustrate
the mechanism of DCISO (Figure 1). Particular, there are two com-
mon approaches to tackle knowledge-intensive tasks with long
context: (A) the brute-force method based on long-LLMs, (B) the
surrogate methods, like RAG [40]. Despite being straightforward,
the brute-force method is likely to incur huge unnecessary costs as

the problem could be directly solved by simple surrogate methods,
like RAG. On the other hand, although the surrogate methods may
help in certain cases, they are likely to become useless in other
situations. For instance, the RAG-based methods are inappropriate
to handle information aggregation problems, as showcased in (B).
In contrast, DCISO can handle general knowledge-intensive tasks
due to the proper reasoning of how to access and utilize the long-
context information based on each specific task. As shown in (C),
it can directly access to the needed information via retrieval and
generate the answer based on RAG. Meanwhile, it can also process
the entire context in a divide-and-conquer manner, which will fully
collect the information and solve the problem presented in (D).

We perform comprehensive experiments for DCISO, including
both popular real-world knowledge-intensive tasks, like long-context
question-answering and summarization of long documents, and
a wide variety of synthetic tasks. In our experiments, DCISO is
able to achieve equivalent performances as the brute-force meth-
ods based on strong long-LLMs, e.g., GPT-4-128K. In many cases,
its performances can even notably surpass the brute-force meth-
ods, probably due to the elimination of distracting context. Besides,
our experiments also underscore the importance of reasoning and
adaptability, as DCISO outperforms all short-LLM surrogates with
predefined access and utilization of context.

To summarize, our paper makes the following contributions. (1)
We identify the research problem of solving long-context knowledge-
intensive tasks with short-LLMs. To the best of our knowledge, it
is the first study of its kind, which is important to not only address
the problem itself but also meaningful to the sustainability and
energy-efficient running of AI industry in a broader sense. (2) We
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propose a novel framework DCISO, which is able to adaptively
handle general long-context knowledge-intensive tasks based on
the reasoning of how to access and utilize the long context. (3) We
empirically verify the effectiveness of DCISO based on its superior
performances achieved from low resource-consumption.

2 Related Works
Dealing with knowledge-intensive tasks is a fundamental research
problem for LLMs, as many real-world applications involve long-
context inputs [15]. The most direct approach to address long-
context knowledge-intensive tasks is to increase the working con-
text size of LLMs [1, 3, 25]. A year ago, significant research efforts
focused on extending the working context size of LLMs from 4K to
32K [7, 13, 22, 26]. Currently, many popular open-source and close-
source LLMs still operate with a context size under 32K [31, 37],
such as GPT-3.5-turbo, which has a 16K context length. Recently,
research has shifted towards extending LLMs’ working context to
the million-level. Notably, GPT-4 was updated to a 128K context
length not long ago, and the newly released GPT-4o also operates
with a 128K context. Moreover, several recent open-source LLMs
have been introduced with context lengths exceeding 100K, for
example, the Yi series model supports up to 200K [3], and the Phi-3
model operates with 128K [1].

Instead of merely increasing the context length, another ap-
proach to address long-context knowledge-intensive tasks involves
extracting a short surrogate context from the full context. This
includes techniques like retrieval-augmented generation (RAG) and
context refinement methods [16, 33, 34]. However, many of these
methods utilize task-specific strategies to manage the long context.
For instance, RAGmethods often deploy retrievers to select relevant
context chunks as supporting evidence [21, 40]. Recent studies have
criticized the chunking process in RAG for undermining the seman-
tic coherence of the long context and have proposed chunking-free
methods to refine the long context into a concise surrogate context
[28, 33]. Furthermore, some studies have also explored sequential
processing strategies, such as Xu et al. [40], to sequentially process
the context in a manner that preserves its integrity.

Lastly, reasoning-based methods also show significant poten-
tial for addressing long-context knowledge-intensive tasks [30].
These methods predominantly employ a decision-making process
to navigate through the long context sequentially, utilizing reason-
ing techniques such as in-context learning [12], chain-of-thought
[39], and self-reflection [35]. In this paper, DCISO incorporates a
decision-making process that dynamically customizes the action
trajectory for each query, thereby offering considerable flexibility
in accessing and leveraging information to produce the final output
answer.

3 Methodology
3.1 Preliminaries
LLMs can be succinctly defined as Y = 𝛾 (𝑞), where 𝛾 (·) repre-
sents a selected LLM, 𝑞 denotes a user query, and Y refers to the
answer produced by the LLMs. As highlighted in many previous
studies, e.g., [24], the knowledge embedded in an LLM’s parameters
is static and, consequently, often fails to adequately address user
queries requiring up-to-date or in-depth knowledge. To address

this limitation, we can introduce external knowledge (refer to as
contextX) into the LLMs. Additionally, tasks involving information
aggregation (e.g., summarization) also take a context X as input
along with task instructions 𝑞. Thus, we can generally define the
model’s generation process w.r.t. a context X as: Y = 𝛾 (𝑞,X).

As discussed in Section 1, for knowledge-intensive tasks, the con-
textX can be a long sequence, necessitating that LLMsmanage long
contexts. However, most existing LLMs were originally introduced
with limited context sizes (e.g., 4K). Consequently, these models are
unable to process inputs that exceed their capacity without trun-
cation. However, knowledge-intensive tasks require LLMs to have
deep understanding over the full context from a global perspective.
Therefore, LLMs can hardly accomplish knowledge-intensive tasks
well when processing inputs that notably surpass their inherent
context limitations. Such an issue can be formally described by:

Y = 𝛾 (𝑞,X) s.t.|X| ≫ 𝐿, (1)

where 𝐿 denotes the native context length limit of the LLM. The
most straightforward way to address this problem is to increase the
LLMs’ context length 𝐿, mitigating the challenges of long contexts.
In this paper, we instead explore solving knowledge-intensive long-
context tasks using short-context LLMs (e.g., 4K) without increasing
the model’s context length 𝐿.

3.2 Pilot Study
Despite the potential for fine-tuning LLMs to handle much longer
contexts, this approach incurs substantial costs. Besides, directly
processing long contexts during the inference stage exponentially
increases computing resource consumption, which is not environ-
mentally friendly. Moreover, knowledge-intensive tasks usually
require high-level reasoning over multiple parts within the input
long context. Compared to full context, providing precise oracle
short context might lead to better accuracy. In the following, we con-
duct a pilot study from both theoretical and empirical perspectives
to explore the question: how to utilize short LLMs for long-context
knowledge-intensive tasks?

Theoretical Analysis. Suppose we have an input variable X and
an output variable Y, the relevant part of X given Y is denoted by
X̃. An ideal X̃ should capture all relevant features of the original
input variable X in relation to Y. In other words, the optimal X̃
represents the simplest mapping of X that accurately preserves the
mutual information 𝐼 (X;Y). We therefore propose a Markov chain
X → X̃ → Y. According to the data processing inequality (DPI),
we have 𝐼 (X; X̃) ≥ 𝐼 (X;Y), with equality holding if and only if
X̃ constitutes a sufficient statistics [9, 36]. This suggests that, in an
optimal setting, we can always find a subset X̃ ⊆ X that provides
information at least as useful for generating the output Y as the
full context X.

In practical scenarios, obtaining the optimal X̃ is challenging
due to various factors, such as empirical errors [29]. Thus, we
can only estimate X̃. Estimating X̃ directly from X might be chal-
lenging if X defines a large variable space. In this situation, we
propose decomposing the original input variable X into a series of
subsets, X = {X1, · · · ,X𝑛} and process each subset variable sepa-
rately. Thus, according to the chain rule for mutual information [9],
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we have:

𝐼 (X, X̃) = 𝐼 (X1, · · · ,X𝑛 ; X̃) (2)

= 𝐼 (X1; X̃) +
𝑛∑︁
𝑖=2

𝐼 (X𝑖 ; X̃ |X1, · · · ,X𝑖−1), (3)

which indicates that the mutual information 𝐼 (X, X̃) can be under-
stood as the sum of the mutual information of each subset X𝑖 and
X̃𝑖 given all previous subsets.

In the scenario of Eq. 1, the variable X represents a long context
and the variable Y is the output answer produced by a LLM. Thus,
X̃ can be interpreted as theminimal necessary context from the long
contextX given the output answerY. Inspired by Eq. 3, we can esti-
mate an optimal X̃ using decomposed shorter contexts {X1, . . . ,X𝑛}.
Thus, 𝐼 (X; X̃) can be computed by processing each subset X𝑖 indi-
vidually. However, as the number of subsets 𝑛 increases, accounting
for all preceding subsets becomes computationally demanding. To
alleviate this burden, we propose reducing the number of con-
ditional subsets considered by replacing the entire sequence of
previous subsets with a compressed surrogate X̂𝑖 , which is itera-
tively derived using a compression function X̂𝑖 = 𝑔(X̂𝑖−1,X𝑖−1).
Consequently, Eq. 3 can be reformulated as follows:

𝐼 (X, X̃) = 𝐼 (X1, · · · ,X𝑛 ; X̃) ≃ 𝐼 (X1; X̃) +
𝑛∑︁
𝑖=2

𝐼 (X𝑖 ; X̃ |X̂𝑖 )). (4)

The equality can be upheld under two specific conditions: (1) the
decomposed variables {X1, . . . ,X𝑛} are mutually independent, and
(2) the compression function 𝑔(·) is optimally designed, ensuring
that the compressed surrogate X̂𝑖 encapsulates all relevant infor-
mation from the preceding subsets with respect to X̃. Otherwise,
𝐼 (X, X̃) can only be approximately estimated.

Empirical Analysis. To empirically assess the accuracy of esti-
mating the minimal necessary context X̃ using decomposed short
contexts {X1, . . . ,X𝑛}, we conduct pilot experiments across various
tasks requiring long contexts. Specifically, we utilize GPT-4-128K
to perform these tasks in two settings: (1) feeding the entire long
context into GPT-4-128K in a brute-force manner, instructing the
model to directly produce the output answer, and (2) strategically ex-
ploring effective decision processes for knowledge-intensive tasks
using a short context window (the DCISO setting).

Figure 2 presents the experiment results, which generally indi-
cate that DCISO consistently performs as well as or better than the
brute-force setting. In particular, for tasks such as QA, few-shot
learning, and synthetic tasks, DCISO outperforms the brute-force
setting. This is because the decomposed short contexts for these
tasks are more likely to be mutually independent given the input
query which can be adequately supported by a few extracted con-
texts from the long context. By precisely locating these supported
context, it can filter out irrelevant context of X that might other-
wise undermine task performance. For tasks like summarization
and code completion, the inherent properties of these tasks require
considering the mutual dependencies among all decomposed short
contexts, making the DCISO setting more challenging. However,
as discussed in Eq. 4, when the compression function 𝑔(·) is opti-
mal, we can achieve the optimal X̃. GPT-4 serves as such a strong
compression function, ensuring that the compressed surrogate X̂𝑖

is well-estimated. Consequently, in these tasks, DCISO achieves
performance that is equal to or better than the brute-force setting.

Through theoretical analysis, we can posit thatmany long-context
knowledge-intensive tasks can be solved by short LLMs if we can
estimate a better minimal necessary context X̃ from the decom-
posed short contexts {X1, . . . ,X𝑛} than from the long context X.
Empirical analysis supports this assumption, demonstrating that
in most cases, the estimation error of deriving X̃ from the long
context X is often larger than from the decomposed short contexts
{X1, . . . ,X𝑛}. This indicates that using short contexts can be com-
paratively more advantageous than using the full context even for
strong LLM like GPT-4 128K. Therefore, we can validate our argu-
ment in Section 1: the short LLMs have great potentiality for
solving knowledge-intensive tasks that have long context.

3.3 The Proposed Method: DCISO
We propose a method called DCISO, which utilizes short LLMs
to solve general long-context knowledge-intensive tasks. DCISO
begins with an input query 𝑞 and a long context X, with the goal of
producing an output answerY. Since the underlying LLM in DCISO
has a limited context size (we limit DCISO working with 4K context
length), directly generating the output answer Y is infeasible for
long-context tasks. To address this, we propose solving long-context
tasks by strategically understanding the decomposed short contexts
X = {X1, · · · ,X𝑛}. From these short contexts, we aim to extract
the minimal necessary context X̃ to support the generation of the
output answer Y.

DCISO achieves this goal through a decision-making process in-
volving iterative interactions between DCISO and the decomposed
short contexts {X1, · · · ,X𝑛} with respect to the input query 𝑞. In
the process, DCISO interact with each short context X𝑖 , employing
two types of actions: information access and information utilization.
We denote an action at time step 𝑖 by 𝑎𝑖 and denote the relevant
context DCISO obtains from the 𝑖-th short context X𝑖 by X̃𝑖 The
action 𝑎𝑖 is predicted by considering the current short context X𝑖 ,
the input query 𝑞, as well as all previous extracted relevant infor-
mation X̃1:𝑖−1: 𝑎𝑖 = 𝛾 (𝑞,X𝑖 |X̃1:𝑖−1), where 𝛾 (·) denotes DCISO’s
underlying LLM.

Predicting the action 𝑎𝑖 in a continuous space is challenging as
it requires the underling model to reason about highly implicit rela-
tions among the input query, the current context, and the previous
contexts. Therefore, we define a discrete action spaceA comprising:

(1) [Task Understanding]: analyzing the query and task for
initialization.

(2) [Retrieve]: accessing text evidence by a retrieval method.
(3) [Move]: accessing the next short text context directly.
(4) [Append]: generating relevant context X̃𝑖 independently,

denoting by X̃𝑖 = 𝑎𝑖 (X𝑖 );
(5) [Merge]: generating relevant context X̃𝑖 with respect to

previous extracted relevant information, denoting by X̃𝑖 =
𝑎𝑖 (X𝑖 |X̃1:𝑖−1);

(6) [Answer]: answering the user query and returning;
(7) [Aggregation]: aggregating all relevant information and

returning.

We define our DCISO frame in Algorithm 1.
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Figure 2: Pilot Study Across Various Tasks: In the Brute-force setting, the entire context is processed by GPT-4-128K. In the
DCISO setting, the maximum context length is restricted to 4K, and DCISO is utilized to solve the long-context problem with
short context.

Algorithm 1 DCISO Framework
1: Input: Input query 𝑞, long context X
2: Output: Answer Y
3: Decompose long context X ← {X1, · · · , X𝑛 }
4: Initialize extracted relevant context X̃0 ← None
5: Perform [Task Understanding]
6: while 𝑖 ≤ 𝑛 do
7: Select an action 𝑎𝑖 ← 𝑎𝑖 = 𝛾 (𝑞, X𝑖 | X̃1:𝑖−1 ), 𝑎𝑖 ∈ A
8: if 𝑎𝑖 is [Move] then 𝑖 ← 𝑖 + 1, continue
9: if 𝑎𝑖 is [Retrieve] then retrieve evidence from X = {X1, · · · , X𝑛 }

10: if 𝑎𝑖 is [Append] then generate relevant context by X̃𝑖 = 𝑎𝑖 (X𝑖 )
11: if 𝑎𝑖 is [Merge] then generate relevant context by X̃𝑖 =

𝑎𝑖 (X𝑖 | X̃1:𝑖−1 )
12: if 𝑎𝑖 ∈ {[Answer],[Aggregation]} then generate answer Y =

𝛾 (𝑞, X̃1:𝑖 ) , break
13: 𝑖 ← 𝑖 + 1
14: end while
15: return answer Y

Though the action spaceA comprises only seven actions, DCISO
serves as a general framework sufficient for solving most long-
context knowledge-intensive tasks. This effectiveness is based on
the following reasons:

(1) Flexible accessibility: By utilizing both [Retrieve] and
[Move] actions, DCISO can access any short context X𝑖 ∈ X in a
flexible trajectory, avoiding the need to browse the entire long con-
text. This makes the information accessing process more efficient.

(2) Accurate information acquisition: Through the [Append]
and [Merge] actions, DCISO can either independently extract rele-
vant information from the current short context, appending it to
previously extracted information, or merge the current relevant
information into the previous relevant information. This capabil-
ity allows DCISO to acquire relevant information in a compatible
manner, making it adaptable to many knowledge-intensive tasks.

(3) Dynamic answering:Using the [Answer] and [Aggregate]
actions, DCISO can dynamically utilize the acquired relevant in-
formation to produce the target form of the answer (e.g., a short

answer for QA tasks via the [Answer] action, or a long answer for
summarization tasks via the [Aggregate] action).

In our pilot study depicted in Figure 2, we observe that while GPT-
3.5 serves as an inferior foundation model compared to GPT-4, it
still demonstrates significant effectiveness when incorporated with
DCISO. Given considerations of efficiency and cost-effectiveness,
we employ GPT-3.5 as the foundation model for DCISO in the sub-
sequent experiments. We choose GPT-3.5 as the foundation model
for DCISO, instead of open-source LLMs. The reason is that GPT-
3.5 is a strong, yet efficient model that can generally understand
most instructions. However, we found that most open-source LLMs
lack these properties in a zero-shot setting. Fine-tuning these open-
source LLMs might be helpful, but constructing such instruction
data is infeasible and expensive.

4 Experiments
4.1 Experiment Settings
We evaluate DCISO and baseline models on 12 datasets, includ-
ing: (1) Single-Doc QA: NarrativeQA [23], Qasper [10], and Multi-
FieldQA [4]. (2) Multi-Doc QA: HotpotQA [41], 2WikiMQA [19],
and MuSiQue [38]. (3) Summarization: GovReport [20] and Multi-
News [14]. (4) Few-shot Learning: SAMSum [17]. (5) Synthetic
Task: Passage Count [4] and Self-Constructed Dataset. (6) Code
Completion: LCC [18].

We compare our DCISO with three types of models: (1) Short
LLMs (defined as with context length < 32K): Llama2-7B-Chat-
4K [37], Llama3-8B-Instruct-8K and Vicuna-v1.5-7B-16K [8]; (2)
Long LLMs (defined as with context length ≥ 32K): LongChat-v1.5-
7B-32K [26], Mistral-7B-Instruct-v0.2-32K [22], Llama3-8B-80K [42],
Phi-3-mini-128K [1] and Yi-9B-200K [3]; (3) Closed-Source LLMs:
DeepSeek-v2 (236B MoE model, ranks top-tier in MT-Bench) [11],
Claude-3-Haiku2 and GPT-3.5-turbo-16K3. In the experiments, if
the context length exceed the model’s length limit, following Bai

2https://www.anthropic.com/claude
3https://platform.openai.com/docs/models

https://www.anthropic.com/claude
https://platform.openai.com/docs/models
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Table 1: Main experiment results. The best results are in bold and the secondary results are marked with underline. We report
the average scores (%) on the main tasks. The detailed scores over all dataset are shown in Table 5.

Models Single-Doc Multi-Doc Summ. Few-shot Synthetic Code

Short LLMs (Context Length < 32K)

Llama2-7B-Chat-4K 24.9 22.5 26.6 40.7 6.3 52.4
Llama3-8B-Instruct-8K 37.3 36.0 26.5 42.7 15.0 57.5
Vicuna-v1.5-7B-16K 28.0 18.6 27.5 40.8 8.9 51.0

Long LLMs (Context Length ≥ 32K)

LongChat-v1.5-7B-32K 28.7 20.6 28.6 34.2 6.8 53.0
Mistral-7B-Instruct-v0.2-32K 31.9 26.0 29.3 43.0 14.0 55.4
Llama3-8B-80K 43.6 43.1 30.2 42.9 19.6 53.6
Phi-3-mini-128K 33.5 38.2 28.8 36.0 19.9 60.1
Yi-9B-200K 29.6 38.7 28.4 14.6 6.5 72.1

Closed-Source LLMs

DeepSeek-v2 (32K) 37.6 49.1 30.8 39.3 14.5 37.0
Claude-3-Haiku (200K) 41.9 45.4 30.1 7.2 25.5 16.9
GPT-3.5-turbo-16K 39.8 38.7 28.1 41.7 18.7 54.7

DCISO (4K) 47.8 56.4 31.8 44.1 27.5 59.0

Table 2: Statistical information of the datasets utilized in this paper.

Dataset Narrative Qasper MultiField Hotpot MuSiQue 2Wiki

Category Single-Doc QA Multi-Doc QA

Num of Samples 200 200 150 200 200 200
Ave. Length 18,409 3,619 4,559 9,151 11,214 4,887

Metric F1 F1 F1 F1 F1 F1

Dataset GovReport MultiNews SAMSum PCount Self LCC

Category Summarization Few-shot Synthetic Code

Num of Samples 200 200 200 200 32 500
Ave. Length 8,734 2,113 6,258 11,141 39,420 1,235

Metric Rouge-L Rouge-L Rouge-L Accuracy F1&Accuracy Edit Sim

et al. [4], we truncate the context from the middle since the front
and end of the context may contain crucial information.

We evaluated all models on 12 datasets, as shown in Table 2. Most
of these datasets are provided by the LongBench benchmark [4].
Following LongBench, we used F1-score, accuracy, and edit similar-
ity as the evaluation metrics. Additionally, we manually annotated
a self-constructed dataset comprising long contexts from practical
scenarios, such as the full schedule of the Olympic Games and the
complete list of accepted papers at ACL. The queries in the self-
constructed dataset involve reasoning over the entire long context.
For example, “Who has the most accepted papers at ACL 2023?”
These queries require the model to accurately understand the long
context and perform reasoning, making them highly challenging.
The details of the self-constructed dataset are in Table 4.

4.2 Implementation Details
DCISO begins with the [Task Understanding] action after receiv-
ing the input query and context. For the synthetic task, we prompt
the LLM to reformulate the query for better adaptation to DCISO.

Based on the output of the [Task Understanding] action, DCISO
adopts different strategies to perform the task. Specifically, “option
[1]” directs DCISO to utilize a retriever to rank all chunks of the
long context. In this paper, we employ BGE-Reranker-Large as the
retriever [6]. For “option [2]” and “option [3]”, DCISO sequentially
processes each short context, respectively. After processing each
short context, if the output is not "null", the newly summarized
context is added to the "previous summarization".

Once all short contexts are processed, DCISO aggregates all rele-
vant information to produce the final answer. At this stage, we use
the prompt provided by LongBench, replacing the full context with
the surrogate context produced by DCISO. For “option [4]”, DCISO
utilizes the prompts provided by LongBench to process each short
context and produces the answer as soon as the proper information
is found. We modified the prompt by adding the instruction “If no
answer can be found in the text, please output "null"”. This allows
DCISO to skip irrelevant short contexts, performing the [Move]
action. Specifically, for the Code Completion task, DCISO reversely
browses the context code from near to far as the near context are
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Figure 3: Performance comparison on different context processing strategies in the ablation study. NarrativeQA (left) is a
single-doc QA task. HotpotQA (middle) is a multi-doc QA task. SamSUM (right) is a few-shot learning task.

more useful to predict the code completion. For detailed informa-
tion on the prompts utilized for all actions in DCISO, please refer
to our code repository.

We evaluate all baseline models following the settings provided
in LongBench 4. We use a node with 8 A100 80G GPUs to conduct
all experiments.

4.3 Main Results
Table 1 shows the overall experimental results for all models across
all tasks. From the table, we derive several key findings:

First, DCISO, with a context length of 4K, outperforms all base-
line models in all tasks except for the Code Completion task. This
result verifies DCISO’s capability to effectively solve long-context
tasks by strategically processing decomposed short contexts.

Second, long LLMs generally perform better than short LLMs,
indicating the effectiveness of fine-tuning LLMs to adapt to long
contexts. However, the performance of long LLMs is not consis-
tently stable across different tasks. For example, Yi-9B-200K excels
in the Code Completion task but does not show consistent perfor-
mance in other tasks such as single-doc QA, few-shot learning, and
synthetic tasks. This inconsistency suggests that adapting LLMs to
long contexts may compromise their general abilities.

Last, DCISO consistently surpasses its underlying LLM, GPT-3.5-
turbo-16K, across all tasks by a notable margin. This demonstrates
that DCISO can achieve improved performance while simultane-
ously reducing resource costs, making DCISO an environmentally
friendly method.

4.4 Ablation Study
To investigate the necessity of DCISO’s design, we conduct ablation
studies by changing DCISO’s action space A, resulting in different
information acquisition strategies.

We experiment with the following settings: (1) [Retrieve] only:
Directly retrieve the most relevant short context. (2) [Merge] only:
Sequentially process all short contexts while considering the previ-
ously processed context. (3) [Append] only: Sequentially process
all short contexts independently. (4) [Merge] & [Move]: Selectively
4https://github.com/THUDM/LongBench

process short contexts while considering the already processed
context. (6) [Append] & [Move]: Selectively process short contexts
independently. (7): [Retrieve] & [Move]: Retrieve the top-𝑘 rel-
evant short contexts and selectively process a few of them. (8):
Brute-force: Directly produce the answer based on the entire long
context. (9) Random: For each short context, randomly select an ac-
tion. Based on the acquired information from each strategy, DCISO
then selects either the [Answer] or [Aggregation] action to pro-
duce the answer.

Figure 3 illustrates the results, from which we find that:
(1) Compared to fixed processing strategies, DCISO customizes

the action trajectory for each query, resulting in notable perfor-
mance improvements. This finding emphasizes the importance of
the dynamic capabilities of DCISO.

(2) DCISO is particularly effective in single-doc QA and multi-
doc QA tasks, as it can accurately select the minimal necessary
context required to answer the input query, filtering out irrelevant
information from the long context.

(3) In the few-shot learning task, DCISO does not significantly
outperform the fixed strategies. This is attributed to the numerous
in-context examples provided within the task, which offer sub-
stantial guidance, thus diminishing the impact of the number of
in-context examples on the final performance.

4.5 Case Study: Model Behavior Analysis on
Self-Construct Dataset

In Table 3, we present two case studies from the self-constructed
dataset. These cases are particularly challenging as they require rea-
soning across the entire long context. Despite having sufficient con-
text size, LLMs struggle to generate correct responses. In contrast,
DCISO dynamically customizes solutions for each case, thereby
effectively solving the problems using a shorter context length.

For the first query, DCISO performs [Append] or [Move] actions
across all short context along with a rewritten query, "Extract paper
information in the following list that have only one author," derived
via [Task Reasoning]. After processing all short contexts, DCISO
employs the [Aggregation] action to compile the final answer.
This approach simplifies the task compared to directly extracting a

https://github.com/THUDM/LongBench


KDD ’25, August 3–7, 2025, Toronto, ON, Canada Hongjin Qian et al.

Table 3: Case study on the self-constructed dataset. Correct answers are marked in teal, incorrect answers in red, and ambiguous
answers in orange.

Query: How many papers in ACL 2023 only have one author?
Context: Full accepted paper list in ACL 2023 main conference. (Context length: 45K)
Ground-truth target: 8 papers

Phi-3-mini-128K: 11 papers GPT-3.5-turbo-16K: 0 papers Claude-3-Haiku-200K: 1 papers (Acc. Score: 0)

DCISO’s action trajectory: [Task Reasoning]→ [Append]→ · · · → [Append]→ [Aggregation]
DCISO: 8 papers (Acc. Score: 1)

Query: List all people names that are petrified, separated by comma.
Context: Full content of Harry Potter and the Chamber of Secrets. (Context length: 122.6K)
Ground-truth target: Colin Creevey, Justin Finch-Fletchley, Penelope Clearwater, Hermione Granger

Phi-3-mini-128K: Hermione Granger, Ginny Weasley, Mrs Norris (F1-Score: 0.29)
GPT-3.5-turbo-16K: Colin Creevey, Mrs Norris (F1-Score: 0.33)
Claude-3-Haiku-200K: Nick, Hermione, Ron (F1-Score: 0.18)

DCISO’s action trajectory: [Task Reasoning]→ [Move]→ · · · → [Merge]→ [Aggregation]
DCISO: Colin Creevey, Penelope Clearwater, Hermione Granger, Nick, Mrs Norris (F1-Score: 0.71)

numeric answer from the entire long context, mimicking the human
process of reading comprehension and producing accurate results.

In the second case, the query necessitates conditional reasoning
on each short context. As highlighted in previous research [27],
reasoning directly from the entire context risks losing crucial infor-
mation, particularly in the middle of the long context. Thus LLMs
tend to miss key details such as people’s names. DCISO addresses
this issue by processing only one short context at a step where it
extracts information from arbitrary position of the long text with
equal accuracy. Additionally, answers marked in orange include
non-human names (e.g., cat, ghost) that are misconstrued as people,
illustrating a common challenge where models fail to differentiate
in-depth entity properties.

4.6 Energy Consumption Analysis
Recently, we have witnessed the remarkable success of LLMs, which
are becoming an indispensable part of our daily lives. We believe
that in the near future, LLMswill become as ubiquitous as electricity
or gas supply, serving as fundamental infrastructure in human soci-
ety. At that point, the energy consumption of LLMs will emerge as
a significant environmental concern. Therefore, it is imperative for
the research community to focus on reducing the energy consump-
tion associated with these models. Figure 4 presents an analysis of
energy consumption, comparing the brute-force approach with our
DCISO method. The 𝑦-axis is measured in Joules. The theoretical
energy consumption is estimated for 7B LLMs across varying con-
text lengths. We roughly estimate the energy consumption using
the formula

(
Total Float Operation

312 TFLOPS

)
× 400𝑊 , assuming the use of an

A100 GPU with a compute capability of 312 TFLOPS for BFLOAT16
operations and a maximum TDP of 400W5. The practical energy
consumption is estimated by recording the GPU time and GPU
power during inference with different context lengths. We use a
Llama2-7B-128K [32] and a Llama2-7B-chat-4K [37] for the brute-
force setting and DCISO, respectively.
5The calculation of total float operations is based on the method outlined in https:
//www.harmdevries.com/post/context-length/

Figure 4 clearly indicates that longer context lengths signifi-
cantly increase energy consumption with the brute-force method,
especially evident in practical measurements. This difference is
primarily due to the need to distribute sequence activation ten-
sors across multiple GPUs in practical experiment, with tensor I/O
exacerbating inference latency and thereby inflating energy costs.
In contrast, our DCISO method, working with 4K context lengths,
shows only a mild increase in energy consumption across con-
texts, thereby confirming its energy efficiency while maintaining
comparable or superior performance on long-context tasks.

4.7 Token Consumption Analysis
In Section 4.6, our analysis confirms that DCISO significantly re-
duces energy consumption compared to long LLMs. However, most
closed-source LLMs, such as the underlying model of DCISO, GPT-
3.5-turbo, charge based on token consumption, e.g., US$0.50 per
1M tokens for input and US$1.50 per 1M tokens for output6. Con-
sequently, it is crucial to examine whether the decision-making
process of DCISO increases token consumption compared to the
brute-force method.

To address this issue, we recorded the end-to-end token consump-
tion for three datasets: NarrativeQA, GovReport, and LCC. After
token counting, we conclude that DCISO’s token consumption was
34.1% of the brute-force method’s consumption in NarrativeQA,
112% in GovReport, and 29.5% in LCC. These results indicate that
DCISO’s token consumption varies significantly across different
tasks. For tasks requiring precise context location, such as QA and
code completion, DCISO can respond as soon as the relevant context
is identified, thereby avoiding the need to process the full context.
However, for tasks that necessitate information aggregation, such
as summarization, DCISO may require more tokens for prompts in
each iteration. In practice, for token-consumption-sensitive LLMs,
there might be a trade-off between performance and cost-efficiency,
which also varies considerably across different tasks.

6https://openai.com/api/pricing/

https://www.harmdevries.com/post/context-length/
https://www.harmdevries.com/post/context-length/
https://openai.com/api/pricing/
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Figure 4: Energy consumption analysis.

5 Conclusion
In this paper, we propose that short LLMs have great potential-
ity for solving long-context knowledge-intensive tasks, and we
validate this claim through both theoretical and empirical pilot
study. We propose a method called DCISO to solve long-context
knowledge-intensive tasks by decomposing the long context into
short contexts and processing them using a decision-making pro-
cess. We conduct experiments on 12 datasets to compare DCISO
with long LLMs and other baseline models. Empirical results verify
DCISO’s effectiveness in solving long-context knowledge-intensive
tasks. Additionally, we discuss the energy consumption of DCISO
versus long LLMs, demonstrating that DCISO can achieve compa-
rable performance with significantly less energy consumption.

6 Limitations and Broad Impact
In this paper, we propose DCISO, a method dedicated to solving
long-context tasks using short contexts. However, there are several
limitations we would like to address in the future work: (1) Al-
though we conduct comprehensive experiments on many tasks and
provide theoretical analysis to support our major claim that most
long-context tasks are short-context solvable, there may be more
complicated scenarios that require understanding the full context in
a brute-force setting. DCISO might not be able to process such tasks
effectively. (2) As mentioned in Section 3.3, DCISO selects actions
from a discrete action space. While we argue that the pre-defined
action space is versatile enough to handle most scenarios, a more
elegant solution would be to predict actions in a continuous space.
We conducted preliminary experiments to explore allowing DCISO
to prompt itself to predict actions without a predefined action space,
such as writing prompts or code autonomously. These experiments
resulted in highly unstable performance, particularly for models
like GPT-3.5, as such requirements are still challenging. We be-
lieve that with a much stronger foundation model, DCISO could be
expected to predict actions in a continuous space. (3) We choose
GPT-3.5 as the foundation model for DCISO, instead of open-source
LLMs. The reason is that GPT-3.5 is a strong, yet efficient model that

can generally understand most instructions. However, we found
that most open-source LLMs lack these properties in a zero-shot
setting. Fine-tuning these open-source LLMs might be helpful, but
constructing such instruction data is infeasible and expensive.

As discussed in Section 4.6, LLMs are likely to become a funda-
mental infrastructure in the near future. At that scale, their energy
consumption will pose significant environmental challenges. As
shown in Figure 4, DCISO avoids processing long contexts directly
by decomposing them into shorter contexts. This approach signifi-
cantly reduces energy consumption as the context length increases,
leading to substantial positive environmental impacts. We believe
that in the future, more research will focus on green AI initiatives.
This paper could serve as an initial spark to inspire further research
in this direction, potentially resulting in broader social impact.
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A More Experiment Details
In Table 4, we show the details of the self-constructed dataset. In
Table 5, we show the detailed experiment results for all 12 datasets.
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Table 4: Data details of the self-constructed dataset.

Source Length # Queries Example Query

Accepted paper list of ACL 2023Main Conference 44,490 7 Who has the most accepted paper in ACL 2023?

The Diamond Sutra 19,993 3 How many chapters of the Sutra?

Schedule of The 2024 Olympic Games 15,844 9 Which day has the most gold medal events?

Subtitle of The Big Bang Theory S3E14 11,136 6 How long does this episode?

The Little Prince 22,471 4 How many planets does the little prince visit?

Harry Potter and the Chamber of Secrets 122,591 3 How many times has the chamber of secret been opened?

Table 5: Main experiment results. The best results are in bold and the secondary results are marked with underline. We report
the average scores (%) on all tasks.

Model Narrative Qasper MultiField Hotpot MuSiQue 2Wiki

Short LLMs (Context Length < 32K)

Llama2-7B-Chat-4K 18.7 19.2 36.8 25.4 9.4 32.8
Llama3-8B-Instruct-8K 21.5 43.0 47.5 47.3 23.3 37.5
Vicuna-v1.5-7B-16K 19.4 26.1 38.5 25.3 9.8 20.8

Long LLMs (Context Length ≥ 32K)

LongChat-v1.5-7B-32K 16.9 27.7 41.4 31.5 9.7 20.6
Mistral-7B-Instruct-v0.2-32K 21.6 29.2 47.9 37.7 18.6 21.8
Llama3-8B-80K 28.8 47.4 54.5 55.8 27.4 46.0
Phi-3-mini-128K 21.0 39.4 51.5 48.1 28.2 38.1
Yi-9B-200K 15.6 39.3 33.8 51.4 26.6 38.2

Closed-Source LLMs

DeepSeek-v2 (32K) 18.3 45.7 48.9 57.7 22.6 66.9
Claude-3-Haiku (200K) 30.2 44.0 51.5 51.5 32.5 52.1
GPT-3.5-turbo-16K 23.6 43.3 52.3 51.6 26.9 37.7

DCISO (4K) 30.6 50.6 62.1 63.5 42.5 63.1

Model GovReport MultiNews SAMSum LCC PCount Self

Short LLMs (Context Length < 32K)

Llama2-7B-Chat-4K 27.3 25.8 40.7 52.4 2.1 10.5
Llama3-8B-Instruct-8K 30.1 27.6 42.7 57.5 8.0 21.9
Vicuna-v1.5-7B-16K 27.9 27.2 40.8 51.0 6.5 11.3

Long LLMs (Context Length ≥ 32K)

LongChat-v1.5-7B-32K 30.8 26.4 34.2 53.0 1.0 12.5
Mistral-7B-Instruct-v0.2-32K 31.7 26.9 43.0 55.4 2.6 25.4
Llama3-8B-80K 32.3 28.1 42.9 53.6 3.5 35.7
Phi-3-mini-128K 32.6 24.9 36.0 60.1 3.2 36.5
Yi-9B-200K 30.3 26.5 14.6 72.0 4.2 8.7

Closed-Source LLMs

DeepSeek-v2 (32K) 35.2 26.3 39.3 37.0 12.7 16.2
Claude-3-Haiku (200K) 34.1 26.1 7.2 16.9 5.0 46.0
GPT-3.5-turbo-16K 29.5 26.7 41.7 54.7 4.5 32.9

DCISO (4K) 34.4 29.2 44.1 59.0 7.2 47.7
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