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Abstract
Exploiting users’ contextual behaviors in the current session has
been proven favorable to the document ranking task. Recently,
the context-aware document ranking task has benefited from pre-
trained language models (PLMs) due to their superior ability in
languagemodeling.Most PLM-based context-aware document rank-
ing models implicitly learn task-specific knowledge by fine-tuning
PLMs on historical search logs. However, since search log data is
noisy and contains various user intents and search patterns, such a
black-box way may prevent models from fully mastering effective
context-aware search knowledge. To solve this problem, we pro-
pose LOCK, a PLM-based context-aware document ranking model
that explicitly embeds task-specific prior knowledge into PLMs to
guide the model optimization. From local to global, we identify
three types of task-specific knowledge, including intra-turn signals,
inter-turn signals, and global session signals. LOCK formulates
such prior knowledge into prior attention biases for impacting the
fine-tuning of PLMs. This operation can guide the ranking model
by task-specific prior knowledge, thereby improving model conver-
gence and ranking ability. Additionally, we introduce a task-specific
pre-training stage that involves masked language modeling and
the soft reconstruction of the prior attention matrix, which helps
the PLMs adapt to our task. Extensive experiments validate the
effectiveness and convergence of our method.
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Table 1: Visualized attention distributions of some key terms
over a session (including the previous query 𝑞𝑙 , its clicked
document 𝑑𝑙 , the current query 𝑞, and its clicked document
𝑑). Darker colors mean higher attention values.

(a) Attention distribution of the term “madden”

𝑞𝑙 best offensive plays for madden of
𝑑𝑙 madden tips madden strategies madden football plays
𝑞 strategies offensive plays for madden of
𝑑 madden nfl of guides and strategy

(b) Attention distribution of the term “strategies”

𝑞𝑙 best offensive plays for madden of
𝑑𝑙 madden tips madden strategies madden football plays
𝑞 strategies offensive plays for madden of
𝑑 madden nfl of guides and strategy

1 Introduction
Search intents are usually complex andmay requiremultiple queries
to fully explore the desired information. Such a series of search
queries and the associated user behaviors (e.g., clicked documents)
are referred to as a search session [2]. The contextual information in a
search session, e.g., historical user behaviors, is valuable tomodeling
the user’s current intent and returning satisfactory ranking results,
which has been confirmed by many studies [2, 37, 42].

To exploit the contextual information in measuring document
relevance, various heuristic rule-based methods [29] and neural
network-based models [1, 8, 31] have been proposed. Recently,
pre-trained language models (PLMs), which have superior abilities
in language modeling, have further boosted the development of
context-aware document ranking [6, 25, 42].

Existing PLM-based context-aware document ranking methods
typically concatenate the word sequences of session data, including
historical queries, their clicked documents, the current query, and
a candidate document, as the input. Then, they are fine-tuned on a
large amount of search log data, hoping that matching patterns can
be automatically captured. It can be achieved when the data are
extremely clean and the matching signals are clear. However, this
is not the case for the context-aware document ranking task, where
search sessions contain complex search intents and diverse search
patterns. Solely relying on data makes it hard to obtain the knowl-
edge necessary to complete the task. Thus, it is beneficial to provide
the model with additional task-related guidance (knowledge).

Let us use an example to illustrate the problem and analyzewhich
kinds of task-related knowledge are missed by the PLM-based meth-
ods. Table 1 visualizes some key terms’ attention distributions over
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a session.1 We can see: (1) The model captures term-matching
signals insufficiently. Term matching between the query and
document is a very effective signal in various information retrieval
tasks [4, 28]. However, from the example, we notice that the fine-
tuned model mainly focuses on neighbor terms rather than matched
terms, e.g., the term “madden” in the query 𝑞 pays more attention
to its neighbor term “of” rather than the matched terms of the
clicked document 𝑑 , as shown in Table 1 (a). (2) The model has
an inadequate modeling for the user intents’ change. Cap-
turing search intents from the user behavior sequence is critical
for document ranking, while the query evolution process contains
important signals for search intent transition [44]. So, an ideal at-
tention distribution should focus on the terms that can reflect the
query evolution. However, we can see that most attention interac-
tions occur inside the queries or documents. As Table 1 (b) shows,
the current query’s term “strategies”, an added term compared to
the previous query 𝑞𝑙 , mainly focuses on the terms inside the query
rather than the same term of the previously clicked document, 𝑑𝑙 .
Indeed, 𝑑𝑙 may be the source of this added term, which deserves
more attention when modeling user intent changes. All these obser-
vations suggest that the solely data-driven fine-tuning of PLMs
may block their adequate grasp of task-specific knowledge,
hence limiting their downstream abilities.

To tackle this problem, we propose to explicitly embed task-
specific knowledge into PLMswhenfine-tuning it for context-
aware document ranking.We design a PLM-based cOntextual
doCument ranking model with explicitly embedded task-specific
priorKnowledge, which is called LOCK. The basic idea is to formu-
late effective prior knowledge of context-aware document ranking
into attention biases and affect the self-attention process. Such at-
tention biases can guide the model’s learning direction to shrink
the search space of model parameters and improve the convergence
and performance of the model. Specifically, we consider three types
of task-specific prior knowledge from local to global perspectives:
(1) Intra-turn signals. In each search turn, containing a query
and a relevant document, term matching is a strong signal for rele-
vancemodeling proven bymany traditional and PLM-based ranking
methods [4, 38]. We believe that the attention interactions between
the identical terms within a q-d pair should also be enhanced. (2)
Inter-turn signals. During a search session, user intents often
evolve with search turns. It can be reflected by query reformulation.
Therefore, we propose to enhance the attention interactions be-
tween tokens at different session positions based on three common
types of query reformulation. It mimics the changing of user intents,
which can provide a better context for token representation mod-
eling. (3) Global session signals. The current query is the most
important part of a search session, as it directly shows the user’s
current search intent. Thus, we believe the global representation
of the session should focus more on the current query’s terms to
capture more valuable relevance signals. Based on the above anal-
yses, we transform such prior knowledge into attention biases by
enhancing important attention interactions between input tokens.

1Attention distributions are derived from the mean of the multi-head attention maps
of a random Transformer layer (other layers have similar results) of a BERT model
trained on AOL search logs, a popular context-aware document ranking dataset. We
omit non-semantic tokens, e.g.“[SEP]” to show semantic modeling more intuitively.

The attention biases are then added to the self-attention matrices
of PLMs to achieve knowledge-guided model optimization.

Additionally, we notice that directly fine-tuning the PLM may
lead to its inadaption to prior attention biases. Therefore, we in-
troduce a task-specific pre-training stage before fine-tuning the
PLM on our ranking task. We retain the masked language modeling
task with a task-specific masking strategy to adapt PLMs’ ability at
semantic modeling to session data. Furthermore, to guarantee that
the PLM can digest the embedded prior knowledge, we build a soft
reconstruction task, where a naive decoder is used to reconstruct
the prior attention matrix from model outputs. Experiments on
three search log datasets validate that the ranking ability of PLM
can be greatly enhanced by our task-specific prior knowledge.

The main contributions of our study are three-fold:
(1) We analyze the context-aware document ranking task and

conclude three kinds of task-specific prior knowledge that have not
been well-studied by existing PLM-based methods.

(2) We formulate such task-specific knowledge into attention
bias to guide the fine-tuning process of PLMs, leading to improved
convergence and effectiveness on our task.

(3) We introduce the task-specific pre-training stage with the
soft reconstruction task of the prior attention matrix to enhance
the adaptability of PLMs to context-aware document ranking.

2 Related Work
2.1 Context-aware Document Ranking
The benefit of utilizing the contextual session information to facili-
tate the document ranking has been demonstrated by many existing
works [1, 6, 29, 42]. The model structures of context-aware docu-
ment ranking have evolved from statistical methods [5, 29, 34, 37]
to neural-network-based methods [1, 2, 8, 10, 11, 20, 31, 33].

Recently, due to the superior ability of PLMs, e.g., BERT [9], to
model semantic information, many advanced studies also leveraged
them to solve the context-aware document ranking task and achieve
significant improvement [6, 25, 33, 42, 43]. Qu et al. [25] proposed
to equip BERT with self-devised additional structures to encode
session information, and COCA [42] designed several pre-training
tasks via data augmentation to enhance the BERT’s ability to model
user behaviors over sessions. ASE [6] leveraged PLMs with an
encoder-decoder structure and devised three generative tasks to
denoise contextual information via multi-task learning.

Nevertheless, these methods implicitly learn downstream knowl-
edge from complex session data, leading to the loss of some heuris-
tic but effective knowledge. In this paper, we propose to explicitly
embed task-specific prior knowledge into BERT to enhance its
effectiveness on the context-aware document ranking task.

2.2 Prior Attention for PLM
As a key component of Transformer [32], the self-attention module
has been widely studied in existing work [3, 12, 14, 23, 36, 39, 40].
Traditional attention distributions are generated based on input
sequences. Recently, some studies [14, 24, 24, 39–41] proposed to
introduce attention distributions from other sources, namely prior
attention [18], to supplement the input-generated attention distri-
bution and promote the model performance. For example, Yang
et al. [39] enhanced the locality of attention distributions by using
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a Gaussian distribution over positions as the attention bias. Xia
et al. [36] introduced a word similarity matrix as prior knowledge
to guide the BERT to solve the semantic textual similarity task.

Inspired by these studies, in this paper, we propose to embed task-
specific prior knowledge of the context-aware document ranking
task in the form of attention bias to guide the optimization of BERT
and improve its performance and reliability.

3 Method
The goal of context-aware document ranking is to evaluate docu-
ment relevance based on session information. Existing PLM-based
methods learn to perform context-aware document ranking by be-
ing solely fine-tuned on the search log data. However, we discover
that the automatically learned attention distributions are poor at
capturing some heuristic but effective knowledge for context-aware
document ranking. Therefore, we propose to explicitly embed task-
specific prior knowledge in the form of attention bias to guide the
optimization and improve the effectiveness and convergence of
our ranking model. Following existing studies [42], we take BERT
to build and demonstrate our methods. Further experiments and
analyses that expand our approach to other PLMs are presented in
Appendix B.

3.1 Problem Definition
Following existing works [6, 25, 42, 44], we first provide key nota-
tions and formulate the context-aware document ranking task as
below. User behaviors in each session are represented by a sequence
containing𝑀 issued queries, S = {𝑞1, · · · , 𝑞𝑀 }, where queries are
ordered by their issued timestamps. Each query 𝑞𝑖 associates with 𝑛
candidate documents D𝑖 = {𝑑𝑖,1, · · · , 𝑑𝑖,𝑛}. The original text string
entered into the search engine serves as the representation of each
query, 𝑞𝑖 , and the text content represents each candidate docu-
ment 𝑑𝑖, 𝑗 . We represent the context of a certain query 𝑞𝑖 by all its
previous queries in the same session and their clicked documents,
i.e.,𝐶𝑖 = {𝑞1, 𝑑1, · · · , 𝑞𝑖−1, 𝑑𝑖−1}.2 Consequently, the context-aware
document ranking task is defined as: given an issued query 𝑞𝑖 and
its search context𝐶𝑖 , the model should compute relevance scores for
its candidate documents to rank the relevant (clicked) documents
as high as possible.

3.2 Overview
The framework of LOCK is shown in Figure 1. The workflow is:
First, given the input sequence generated from a search session,
we build a prior adjacent matrix of input tokens via the process of
prior knowledge embedding. Then, we adopt a projector to map
the adjacent matrix into prior attention biases and add them to the
BERT’s self-attention matrices. Finally, an MLP layer produces the
document ranking score from the sequence output. The training
process has two stages. The first one is the task-specific pre-training
stage, where we leverage the objectives of task-specific MLM and
soft reconstruction of the prior adjacent matrix to adapt BERT to
our data distribution. The second one is the fine-tuning stage, where
a ranking loss is used to optimize the BERT for our ranking task.

2The first session query 𝑞1 has no search context.

3.3 Prior Knowledge Embedding
In this section, we introduce how to embed task-specific prior
knowledge into attention bias and incorporate it into BERT. Specif-
ically, given a query 𝑞𝑖 , its search context 𝐶𝑖 , and a candidate doc-
ument 𝑑𝑖, 𝑗 (𝑑𝑖 for brevity), we first tokenize them by a tokenizer,
Tok(·), e.g., for the query 𝑞𝑖 , we tokenize it as:

𝑇𝑞𝑖 = Tok(𝑞𝑖 ) = [𝑡𝑞𝑖1 , 𝑡
𝑞𝑖
2 , . . . , 𝑡

𝑞𝑖
𝑛𝑞𝑖

], (1)

where 𝑛𝑞𝑖 is the length of the query 𝑞𝑖 . Then, following existing
studies [42], we concatenate these token sequences to construct
the input sequence of BERT as follows:

𝐼 = [CLS]𝑇𝑞1 [EOS]𝑇𝑑1 [EOS] · · ·𝑇𝑞𝑖 [EOS] [SEP]𝑇𝑑𝑖 [SEP], (2)

where the [EOS] token indicates the end of a query or document
and the [CLS] is the global token to represent the entire session.
The length of the input sequence is denoted as 𝐿𝐼 .

By viewing the input tokens as graph nodes, we can build the
prior adjacent matrix via the prior knowledge embedding process,
which is introduced from Section 3.3.1 to Section 3.3.3. Then, we
apply the projector to map the adjacent matrix into prior attention
biases and add them to the self-attention matrices of the BERT
model. We depict the mapping process in Section 3.3.4.

3.3.1 Modeling Intra-turn Signals. In each search turn, including
a query and a clicked document, exact term matching is the most
basic and effective signal to model query-document relevance. It
has been widely used in either traditional [28, 38] or PLM-based [4]
IR models. While MarkedBERT [4] identifies matching tokens by
the special token, in this paper, we believe that adding attention
bias is a more direct and effective way to capture such signals. An
ideal attention matrix should assign higher weights to the position
of exactly matched tokens between query and document.

Therefore, for each search turn (𝑞 𝑗 , 𝑑 𝑗 ), 𝑗 ∈ [1, 𝑖] in the input
session, we introduce bidirectional edges between the identical
tokens. Formally, ∀ 𝑡𝑚 ∈ 𝑇𝑞 𝑗 , 𝑡𝑛 ∈ 𝑇𝑑 𝑗 , we have:

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = A[𝜙 (𝑡𝑛), 𝜙 (𝑡𝑚)] = 𝑤1, if 𝑡𝑚 = 𝑡𝑛 . (3)

𝜙 (𝑥) is the index function producing the position of the token 𝑥

in the input sequence 𝐼 . A ∈ R𝐿𝐼 ×𝐿𝐼 is the adjacent matrix, and
𝑤1 ∈ R+ is a hyper-parameter to control edges’ relative importance.

3.3.2 Modeling Inter-turn Signals. Modeling the evolution of user
intent with search turns is essential to capture context-aware user
intents. Therefore, encoding token interactions across search turns
is crucial to producing reasonable attention matrices for PLM-based
context-aware document ranking. Existing studies [16, 17, 26, 27,
30] have identified several query reformulation patterns from differ-
ent perspectives to represent user intent evolution. Following [7],
our study mainly focuses on three representative ones, i.e., specifi-
cation, generalization, and topic change.3 According to our analysis
of these query reformulation patterns, we build weighted token
edges across different search turns to facilitate the modeling of
user intent changes. Furthermore, we adopt a sliding window with
size𝑊 to establish these edges for modeling robust reformulation
patterns. We take (𝑞 𝑗−𝑘 , 𝑑 𝑗−𝑘 , 𝑞 𝑗 , 𝑑 𝑗 ), 𝑗 ∈ [𝑘 + 1, 𝑖], 𝑘 ∈ [1,𝑊 ] as
an example to describe out edge building method.
3The query reformulation patterns are not the focus of this paper. We leave the use of
other more detailed reformulation patterns for our future work.
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Figure 1: The architecture of LOCK. The left part shows an example to visualize the construction of the prior adjacent matrix
for the input sequence. The right part demonstrates the framework of our method. “IA” is short for “importance-aware”.

(1) Specification. Typically, it is challenging for users to clearly
define the search intent at the beginning of a session when it is
complex or ambiguous. Theymay therefore issue a brief and general
query. As the search context develops, they will revise the query by
adding terms to describe their search intent more precisely. Thus,
given two query (𝑞1, 𝑞2), if the token set of 𝑞𝑖 is the subset of 𝑞2,
we view this query reformulation as specification. The added terms
reflect the fine-grained user intent that is hard to be clarified by
the original query. The previous study [30] also concluded that
the clicked documents of previous queries are crucial sources of
the added terms as they may inspire the next search intent. Thus,
we consider that the added terms in the query should pay more
attention to their source terms in the previously clicked documents.
This approach can offer rich context information about the added
terms and help the model understand user intent changes.

Therefore, for a query pair (𝑞 𝑗−𝑘 , 𝑞 𝑗 ), where 𝑞 𝑗 is a specified
query of 𝑞 𝑗−𝑘 , we first identify the added tokens in 𝑞 𝑗 and their
corresponding source tokens in 𝑑 𝑗−𝑘 . These tokens in 𝑞 𝑗 form a
list, which is denoted as 𝑆𝑞 𝑗 ; for the source tokens in 𝑑 𝑗−𝑘 , we have
a list 𝑆𝑑 𝑗−𝑘 . Then, we establish directional edges from the added
tokens to their source tokens to enhance their attention on the
source tokens, i.e., ∀ 𝑡𝑚 ∈ 𝑆𝑞 𝑗 , 𝑡𝑛 ∈ 𝑆𝑑 𝑗−𝑘 , we have:

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = 𝑤1, if 𝑡𝑚 = 𝑡𝑛 . (4)

Further, because added tokens present more specific user intents,
the term-matching of these important tokens should be promoted
to emphasize their effects on relevance modeling. Thus, for the
added tokens in the query 𝑞 𝑗 , we improve the weights of their
term-matching edges (if have) i.e., ∀ 𝑡𝑚 ∈ 𝑆𝑞 𝑗 , 𝑡𝑛 ∈ 𝑇𝑑 𝑗 ,

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = A[𝜙 (𝑡𝑛), 𝜙 (𝑡𝑚)] = 𝑤2 (> 𝑤1), if 𝑡𝑚 = 𝑡𝑛 . (5)

(2) Generalization. In contrast to specification, generalization
represents the situation where the user finds some tokens of pre-
vious queries that have negative impacts on searching for desired
information. Thus, they remove undesired tokens to transform the
query into a more general one. Therefore, given two queries (𝑞1, 𝑞2),

if the token set of 𝑞2 is the subset of 𝑞1, we view this reformulation
as generalization. Similarly, we denote the removed token list of
𝑞 𝑗−𝑘 as 𝐺𝑞 𝑗−𝑘 . 𝐺𝑑 𝑗−𝑘 is used to denote the tokens in the document
𝑑 𝑗−𝑘 that are exactly matched with those removed tokens in the
query 𝑞 𝑗−𝑘 . We believe that paying attention to these undesired
tokens may impair the relevance modeling of the later query. There-
fore, we link directional edges with negative weights from all tokens
of the later query and document to previous undesired tokens to
restrain these negative interactions, i.e.,

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = −𝑤1, ∀ 𝑡𝑚 ∈ 𝑇𝑞 𝑗 , 𝑡𝑛 ∈ 𝐺𝑞 𝑗−𝑘 ; (6)

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = −𝑤1, ∀ 𝑡𝑚 ∈ 𝑇𝑑 𝑗 , 𝑡𝑛 ∈ 𝐺𝑞 𝑗−𝑘 ; (7)

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = −𝑤1, ∀ 𝑡𝑚 ∈ 𝑇𝑞 𝑗 , 𝑡𝑛 ∈ 𝐺𝑑 𝑗−𝑘 ; (8)

A[𝜙 (𝑡𝑚), 𝜙 (𝑡𝑛)] = −𝑤1, ∀ 𝑡𝑚 ∈ 𝑇𝑑 𝑗 , 𝑡𝑛 ∈ 𝐺𝑑 𝑗−𝑘 . (9)

(3) Topic change. The last pattern of query reformulation is
adding and removing terms to adjust the search topic, which im-
plies a change in user interests. Thus, we call it topic change. It can
be viewed as a combination of the previous two kinds of query
reformulation. Consequently, for the query change process belong-
ing to topic change, we conduct the operations of specification and
generalization to add prior edges. It is worth noting that to avoid
the interference of stopwords with query reformulation classifica-
tion, we remove stopwords when classifying query reformulation
patterns and identifying added/removed tokens.

3.3.3 Modeling Global Session Signals. To serve the downstream
ranking task, PLM-based methods [25, 33, 42] usually introduce a
global token ([CLS] token in Eq. 3.3) and view its output as the rel-
evance representation of the entire session. Meanwhile, the current
query is the most important part of the user behavior sequence,
which directly describes the current search intent. Consequently,
we believe that the global token should assign more attention to
the current query’s tokens, hence capturing accurate relevance fea-
tures and enhancing the document ranking. Concretely, recall that
the token list of the current query 𝑞𝑖 is denoted as 𝑇𝑞𝑖 (defined in
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Equation (1)), in which the added tokens are denoted as 𝑆𝑞𝑖 (defined
in Section 3.3.2). Here, we also consider the tokens in the candidate
𝑑𝑖 exactly match with the current query, which is denoted as 𝑄𝑑𝑖 .
It contains a sub-list, 𝑆𝑑𝑖 , consisting of the document tokens that
exactly match the query’s added terms, 𝑆𝑞𝑖 . Finally, we establish
edges from the global token to the tokens in both 𝑇𝑞𝑖 and 𝑄𝑑𝑖 to
emphasize the current query’s information. This can be defined as:

A[0, 𝜙 (𝑡𝑚)] =
{
𝑤2, ∀ 𝑡𝑚 ∈ 𝑆𝑞𝑖 ;
𝑤1, ∀ 𝑡𝑚 ∈ 𝑇𝑞𝑖 , 𝑡𝑚 ∉ 𝑆𝑞𝑖 ;

(10)

A[0, 𝜙 (𝑡𝑛)] =
{
𝑤2, ∀ 𝑡𝑛 ∈ 𝑆𝑑𝑖 ;

𝑤1, ∀ 𝑡𝑛 ∈ 𝑄𝑑𝑖 , 𝑡𝑛 ∉ 𝑆𝑑𝑖 .
(11)

The intuition here is: for the exact-matched tokens of the current
query 𝑞𝑖 , if they are added tokens, they should be assigned higher
attention values; and if they are not, lower attention values are
assigned. We do the same for the candidate document 𝑑𝑖 as well.

3.3.4 From Adjacent Matrix to Prior Attention Bias. The BERT
model mainly consists of multiple Transformer layers with multi-
head self-attention modules. Therefore, for the 𝑙-th layer and ℎ-
th head, we denote the self-attention matrix before softmax as
M𝑙,ℎ ∈ R𝐿𝐼 ×𝐿𝐼 . We project the prior adjacent matrix A into the at-
tention bias and add it to theM𝑙,ℎ for generating the final attention
distribution M̂𝑙,ℎ as follows:

M̂𝑙,ℎ = softmax(M𝑙,ℎ + 𝛼𝑙,ℎA), (12)

where 𝛼𝑙,ℎ is a trainable scalar, controlling the impact of the prior
attention bias on different Transformer layers and heads.

3.4 Task-specific Pre-training
In previous sections, we illustrated our proposed way to embed task-
specific prior knowledge into BERT via attention bias. However,
the BERT model is pre-trained on large-scale text corpora without
incorporating prior attention bias, directly using prior attention
bias when fine-tuning it on session data may lead to its inadaption
for the downstream task and limit the ranking performance. To
solve this problem, we introduce a task-specific pre-training stage
that optimizes the prior knowledge-enhanced PLMs on the session
data with two adaption objectives.

Firstly, we retain a widely used and effective pre-training task,
Masked Language Modeling (MLM), for transferring the BERT’s
ability at language modeling to the distribution of session data. Fur-
thermore, our input tokens have different importance, e.g., added
tokens are more important than removed tokens. Thus, it is better
to let the MLM task focus more on predicting the important words
to promote the model’s capability of capturing semantic and prior
knowledge. So, we propose an importance-aware token mask-
ing. Specifically, based on the prior adjacent matrix A, we leverage
the in-degree of tokens, ID(𝑡), to measure their importance and
produce the masked probability 𝛽 (𝑡) as:

𝛽 (𝑡𝑖 ) = softmax𝑡 ∈𝐼 (ID (𝑡𝑖 )) . (13)

Then, the loss function is represented as:

LMLM = −
∑︁

𝑡𝑖 ∈M
log𝑝 (𝑡𝑖 |𝐼 ), (14)

whereM denotes the masked token set that is sampled based on
𝛽 (·) and 𝐼 is the input sequence after masking strategy.

Secondly, in our preliminary experiment, we found that, without
the guidance of objective functions, it is difficult to digest the prior
knowledge embedded in attention biases for the model. Therefore,
we devise a simple decoderDec(·) to reconstruct the adjacentmatrix
Â from the BERT’s output representations h ∈ R𝐿𝐼 ×𝑑 as:

Â = Dec(h) = hWh⊤ . (15)

𝑑 is hidden states’ dimension, W is a parameter, and Â𝑖, 𝑗 is the
predicted weight of the edge from the 𝑖-th token to the 𝑗-th one.

Note that the weights of the edges are used to indicate the rel-
ative importance of different edge types, so we only focus on the
prediction of relative values rather than absolute ones. We call this
kind of reconstruction task soft reconstruction task (SRC). In
this situation, the MSE loss function is unsuitable to measure the
discrepancy between A and Â. Consequently, we adopt a hierarchi-
cal margin loss function to measure how well the model learns the
embedded prior knowledge. We expect that the mean value of the
predicted edge weights of linked token pairs is higher than that of
unlinked token pairs. Therefore, the loss function is defined as:

LSRC =
∑︁2

𝑖=1
max

(
0, 𝛽 −

(
𝜇 (Â𝑤𝑖

) − 𝜇 (Â𝑤𝑖−1 )
))

, (16)

where Â𝑤𝑖
denotes the predicted value list of all token pairs with

the edge weight equal to 𝑤𝑖 , 𝜇 (·) returns the mean value of the
input, and 𝛽 is a margin hyperparameter. Overall, the loss function
of the task-specific pre-training is:

Ltpt = 𝜆1LMLM + 𝜆2LSRC, (17)

where 𝜆1 and 𝜆2 are the hyperparameters that balance the weight
of different loss functions.

3.5 Fine-tuning
Finally, we fine-tune the prior knowledge-enhanced BERT model
on session data by a hinge-loss-based pair-wise loss function, which
follows previous studies [6]. The loss is calculated as below:

Lrank =
∑︁

{𝑑+,𝑑− }∈D𝑖

max
(
0, 𝛾 −

(
score(𝑑+) − score(𝑑−)

) )
, (18)

where D𝑖 is the candidate set of query 𝑞𝑖 , 𝑑+, 𝑑− denote the posi-
tive/negative documents that are labeled based on the click signals,
and 𝛾 is a hyperparameter of margin. score(𝑑) denotes the ranking
score of a candidate 𝑑 , which is yielded as follows:

score(𝑑𝑖 ) = 𝑓 (h[CLS] ), (19)

where h[CLS] is the output representation of global token from our
model and 𝑓 : R𝑑 → R is an MLP layer.

4 Experiment
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. Weexperiment on three public datasets with search
sessions, AOL [22], Tiangong-ST [7], and TREC 2014 Session Track.4
Though the MSMARCO conversational dataset is also a choice,5
its sessions are established manually instead of extracted from real
4https://trec.nist.gov/data/session2014.html
5https://github.com/microsoft/MSMARCO-Conversational-Search

https://trec.nist.gov/data/session2014.html
https://github.com/microsoft/MSMARCO-Conversational-Search
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search logs. However, our work aims to learn real user intents better
from user behaviors, so we do not use this dataset.

The AOL dataset is provided by [2], which groups search logs
into sessions. Each query in the training set and validation set has
five candidate documents and fifty candidates retrieved by BM25
are provided for each query in the test set. The details of candidate
construction can be found at [1]. The TREC 2014 Session Track
(TREC for brevity) released 1,021 query sessions for 60 different top-
ics, where each session has a relevant topic and each query contains
the top ten results. The dataset also provides relevance judgments
against the session topic at a 6-grade scale: spam (-2), not relevant
(0), relevant (1), highly relevant (2), key (3), and navigational (4).
We filter out some invalid sessions that lack relevance judgments.
Due to the limited amount of data, we only use the TREC sessions
as the test set to evaluate the generalization of experimental models
trained on the AOL training dataset. The Tiangong-ST dataset col-
lected 18-day search logs from a Chinese search engine, where ten
candidates were provided for each query. In the test set, the dataset
provides an annotated relevance score (0-4) for the last query of
each session. Thus, this dataset contains two test sets, (1) Tiangong-
ST-Click. It contains all queries in the test sessions except the last
one. We regard click signals as relevance labels for experiments. (2)
Tiangong-ST-Human. It covers the last queries of all test sessions
with human-annotated relevance labels. To decrease memory load
and improve the model’s efficiency, we view the documents’ titles
as their content, following existing studies [2, 6, 33, 42].

The statistical information of datasets is presented in Table 4.

4.1.2 Evaluation Metrics. Three common metrics are used to evalu-
ate models’ performance, i.e., Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR), and Normalized Discounted Cumulative
Gain at position 𝑘 (NDCG@𝑘 , 𝑘 ∈ {1, 3, 5, 10}). For the TREC and
Tiangong-ST-Human with 5-scale human-annotated relevance la-
bels, MAP and MRR are inappropriate for evaluation since they
cannot consider relevance scales. Thus, following the suggestion
from [7], we focus on NDCG@𝑘 of these datasets. We use TREC’s
official evaluation tool (trec_eval) [13] to evaluate all models.

4.2 Baselines
To evaluate the effectiveness of our model, we compare it with the
following three types of baselines:

(1) Ad-hoc ranking. These models focus on evaluating match-
ing scores between queries and candidate documents without in-
formation from search contexts. ACR-I [15] uses convolutional
neural networks (CNNs) to embed queries and documents, then
produces ranking scores by vector similarity function. ACR-II [15]
uses CNNs to capture the fine-grained interactions from the match-
ing map between query and document terms. Duet [21] combines
interaction-based and representation-based features to learn more
reliable ranking scores. BERT [9]. We fine-tune BERT by concate-
nating a query and a candidate document as the input to predict
the relevance score by CLS-Pooling.

(2)Context-aware document rankingwithmulti-task learn-
ing. These methods leverage a multi-task framework to promote
context-aware document ranking. M-NSRF [1] uses recurrent neu-
ral networks to jointly optimize next query prediction and context-
aware document ranking tasks. M-Match-Tensor [1] (M-Match

for brevity) is an improved version of M-NSF that models the con-
textual embeddings for terms of query and document. CARS [2]
proposes to introduce implicit feedback from contextual informa-
tion and optimizes the model by a multi-task framework consisting
of query suggestion and document ranking tasks. ASE [6] designs
three generative tasks and employs PLMs with an encoder-decoder
structure to model the session data.

(3) BERT-based context-aware document ranking. These
models fine-tune the BERT model and use its semantic modeling ca-
pabilities to complete ranking tasks.HBA-Transformer [25] (HBA
for brevity) utilizes BERTwith self-designed high-level Transformer
structures to conduct context-aware document ranking.COCA [42]
adopts contrastive learning with three data augmentation strate-
gies to pre-train BERT and improves its robustness for encoding
the session information. It is a classic case of applying BERT to
context-aware document ranking.

We provide the implementation details in Appendix A due to
limited space.

4.3 Overall Performances
(1) Compared with all baselines, our model, LOCK, performs
the best on most metrics. It proves that incorporating task-
specific prior knowledge as attention biases can improve the BERT’s
performance on the context-aware document ranking. Our analysis
is that the embedded prior knowledge can alleviate the hardness
of capturing task-specific knowledge, which can smooth the opti-
mization surface and prevent the model from falling into a local
optimum. Meanwhile, the pre-training can adapt the enhanced
BERT to the data distribution and model structure of our task. It
further eases the model optimization at the fine-tuning stage.

(2) Our model performs the best within BERT-based mod-
els on all datasets. To validate the effectiveness of embedded
task-specific prior knowledge, it is appropriate to compare our
model with other BERT-based methods. From Table 2, it is notice-
able that LOCK produces the best results among all BERT-based
models (including the BERT-based Ad-hoc model), which verifies
the positive impact of incorporating heuristic knowledge to guide
the optimization of BERT on the context-aware document ranking
task. Also, it supports our hypothesis that learning adequate task-
specific knowledge cannot be accomplished by merely fine-tuning
the BERT model on large-scale search logs.

(3) Our model outperforms all multi-task-based models on
the AOL, TREC and Tiangong-ST-Click datasets. We discover
that ASE can yield comparable results with LOCK on the Tiangong-
ST-Human dataset, but it performs significantly worse than LOCK
on the TREC dataset. This may be because ASE is fine-tuned in
a multi-task manner with multiple generative tasks. The overuse
of data-driven learning tasks will make the model capture subtle
characteristics of the datasets rather than the general features bene-
ficial to the context-aware document ranking task. As a result, ASE
performs well on the test samples from the same source of training
data, while providing worse results in the scenario of zero-shot test-
ing. Even without multi-task learning, LOCK can still significantly
outperform ASE on the other three datasets, which validates the
usefulness and generalizability of embedded prior knowledge for
enhancing model performance on the task.
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Table 2: Overall results of all models. “‡” and “†” indicate the model outperforms all baselines significantly in paired t-test at
𝑝 < 0.01 and 0.05 level (with Bonferroni correction). The best and second-best results are in bold and underlined, respectively.
Note that MAP and MRR cannot consider relevance scales, and are not applicable to TREC and Tiangong-ST-Human datasets.

Dataset Metric Ad-hoc Ranking Multi-task Learning BERT-based

ARC-I ARC-II Duet BERT M-NSRF M-Match CARS ASE HBA COCA LOCK

AOL

MAP 0.3361 0.3834 0.4038 0.4217 5264 0.4459 0.4297 0.5650 0.5281 0.5500 0.5733‡

MRR 0.3475 0.3951 0.4111 0.5353 0.4326 0.4572 0.4408 0.5752 0.5384 0.5601 0.5834‡

NDCG@1 0.1988 0.2428 0.2492 0.3807 0.2737 0.3020 0.2816 0.4144 0.3773 0.4024 0.4240‡

NDCG@3 0.3108 0.3564 0.3822 0.5223 0.4025 0.4301 0.4117 0.5682 0.5241 0.5478 0.5769‡

NDCG@5 0.3489 0.4026 0.4246 0.5584 0.4458 0.4697 0.4542 0.6007 0.5624 0.5849 0.6094‡

NDCG@10 0.3953 0.4486 0.4675 0.5914 0.4886 0.5103 0.4971 0.6283 0.5951 0.6160 0.6364‡

TREC-Session

NDCG@1 0.2868 0.2949 0.2954 0.3456 0.2580 0.2592 0.2709 0.4314 0.3957 0.4351 0.4754‡

NDCG@3 0.3260 0.3571 0.3605 0.4686 0.3404 0.3413 0.3528 0.5238 0.4952 0.5297 0.5538‡

NDCG@5 0.4015 0.4150 0.4388 0.5472 0.4180 0.4129 0.4361 0.5950 0.5735 0.6017 0.6161‡

NDCG@10 0.6059 0.6137 0.6203 0.6803 0.6080 0.6087 0.6185 0.7132 0.6998 0.7190 0.7319‡

Tiangong-ST-Click

MAP 0.6597 0.6729 0.6745 0.7450 0.6836 0.6778 0.6909 0.7459 0.6957 0.7481 0.7518†

MRR 0.6826 0.6954 0.7026 0.7673 0.7065 0.6993 0.7134 0.7684 0.7171 0.7696 0.7741†

NDCG@1 0.5315 0.5458 0.5738 0.6367 0.5609 0.5499 0.5677 0.6349 0.5726 0.6386 0.6477†

NDCG@3 0.6383 0.6553 0.6511 0.7373 0.6698 0.6636 0.6764 0.7419 0.6807 0.7445 0.7478
NDCG@5 0.6946 0.7086 0.6955 0.7824 0.7188 0.7199 0.7271 0.7828 0.7292 0.7858 0.7882†

NDCG@10 0.7509 0.7608 0.7621 0.8157 0.7691 0.7646 0.7746 0.8166 0.7781 0.8180 0.8209†

Tiangong-ST-Human

NDCG@1 0.7088 0.7131 0.7577 0.7636 0.7124 0.7311 0.7385 0.7884 0.7612 0.7769 0.7697
NDCG@3 0.7087 0.7237 0.7354 0.7641 0.7308 0.7233 0.7386 0.7727 0.7518 0.7576 0.7721
NDCG@5 0.7317 0.7379 0.7548 0.7753 0.7489 0.7427 0.7512 0.7839 0.7639 0.7703 0.7849
NDCG@10 0.8691 0.8732 0.8829 0.8942 0.8795 0.8801 0.8837 0.8996 0.8896 0.8932 0.8978

Table 3: Results of ablation studies on the AOL dataset.

Models MAP MRR NDCG@1 NDCG@5

LOCK (Full) 0.5733 0.5834 0.4240 0.6094

w/o Term Matching Edges 0.5665 0.5766 0.4167 0.6021
w/o Adding Term Edges 0.5656 0.5757 0.4154 0.6013
w/o Removing Term Edges 0.5660 0.5759 0.4160 0.6015
w/o Global Edges 0.5646 0.5747 0.4151 0.5990

w/o Task-specific Pre-training 0.5705 0.5805 0.4207 0.6057
w/o Soft Reconstruction 0.5722 0.5823 0.4229 0.6077

4.4 Further Analysis
4.4.1 Ablation Study. To further verify the effectiveness of our
modules, we conduct several ablation studies on the AOL dataset
as follows. The experimental results are illustrated in Table 3.

(1) Effectiveness of different types of prior edges. To fully
capture the user intents in the context of search sessions, we in-
troduce four types of prior knowledge and simulate them by cor-
responding prior edges, including term matching, adding term,
removing term, and global edges. To validate the impact of such
prior knowledge on our model, we abandon these edges and con-
struct four variants of our model. The performances presented in
the second to fifth rows of Table 3 all decline significantly. It implies
that our prior edges can capture knowledge from the perspectives
of term matching, intent revolution, and query importance, which
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Figure 2: Experimental results of our model on different
session lengths.

are all favorable for our task. Optimizing BERT without explic-
itly embedded prior knowledge makes it hard to learn such useful
knowledge, hence resulting in worse ranking results.
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Figure 3: Performance growth curves of model variants.
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(2) Effectiveness of the task-specific pre-training. To avoid
the inadaption of the prior knowledge-enhanced BERT to our task,
we conduct task-specific pre-training before fine-tuning it. To test
the impact of this process, we train two variant models, one drops
the soft reconstruction task, and the other one abandons the task-
specific pre-training process. The decreased results presented in Ta-
ble 3 imply the necessity of task-specific pre-training.We also notice
that the performance degradation of these two variants is smaller
than that of other variants without some prior knowledge. It re-
veals that LOCK’s superiority mostly stems from task-specific prior
knowledge rather than merely using task-specific pre-training.

4.4.2 Effect of Session Lengths. The session length is a key factor
that determines the richness of contextual information. To test the
generality of our model on different session lengths, we split the
test session into three groups, including short sessions (length≤ 2),
medium sessions (length = 3 or 4), and long sessions (length > 4). We
compare our model with several context-aware document ranking
methods and present the experimental results on the left side of
Figure 2. The results imply that our model outperforms all baselines
across all session groups. It validates the robustness of our model in
various search contexts. We attribute this advantage to the use of
various task-specific knowledge. For example, the exact matching
signals enable our model to capture more ad-hoc relevance signals,
leading to high-quality ranking results for short sessions with less
context information. For long sessions with abundant context, the
prior edges encoding query reformulations enhance our model to
capture the change of user intents more precisely.

4.4.3 Model Convergence. To validate our hypothesis that embed-
ded prior knowledge and the task-specific pre-training process
can accelerate model convergence, we present the performance
curves during fine-tuning LOCK and its two variants in Figure 3.
w/o TPT drops the task-specific pre-training stage, and w/o PKD
further drops the embedded prior knowledge. Concretely, we train
all models for five epochs during the fine-tuning stage and validate
the model’s performance every 0.2 epoch, resulting in 25 steps.
The results shown in Figure 3 suggest the convergence rate and
performance upper bound of the models are LOCK > w/o TPT >
w/o PKD. The potential reason is that, without the task-specific
pre-training, the BERT is not adapted to the data distribution of the
ranking task and the model structure with attention biases, making
it hard to converge during fine-tuning. When we further drop the
embedded prior knowledge, it is challenging to implicitly learn the
task-specific knowledge from the downstream data, which may also
hurt the model optimization. These results support our aforemen-
tioned hypothesis. Interestingly, the initial performance of w/o PKD
is significantly worse than the other two models. We speculate that
the published checkpoint of BERT is not a proper starting point for
our task, since the learning tasks and data distributions of BERT’s
pre-training stage are unrelated to the downstream task. It also
confirms the necessity of the task-specific pre-training stage.

4.4.4 Impact of Amount of Training Data. The amount of training
data determines the upper bound of the task-specific knowledge the
model can learn for such loss-guided models, which substantially
impacts the model performance. Therefore, we train LOCK on four
different training sets with different data proportions to explore
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Figure 4: Results of different training data amounts.

their effect. Results are compared with two strong baselines (COCA
and ASE) and shown in Figure 4. It is obvious that even with 20% of
the training data, LOCK can still achieve comparable performance
with COCA. When LOCK is trained on 60% of the training data, it
can perform similarly to ASE. The experimental results verify the
effectiveness of LOCK in the case of less training data, which may
inspire its application of few-shot learning. We think the reason
may be that there are two paths to learning knowledge of the
downstream task for our model, i.e., capturing implicit knowledge
from training data, and learning heuristic knowledge from prior
attention bias. Thus, when the training data is limited with less
implicit knowledge, LOCK can learn useful matching patterns from
external knowledge. It also proves the importance of incorporating
task-specific prior knowledge into BERT-based models.

Furthermore, We provide some generalization experiments and
case studies in Appendix B and C.

5 Conclusion
Existing PLM-based context-aware document ranking methods usu-
ally fine-tune PLMs on search logs, hoping to automatically learn
task-specific knowledge from session data. However, session data
contains complicated user intents and diverse search patterns. It
is hard to sufficiently capture task-specific knowledge solely rely-
ing on the training data for the context-aware document ranking
task. Consequently, we proposed to explicitly embed task-specific
prior knowledge to enhance the BERT’s ability on the context-
aware document ranking task. Specifically, based on three types of
prior knowledge, i.e., term-matching signal, user intent evolution
modeling, and current query modeling, we formulated them into at-
tention biases by introducing prior edges to guide the optimization
of the BERT on our task. Further, we leveraged the task-specific
pre-training with MLM and SRC tasks to adapt the BERT to our
task. Experiments confirm the effectiveness and convergence of
LOCK. In this paper, we focused on embedding prior knowledge
into self-attention modules to enhance the BERT model. In the
future, it is possible to design an embedding method that is suitable
for more kinds of PLMs to improve the generality of our method.
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A Implementation Details
We employ the pre-trained BERT provided by HuggingFace [35].
Following [25, 42], the maximum length of input sequences is set as
128 to trade off efficiency and effectiveness. For sequences longer
than 128, we truncate them by popping the head tokens of query-
document pairs. For the construction of the prior adjacent matrix,
we set thewindow size𝑘 as 2 and the edgeweights as𝑤1 = 1,𝑤2 = 2.
For the task-specific pre-training stage, we set the masked probabil-
ity as 0.3 for the MLM task and set the margin value, 𝛽 , as 1 for the
soft reconstruction task. The loss weights for two tasks are set to 1,
i.e., 𝜆1 = 𝜆2 = 1. We pre-train the BERT model for ten epochs with
128 batch size, and the learning rate is 5e-5 with a linear decay. For
the ranking task, the margin value, 𝛾 , is set to 1. The pre-trained
model is fine-tuned over five epochs with 128 batch size. The 5e-5
learning rate linearly decays during fine-tuning. AdamW [19] is
adopted as the optimizer in both training stages. Note that the time
and memory cost of the pre-training stage are comparable to that of
the fine-tuning since their data sources are both session data. Our
code is released in github https://github.com/ShootingWong/LOCK.

Table 4: Statistics of two datasets. “Query”, “Document”, “Ses-
sion”, and “Relevant documents” are abbreviated to “Qry”,
“Doc”, “Sess”, and “Rel”. (Back to the main paper, 4.1.2)

Items AOL Tiangong-ST TREC

Train Valid Test Train Valid Test Test

# Sessions 219,748 34,090 29,369 143,155 2,000 2,000 962
# Queries 566,967 88,021 76,159 344,806 5,026 6,420 1970
# Qry / Sess 2.58 2.58 2.59 2.41 2.51 3.21 2.05
# Doc / Qry 5 5 50 10 10 10 10
Avg. Qry Len 2.86 2.85 2.9 2.89 1.83 3.46 3.57
Avg. Doc Len 7.27 7.29 7.08 8.25 6.99 9.18 10.98
# Rel / Qry 1.08 1.08 1.11 0.94 0.53 3.65 3.32

MAP MRR N1 N3 N5 N10

GPT2

0.4

0.5

0.6

w/o bias

w/ bias

MAP MRR N1 N3 N5 N10

TinyLlama

0.4
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w/o bias

w/ bias

Figure 5: Performance of different LLMs.

B Generalization on Different Language Models
Large language models (LLMs) have demonstrated superior per-
formance across various NLP tasks due to excellent language un-
derstanding and generation abilities. However, the complex infor-
mation structure blocks the application of LLMs on the context-
aware document ranking task. To confirm the generalization of

our methods across different LLMs, we select GPT and Llama as
two representative models and compare their performance with
and without our prior task-specific knowledge. Due to the limited
GPU resources, we practically fine-tune GPT2 and Tinyllama to
conduct our experiment. The results are shown in Figure 5. Ob-
viously, introducing prior knowledge significantly enhances the
LLMs’ performance in our task. This phenomenon further proves
our assumption that directly fine-tuning language models in the
downstream taskmakes it hard to sufficiently grasp the task-specific
knowledge, hence limiting the model performance. Our proposed
method explicitly injects this prior knowledge into language mod-
els, thereby enhancing the guidance and convergence of model
optimization.

C Case study
To verify that our model is able to guide the BERT’s attention dis-
tributions to be consistent with task-specific prior knowledge, we
conduct a case study to compare some keywords’ attention distri-
butions produced by our model and COCA (a classic BERT-based
context-aware document ranking model without embedding task-
specific prior knowledge). The visualization results are presented
in Table 5. Similar to Table 1, we indicate the keywords by black
boxes and highlight session words with green squares based on
their attention values, where the darker the color, the higher the
attention.

We illustrate the two models’ attention distributions for “design”,
an important added term in the current query 𝑞. It is evident that
the word “design” also appears in the previously clicked document
𝑑𝑙 . Therefore, the user may be inspired by the viewed document to
add this word, and the added term should pay more attention to the
same word in the 𝑑𝑙 to simulate this evolution of user intent. The
comparison implies that LOCK’s attention distributions match our
expectations, but the BERT-based model without prior knowledge
enhancement neglects this signal. Also, for our model, the “design”
in the query 𝑞 also pays high attention to the candidate 𝑑’s exactly
matched term, which is also disregarded by COCA. These results
reveal that our proposed model with embedded prior knowledge
can better capture the evolution of user intent and critical relevance
signals than BERT-based models, yielding better results for users.

Table 5: A case to visualize the attention distributions.

(a) Attention distribution of “design” from LOCK

𝑞𝑙 business logo
𝑑𝑙 logo design usa based 100 money back guarantee
𝑞 business logo design des moines iowa
𝑑 logo design web design graphic design

(b) Attention distribution of “design” from COCA

𝑞𝑙 business logo
𝑑𝑙 logo design usa based 100 money back guarantee
𝑞 business logo design des moines iowa
𝑑 logo design web design graphic design

https://github.com/ShootingWong/LOCK
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