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Abstract—Existing studies have proven that pre-trained rank-
ing models outperform pre-trained language models when it
comes to ranking tasks. To pre-train such models, researchers
have utilized large-scale search logs and clicks as weak-supervised
signals of query-document relevance. However, search logs are
incomplete and sparse. Different users with the same intent tend
to use various forms of queries. It is hard for recorded clicks to
sufficiently cover diverse relevance patterns between queries and
documents. Moreover, the diverse intentions of a large user base
lead to long-tail distributions of search intents. Deriving sufficient
relevance signals from sparse clicks of these long-tail intents
poses another challenge. Therefore, there is significant potential
for exploring richer relevance signals beyond direct clicks to
pre-train high-quality ranking models. To tackle this problem,
we develop two exploratory data augmentation strategies that
consider the diversity of query forms from local and global
perspectives, hence mining potential and diverse relevance signals
from search logs. A generative augmentation strategy is also
devised to create supplementary positive samples, to enhance
the ranking ability for long-tail query intents. We leverage a
multi-level pairwise ranking objective and a contrastive learning
approach to enable our model to capture fine-grained relevance
patterns and be robust for noisy training samples. Experimental
results on a large-scale public dataset and a commercial dataset
confirm that our model, namely PRADA, can yield better ranking
effectiveness over existing pre-trained ranking models.

Index Terms—Pre-trained ranking model, Data augmentation,
Diversity

I. INTRODUCTION

RECENTLY , the pre-training technique has demonstrated
remarkable capabilities not only in natural language

processing (NLP) [1, 2, 3, 4, 5, 6], but also in information
retrieval (IR) [7, 8, 9]. Previous studies [8, 9, 10, 11, 12, 13]
confirm that pre-trained models tailored for IR consistently
surpass general pre-trained language models in downstream
ranking tasks. These models are pre-trained with large-scale
query-document relevance labels and hence capture relevance-
matching signals more effectively than general pre-trained
models.

Nevertheless, acquiring sufficient human-annotated relevant
query-document pairs is challenging due to expensive time
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Fig. 1: An example to show the diversity of query form and
query intention.

and economic costs. Thus, existing studies explore alternative
strategies to generate pseudo query-document pairs from the
documents [8, 10] or the web structures [11, 12, 13], and pre-
train the models with these weak-supervised relevance labels.
Meanwhile, recent studies [14, 15] also leverage large-scale
search logs to construct pre-training data since search logs
cover numerous real queries, web documents, and click signals
to reflect relevance to some extent.

Training a high-quality pre-trained ranking model necessi-
tates sufficiently diverse training samples to ensure the stable
capture of relevance features across varied search scenarios.
Despite a wealth of click signals in search logs, the available
relevance-matching patterns are still incomplete and sparse,
which limits the performance of search-log-based pre-trained
models. The main reasons are two-fold. One of them is the
query form diversity. Many queries may contain similar intents
but are phrased differently. Consequently, the click signals of
these queries often scatter across different document sets, lead-
ing to incomplete coverage of diverse matching patterns be-
tween relevant queries and documents. As shown in Figure 1,
where Q1, Q3, and Q4 all aim to search for information about
the Pocono Mountains (camping). However, their query forms
differ from each other. As a result, D1 may not be displayed to
Q3 and Q4, and there may be no corresponding click record in
the search log. The other is query intention diversity. Various
works [16, 17] have revealed that the popularity of web pages
usually follows a power-law distribution. This implies that
tremendous queries and documents are associated with a wide
variety of tail intents. Typically, the click signals of these query
intentions are extremely sparse, which makes it difficult for
pre-trained models to maintain robustness across varied tail
search intentions.

To address this issue, we introduce a pre-training method,
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PRADA, which Pre-trains RAnking models with Diverse
relevAnce signals mined from search logs by data augmen-
tation techniques. Such an approach helps our pre-trained
model stably capture accurate relevance features across di-
verse query forms and tail intentions, leading to improved
generalization and overall performance. Concretely, to tackle
the challenge of query form diversity, we propose exploratory
augmentation strategies to uncover potential relevance signals
within existing queries and documents. They involve exploring
similar-intent queries and expanding positive training pairs
by considering clicked documents of a query as augmented
positive documents for other similar queries. We devise two
exploratory strategies from different perspectives. From a local
view, users typically issue a series of queries from multiple
aspects to fulfill complex search intents, forming search ses-
sions [18, 19, 20]. Thus, we identify queries that frequently
appear within the same session as similar-intent queries. From
a global view, different users with the same search intents may
issue diverse queries across different sessions. These queries
often exhibit similar graph structures in the click-graph, e.g.,
overlapping click documents. Therefore, we introduce the
global click-graph and examine similar queries based on graph
similarities. By considering similar-intent queries from local
and global perspectives, we can uncover potential relevance
signals and augment the training data accordingly. As shown
in Figure 1, Q1 frequently appears in the same session as Q4,
and has similar graph-structure to Q3. Thus, they are both
potentially relevant to Q1’s clicked document, D1, and are
favorable for providing more diverse relevance patterns. As
for query intention diversity, since tail intents rarely appear in
search logs, making it difficult to explore similar queries or
documents, a rewriter-based generative augmentation strategy
is devised to expand related pre-training samples.1 We use a
query rewrite model to take long-tail query-document click
pairs as inputs and generate queries with the same search
intent. An example is provided in Figure 1, where Q5 is
the rewritten query of the Q2. Pairing generated queries and
original clicked documents allows for the augmentation of
training data related to varied tail intents.

Additionally, considering the quality difference between
positive documents, including clicked and augmented ones, we
further assign multi-grade pseudo-relevance labels for these
documents. The labels are determined by click frequencies
and query similarities. With a multi-level pair-wise rank-
ing loss function, we can prioritize more reliable relevant
pairs while mitigating the impact of noisy samples on our
model’s performance. Furthermore, since generated queries
have no candidate sets with click or non-click signals, pair-
wise ranking loss functions are inapplicable to them. Thus,
we design a contrastive learning optimization approach. It
aligns the embeddings of original pairs and augmented pairs,
and distinguishes the embeddings of positive and negative

1Note that the reason we denote the prior two strategies as “exploratory
strategies” is that they focus on discovering similar-intent queries from
collected large-scale search logs, which provide real user intents, to build
augmentation training examples for high-frequency clicked query-document
pairs. However, for long-tail query-document pairs, it is hard to apply these
exploratory strategies due to limited similar intents among search logs. Thus,
we apply the generative strategy to expand the corresponding training data.

pairs. This method enables the model to capture accurate and
consistent relevance features for same-intent input pairs.

We experiment with large-scale public and commercial
search logs. Experimental results show that PRADA signif-
icantly outperforms existing pre-trained ranking models.

In summary, our main contributions are three-fold:
(1) We develop exploratory data augmentation to dig suf-

ficient and diverse relevance patterns within search logs,
enhancing the robustness of pre-trained models across diverse
query forms.

(2) We devise generative data augmentation to create pre-
training samples for varied tail intentions, improving the
performance of pre-trained models on long-tail distributed
search intents.

(3) We employ a multi-level ranking objective and a con-
trastive learning approach to ensure the model captures reliable
relevance features for various kinds of par-training samples.

The rest of the paper is arranged as follows: We first
introduce related works in Section II. Then, our framework
is described in Section III. Next, we demonstrate our ex-
perimental settings, implement details and result analyses in
Section IV. Finally, the paper is concluded in Section VI.

II. RELATED WORK

A. Pre-trained Language Models

Recently, pre-trained language models (PLMs) have per-
formed outstandingly in various NLP areas. These models
usually use vast collections of web documents to acquire
language modeling skills through unsupervised learning tasks.
One popular PLM, BERT [2], employs Masked Language
Model (MLM) and Next Sentence Prediction (NSP) tasks
to pre-train a transformer encoder-based language model. It
has provided superior language encoding ability for various
downstream tasks [19, 20, 21, 22, 23, 24, 25, 26]. Some
studies [3, 27, 28] also devised alternative pre-training tasks at
both the word-level, e.g., Permutation Language Modeling [27]
and Token Deletion [3], and the sentence-level, such as Sen-
tence Order Prediction [28] and Sentence Permutation [3].
More recently, large language models (LLMs) [6, 29] have
performed impressively in the NLP field, using huge model
parameters to preserve extensive world knowledge. However,
tremendous model parameters also impose expensive time and
economic costs on the deep application of LLMs to other tasks.
Thus, we focus on the comparison between PLMS, while the
study of LLMs will be discussed in future work.

B. Pre-trained Ranking Models

The goal of language models is to understand and generate
texts while ranking models aim to accurately learn relevance
patterns and rank search results. Such a difference limits
the effectiveness of directly fine-tuning pre-trained language
models for ranking tasks. Consequently, it is necessary to
pre-train ranking models specifically for IR tasks. To achieve
this, some studies [7, 30] proposed extracting relevant sen-
tence pairs from Wikipedia pages. For example, the Body
First Selection task [7] views a random sentence from the
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first section of a Wikipedia page as the query and the re-
maining contents as the document to build relevant query
document pairs. To improve the quality of these pairs, re-
searchers [8, 9, 10] suggested building pre-training pairs by
generating queries directly from documents using language
models. Ma et al. [8, 10] identified the positive and negative
queries according to their generative probabilities, and Chen
et al. [9] further incorporated IR axioms to regularize the pri-
ority among generated queries. Beyond the document content,
some methods, e.g., HARP [11] LOUVRE [12], and Web-
former [13], also utilize the hyperlink or HTML structures to
construct pre-training data and tasks. S2phere [31] attempts to
leverage open-source learning-to-rank (LTR) datasets to build
data sources for pre-training high-quality ranking models.
Additionally, a recent study [32] also focuses on pre-training
legal search models to solve the ranking task for in-domain
scenarios. Considering that search logs can naturally provide
massive real search queries, web documents, and click in-
formation, recent studies [14, 15, 33] have introduced large-
scale search logs to build pre-training samples using click
relationships. Liu et al. [33] and Zou et al. [14] employed
search logs to pre-train two-tower and cross-attention ranking
models separately, where the latter further fine-tuned a denoise
model to refine click signals. PSLOG [15] samples multi-
hop relationships from click-graph to mine out broader query-
document pairs.

However, existing search log-based pre-training rank models
typically create relevant pairs from single [14, 33] or multi-
hop [15] click relationships, overlooking the diversity of intent
expressions and long-tail search intents. Therefore, in this pa-
per, we adopt data augmentation strategies to discover various
potential relevance patterns beyond click relationships. This
approach aims to improve the generalization of pre-trained
ranking models across diverse intent expressions and various
long-tail intents, thereby enhancing their overall performance.

C. Query Augmentation Methods
The development of LLMs has significantly facilitated the

query augmentation technique, which lightly expands training
examples for information retrieval models. This approach
increases both the volume and diversity of data more efficiently
than human annotation and has received increasing attention
in recent years. Considering the difficulty of collecting real
user queries, some studies [34, 35, 36, 37, 38] leverage
zero- or few-shot demonstrations to prompt LLMs to directly
generate relevant queries based on given documents. It
effectively augments the training query-document pairs for
retrieval models. Singh et al. [39] view the generation
probability of queries by LLMs, given a document, as their
relevance labels, thereby simulating the relevance annotator
to expand training examples. Different from the above studies
that directly generate pseudo queries or relevance labels
according to documents, our method emphasizes the creation
of diverse patterns for the same query intents, using a
real relevant query-document pair. Such an approach further
ensures the reliability and authenticity of our generated
queries while discovering diverse query formats, leading to
facilitated ranking quality of our pre-trained ranking models.

III. METHOD

Existing studies have demonstrated the superiority of pre-
trained ranking models over directly fine-tuning pre-trained
language models for ranking tasks, particularly when using
pre-training samples derived from real search logs. However,
solely using click relationships is insufficient to cover the
diverse and long-tail relevance patterns hidden in search logs.
To address this challenge, our method adopts advanced data
augmentations to uncover rich relevance signals from search
logs beyond click relationships, thereby enhancing the robust-
ness and effectiveness of pre-trained ranking models.

A. Overview

We present an overview of PRADA in Figure 2. The middle
part demonstrates the augmentation strategies. First, from the
local view, we discover similar-intent queries by identifying
query pairs that frequently occur in the same session. Such
a strategy is called session-based augmentation (SEA). From
the global view, queries with similar graph structures also
share search intent, albeit expressed in different ways. Then,
the clicked documents of these similar queries could be utilized
to augment each other. We call this approach graph-based
augmentation (GEA). After data expansion, we assign multi-
grade pseudo-relevance labels to positive documents under all
queries. With the multi-level pair-wise ranking loss, we can
emphasize documents that are more likely to be relevant to
queries and weaken the impact of noisy ones. Additionally,
massive documents are tail documents that are rarely searched
by users, and their click signals are very sparse. In this case,
we employ a query rewriter to generate new queries with
similar intents and expand training samples for these long-tail
documents and queries. This method is called rewriter-based
generation augmentation, i.e., REGA. We then use contrastive
learning to capture robust and accurate relevance features from
these samples. Our model is trained by aggregating the above
multi-level ranking loss, the contrastive learning loss, and the
original MLM loss.

B. Preliminaries

Before introducing our method, we first provide important
symbol definitions. The search logs are composed of massive
queries issued over some time and documents displayed to
users. Considering the same query may be repeatedly issued
at different timestamps, accumulating click signals at different
timestamps is beneficial to recognizing reliable or noisy rele-
vance signals. Therefore, we first aggregate the search logs
based on queries. Specifically, for a recorded query q, we
merge all its exposed documents to formulate its candidate
document set, which is denoted as D(q). Each document
in the candidate set has the associated click frequency, i.e.,
cf(q, d) ∈ [0,+∞),∀d ∈ D(q). We regard clicked documents
as positive documents and unclicked documents as negative
ones, which are referred to by d+ and d− respectively, to
construct the basic pre-training samples.
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Fig. 2: The architecture of PRADA. Note that the left part exhibits the process of assigning multi-grade pseudo-relevance
labels, which are used to compute the multi-level pair-wise ranking loss. Due to the limited space, we do not visualize the
calculation process of the ranking loss.

C. Data Augmentation Strategies

Considering the diverse query forms of similar search
intents and massive tail query intents, there are various uncov-
ered relevance patterns in extensive search logs beyond one- or
multi-hop clicks. To tackle this issue, we design the following
three augmentation strategies: (1) session-based exploratory
augmentation (SEA), (2) graph-based exploratory augmenta-
tion (GEA), and (3) rewriter-based generative augmentation
(REGA) to sufficiently investigate possible relevance signals
within search logs.

1) Session-based Exploratory Augmentation: With the
growth of users’ information needs, their search intents are
becoming increasingly complex and challenging to satisfy
with a single query. Therefore, users prefer to yield a series
of queries that cover the various aspects of their complex
intents, which constitute search sessions [19, 20, 40]. As a
result, we can observe that queries frequently co-appearing
in sessions usually share similar search intents. This observa-
tion implies that among these similar queries, the documents
clicked under one query may also be relevant to another one
to some extent, thereby yielding more sufficient and diverse
positive pre-training pairs. Specifically, we first count the co-
session frequencies of all query pairs and normalize them as
similarities between query pairs, i.e.,

w(qj |qi) =
sf(qi, qj)∑

qk∈S(qi)
sf(qi, qk)

. (1)

w(qj |qi) denotes the similarity of the query qj with the
query qi, sf(qi, qj) represents the co-session frequency of two
queries, and S(qi) is the set of queries that have appeared
in the same session with qi. Then, we regard the clicked
document, d+j of qj that has not been clicked under qi as the
pseudo-relevant document of qi. The pseudo-relevance degree
can be measured as follows:

rdSEA(d+j , qi) = w(qj |qi) · cf(qj , d+j ). (2)

cf(·, ·) is the click frequency, and the superscript “SEA”
indicates that the pseudo-relevance degree is computed by the
SEA strategy.

To ensure the quality of augmented positive documents,
we filter the top-k augmented documents for the query qi
according to the above pseudo-relevance degree. We denote the
query qi’s augmented documents based on the SEA approach
with DSEA(qi). These documents will be further assigned
multi-grade pseudo-relevance labels, which will be introduced
in Section III-D.

2) Graph-based Exploratory Augmentation: Apart from
the local perspective of sessions, different users may issue
different queries when searching for the same information.
These similar queries typically come from different sessions.
Consequently, to excavate such similar queries, we propose
leveraging the global view of the click graph that is constructed
from the whole search logs. We believe that two queries with
similar search intents often exhibit similar graph structures,
e.g., sharing similar co-clicked documents. According to this
clue, we optimize a graph neural network based on the click
graph using the GraphSage algorithm [41]. Subsequently, we
identify similar queries based on the embedding similarities
of their corresponding nodes in the graph.

w(qj |qi) = GEmb(qi)
T ·GEmb(qj), (3)

where GEmb(·) denotes the graph embedding of the node.
Since graph nodes are queries and documents, we initialize
graph node embeddings by their text embeddings from a BERT
model. This operation can integrate the semantic matching and
graph structure matching capabilities simultaneously.

Similar to Equation (2), we calculate the pseudo-relevance
degree between the qj’s clicked documents, d+j and qi, i.e.,
rdGEA(d+j , qi). By selecting the top-k documents based on
pseudo-relevance degrees, we acquire the qi’s augmented posi-
tive document set of the GEA method, denoted with DGEA(qi)

3) Rewriter-based Generative Augmentation: The above
ways simulate situations where the same search intent leads
to different queries. These search intents are typically pop-
ular and produce various related queries from many users.
However, it is hard to explore this kind of similar queries
for various tail intents because they are niche and rarely
appear in search logs. To tackle this issue, we adopt a query
rewrite model to generate supplementary queries with the same
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intents for long-tail query-document pairs.2 This can enrich the
training data related to long-tail intents, and finally improve
the generalization of our ranking model on them.
• Query generation for long-tail query-document pairs.

Given the entire click-graph, we simply select click query-
document pairs (q, d) where both the degree of query and
document, and the click frequency are lower than a threshold
k as long-tail intents. k can be empirically decided considering
the time range and data scale of the log. We then leverage a
query rewrite model, QRW(·), which is fine-tuned from a T5
model to generate additional queries for (q, d). The target of
the rewriter is to generate an equivalent query q̂ that shares
the same intent as the original query q and is relevant to the
clicked document d. The generated query q̂ and the clicked
document d form a new positive training sample.
• Training of query rewriter. Consequently, frequently co-

clicked query pairs and their same clicked documents can
be naturally used to build training samples for optimizing
the query rewriter. Specifically, we create a piece of data
(qa, qb, d) if qa and qb contain the same clicked document
d in the log. The co-click sample is reserved only if the click
frequencies of both queries on d are higher than 3 to reduce
noise. Furthermore, since the navigational queries [42, 43]
usually target specific websites without complex search in-
tents, these queries are useless for us to capture users’ diverse
intent representations. Following previous studies [42, 43], we
simply regard the queries whose click entropy is lower than
1 as navigational queries and remove them. We then use both
“prompt(qa, d) → qb” and “prompt(qb, d) → qa” as training
sequences to fine-tune the T5 model. The prompt content
is shown in Section IV-C. In the generation stage, we feed
“prompt(q, d) →” to the model and get its output sequence
as the rewrite query q̂.

D. Multi-grade Relevance Label Assignment

Previously, we introduced augmentation strategies to ex-
plore rich relevance signals beyond click-through. Further-
more, the reliability of these positive documents is also dif-
ferent, which can be reflected by click frequencies. Under the
same query, documents with fewer click times compared to
other frequently clicked documents should be paid less atten-
tion when pre-training ranking models to avoid the interference
of noisy clicks. Additionally, the scale of click frequency under
different queries may also be different. Some queries are pop-
ular, hence receiving more click signals, while niche queries
usually receive fewer clicks. Thus, we set pseudo-relevance
labels (5-scale from 1 to 5) for these clicked documents to
distinguish their importance under the same query.

Specifically, for a query q, we first order its clicked doc-
uments based on click frequencies and acquire their rank
position pos(d|q), which starts at 0.3 Then, the higher-ranked
documents (smaller rank position) are assigned higher pseudo-
relevance labels, rC(d):

rC(d) = max (5− pos(d|q), 1) , ∀d ∈ DC(q), (4)

2Although this generation strategy can also be used for popular intents, we
prioritize it for long-tail intents to control the entire computational costs.

3Two documents with the same click frequencies have the same position.

where DC(q) denotes the clicked document set of q.
In addition to the original clicked documents, i.e., DC, there

are other two types of augmented positive documents from our
SEA and GEA strategies, i.e., DSEA and DGEA. Their pseudo-
relevance degrees calculated by Equation (2) can also be uti-
lized to assign relevance labels. After similar rank-then-assign
steps, i.e., Equation (4), we acquire the pseudo-relevance labels
for these augmented documents, i.e., rSEA(d),∀d ∈ DSEA and
rGEA(d),∀d ∈ DGEA. Furthermore, it is difficult to ensure
the priority among these three types of documents since they
simulate different situations. Therefore, we separately assign
relevance labels inner the same document type and do not
compare the document relevance among different types. These
three types of positive documents share the same negative
document set. To ensure our model’s ability to recognize
simple negative documents, we further introduce some in-
batch negatives for each query. As a result, negative documents
for a query consist of unclicked documents that are not in
augmented sets and in-batch negative documents. We assign
their relevance labels to zero,

rx(d) = 0, ∀d ∈ DN(q), ∀x ∈ [C,SEA,GEA], (5)

DN(q) =
(
DUC(q) ∪ DIN(q)

)
\
(
DSEA(q) ∪ DGEA(q)

)
,

where DUC(q) denotes all unclicked documents that have been
displayed under the query q. It is collected by the search
engine automatically. DIN(q) represents the in-batch negatives
of the query q. We use DN(q) to represent all negative
documents of q.

E. Pre-training

With pseudo-relevance labels for different types of positive
documents, we can employ a multi-level pair-wise ranking
loss function to capture fine-grained relevance knowledge from
our training samples. Given a query-document pair, (q, d) that
needs to predict relevance score, we formulate the input, I,
following [21, 23],

I =
[
[CLS]; q; [SEP]; d; [SEP]

]
. (6)

Subsequently, we view the output embedding of [CLS],
Emb[CLS], as the relevance features. The predicted score of
this pair, s(d) is produced by applying an MLP layer, f(·) on
the [CLS]’s embedding,

s(d) = f(Emb[CLS]). (7)

• Multi-level pair-wise ranking loss. Given a query q
and its candidates of different relevance grades and types, we
compute the multi-level pair-wise ranking loss as below:

Lrk(q) = LC
rk(q) + LSEA

rk (q) + LGEA
rk (q), (8)

Lx
rk(q) =

∑
rx(d1)>rx(d2)

(
rx(d1)− rx(d2)

)(
s(d2)− s(d1) + γ

)
.

Lrk(q) is the final ranking loss, Lx
rk denotes the ranking

loss for the documents of type x, and the hyperparameter
γ is the margin of hinge loss. This function enables the
model to produce higher scores for more reliable positive
documents than noisy positive documents, hence alleviating
the interference of noisy clicks.
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TABLE I: Overall comparison of all models on the public dataset. We keep the four significant numbers to show the results.
The symbol ‡ indicates that our model outperforms all baselines significantly in a paired t-test at the p < 0.01 level (with
Bonferroni correction). The best results are highlighted in bold.

Models Public Dataset

NDCG@1 NDCG@3 NDCG@5 NDCG@10 PNR

Traditional
IR models

BM25 0.4666 0.4828 0.4942 0.5186 2.107
K-NRM 0.4760 0.4910 0.5023 0.5252 2.116

Pre-trained language models BERT 0.5328 0.5435 0.5534 0.5745 2.826

Pre-trained
ranking models

PROP 0.5350 0.5462 0.5559 0.5780 2.851
BPROP 0.5341 0.5438 0.5544 0.5751 2.925

PRE 0.5515 0.5637 0.5731 0.5940 3.173
PSLOG 0.5547 0.5640 0.5735 0.5940 3.132
PRADA 0.5884‡ 0.5951‡ 0.6034‡ 0.6229‡ 3.647‡

• Contrastive learning for generated samples. The queries
generated from the query rewriter do not have candidate
sets and are not suitable for using pair-wise ranking loss
functions. To capture accurate and fine-grained relevance from
generated training samples, we employ a contrastive learning
method. Given a long-tail query-document pair (q, d+) and
their generated query q̂, since the two input samples, (q, d+)
and (q̂, d+), contain the same search intent, we view them as a
positive pair, hoping to maximize the similarity between their
relevance features. The negative samples are built by pairing
the original query with its negative documents. Consequently,
the contrastive learning loss is calculated as below (E() is an
abbreviation of Emb()):

Lcl = −
ϕ(E[CLS](q, d

+),E[CLS](q̂, d
+))∑

d−∈DN(q) ϕ(E[CLS](q, d+),E[CLS](q, d−))
. (9)

ϕ(·) denotes the similarity function, here we use dot similarity
to implement it.

• The final loss. To ensure the semantic modeling capability
of our pre-trained model, we also use the masked language
model (MLM) objective to optimize it [8, 15]. Consequently,
the final loss function of our pre-training process can be
formulated as follows:

L = λ1Lrk + λ2Lcl + λ3LMLM , (10)

where λi denotes the weights of different loss functions.

F. Ranking Model Fine-tuning

We fine-tune our model by a pairwise ranking loss function,

Lft(q) =
∑

r(d1)>r(d2)

(
r(d1)− r(d2)

)(
s(d2)− s(d1) + γ

)
. (11)

Note that for the fine-tuning data, r(d) is the human-annotated
relevance label of the document d under the query q.

IV. EXPERIMENT

A. Dataset and Evaluation Metrics

1) Datasets: Public dataset. The Baidu-ULTR dataset [44]
is a publicly available pre-training dataset that is collected
from the large-scale Baidu search engine. It is composed of

a pre-training dataset and a fine-tuning dataset. (1) The pre-
training dataset covers 383,429,526 issued queries sampled
from the search logs of Baidu in April 2022. Each query
has the documents displayed to the user as its candidate
documents. 98.9% of issued queries contain no more than
10 displayed documents. Text features of documents consist
of titles and abstracts. For the protection of user privacy,
all text contents, including query texts, titles, and abstracts,
are anonymized and represented by token IDs. The dataset
provides no session information or issued timestamps, and
it only has an aggregated reformulated query list for each
unique query. Therefore, we directly view queries and their
reformulated queries as co-session query pairs. (2) The fine-
tuning dataset is also collected from search logs, which is
similar to the pre-training dataset. It includes 7,008 queries,
where 90% of queries have more than 50 candidate documents.
Each query and document pair is annotated with a 5-scale (0-4)
relevance label by expert annotators. To facilitate the analysis
of long-tail queries, the dataset splits these queries into ten
buckets based on search frequencies. The 0 bucket means
the highest frequency and the 10 bucket means the lowest
frequency. Considering the limited amount of the Baidu-
ULTR fine-tuning dataset, we adopt 5-fold cross-validation
rather than splitting training, validation, and test datasets when
experimenting with it.

Commercial Settings. To validate the usability of our
method in a real product setting, we further experiment with
data from a commercial search engine. The pre-training dataset
was sampled from the search logs in February 2023 and it
contains 626,763,255 queries. Similarly, we record the docu-
ments displayed to users as the queries’ candidate documents
and their click information. Thus, each piece of the search log
contains the issued query text, its candidate documents with
titles and abstracts, the click-through of candidate documents,
and the session ID of this search record. We leverage a large
commercial ranking dataset containing more than 88K queries
with 5-scale expert-annotated relevance labels as our fine-
tuning dataset. Specifically, we split the training, validation,
and test sets in an 8:1:1 ratio, and filter out duplicate queries
between them to avoid data leakage.

The statistical information of pre-training and fine-tuning
datasets of both datasets is presented in Table III and Table IV.
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TABLE II: Overall comparison of all models on the commercial dataset.

Models Commercial Dataset

NDCG@1 NDCG@3 NDCG@5 NDCG@10 PNR

Traditional
IR models

BM25 0.5941 0.6237 0.6560 0.7244 1.476
K-NRM 0.5982 0.6287 0.6580 0.7253 1.526

Pre-trained language models
BERT 0.6578 0.6805 0.7048 0.7603 2.012
ERNIE 0.6741 0.6944 0.7174 0.7701 2.174

ERNIE-3.0 0.6744 0.6951 0.7191 0.7715 2.194

Pre-trained
ranking models

PROP 0.6741 0.6897 0.7145 0.7681 2.210
BPROP 0.6711 0.6929 0.7157 0.7687 2.218

PRE 0.6941 0.7136 0.7335 0.7831 2.497
PSLOG 0.7010 0.7199 0.7406 0.7887 2.629
PRADA 0.7150‡ 0.7294‡ 0.7500‡ 0.7948‡ 2.743‡

TABLE III: The statistical information of pre-training datasets.

Item Public Commercial

# Query 383,429,526 626,763,255
# Document 1,287,710,306 3,232,513,622
# Candidate per query 13.05 17.82
# Click Candidate per query 2.35 2.53

TABLE IV: The statistical information of fine-tuning datasets.
# Rel(Q-D)=l denotes the number of query document pairs
with relevance label = l.

Item Public
Dataset

Commercial Dataset

Train Valid Test

# Query 7,008 73,411 7,901 7,270
# Document 381,599 1,631,002 79,173 84,215
# Rel(Q-D)=0 219,305 635,637 32,637 30,088
# Rel(Q-D)=1 36,622 150,632 5,302 8,834
# Rel(Q-D)=2 112,759 117,294 1,663 6,427
# Rel(Q-D)=3 28,172 461,204 27,544 19,021
# Rel(Q-D)=4 714 439,687 13,403 20,352

2) Evaluation metrics.: We leverage pair-wise and list-
wise metrics to assess ranking performance comprehensively.
The Positive-Negative Ratio (PNR) [14] is a commonly used
pair-wise ranking metric. It measures the ratio of consistent
document pairs (where the predicted scores align with the
relevance labels) to inconsistent pairs. For list-wise evaluation,
since all our fine-tuning datasets record 5-scale relevance
labels, we select the NDCG@K metric, which considers
both ranking position and relevance scale. Concretely, we
set K = 1, 3, 5, 10 to evaluate different top results. All
NDCG values are calculated by TREC’s official evaluation
tool (trec eval) [45].

B. Baselines

To validate the effectiveness of our proposed model, we
select three types of baselines, including traditional IR models,
pre-trained language models, and pre-trained ranking models.

(1) Traditional IR models. BM25 [46] is the most widely
used unsupervised IR model. K-NRM [47] is a widely-used
ad-hoc ranking model that uses Gaussian kernels to learn

relevance features from word-level matching maps between
queries and documents.

(2) Pre-trained language models. BERT [2], a widely used
PLM that is pre-trained via MLM and NSP tasks. ERNIE [48]
leverages knowledge graph to pre-train model and provides
promising performance in various NLP tasks. ERNIE 3.0 [49]
is the latest public version of ERNIE that introduces more pa-
rameters with a continual multi-paradigm unified pre-training
framework to achieve better performance. The base versions of
these PLMs have comparable model structures and sizes with
our pre-trained model, hence facilitating a fair comparison.

(3) Pre-trained ranking models. PROP [8] and
BPROP [10] adopt statistical and pre-trained language mod-
els to generate relevant queries from documents, hence pre-
training ranking models. 4 We further chose two recent
search-log-based pre-trained ranking models as our baselines.
Pyramid-ERNIE [14] (PRE for short) uses a denoise model
to recognize the relevance levels of click signals and pre-train
ranking models based on search logs. PSLOG [15] samples
first- and second-order query-document pairs from the click
graph to pre-train ranking models.

To ensure the fairness of our comparison, we set the same
model structures and parameter amounts for all pre-trained
models following the BERT-base model. Furthermore, since
data augmentation steps can be viewed as the pre-processing
of training data construction, the computational cost of these
steps will not impact the training and inference efficiency
of our applied ranking model, which is comparable with all
baselines due to the same model structures.

C. Implementation Details

1) Data Augmentation: We first demonstrate detailed oper-
ations for our three data augmentation strategies. (1) For the
SEA strategy, we filter out the query pairs with co-session
frequencies lower than 2 and select up to ten augmented
positive documents for each query. (2) For the GEA strat-
egy, considering the huge amount of graph nodes, we select
PGLbox [50], a GPU-based hyper-scale graph model training

4Some methods [9, 11, 13] also generate queries from documents beyond
text contents, while they are inapplicable to the anonymized public dataset.
Given our focus on pre-training ranking models via search logs, we select
these two representative baselines.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3515800

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Renmin University. Downloaded on January 23,2025 at 02:40:29 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

engine, to optimize the GraphSage model. Specifically, the
learning rate is 0.05, the batch size is 32, the max step is
400,000, the number of sampled neighbors is 5, and the opti-
mizer is Adam [51]. Embeddings of graph nodes are initialized
from the BERT-small model where the embedding size is
128. When augmenting pre-training samples, we consider the
query pairs with graph similarities surpassing 0.95 as valid
similar queries and augment at most ten positive documents
for each query. (3) For the REGA strategy, we randomly
select 100M co-click query-document samples and split them
into training, validation, and test sets by 6:2:2 ratio. The
content of the prompt is “Issued query: {#query}; the title
of its clicked document: {#title}; the abstract of the clicked
document:{#abstract}, rewrite the query to express a similar
search intent that matches this document:”. Then, we fine-
tune a T5-base model by 1e-3 learning rate, 24 batch size,
and 5 epochs. The optimizer is Adam [51]. Note that for the
public dataset without available pre-trained T5 models, the
T5 model parameters are then initialized. Since the count of
long-tail queries is massive, to trade-off the effectiveness and
efficiency, we set k1 = k2 = k3 = 1 to select long-tail q-d
click pairs that are the most niche and generate one rewritten
query for each pair. Finally, the amounts of original clicked q-
d pairs and augmented q-d pairs from SEA, GEA, and REGA
strategies are 500M, 10M, 30M, and 60M respectively. For the
commercial dataset, the amounts are 800M, 20M, 24M, and
100M respectively.

2) Pre-training Stage: Following previous studies [2, 8, 10,
15], we base transformer-encoder structures to build our pre-
trained ranking model. Concretely, the number of transformer
layers and multi-head is 12, the embedding size is 786, and the
feed-forward hidden size is 3072. For a fair comparison, our
model and baselines belonging to pre-trained ranking models
are pre-trained from scratch based on their own pre-training
ranking samples rather than continuing training based on some
pre-trained language models. For models that need to be pre-
trained, we use the same pre-training settings. Specifically, the
maximum learning rate is 1e-4 with 1000 warmup steps and
linearly decay during optimization, the max step is 200,000,
the batch size is 1600, and the optimizer is Adam [51].
The margin, γ, of the pair-wise ranking loss function, Lrk,
is set as 0.1. Our preliminary studies uncover that the loss
scales of our three pre-training optimization objections are
different. To balance their contribution for the final loss
function, we set their weights as λ1 = 1, λ2 = 0.1, λ3 = 1,
which can ensure the scales of these three loss functions
are on the same magnitude order. Note that because the
public dataset is anonymized and has no available pre-trained
language models, we pre-train the BERT model based on
the document corpus from scratch when experimenting on
the public dataset. Since we cannot identify punctuations,
for the NSP task, we randomly select start and endpoints to
sample sentences. However, ERNIE models are pre-trained
from knowledge-driven tasks, which is hard to complement in
the anonymized dataset. Therefore there are no corresponding
experiment results in the public dataset.

3) Fine-tuning Stage: After pre-training, we further fine-
tune pre-trained models and baselines on the two datasets to

TABLE V: Ablation results of PRADA on the public dataset.
“N” is short for “NDCG”.

Models Public Dataset

N@1 N@3 N@5 N@10 PNR

PRADA 0.5884 0.5951 0.6034 0.6229 3.647

w/o SEA 0.5806 0.5906 0.5996 0.6201 3.609
w/o GEA 0.5693 0.5842 0.5929 0.6153 3.575
w/o REGA 0.5818 0.5903 0.5986 0.6184 3.572
w/o MLoss 0.5732 0.5845 0.5936 0.6138 3.504
w/o IB 0.5787 0.5912 0.5991 0.6193 3.537

compare their ranking performance. We also adopt the same
optimization settings for all models to ensure fair comparison.
For the public dataset, we leverage 5-fold cross-validation
to acquire reliable results due to its limited fine-tuning data
amount. We set the learning rate as 1e-5, which linearly decays
during fine-tuning, the max step as 8,000, and the batch size as
256. We also utilize the Adam algorithm to optimize models.
For the commercial dataset, the learning rate is set as 1e-5
with linear decay, the max step is 8,000, the batch size is 1024
and the optimizer is Adam. The margin, γ, is set as 0.3. For
the K-NRM model, we set the kernel number as 11 following
existing studies [15], and set the learning rate as 1e-3 since
it is not the pre-trained model. (Return to the main paper,
Section IV-D.) Our code will be released upon the acceptance
of the paper.
• Analysis of time consumption. The computational

cost of our methods mainly comes from two sources, i.e.,
construction of pre-training instances and pre-training of the
ranking model. To reduce the time consumption for each
data augmentation strategy, we utilize some high-efficiency
toolkits to implement them. As we have shown before, for
SEA, we employ the SQL server to organize complex session
relationships in our large-scale search logs and use SQL
statements to quickly retrieve co-session queries, thereby
building augmented relevant q-d pairs. For GEA, we adopt
PGLbox [50] to implement the GraphSage algorithm on
massive graph nodes, efficiently improving the optimization
speed. The query rewrite model of the REGA method
is initialized by a T5-based [52] model, which requires
few computational costs for training and inference. The
assumption of data augmentation strategies’ time consumption
is less than 24 hours. Therefore, the time cost is led by model
pre-training, whose time consumption is directly proportional
to the pre-training q-d pairs. According to our implementation,
the augmented pre-training pairs are around 20% of the
original pairs. Thus, the time consumption is also improved
by around 20%.

D. Overall Results

We provide the overall results of baselines on the two
datasets in Table I and Table II. From the comparison between
our model and baselines, we derive the following analysis.

(1) Compared with all baselines, our model PRADA
demonstrates the best ranking performance. We observe
that our model outperforms the existing models significantly
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Fig. 3: The experimental results of test subsets with different search frequencies.

TABLE VI: Ablation results of PRADA on the commercial
dataset.

Models Commercial Dataset

N@1 N@3 N@5 N@10 PNR

PRADA 0.7150 0.7294 0.7500 0.7948 2.743

w/o SEA 0.7067 0.7238 0.7445 0.7910 2.642
w/o GEA 0.7101 0.7263 0.7462 0.7929 2.677
w/o REGA 0.7089 0.7229 0.7447 0.7910 2.618
w/o MLoss 0.7090 0.7251 0.7446 0.7915 2.660
w/o IB 0.7085 0.7234 0.7449 0.7917 2.694

with the t-test in p< 0.01 level, especially for the pre-trained
ranking models. This result proves the assumption that there
are various relevance patterns underlying search logs, hence,
simply regarding click relationships as relevance signals is not
enough to mine sufficiently diverse relevance patterns. Our
method leveraging three types of data augmentation strategies
from different perspectives is able to discover or create more
general and diverse relevance patterns underlying search logs.
Thus, our pre-trained models can robustly learn accurate
relevance signals across varied search scenarios.

(2) Compared with pre-trained language models, pre-
trained ranking models provide higher-quality ranking
results. It is obvious that pre-trained ranking models, e.g.,
PSLOG and PRADA, outperforms pre-trained language mod-
els, e.g., Bert and ERNIE, in general. It is consistent with
our expectations since the data format of pre-trained language
models is usually pure texts rather than the ranking data
format, i.e., query and document pairs. Moreover, their pre-
training objectives are not specific to IR tasks. Such different
data distributions and learning tasks pose challenges to gener-
alizing PLMs to ranking tasks. This phenomenon confirms the
importance of pre-training models specific to ranking tasks.

(3) We notice that the performance improvement on the
commercial dataset is limited compared to the public dataset.
This could be attributed to the fact that the commercial fine-
tuning dataset contains more documents with high-relevance
labels than the public fine-tuning dataset. This phenomenon
can be found in Table IV. Such a data distribution requires
ranking models to differentiate the relevance grades among
documents with high-relevance labels, which is more difficult
than distinguishing simple negative samples. Nevertheless,
our model still surpasses all baselines significantly in the
commercial dataset, which further verifies the ranking and

generalization abilities of our proposed method.

E. Ablation Study

To test the effects of our modules respectively, we further
conduct the following ablation studies and provide correspond-
ing analyses. The experimental results are shown in Table V
and Table VI.

(1) Ablation of augmentation strategies. To verify the
importance of our data augmentation strategies, we conduct
corresponding ablation studies that remove one of them sep-
arately, leading to three model variants, namely, w/o SEA,
w/o GEA, and w/o REGA. We observe that dropping each
augmentation strategy will hurt the model performance on both
datasets. These results further prove that the expressions and
distribution of user intents are diverse across the web. There-
fore, click signals in search logs only cover limited relevance
patterns. Our augmentation strategies specifically devised for
these problems can reveal more diverse relevance signals,
hence improving the ranking performance and generalization
of our model.

(2) Ablation of multi-level ranking loss. Considering the
different reliabilities of clicked and augmented documents,
we assign multi-grade pseudo-relevance labels for positive
documents and leverage the multi-level hinge loss function to
optimize our ranking model. To verify its effectiveness, we use
two-level pseudo-relevance labels, i.e., 0 and 1, to compute the
hinge loss, leading to a variant, w/o MLoss. It is noticeable that
the ranking quality declines significantly. This result proves
that positive signals may also contain noise. Consequently, it
is important to discriminate the different relevance levels of
positive samples that can enable the ranking model to focus
on highly reliable relevance signals.

(3) Ablation of in-batch negatives. Except for unclicked
documents, we also introduce documents under other queries
in the same batch as simple negatives. To test the role of this
operation, we devise a variant, w/o in-batch that abandons IB
negative samples. According to the result shown in Table V
and Table VI, we find that without in-batch negative samples,
the variant performs worse ranking quality than PRADA. The
main reason is that queries’ candidates of our datasets are
the documents displayed to users, these documents all contain
relevance to the issued queries to some extent, referring to hard
negative documents. However, there may also exist some easy
negative samples for ranking models in real ranking scenarios.
Thus, identifying simple negative documents is also important
for models to provide high-quality ranking results.
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TABLE VII: Some cases of our three augmentation strategies. For better understanding, we have translated the content into
English.

Strategy Original Query Similar Query Augmented Positive Document

SEA us news World University Rankings by
subject

us news World University Rank-
ings

The 2023 US News World University Rankings
are out...

GEA How many minutes of egg custard? How many minutes is best to
steam the egg custard

Teach you the correct way to steam egg custard.
Remember these skills, tender smooth...

Strategy Original Query Original Positive Document Rewritten Query

REGA Dementia simple screening score # Alzheimer’s # Teaches you how
to assess FAQ; ## Alzheimer’s
##;...

How is Alzheimer’s assessed

REGA Why cannot the configuration informa-
tion be queried on the server’s official
website

... What is the configuration in-
formation of the server? What is
the ISP server not configured?
Soben’s blog...

Configuration information cannot be queried on
the server

2.5 0.0 2.5 5.0
Query: 168

2

0

2

4 Anchor
Positive
Negative

2 0 2 4
Query: 117

2

0

2

4

Anchor
Positive
Negative

Fig. 4: Visualized embeddings of long-tail input pairs.

F. Effectiveness on Long-tail Queries

To assess the performance of our proposed method on
long-tail queries, we conduct corresponding experiments on
the public dataset, which classifies fine-tuning queries into
ten buckets based on their search frequencies. According
to the original paper [44], buckets 0, 1, and 2 include hot
queries, buckets 3, 4, 5, and 6 contain queries with medium
frequencies, and buckets 7, 8, and 9 include tail queries. We
demonstrate the performance of our model and several strong
baselines on these three subsets in Figure 3 and analyze their
effectiveness across different popularity levels of queries.

To save space, we select NDCG@1 and @3 to demonstrate
the comparison results, the remaining metrics show similar
trends. Based on the results, we find that PSLOG and PRADA
that leverage relevance signals beyond one-hop clicks provide
better performance on unpopular queries, including medium
and tail queries. It proves that relying solely on one-hop click
signals may further limit the generalization and performance
of pre-trained ranking models. Furthermore, PRADA delivers
the best results on all subsets, especially for tail queries. We
believe the main reason is that our augmentations strategies
discover more diverse and long-tail relevance patterns than
pure multi-hop click signals, which benefits the generalization
of our model on various search intents.

G. Case Study

1) Augmented Samples.: To prove the quality of our ex-
panded data, we sample some cases from three augmentation

strategies and present them in Table VII. The first case shows
two frequently co-session queries. It suggests that when users
search for the world university rankings, they may be inter-
ested in both general rankings and subject rankings. Thus, the
corresponding documents are all relevant to these two queries.
The second case illustrates two expressions of the same search
intent, e.g., the cooking time of chicken custard. The positive
documents of one query are potentially relevant to another,
but this relationship cannot be revealed by click signals alone.
The last two samples present two long-tail search intents.
By analyzing the issued query and its clicked document, our
rewrite model can generate another relevant query to search
for the same document, which can expand the training samples
of long-tail intents. For example, when the query is “Dementia
simple screening score” and the user clicks on the document
related to Alzheimer’s, the query rewriter analyzes that the
user’s search intent is the Alzheimer’s assessment. To improve
the query diversity, the query rewriter turns a statement into
a question, and replaces common names with proper nouns
to imitate different question habits of different users, hence
improving the robustness of our ranking model on modeling
user intents.

2) Visualization of Embeddings of Input Pairs.: For the
long-tail query-document clicked pairs (e.g., (q, d)), we lever-
age the query rewrite to generate similar queries (e.g., q̂)
that present the same search intents with original queries, and
also be relevant to clicked documents. We use a contrastive
learning method to align the embeddings of the augmented
positive pair, (q̂, d), with the original positive pair, (q, d),
a.k.a. anchor, while keeping their embeddings away from the
embeddings of negative samples. To prove such ability of our
model, we random sample two queries from the public dataset,
i.e., query 168 and query 117, and visualize the embeddings
of the original positive pair, the generated positive pair, and
the negative pairs by red stars, orange pluses, and blue forks
respectively. The visualization is complemented by PCA [53]
algorithm, which is shown in Figure 4. It is noticeable that
the position of the embedding of the augmented pair (positive
sample) is close to the embedding of the original pair (anchor
sample), which is consistent with our expectation. Since the
augmented pair presents the same search intents as the original
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pair, pulling in their embeddings is able to ensure our model
captures similar relevance features from them, hence grasping
reliable relevance patterns.

V. LIMITATION DISCUSSIONS

Our extensive experiments have proven the effectiveness of
our proposed pre-training method for enhancing the ranking
models. However, there are still some limitations that can be
further promoted in the future.

First, due to limited available data resources, our main
experiments are conducted on the single language (Chinese)
search logs without considering multilingual scenarios. In the
future, we plan to explore the effectiveness of our method
across different language search logs further to verify its
robustness. Second, in this paper, we still limit the model
size to about the same as BERT to confirm the validity of
our strategies. In the future, we expect to explore how to
introduce larger models with sufficient world knowledge to
benefit pre-trained ranking models.

VI. CONCLUSION

IN this paper, we analyze that using click relationships alone
to pre-train ranking models may limit the performance

of pre-trained ranking models across diverse query forms
and long-tail distributed search intents. According to existing
problems, we propose a pre-trained method for ad-hoc ranking,
namely PRADA. It leverages three augmentation strategies
to diversify and expand the available relevance signals of
our pre-trained ranking model. In addition, we assign multi-
grade pseudo-relevance signals for positive documents and
adopt the multi-level hinge loss function to distinguish the
different reliability of relevance signals. Contrastive learning
is further utilized to learn accurate relevance features from
generated training samples. We conduct our experiments on
both public and commercial large-scale search logs. The
experimental results verify the effectiveness and generalization
of our model, especially for long-tail intents.
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