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Abstract
Retrieval-augmented generation (RAG) has effectively mitigated

the hallucination problem of large language models (LLMs). How-

ever, the difficulty of aligning the retriever with the LLMs’ diverse

knowledge preferences inevitably poses a challenge in developing

a reliable RAG system. To address this issue, we propose DPA-

RAG, a universal framework designed to align diverse knowledge

preferences within RAG systems. Specifically, we initially intro-

duce a preference knowledge construction pipeline and incorporate

five novel query augmentation strategies to alleviate preference

data scarcity. Based on preference data, DPA-RAG accomplishes

both external and internal preference alignment: 1) It jointly inte-

grates pairwise, pointwise, and contrastive preference alignment

abilities into the reranker, achieving external preference alignment

among RAG components. 2) It further introduces a pre-aligned

stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs

to implicitly capture knowledge aligned with their reasoning pref-

erences, achieving LLMs’ internal alignment. Experimental results

across four knowledge-intensive QA datasets demonstrate that

DPA-RAG outperforms all baselines and seamlessly integrates both

black-box and open-sourced LLM readers. Further qualitative anal-

ysis and discussions provide empirical guidance for achieving reli-

able RAG systems. Our code and example dataset are available at

https://github.com/dongguanting/DPA-RAG.
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1 Introduction
The emergence of large language models (LLMs) [1, 64, 66, 99, 100]

has profoundly revolutionized a variety of real-world tasks ex-

pressed in natural languages [6, 49, 52, 95, 106]. However, when

faced with knowledge-intensive tasks, relying solely on internal

knowledge for reasoning may easily expose LLMs to factual in-

consistency and hallucination [111]. To alleviate these issues, re-

searchers use retrieval-augmented technology [18, 36] to assist

LLMs in integrating relevant knowledge from the web (such as

Wikipedia [89]) or other external knowledge bases, providing a

promising solution to improve the quality of generated answers [71].

In an ideal retrieval-augmented generation (RAG) system, the

goal is to enhance LLMs by incorporating supporting documents

that align with their intrinsic knowledge preferences, thus facili-

tating reasoning. However, in practical applications, the retriever

and the LLM-based reader serve as separate components within

the RAG system, each with distinct model architectures, training

objectives, and task formats [39]. These differences often result in

documents retrieved by vector similarity failing to meet the spe-

cific knowledge demands for LLM reasoning. Moreover, retrieved

documents could even conflict with the self-knowledge of LLMs,

potentially disrupting LLMs’ original reasoning abilities [11, 69].

As depicted in Figure 1, we perform a preliminary analysis on

GPT-3.5 on three QA benchmarks, which compares two setups: LLM

answering questions directly and answering questions by referenc-

ing different types of retrieved documents. We could categorize

results into four distinct conditions: (1) Both Correct: the question
can be resolved directly by the LLM or through the retrieved docu-

ments. (2) Aligned Knowledge: LLM gives the wrong answer, but

the retrieved documents guide LLM to provide the right solution.

(3) Unaligned Knowledge: LLM gives the right answer, but the

retrieved documents may mislead it. (4) Both Incorrect: neither
the retrieved documents nor the LLM can provide an answer cor-

rectly. Then we have the following observations: in the scenario of

aligned knowledge, it is notable that documents with low vector
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Figure 1: The results for GPT-3.5 comparing direct responses and answers referencing different retrieved documents (Grounding,
1st, 10th, 50th, 100th) on three QA benchmarks.

similarity (e.g., ranked 100th) still support the LLM in deducing cor-

rect answers. Conversely, within the unaligned knowledge scenario,

several documents with high vector similarities tend to mislead

LLM more than those with lower similarities (e.g., 10th vs 100th).

Surprisingly, even some documents that contain relevant ground-

ing information struggle to align with the LLM’s preferences [34].

These results highlight our statement that “The retrieved documents

do not exactly match the knowledge required for LLM reasoning”.

Therefore, mitigating the preference gap between the LLM and the

retriever emerges as a critical challenge in developing a reliable

RAG system.

To address the above limitation, we propose a Dual Preference
Alignment for Retrieval-Augmented Generation (DPA-RAG), a
universal framework designed to align diverse preference knowl-

edge within RAG systems. DPA-RAG consists of three key com-

ponents: (1) Preference Knowledge Construction: motivated

by our preliminary results in Figure 1, we first extract the specific

knowledge that significantly affects LLMs’ reasoning preferences.

Then we introduce five query augmentation strategies and a quality

filtering process to synthesize high-quality preference knowledge.

(2) Reranker-LLM Alignment: To meet the diverse knowledge

preferences of LLMs, we carefully design multi-grained alignment

tasks for fine-tuning a preference-aligned reranker. Specifically,

we jointly integrate pair-wise, point-wise, and contrastive prefer-

ence alignment abilities into the reranker via multi-task optimiza-

tion [79]. By this means, the reranker could provide the necessary

knowledge for LLM’s inference, achieving external alignment be-

tween the retriever and the LLM. (3) LLM Self-Alignment: To
further enable LLMs to concentrate on knowledge aligned with

their reasoning preferences, we introduce a pre-aligned phrase be-

fore the vanilla SFT stage. This stage allows the LLM to capture

preference-aligned knowledge from multiple documents, complet-

ing the LLM’s internal self-alignment.

To summarize, our contributions are as follows:

• Based on our quantitative analysis of GPT-3.5 across three QA

benchmarks, we reveal the inherent preference gaps between the

retriever and the LLM-based reader in RAG systems.

• We propose DPA-RAG, a universal framework designed to

align the diverse knowledge preferences of LLMs within RAG sys-

tems. DPA-RAG achieves dual preference alignment in two aspects:

(1) It jointly integrates multi-grained preference alignment abilities

into the reranker, facilitating external alignment across RAG com-

ponents. (2) It introduces a pre-aligned phrase prior to the standard

SFT stage, guiding LLMs to concentrate on the aligned knowledge,

thereby unlocking the internal alignment abilities of the LLMs.

• To overcome the scarcity and limited diversity of preference

data, we devise five novel query augmentation strategies and a

quality filtering process, aiming at automatically synthesizing high-

quality preference data for effectively aligning downstream models.

• Experimental results on four knowledge-intensive QA datasets

demonstrate the effectiveness of DPA-RAG. Further analysis across

dimensions such as model parameters, preference alignment, data

quality, and training strategies confirm DPA-RAG’s role as a plug-

and-play solution, providing practical insights for developing reli-

able RAG systems.

2 Related Work
2.1 Preference Alignment for LLMs
Traditional Preference alignment (PA)methodologies [17, 21, 23, 92]

are designed to tailor pre-trained language models to reflect human

preferences. Recently, a series of works have relied on reinforcement

learning (RL) [78] to align LLMs with human preferences [66]. Ow-

ing to the sensitivity of RL’s parameters and the complex process of

reward modeling, research works [14, 44, 46, 47, 60, 82, 97, 105, 112]

represented by DPO [73] further tried to optimize the loss function

and reward scoring mechanism for pruning. However, depend-

ing on annotations from humans or expert models still increases

the alignment cost. To construct reliable RAG systems, a branch

of studies [4, 20, 81] aims to align the retriever with supervision

signals generated by LLMs, showcasing remarkable alignment po-

tential. Conversely, other studies attempt to improve the alignment

abilities of RAG systems by implementing a multi-round retrieval

paradigm [24, 75, 87, 90, 102, 115] and filtering out noise from the

training corpus [26, 35, 40, 93, 94, 109, 110]. These approaches,

however, often suffer from a lack of multi-level alignments, which
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limits their ability to adapt to the diverse knowledge preferences

of LLMs. In our paper, we introduce DPA-RAG, which bridges this

gap without relying on external expert annotations.

2.2 Reranking Techniques for RAG
In the RAG system, the reranker is designed to rank a list of re-

trieved documents to accurately meet LLMs’ demands. A series

of sentence transformer models [25, 31, 63, 74, 98] have achieved

excellent fine-grained ranking by better aligning the representa-

tions between queries and documents. With the rapid development

of prompt learning [45], point-wise generative reranking frame-

works [28, 62, 70, 116] have transformed traditional discriminative

tasks into a Seq2seq paradigm, showcasing promising initial align-

ment abilities. The recent development and application of LLMs

have introduced innovative pair-wise and list-wise rerankers, such

as RankGPT [84], PRP [72], LRL [57] and RankLLaMA [56]. These

models have brought multi-perspectives in addressing the fine-

grained reranking problem. In real scenarios, users’ expressions are

often diverse and biased [7, 8, 15]. In response to the unique prefer-

ences of different users, various methods [41, 58, 68, 76] develope

to achieve personalized user sorting, yielding significant results in

aligning with industrial scenarios. These advancements inspire us

to distill the preferences of LLMs into the reranker, facilitating the

alignment between the RAG system’s components.

3 Methodology
To address the misalignment between different components of

retrieval-augmented generation (RAG) and improve overall genera-

tion performance, we propose the DPA-RAG framework, which is

illustrated in Figure 2. In general, DPA-RAG improves traditional

RAG architecture in twomain aspects: (1) we fine-tune a preference-

aligned reranker between the retriever and the LLM to selectively

filter out knowledge that aligns with LLMs’ knowledge preferences

(§3.3), and (2) we design a self-alignment mechanism that fine-

tunes the LLM to better recognize and utilize knowledge consistent

with its reasoning preferences (§3.4). To acquire the LLM’s prefer-

ence knowledge, we devise a three-step data construction method,

motivated by our preliminary analysis of how different types of

retrieved documents affect RAG performance (§3.2). Below, we will
first introduce the task definition (§3.1) and then delve into the

specifics of our approach.

3.1 Task Definition
Compared to standard text generation, RAG often follows a retrieve-
then-read paradigm [36], where an additional retriever is introduced

to collect external knowledge and enhance the generation process.

This architecture involves constructing a query 𝑞 to reflect the

information needs of the generation. For example, in question-

answering systems, the input question is often used as the query.

Given the query 𝑞, the retriever 𝑅 returns relevant documents from

a corpus 𝐷𝑞 = {𝑑𝑖 }𝑁𝑖=1 with 𝑁 documents. The relevance between

document𝑑 and the query𝑞 can bemeasured by variousmethods. In

this work, we employ a dense retriever that utilizes dual encoders to

obtain hidden representations for both the query and the documents.

The relevance score is then calculated by computing the dot-product

similarity between these representations, enabling the retrieval of

the top-𝑘 documents 𝐷retrieve:

𝐷retrieve = argtop-𝑘
[
𝐸
d
(𝑑𝑖 )⊤ · 𝐸q (𝑞) | 𝑖 = {1 . . . 𝑁 }

]
. (1)

While the retrieved documents are relevant to the query, they may

not necessarily contain the knowledge required by the LLMs. There-

fore, in this study, we introduce a reranker 𝐸𝑟 to rerank 𝐷retrieve

and filter out the documents 𝐷
rerank

, which include only those

documents aligned with the LLMs’ preferences, i.e., 𝐷
rerank

=

𝐸𝑟 (𝑞, 𝐷retrieve). Finally, the LLMs read from the reranked docu-

ments and generate the target text based on the query:

𝑦 = LLM(𝑞, 𝐷
rerank

) = log 𝑃𝜃 (𝑞, 𝐷rerank
), (2)

where 𝑃𝜃 represents the LLM’s generation probability distribution.

Recognizing that LLMs might struggle to effectively utilize re-

trieved knowledge, we also design a self-alignment mechanism to

optimize 𝜃 for RAG tasks.

3.2 Preference Knowledge Construction
To mitigate the misalignment between different RAG components,

a critical step is to collect data that reflects LLMs’ knowledge prefer-

ences. Therefore, we design a three-step method to gradually mine,

augment, and filter out high-quality preference knowledge of LLMs,

which are shown in the Figure 2.

3.2.1 Preference Knowledge Extraction To align with LLMs’ knowl-

edge preferences, it is essential to identify the specific knowledge

that can bring performance gains or harms during the model’s

inference process.

Motivated by the preliminary analysis in Figure 1, given the train-

ing set 𝐷train = {𝑞𝑖 , 𝐷𝑞𝑖 , 𝑦𝑞𝑖 }
𝑁train

𝑖=1
, where each sample includes a

query 𝑞𝑖 , top-𝑘 retrieved documents 𝐷𝑞𝑖 = {𝑑𝑖 }𝑘𝑖=1 and an answer

𝑦𝑞𝑖 . We guide LLMs to directly answer questions or response by ref-

erencing different types of documents, aiming to filter out samples

from 𝐷train that reflects LLMs’ knowledge preferences.

To ensure the distinctiveness among these documents, we hierar-

chically sample four documents from𝐷𝑞𝑖 to construct the document

subset 𝐷sub

𝑞𝑖
= {𝑑𝑖 |𝑖 = 1, 25, 50, 100} for each query, as shown in the

upper part of Figure 2. Consequently, we also categorize the results

of LLMs into “Both Correct”, “Both Incorrect”, “Aligned Knowledge”,
and “Unaligned Knowledge”. From𝐷train, we selectively extract sam-

ples whose document subsets 𝐷sub

𝑞𝑛
contain at least one document

labeled as “Aligned Knowledge” or “Unaligned Knowledge”. This al-
lows us to obtain the preference dataset 𝐷

pref
= {𝑞𝑖, 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
}𝑁
𝑖=1

,

where 𝑌 sub

𝑖
= {𝑦𝑖 |𝑖 = 1, 25, 50, 100} denotes the preference labels of

𝐷sub

𝑞𝑖
, corresponding to the four distinct categories.

The motivation behind this selection process is that documents

labeled as “Aligned Knowledge” or “Unaligned Knowledge” provide
the LLM with a clear positive or negative impact during reasoning.

Due to the difficulty in distinguishing the role of retrieved docu-

ments labeled as “Both Correct” or “Both Incorrect”, we choose to
discard them.

3.2.2 Diverse Query Augmentation After obtaining the dataset

𝐷pref that reflects the preferences of the LLM, we encountered

an issue: data scarcity — 𝐷pref contains only 20% of the data from

𝐷train. This scarcity hinders subsequent fine-tuning and alignment

of the LLM. Furthermore, data sparsity leads to limited patterns,
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Figure 2: The overall framework of DPA-RAG. The upper part shows the pipeline of preference knowledge construction. The
middle part displays the task format of dual preference alignment. The bottom part illustrates our inference process.

which in turn results in insufficient diversity and complexity in the

data [48, 108]. To address these limitations, we draw inspiration

from various augmentation techniques [38, 52, 54, 104, 106] and

propose five query augmentation strategies specifically designed

for the RAG system:
1

• Rephrasing. Rephrase the original query with the same inten-

tion.

• Complexity. Increase the semantic complexity of the original

query.

• Decomposition. Decompose the original query into several sub-

problems.

• Constraint. Add more conditional and constrained statements

to the original query.

• SPARQL. Rewrite the original query based on the SPARQL syn-

tax and generate it directly.

We utilize GPT-3.5-turbo generate different augmneted datasets

{𝐷𝑟𝑖 }𝑛𝑖=1, and then merge them with original dataset 𝐷ori, which

can be formulated as 𝐷ori

pref
= 𝐷ori

pref
∪ (∪𝑛

𝑖=1
𝐷𝑟𝑖 ).

To control the augmented data’s quality, we introduce a quality

filtering procedure by a natural language inference (NLI) model.

Given the original query 𝑞 as the “premise” and the augmented

query 𝑞aug as the “hypothesis”, the NLI model seeks to determine

the semantic relationship between the two queries. The relation can

1
Detailed information on the different augmentation strategies can be found in Ap-

pendix C.2

be categorized as entailment, contradiction, or neutral, as follows:

𝑝𝜃 (· | 𝑞, 𝑞aug) = softmax

(
score𝜃 (𝑞, 𝑞aug)

)
, (3)

where score𝜃 : R𝑘×ℓ𝑞 ×R𝑘×ℓ𝑞𝑎𝑢𝑔 → R3
is a scoring function depen-

dent on the model’s parameters 𝜃 . To maintain intent consistency

between the original and augmented datasets, we exclude any aug-

mented data labeled as “contradiction” (approximately 20%).

3.3 Reranker-LLM Alignment
After obtaining 𝐷

pref
, we introduce multi-grained preference align-

ment tasks to jointly fine-tune a reranker, aiming to filter retrieved

knowledge that aligns with LLM preferences.

3.3.1 Point-wise Preference Alignment Distinguishing beneficial

or harmful knowledge of LLMs is essential for aligning their p

references. Hence, from each sample {𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
} ∼ 𝐷

pref
, we

can further extract one sub-sample {𝑞𝑖 , 𝑑𝑖 , 𝑦𝑖 } where𝑦𝑖 is labeled as
“Aligned Knowledge” or “Unaligned Knowledge”. As shown in Figure

2, we use {𝑞𝑖 , 𝑑𝑖 , 𝑦𝑖 }𝑁𝑖=1 to fine-tune the Reranker model 𝐸𝑟 (𝜃 ) with
binary cross-entropy loss [80], achieving a point-wise preference

alignment:

Lpoint = −
1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log (𝑝𝜃 (𝑞𝑖 , 𝑑𝑖 )) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝜃 (𝑞𝑖 , 𝑑𝑖 ))] ,

where 𝑦𝑖 is label (Postive / Negative) for judging the 𝑑𝑖 is aligned

or unaligned knowledge.
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3.3.2 Pair-wise Preference Alignment Since point-wise alignment

empowers the reranker to identify LLM’s favored knowledge, en-

hancing the reranker to prioritize this preferred knowledge presents

a new challenge. Therefore, we propose a pair-wise preference rank-

ing task for fine-grained alignment. In detail, given {𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑦sub
𝑖
} ∼

𝐷
pref

, we derive an order {𝑜𝑖 }𝐾𝑖=1 of the documents subset 𝐷sub

𝑞𝑖
=

{𝑑𝑖 }𝐾𝑖=1 based on the initial similarity scores from the retriever.

Our idea is elegantly simple: we leverage the LLM within the

RAG system as a preference reward model 𝑟𝜃 to score documents,

eliminating the need for external experts. To mitigate bias from

relying solely on LLM-generated preference scores [117], we cal-

culate the preference score 𝑠𝑖 for each query by weighting both

the LLM preference score 𝑟𝜃 and the original similarity score 𝑠𝑅 (·)
from the retriever:

𝑠𝑖 = 𝑎 · 𝑟𝜃 (𝑞, 𝑑𝑖 ) + (1 − 𝑎) · 𝑠𝑅 (𝑞, 𝑑𝑖 ), (4)

where 𝑠𝑖 denotes the preference score of the 𝑖-th retrieved document.

We then sort the documents according to these preference scores to

obtain the LLM’s knowledge preference order {𝑜𝑖 }𝐾𝑖=1. Subsequently,
we integrate the preference order into the reranker using RLHF

loss [66, 83]:

Lpair = −
1

𝐶2

𝑘

E(𝑞,𝑑𝑤 ,𝑑𝑙 ,𝑦𝑤 ,𝑦𝑙 )∼𝐷pref

[log (𝜎 (𝑝𝜃 (𝑞, 𝑑𝑤 , 𝑦𝑤) − 𝑝𝜃 (𝑞, 𝑑𝑙 , 𝑦𝑙 )))],
(5)

where 𝑦𝑤 and 𝑦𝑙 represent the labels for documents 𝑑𝑤 and 𝑑𝑙 ,

corresponding to “winner” or “loser” in the preference order {𝑜𝑖 }𝐾𝑖=1.
𝑝𝜃 denotes the logits of the output.

2

3.3.3 Contrastive Preference Alignment To align query representa-

tions with the LLM’s preferred knowledge, we employ contrastive

learning [88] to fine-tune our reranker, thereby preventing the LLM

from being misled by highly similar but unaligned knowledge. Un-

like previous pairwise approaches [73], our𝐷pref dataset associates

each query with multiple documents, rather than a single positive

or negative example. Considering this one-to-N scenario, we em-

ploy Supervised Contrastive Learning (SCL) [32] to fully leverage

𝐷
pref

. In our task, the query serves as an anchor point ℎ𝑞 . Aligned

documents are treated as positive samples ℎ𝑝 , while documents

randomly sampled from other instances in the batch act as negative

samples ℎ𝑛 . As shown in Figure 2, SCL seeks to reduce the distance

of queries and positive samples ℎ𝑝 , while increasing the distance

from negative samples ℎ𝑛 in the semantic space. The loss LCPA is

formulated as follows:

LCPA = −
𝑁𝑡∑︁
𝑖=1

1

𝑁𝑦𝑖 − 1

𝑁𝑡∑︁
𝑗=1

1𝑖≠𝑗1𝑦𝑖=𝑦 𝑗 log
exp(ℎ𝑞 · ℎ𝑝/𝜏)∑𝑁𝑡

𝑘=1
1𝑖≠𝑘 exp(ℎ𝑞 · ℎ𝑛/𝜏)

,

where𝑁𝑡 is the nums of samples in each batch.𝑁𝑦𝑖 denotes samples

in the batch with same label as 𝑦𝑖 . 𝜏 is a temperature parameter. 1
is an indicator.

3.3.4 Multi-task Optimization Optimizing multi-grained prefer-

ence tasks via Multi-task Learning (MTL) [5, 12] offers an efficient

way for fine-tuning the reranker. However, learning tasks jointly

may further introduce potential bias and conflicts [55]. To tackle

2
An in-depth discussion on scoring mechanisms for different LLMs can be found in

Appendix A.2.

this challenge, we employ the MGDA-UB [79], aiming to dynami-

cally find a pareto optimal [42] solution for balancing multi-task

optimization.

By utilizing MGDA-UB to optimize the MTL weights {𝑐𝑡 }𝑇
𝑡=1

for

𝑇 tasks. We finally obtain the multi-grained alignment loss function:

L
total

= 𝑐1Lpoint + 𝑐2Lpair + 𝑐3LCPA . (6)

3.4 LLM Self-Alignment
After initially aligning the preferences between external RAG com-

ponents, in this section, we focus on guiding LLMs to emphasize

aligned knowledge during the reasoning process to achieve internal

alignment. Inspired by several pre-alignment works [43, 91], we in-

troduce a pre-aligned stage to assist LLMs in implicitly identifying

the knowledge crucial for reasoning [26].

Pre-aligned Stage. As illustrated in Figure 2, for each sample

{𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
} ∼ 𝐷

pref
, we randomly select one document 𝑑𝑞 la-

beled “Aligned Knowledge” or “Unaligned Knowledge” from 𝐷sub

𝑞𝑖
,

along with 𝑘 − 1 random documents from the retrieved corpus

𝐷 = {𝑑𝑖 }𝑁𝑖=1. This selection process constructs a top-𝑘 document

set 𝐷
align

= {𝑑𝑞, 𝑑rand1 , . . . , 𝑑rand𝑘−1 } for each query 𝑞. Then we

perform the following training objective with task specific tem-

plate:
3

L (𝜃 ) =
∑︁

(𝑞𝑛,𝐷𝑞 ,𝑦𝑛 ) ∈𝐷pref

log 𝑃𝜃

(
𝑦𝑛 | prompt(𝑞𝑛, 𝐷align

)
)
, (7)

Prompt:

Given the documents {𝐷
align

= (𝑑𝑞, 𝑑rand1 , . . . , 𝑑rand𝑘−1 ) }. An-
swer the following question based on the given information or

your internal knowledge without the source with a few words.

Query: {𝑞}.
[Judgement]: document-{𝑖𝑑𝑞 } is Positive or Negative knowledge
for answering question.

where log 𝑃 (·) denote probability distribution of LLM’s output. 𝜃

denotes model parameters. {𝑖𝑑𝑞 } represents the position of the pref-

erence document. LLMs will implicitly learn the ability to capture

self-preferred knowledge from top-𝑘 documents by distinguishing

𝑦 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒} during the pre-aligned task.

Supervied Fine-tuning Stage. Following the pre-aligned task,

we load pre-trained parameters and perform subsequent Supervised

Fine-tuning (SFT) for QA tasks using the same objective described

in Equation (7). We utilize the traditional QA format training set

𝐷train = {𝑞𝑖 , 𝐷𝑞𝑖 , 𝑦𝑞𝑖 }
𝑁train

𝑖=1
. Moreover, we merge five augmented

datasets {𝐷𝑟𝑖 }5𝑖=1 with𝐷train. Using the preference-aligned reranker

𝐸𝑟 , we reorder the documents and filter out the top-k documents

as described in Equation (8), forming the final training set 𝐷rank

train
=

{𝑞𝑖 , 𝐷rank

𝑞𝑖
, 𝑦𝑞𝑖 }

𝑁train

𝑖=1
of SFT stage.

𝐷rank

𝑞𝑖
= argtop-𝑘

[
𝐸𝑟 (𝑞𝑖 , 𝐷𝑞𝑖 )

]
. (8)

The preference knowledge identification capability developed dur-

ing the pre-aligned stage enables LLMs to focus more effectively

on aligned knowledge during the SFT stage, thereby enhancing

their internal alignment potential. The prompt template for the SFT

stage is as follows:

3
The document 𝑑𝑞 is placed at a random position among 𝑘 documents.
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Table 1: Results of DPA-RAG and different kinds of baselines on four QA benchmarks.

Method Reader NQ Trivia-QA Hotpot-QA WebQSP

Hit@1 F1 Hit@1 F1 Hit@1 F1 Hit@1 F1

Traditional RAG with DPR

RAG [67] GPT-3.5 47.47 47.99 75.04 74.13 26.28 32.84 67.97 63.33

RAG [65] GPT-4 54.04 51.19 79.98 76.85 28.46 33.87 71.30 67.20

RAG [86] LLaMA2-7B 50.94 54.76 63.90 63.80 31.40 38.90 68.52 64.22

RAG [86] LLaMA2-13B 56.60 60.60 70.43 71.32 36.31 45.23 76.39 78.63

RAG [59] LLaMA3-8B 54.81 58.33 69.54 71.21 34.28 42.29 72.82 73.94

RAG [2] Qwen2-7B 52.01 56.13 63.88 66.52 31.39 39.70 75.98 77.82

RAG with DPR & Reranker

RAG+RankGPT [84] LLaMA2-7B 47.81 52.37 59.05 56.39 28.32 37.06 66.32 62.22

RAG+LRL [57] LLaMA2-7B 48.09 53.06 60.33 56.86 29.13 37.81 67.43 63.44

RAG+PRP [72] LLaMA2-7B 51.91 56.17 62.28 57.98 31.90 40.87 68.54 64.08

RAG+RankLLaMA [56] LLaMA2-7B 52.18 56.62 62.34 58.05 32.31 41.39 69.11 65.70

RAG+BGE [98] LLaMA2-7B 52.43 56.92 62.70 57.58 32.53 41.73 70.20 68.80

RAG+BCEmbedding [61] LLaMA2-7B 49.91 53.19 61.93 57.67 31.52 40.59 68.20 65.40

RAG+ColBERTv2 [77] LLaMA2-7B 51.49 56.02 62.34 58.16 31.72 40.79 69.70 66.90

Preference-aligned Methods for RAG

REPLUG [81] GPT-3.5 49.67 50.58 75.67 75.34 27.30 34.30 69.59 66.22

RA-Judgement [75] GPT-3.5 48.52 50.18 76.21 76.58 26.50 32.81 66.07 68.32

KnowPAT [110] LLaMA2-7B 51.42 54.82 63.20 65.20 29.00 37.40 68.73 65.31

RRHF [107] LLaMA2-7B 50.11 52.01 62.50 60.20 28.16 35.40 66.90 63.10

RAFT [109] LLaMA2-7B 50.24 53.86 60.10 57.40 30.20 35.80 - -

FILCO [93] LLaMA2-7B 52.71 55.32 67.30 67.80 32.70 40.80 69.96 68.34

Our Method: DPA-RAG

DPA-RAG GPT-3.5 51.60 (+4.13) 52.80 (+4.81) 78.65 (+3.61) 77.05 (+2.92) 28.42 (+2.14) 36.12 (+3.28) 71.80 (+3.83) 69.20 (+5.87)

DPA-RAG GPT-4 56.45 (+2.41) 53.28 (+2.09) 84.41 (+4.43) 80.08 (+3.23) 33.79 (+5.33) 37.67 (+3.80) 73.12 (+1.82) 74.83 (+7.63)

DPA-RAG LLaMA2-7B 56.03 (+5.09) 60.19 (+5.43) 70.16 (+6.26) 70.29 (+6.49) 35.23 (+3.83) 43.34 (+4.44) 72.40 (+3.88) 71.80 (+7.58)

DPA-RAG LLaMA2-13B 59.19 (+2.59) 62.97 (+2.37) 74.18 (+3.75) 75.53 (+4.31) 41.07 (+4.76) 49.60 (+4.37) 80.28 (+3.89) 81.74 (+3.11)

DPA-RAG LLaMA3-8B 57.43(+2.62) 61.02 (+2.69) 72.04(+2.50) 73.58 (+2.37) 36.01 (+1.73) 44.32 (+2.03) 74.26 (+1.44) 76.11 (+2.17)

DPA-RAG Qwen2-7B 54.66(+2.65) 58.84 (+2.71) 68.58(+4.70) 70.26 (+3.74) 34.56 (+2.87) 42.47 (+2.77) 78.66 (+2.68) 80.53 (+2.71)

Prompt:
Given the documents {Top-K Docs: 𝐷rank

𝑞 }. Answer the follow-
ing question based on the given information or your internal

knowledge without the source with a few words. Query:{𝑞}.

4 Experiments
4.1 Datasets and Metrics
We select four question answering (QA) datasets covering three

types, including (1) Open-DomainQA, represented byNaturalQues-
tions (NQ) [33] and TriviaQA (TQA) [27]; (2) Multi-Hop QA, rep-
resented by HotpotQA (HQA) [101]; and (3) Knowledge Base QA,
represented by WebQuestionsSP (WebQSP) [103]. For evaluation

metrics, we use Hit@1 for the accuracy of the top-ranked response

and F1 score to assess the quality and similarity to the ground-truth.

We also provide a detailed estimation of the training and infer-
ence FLOPs of DPA-RAG compared to baselines in Appendix A.3

and Table 4, validating the efficiency of DPA-RAG. More details of

the experimental setup are listed in Appendix B.

4.2 Overall Results
The experimental results are shown in Table 1. In general, our DPA-

RAG significantly outperforms all baselines across four datasets in

different setups. This highlights the superiority of our approach.

We further have the following observations:

(1) Compared to traditional RAG baselines, DPA-RAG (LLaMA2-

7B) shows a remarkable performance improvement (over 5%) across

all four datasets. More importantly, this improvement is consistent

across variousmodels, including LLaMA2-13B, Qwen2-7B, LLaMA3-

8B, GPT-3.5, and GPT-4. This indicates the broad applicability and

generalizability of our method.

(2) For reranker-based methods, we find that smaller rerankers

such as BGE and ColBERTv2 can achieve comparable or even better

performance than LLM-based rerankers. This result validates our

motivation for using BGE as the alignment backbone, as it combines

efficiency with effectiveness.

(3) Among preference-aligned methods, DPA-RAG outperforms

direct alignment methods (i.e., REPLUG and RA-Judgement), which

rely on logits. This emphasizes the value of implementing multi-

grained alignmentswithin our framework. Surprisingly, Filco, which
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Figure 3: The scaling analysis of different parameter scales for HQA (left) and TQA (right).

Table 2: Ablation studies on NQ and TQA.

NQ TQA

Method Hits@1 F1 Hits@1 F1

Standard RAG 50.94 54.76 63.90 63.80

DPA-RAG 56.03 60.19 70.16 70.29

w/o PA-Rerank 52.80 60.19 66.26 66.39

w/o Pre-Align 54.31 58.95 61.69 61.35

w/o Pre-Align + PA-Rerank 51.91 55.98 58.24 59.30

w/o Query Augmentation 54.81 57.45 61.28 60.93

employs data filtering, shows robust alignment capabilities, con-

firming that unaligned knowledge exists in training corpora. This

observation highlights again the importance of our preference op-

timization at the data level, ensuring that the retrieved and used

knowledge is highly relevant and aligned with the LLM’s needs.

Ablation Study. To explore the roles of different modules in DPA-

RAG. We perform an ablation study and Table 2 shows the results.

We use w/o to indicate the version without a particular module.

We can see: (1) The performance of DPA-RAG declines when any

component is removed, which suggests that all the components are

very effective. (2) Removing the preference aligned reranker (PA-

Rerank.) leads to the largest performance drop, indicating a clear

knowledge preference gap between RAG components and LLMs.

This confirms the benefit of using a preference-aligned reranker

for external alignment. (3) The combined performance gains of

preference aligned reranker and pre-aligned task are lower than

the complete DPA-RAG framework, which implies that integrat-

ing both alignment methods yields a mutually reinforcing effect,

demonstrating the superiority of our dual alignment strategies.

More detailed results can be found in Appendix C.1.

4.3 Quantitative Analysis
4.3.1 Scaling Analysis for Different Model Parameters To inves-

tigate the impact of parameter scale and RAG performance, we

gradually increase the parameters of LLM readers (ranging from

500M to 13B) and evaluate their performance. According to the

results in Figure 3, we have following observations:

(1) Emergence of RAG Capabilities at Lower Parameter
Scales (<7B): We notice a significant improvement in RAG baseline

performance, which sharply rises from 500M to 7B parameters (40%
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Figure 4: The comparison experiment of preference align-
ment on NQ (left) and TQA (right).

F1 score increase), then stabilizes for parameters beyond 7B. A

similar pattern is observed in HQA, indicating a strong correlation

between the emergence of RAG capabilities and model parameters.

This finding presents an interesting parallel to those reported in

LIMA [114], where parameter increases below a certain threshold

significantly boost model capabilities.

(2) Stable Performance Gains with DPA-RAG as Parame-
ters Increase: Compared to the baseline, DPA-RAG delivers stable

improvements as parameter size expands across both datasets, dis-

playing a smoother performance curve.

(3) Greater Benefits from DPA-RAG in Datasets with More
Unalignment: The performance gains from DPA-RAG exhibit in-

teresting variations between TQA and HQA as parameters increase.

In TQA, where the average F1 score is over 60, the model quickly

reaches a high-performance threshold as parameters increase, leav-

ing limited room for further improvements through preference

alignment. Conversely, HQA, characterized by more extensive un-

aligned knowledge and a lower average F1 score (below 50), shows

that the alignment gains provided by DPA-RAG exceed those from

increasing foundational RAG capabilities alone, leading to more

improvement in alignment for RAG.

4.3.2 Effectiveness on Preference Alignment To delve deeper into
the impact of preference alignment, in line with the setup in Sec-

tion 3.2, we conduct a comparative experiment on direct query an-

swering versus referencing top-3 documents. As shown in Figure 4,

DPA-RAG consistently achieve the highest scores in the “Aligned
Knowledge” category across all three datasets, while significantly re-
ducing the “Unaligned Knowledge” category. This demonstrates that

DPA-RAG effectively aligns retrieved knowledge with the LLM’s

inherent preferences. Interestingly, the improvement of DPA-RAG
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Figure 5: The visualization of different data complexity and
diversity.

Table 3: The performance result correlates with complexity
and diversity on NQ.

Aug-Type Complexity Diversity Total NQ

Origin 1.61 0.35 1.96 51.78

Rephras. 1.64 0.39 2.03 52.27

SPARQL 1.77 0.39 2.16 52.95

Constraint 1.72 0.47 2.19 53.75

Decompos. 1.77 0.51 2.28 54.16

Complexity 1.85 0.48 2.33 54.81

in the “Both Correct” category even outperforms that observed in

“Aligned Knowledge”. Given the significant decrease in “Unaligned
Knowledge”, this suggests that DPA-RAG prioritizes addressing the

conflicts present in retrieved documents. This behavior is in line

with our pipeline’s core principle: the preference-aligned reranker

first externally eliminates misaligned knowledge, and the subse-

quent self-alignment stage allows the LLM to more effectively and

implicitly capture information that is aligned with its preferences.

4.3.3 Discussion on Query Augmentations Liu et al. [48] and Lu

et al. [51] highlight the significant impact of dataset complexity and

diversity on model alignment. To investigate how the complexity

and diversity of our augmented queries affect RAG performance, we

randomly select 1,000 samples from each dataset and employ Intag

technology [51] for automated intent annotation. For each dataset,

we measure diversity by calculating
# unique tags

# all samples
and complexity

by
# all tags

# all samples
. Figure 5 visualizes the quality of the augmented

data, showing that our five methods consistently enhance data com-

plexity. Specifically, Complexity and Decomposition markedly boost

both complexity and diversity scores, which also align with the case

studies presented in Table 5. Moreover, we mix the augmented data

with the original training set in actual proportions and calculate

the data quality. Table 3 (left) shows that all five augmentation

strategies enhance the LLM’s performance to different degrees. Sur-

prisingly, when we sum up the two metrics, the overall trend of

performance on NQ increases along with the growth of the total

quality score. This insight further validates that in RAG tasks, the
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Figure 6: The performance of different training strategies on
NQ.

effectiveness of query augmentations is highly correlated with their

complexity and diversity.

4.3.4 Sequential Training vs. Mixed Training In Section 3.4, we

design a knowledge self-alignment task during the pre-aligned

phase and further perform sequential SFT on the QA dataset. An

alternative approach is directly mixing preference data with QA

task data for joint training. Figure 6 illustrates the performance

of these two training strategies across training steps. Compared

to standard QA fine-tuning, we notice that mixing training data

from both tasks leads to a noticeable performance decline and

fluctuations. This result may stem from optimization conflicts in

multi-task training [13]. However, the sequential training after

the pre-aligned phase yields stable performance gains, validating

its efficacy. Similar conclusions have been reported in studies on

reasoning [16, 85, 96].

5 Conclusion
In this paper, we reveal the inherent preference gap among RAG

components and first propose DPA-RAG to align diverse knowl-

edge preferences. Specifically, we gradually extract and filter out

the LLM preferred knowledge from training set, and propose five

high-quality query augmentation strategies to alleviate data spar-

sity issues. Based on preference data, we jointly integrate pair-wise,

point-wise, and contrastive preference alignment abilities into the

reranker, achieving external preference alignment among RAG com-

ponents. Further, we introduce LLM Self-Alignment task to remove

knowledge biases and achieve internal alignment. Experimental

results demonstrate that DPA-RAG outperforms all strong base-

lines across four knowledge-intensive QA datasets. Further analysis

provides practical insights for developing reliable RAG systems.
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A More Details about DPA-RAG
A.1 The Overall AlgorithmWorkflow of

DPA-RAG
In this section, we delve into the overall workflow of the DPA-

RAG algorithm, which can be divided into Reranker Training
Algorithm and LLM-based Generator Training.

Reranker Training Algorithm: Given the train set 𝐷train =

{𝑞𝑖 , 𝐷𝑞𝑖 , 𝑦𝑞𝑖 }
𝑁train

𝑖=1
, we initially perform preference knowledge min-

ing techniques to select, augment and filter the data to construct a

preference-aligned dataset𝐷
pref

. Subsequently, relying on the𝐷
pref

,

we perform multi-grained distillation alignments with MGDA-UB

stategy to better fine-tune a preference-aligned reranker. The de-

tailed process is listed in algorithm diagram 1.

LLM-based Reader Training Algorithm: As shown in algo-

rithm diagram 2, for open-source LLM-based reader, we directly

utilize the preference-aligned reranker to perform preference-based

reranking on retrieved documents in 𝐷train

4
and 𝐷test, resulting in

sorted datasets 𝐷rank

train
and 𝐷rank

test
. In addition, we also construct a

dataset 𝐷PA

train
for the knowledge self-alignment task based on 𝐷

pref
.

Initially, we use 𝐷PA

train
for the pre-aligned task, then we load the

pre-trained model parameters and then conduct vanilla QA super-

vised fine-tuning based on 𝐷rank

train
. During the inference phase, we

input the preference-sorted test set𝐷𝑟𝑎𝑛𝑘
test

into the LLM to complete

the prediction.

For close-source LLM-based reader, the process is more simple:

the preference-aligned reranker is used to sort documents in the

test set𝐷test → 𝐷rank

test
, then we use LLMs for the prediction process.

A.2 Preference Scoring Mechanism for
Different LLMs

In practice, we find that models with fewer than 7B parameters

struggle with instruction-following capabilities, making it difficult

for them to perform the scoring task. To address this, we follow the

RankLLaMA [56] and RePLUG [81], utilizing the output’s logit as

the basis for scoring as follow:

𝑟𝜃 (𝑞, 𝑑𝑖 ) = log P𝜃 ( prompt (𝑞, 𝑑𝑖 )) (9)

𝑠𝑖 = 𝑎 · 𝑟𝜃 (𝑞, 𝑝𝑖 ) + (1 − 𝑎) · 𝑠𝑅 (𝑞, 𝑝𝑖 ) (10)

where 𝑞, 𝑑𝑖 denotes the query and top i-th document. log P(·) rep-
resents the model’s probability distribution. Prompt denotes the

prompt template. 𝑠𝑖 is the final preference score of i-th retrieved doc-

ument. For the hyper-parameter 𝑎, we follow QLM Reranker [117]

and set it to 0.8 without performing any grid search. Next, we rank

them to obtain the preference order {𝑜1, 𝑜2, .., 𝑜𝑛 | 𝑟𝜃 , 𝑠𝑅} according
to {𝑠𝑖 }𝐾𝑖=1.

For the 7B and 13B models, we observe that these models funda-

mentally possess the capability to follow instructions in our pre-

liminary experiments. Therefore, we prompt them to perform pref-

erence scoring from 1 to 5. Then we normalize the preference score

𝑟𝜃 (𝑞, 𝑑𝑖 ) and sum it with the retriever’s similarity score 𝑠𝑅 (𝑞, 𝑑𝑖 ) as
equation 10. Finally, we rank them to obtain the preference order.

As the result in Table 1, for powerful LLMs (such as GPT-3.5 and

GPT-4), we find that pair-wise comparative ranking can achieve a

more precise preference ordering compared to ranking by scoring

each paragraph individually. Therefore, we perform 𝐶2

𝑘
pair-wise

comparisons of knowledge documents as PRP [72] through LLMs

to obtain the preference ordering results.

A.3 Estimating FLOP of Training and Inference
Training Budget.We mainly follow the notations of Scaling Laws

here [29]. For each input sample of length in SFT dataset (NQ, TQ,

HQ, WebQSP), we can split it into 3 parts:

𝑛𝑐𝑡𝑥 = 𝑛𝑄 + 𝑛𝐷𝑜𝑐𝑠 + 𝑛𝑅 (11)

𝐶train ≈ 6𝑁𝑛𝑐𝑡𝑥𝑁𝑠 (12)

where 𝑛𝑄 , 𝑛𝐷𝑜𝑐𝑠 , 𝑛𝑅 denotes the length of query, TopK documents

and answers respectively. 𝑁 ,𝑁𝑠 denotes the non-embedding param-

eters and the numbers of samples, which we refer to Chinchilla

for calculations. In NQ dataset, 𝑛𝑄 ≈ 15, 𝑛𝐷𝑜𝑐𝑠 ≈ 478 and 𝑛𝑅 ≈ 2.

4
The training set 𝐷train consists of the original training set 𝐷𝑜𝑟𝑖

train
and 𝐷aug ∈ 𝐷pref

with five query augmentations.
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Algorithm 1 Reranker Training

1: procedure ConstructPreferenceDataset(𝐷train).

2: 𝐷
pref
← ∅

3: From (𝑞𝑖 , 𝐷𝑞𝑖 , 𝑦𝑞𝑖 ) ∈ 𝐷train, we select the 𝐷sub
= {𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
}𝑁
𝑖=1

.

4: for all {𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
} ∈ 𝐷

sub
do ⊲ Mine Preference Knowledge

5: for all {𝑑𝑖 |𝑖 = 1, 25, 50, 100} ∈ 𝐷sub

𝑞𝑖
do

6: 𝑎LLM ← LLM answer to query 𝑞𝑖
7: 𝑎

docs
← Correct answer from 𝑑𝑖

8: if 𝑎LLM ≠ 𝑦𝑛 and 𝑎
docs

= 𝑦𝑛 then
9: 𝐷

pref
← 𝐷

pref
∪ {(𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
)} ⊲ Aligned Knowledge

10: Continue

11: else if 𝑎LLM = 𝑦𝑛 and 𝑎
docs

≠ 𝑦𝑛 then
12: 𝐷

pref
← 𝐷

pref
∪ {(𝑞𝑖 , 𝐷sub

𝑞𝑖
, 𝑌 sub

𝑖
)} ⊲ Unaligned Knowledge

13: Continue

14: end if
15: end for
16: end for
17: 𝐺𝜃 ← Augmented query generator

18: 𝑅 ← {Complexity, Constraint, SPARQL, Decomposition, Rephrasing}
19: for all 𝑅𝑖 in 𝑅 do
20: for all (𝑞𝑖 , 𝐷𝑞𝑖 ) ∈ 𝐷pref

do
21: 𝑞aug,𝑖 ← 𝐺𝜃 (𝑅𝑖 , 𝑞𝑖 , 𝐷𝑞𝑖 )
22: 𝐷𝑟𝑖 ← 𝐷𝑟𝑖 ∪ {(𝑞aug,𝑖 , 𝐷𝑞𝑖 , 𝑦𝑞𝑖 )}
23: end for
24: 𝐷

pref
← 𝐷

pref
∪
(
∪𝑛
𝑖=1

𝐷𝑟𝑖

)
25: end for
26: 𝑝Θ ← NLI model for quality filtering

27: for all augmented query 𝑞aug in 𝐷
pref

do
28: 𝑠𝑐𝑜𝑟𝑒𝜃 ← 𝑝Θ (𝑞, 𝑞aug)
29: if 𝑠𝑐𝑜𝑟𝑒𝜃 is not “entailment” then
30: 𝐷

pref
← 𝐷

pref
\ {(𝑞aug, 𝐷𝑞𝑖 , 𝑦𝑞𝑖 )}

31: end if
32: end for
33: return 𝐷

pref

34: end procedure
35: procedure MultiGrainedDistillationAlignment(𝐷

pref
)

36: Initialize model parameters 𝜃𝑠ℎ, 𝜃1, . . . , 𝜃𝑇

37: repeat
38: Compute losses LCPD, LFPR, LSCA

39: procedure MGDA-UB(𝜃𝑠ℎ, 𝜃1, . . . , 𝜃𝑇 , 𝑐𝑡 )

40: Z← ∑𝑇
𝑡=1 𝑐

𝑡∇𝜃𝑠ℎ ˆL𝑡 (𝜃𝑠ℎ, 𝜃𝑡 )
41: Optimize MTL weights 𝛼𝑡 for Pareto optimal solution

42: L← ∑𝑇
𝑡=1 𝑐

𝑡 ˆL𝑡 (𝜃𝑠ℎ, 𝜃𝑡 )
43: return L
44: end procedure
45: Update model parameters 𝜃𝑠ℎ, 𝜃1, . . . , 𝜃𝑇 to minimize L
46: until convergence
47: return Optimized parameters 𝜃𝑠ℎ, 𝜃1, . . . , 𝜃𝑇

48: end procedure
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Algorithm 2 LLM-based Reader Training

1: procedure Pre-Align(𝐷
pref

, 𝑘)

2: for all {𝑞𝑖 , 𝐷pref
, 𝑦𝑞𝑖 } ∈ 𝐷pref

do
3: Select one document from 𝐷

pref

4: Randomly select 𝑘 − 1 documents from 𝐷 = {𝑑𝑖 }𝑁𝑖=1
5: Construct Top-k document set 𝐷

align
= {𝑑

pref
, 𝑑

rand1
, . . . , 𝑑

rand𝑘−1 }
6: Initialize prompt with the selected documents and query

7: end for
8: Fine-tune the LLMs with the objective L (𝜃 ) = ∑

(𝑞𝑖 ,𝐷align,𝑦𝑞𝑖 ) ∈D
log P𝜃

(
𝑦𝑞𝑖 |𝑝𝑟𝑜𝑚𝑝𝑡 (𝑞𝑖 , 𝐷align

)
)

9: end procedure
10: procedure Supervised Fine-Tuning(D, Pre-Aligned Parameters)

11: Load pre-warmed parameters from PreAligned stage

12: Merge augmented dataset as 𝐷train = 𝐷train ∪ (∪𝑛𝑖=1𝐷𝑟𝑖 )
13: for all {𝑞𝑖 , 𝐷𝑞𝑖 , 𝑦𝑞𝑖 } ∈ 𝐷train do
14: 𝐷rank

𝑞𝑖
← Top-K [ Reranker(𝑞𝑖 , 𝐷𝑞𝑖 ) ]

15: 𝐷rank

train
← {(𝑞𝑖 , 𝐷rank

𝑞𝑖
, 𝑦𝑞𝑖 )}

16: end for
17: Perform supervised fine-tuning

18: end procedure

Methods Reranker/Filter Model Reader Total Training FLOPs Training Hours Inference Process

Standard RAG - Llama2 (7B) 2.49 × 10
17

(1) 0.8 (1) LLM (1)

DPA-RAG BGE (125M) Llama2 (7B) 3.48 × 10
17

(2) 1.1 (2) Reranker (BGE) + LLM (2)

RAG+BGE BGE (125M) Llama2 (7B) 2.49 × 10
17

(1) 0.8 (1) Reranker (BGE) + LLM (2)

RAG+RankLlama Llama2 (7B) Llama2 (7B) 1.9 × 10
18

(5) 7.6 (5) Reranker (Llama2) + LLM (4)

KnowPAT - Llama2 (7B) 5.0 × 10
17

(4) 2 (4) LLM (1)

FILCO FlanT5 (3B) Llama2 (7B) 3.55 × 10
17

(3) 1.2 (3) Filter model (FlanT5) + LLM (3)

Table 4: The statistics of Model Types, FLOPs, GPU hours and Inference Process. The numbers in parentheses represent the
ranking of resource consumption from lowest to highest.

Therefore, We estimate the FLOPs and GPU times on NQ dataset

in Table 1 of Rebuttal PDF.

Inference Budget. Due to the presence of KV cache computa-

tions, it is quite difficult to accurately derive the inference FLOPs

of different models. Therefore, we quantified the inference steps

required by various baselines, which allowed us to roughly rank

their inference costs.

Analysis. Following the steps outlined above, we carefully cal-

culate the data size, training FLOPs, training time, and inference

costs of different methods in Table 4.

(1) In terms of training budgets, we outperform the KnowPAT,

FILCO, and RAG+RankLlamamethods, particularly when compared

to reranker-based and preference alignment baselines.

(2) For inference, our performance is comparable to the classic

RAG+bge reranker-based baseline and significantly exceeds that of

other baselines.

These results indicate that the resource expenditure of our dual

alignment method is reasonable and does not lead to significant

additional resource consumption.

B More Details on Experiment Setup
B.1 Datasets
In this section, we report the detailed information of our 4 datasets,

includingNaturalQuestions (NQ), TriviaQA (TQA), HotpotQA (HQA),

WebQuestionsSP (WebQSP). Table ?? illustrates the statistics of

them.

Natural Questions (NQ) [33] dataset, with its approximately

300,000 real Google searches and corresponding answers from

Wikipedia, annotated for detailed context and brief replies, is cru-

cial for developing question-answering systems, enhancing AI’s

comprehension of natural language.

TriviaQA (TQA) [27] serves as a benchmark for QA models,

with its extensive set of over 650,000 question-answer pairs sourced

from quizzes and trivia competitions. Each question is linked to sup-

porting documents, presenting a challenge for systems to extract

correct information from various subjects, which in turn evaluates

their information gathering and language comprehension capabili-

ties.
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HotpotQA (HQA) [101] dataset comprises 113,000 questions ne-

cessitating answers through multi-step logic. It pushes the envelope

in AI development by demanding linkage of several documents for

inferencing comprehensive answers, aiming to improve AI abilities

in complex understanding far exceeding simple fact extraction.

WebQuestionsSP (WebQSP) [103] dataset consists of more

than 4,700 Google Suggest-derived questions, each associated with

a query in SPARQL format that retrieves answers from the Freebase.

It is specifically crafted for refining QA systems’ semantic parsing

skills and their ability to transform natural language into formal

database queries, thereby pushing the boundaries of AI in process-

ing and understanding intricate queries from real-life scenarios.

B.2 Prompt Templates
In the vanilla SFT stage, we follow the template of the RA-Judgement

as follow [75]:

Prompt Template of SFT Stage

Given the documents {Top-K Documents}. Answer the fol-

lowing question based on the given information or your

internal knowledge with one or few words without the

source. Query: {Query}.

For the pre-aligned stage, our prompt template is almost aligned

with the SFT stage’s template. The only difference is that we add an

additional judgment statement that allows the LLMs to distinguish

whether the influence of the preference document 𝑑𝑞 on answering

questions is positive or negative, thereby implicitly learning the

ability to distinguish between aligned knowledge and unaligned

knowledge. The prompt template is displayed as follow:

Prompt Template of Pre-aligned Stage

Given the documents {𝐷
align

= (𝑑𝑞, 𝑑rand1 , . . . , 𝑑rand𝑘−1 )}.
Answer the following question based on the given informa-

tion or your internal knowledge with few words without

the source. Query: {𝑞}.
[Judgement] document-{𝑖𝑑𝑞 } is Positive or Negative

knowledge for answering question.

where 𝑑𝑞 denotes the preference document that influences the

LLM’s reasoning results for query 𝑞. {𝑑
rand1

, . . . , 𝑑
rand𝑘−1 } denotes

𝑘−1 random documents from the retrieved corpus𝐷
align

. Moreover,

𝑖𝑑𝑞 denotes the order of 𝑑𝑞 in 𝐷
align

.

For data augmentation process, motivated by the data augmenta-

tion process of several works [10, 37, 38, 52, 54, 104, 106], we employ

gpt-3.5-turbo-0613APIs with a temperature of 1.0. Then we spe-

cially design a augmentation prompt for RAG as follow:

Query Augmentation Prompt

You are an AI assistant helping me rewrite the query. I will

give you the original query, reference document, title and

rewriting requirements. Please rewrite the query based on

the following information:

Original Query: {Query}
Reference Documents: {Top-K Documents}

Title: {Title}
Augmentation Requirements: {Augmneted Require-

ments}

New Queries:

B.3 Implementation Details
Here, we report our detailed information of DPA-RAG, as a retriever-

reranker-reader architecture:

For retriever, following the previous works [9, 53], we utilize

Dense Document Retriever (DPR) [30] for encoding documents and

questions respectively. After that, we use it retrieves the top 100

relevant Wikipedia documents [89] according to the dot-product

similarity.

For reranker, we use the BGE [98] as our backbone model. Specif-

ically, we adjust our batch size to 16. We fine-tune our reranker

for 10 epochs and set the learning rate to 1e-5. We utilize the BGE

reranker to order the top 100 retrieved documents to obtain the

top-3 results.
5
.

For the QA fine-tuning setting, we employ the AdamW opti-

mizer [50] to train our LLMs for 3 epochs. Moreover, we set our

training batch size to 128. We use eight A100 80g GPUs to fine-tune

all models with top-3 documents. Our learning rate is set as 7e-5

with a 3% warmup process. For all experiments, we conduct them

using the LLaMA Factory framework [113] with model’s default

system prompts. We use the version 0.6.3
6
for training LLaMA2,

Mistral, Qwen1.5 and Phi2. In addition, we use the version 0.8.1
7

for Qwen2 and LLaMA3. We report the average performance from

five experiments, each with a different random seed.

To facilitate the reproduction of our results, all datasets and

evaluation benchmarks used in our experiments have been open-

sourced and their detailed sources are indicated. We promise to

open-source our code after the blind review process.

B.4 Baselines
We mainly compare DPA-RAG with multiple strong baselines by

using reranker-based methods and preference aligned methods for

RAG as follow:

Reranker-based Baselines:
• RankGPT [84] leverages listwise prompting and utilizes specific

distillation method to replicate the document reranking abilities

of GPT-3.5 within a smaller ranking model.

• LRL [57] is a model that utilizes GPT-3.5 as a zero-shot reranker

for listwise ranking, which directly generates a ranking list of

candidate documents.

• PRP [72], Pairwise Ranking Prompting, which involves submit-

ting a query alongside a pair of documents into the prompt,

enabling large language models to perform ranking tasks.

5
we use mDeberta as our filtering model, which can be downloaded at https://

huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7

6
https://github.com/hiyouga/LLaMA-Factory/releases/tag/v0.6.3

7
https://github.com/hiyouga/LLaMA-Factory/releases/tag/v0.8.1

https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
https://github.com/hiyouga/LLaMA-Factory/releases/tag/v0.6.3
https://github.com/hiyouga/LLaMA-Factory/releases/tag/v0.8.1
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• RankLLaMA [56], based on LLaMA, is trained as a pointwise

reranker. This approach involves passing both query and docu-

ment together to the model. RankLLaMA generates a similarity

score reflecting the document’s relevance to the query.

• BGE [98] is a general Embedding Model developed by BAAI. The

reranker use the cross-encoder structure to do full-attention on

the input pair.

• BCEmbedding [61], Bilingual and Crosslingual Embedding

in English and Chinese, developed by NetEase Youdao. Their

Reranker is particularly proficient at refining search results and

improving ranking tasks.

• ColBERTv2 [77], a model employs a combination of denoised

supervision and residual compression techniques, utilizing token-

level decomposition during late interaction.

Preference-aligned Baselines:
• KnowPAT [110] is a framework that constructs a knowledge-

able preference set to align model preferences with knowledge.

This framework effectively guides language models to select rel-

evant knowledge for specific inquiries, enhancing their ability

to provide pertinent information.

• REPLUG [81] It is a retrieval-enhanced language modeling

framework that dynamically optimizes the retriever through

the output probability of a black box large language model.

• RA-Judgement [75], which is known as Retrieval-augmented

judgement. In this work, authors explores the knowledge bound-

ary problem of RAG and proposes two experimental settings,

Priori Judgment and Posteriori Judgment. RA-judgment is a dy-

namic improvement method based on Priori Judgment, which

can better capture factual information.

• RRHF [107] is a training paradigm, which aims to align proba-

bilities of model responses with human preferences by a ranking

loss, which can retain the performance of Proximal Policy Opti-

mization (PPO) and is much simpler.

• RAFT [109] boosts a language model’s proficiency in answering

questions within a specific domain by teaching it to disregard

irrelevant documents and reference pertinent segments from

retrieved texts. It enhances the model’s reasoning capabilities

and effectiveness in domain-related tasks while maintaining re-

silience against incorrect retrievals.

• FILCO [93] It is a data selection method based on vocabulary and

information theory to improve the quality of generated answers

provided to the generative model by filtering useful context in

the training data.

Furthermore, We also provide a detailed introduction to the LLM
reader model used by DPA-RAG:

• LLaMA2 [86] is an upgraded version of LLaMA developed by

MetaAI. It utilizes more robust data cleaning and mixing tech-

niques, and up-samples sources closest to factual information,

which can enhance knowledge and reduce hallucinations. Ad-

ditionally, it employs Grouped-Query Attention technology to

lessen reliance on memory.

• LLaMA3 [59], created by MetaAI, the newest version of the

LLaMA series, LLaMA3, includes major enhancements. In con-

trast to LLaMA2, LLaMA3 incorporates a larger training dataset,

extended context length, and an enriched vocabulary, leading to

better performance on a range of tasks. Additionally, LLaMA3

offers notable improvements in contextual comprehension and

language generation, setting it apart from its predecessor.

• Qwen1.5 [3] series, created by Alibaba, comprises language mod-

els with advanced features like SwiGLU activation, attentionQKV

bias, group query attention, and a combination of sliding win-

dow and full attention mechanisms. These models boast robust

fundamental abilities, particularly in language comprehension.

• Qwen2 [3], developed by Alibaba, is available in several sizes:

Qwen2-0.5B /1.5B /7B and 72B. This model is trained on data

sources spanning 29 kinds of languages, enabling it to perform

exceptionally well in multilingual tasks. Additionally, Qwen2

exhibits strong capabilities in coding and mathematics. Qwen2-

72B-Instruct is notable for its ability to handle input windows of

up to 128K tokens in length, making it exceptionally well-suited

for processing long texts and tackling complex tasks.

• Mistral [22], a language model boasting 7 billion parameters, is

engineered by Mistral AI for exceptional performance and effi-

ciency. Mistral 7B utilizes Packet Query Attention to accelerate

inference and integrates Sliding Window Attention to efficiently

manage sequences of varying lengths, all while minimizing in-

ference costs.

Phi2 [19], proposed by Microsoft, is a powerful small language

model with 2.7 billion parameters. Despite its relatively modest

size, Phi-2 demonstrates exceptional reasoning and language

comprehension capabilities. At its release, it showcased great

performance among small foundational LLMs. In different bench-

mark tests, model’s performance was comparable to, or even

surpassed, models that are 25 times larger.

• GPT-3.5 and GPT-4 [65], proposed by OpenAI, which are part

of the GPT families that incorporate a multi-step reinforcement

learning from human feedback (RLHF) techniques. the algorithm

not only enhances the models’ instruction-following ability but

also significantly reduces the likelihood of producing harmful

or toxic content. Moreover, GPT-4 introduces support for im-

age inputs and attains human-like performance on a range of

benchmarks.

C More Details about Experimental Results
C.1 Detailed Results for Ablation Studies
Table 6 presents the detailed ablation results of our DPA-RAG across

three key phases, with “w/o” indicating the model’s version without

a particular module. Our findings are as follows:

• DPA-RAG’s result declines when any of its components are re-

moved, further validating the necessity of each part we designed.

• Focusing on the Preference Knowledge Construction stage, we

notice that the QueryAugmentationmethods lead to a substantial

improvement in performance, which is in line with our expecta-

tions. These strategies introduce additional supervision signals

during the training stages of both the Reranker and the Reader,

yielding a joint boost to the DPA-RAG framework. Moreover,

the quality filtering process also brings slight performance gains,

underscoring the importance of maintaining intent consistency

between original and augmented data.
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Table 5: Examples of different methods for generating new queries.

Method Requirement Query

Origin -

What screenwriter with credits for “Evolution” co-wrote a film starring Nicolas Cage

and Téa Leoni?

Rephrasing

Rephrase the original query

with the same intention.

Who is the screenwriter credited for “Evolution” who also co-authored a movie featuring

Nicolas Cage and Téa Leoni?

Decomposition

Decompose the original

query into several

sub-problems.

Sub-problem 1: Identify the screenwriter who has credits for the film “Evolution”.

Sub-problem 2: Determine if the screenwriter from sub-problem 1 has also co-written a

film where Nicolas Cage and Téa Leoni were cast.

SPARQL

Rewrite the original query

based on the SPARQL

syntax and generate it

directly.

SELECT ? s c r e e nw r i t e r WHERE {

? f i lm r d f : type dbo : F i lm .

? f i lm dbo : w r i t e r ? s c r e e nw r i t e r .

? f i lm dbo : s t a r r i n g dbr : N i co l a s_Cage .

? f i lm dbo : s t a r r i n g dbr : Tea_Leoni .

? s c r e e nw r i t e r dbo : f i lm dbr : E vo l u t i on .

? s c r e e nw r i t e r r d f s : l a b e l ``David Weissman ' ' .

}

Constraint

Add more conditional and

constrained statements to

the original query.

Which screenwriter, known for working on the movie “Evolution”, also co-authored a

screenplay for a feature film that includes Nicolas Cage and Téa Leoni in the cast, and

has a history of collaboration with David Diamond?

Complexity

Increase the semantic

complexity of the original

query.

Which scriptwriter, known for his partnership with David Diamond and shared film

credits on “Evolution”, also co-authored a screenplay that featured Nicolas Cage and Téa

Leoni in leading roles, after initially meeting his writing colleague at Akiba Hebrew

Academy and making their screenwriting sale debut with “The Whiz Kid” to 20th

Century Fox?

Table 6: Detailed Ablations of LLaMA2-7B on NQ and TQA.
Point-wise., Pair-wise., CPA denotes Point-wise, Pair-wise
and Contrastive Preference Alignment respectively.

Method NQ TQA

Hits@1 F1 Hits@1 F1

LLaMA2-7B DPA-RAG 56.03 60.19 70.16 70.29

Preference Knowledge Construction

w/o Query Aug. -2.13 -2.31 -2.62 -2.87

w/o Filtering. -0.92 -0.71 -1.39 -1.45

Multi-Grained Distillation Alignment

w/o point-wise. -1.95 -2.12 -2.43 -2.43

w/o pair-wise. -0.98 -0.92 -1.51 -1.74

w/o CPA -1.54 -1.12 -1.84 -2.13

w/o MGDA-UB. -0.52 -0.77 -0.84 -1.10

Knowledge Self-Alignment

w/o Pre-Align. -1.72 -1.76 -2.21 -2.45

LLaMA2-7B RAG 50.94 54.76 63.90 63.80

• In the multi-grained distillation alignment stage, each task in-

dependently provides stable gains in both NQ and TQA. Point-

wise preference alignment, as a fundmental capability for dis-

tinguishing knowledge preferences, brings the largest gains in

aligning LLMs’ preferences. Notably, the MGDA-UB strategy fur-

ther yields stable gains on top of the joint optimization of three

tasks, proving the necessity of introducing multi-task balance

optimization.

• The pre-aligned phase also shows steady performance gains, es-

pecially evident in TQA. In practice, we find that the potential

for internal alignment in TQA is even greater than external, dif-

fering from NQ and HQA. Therefore, this insight also highlights

the necessity of dual alignment to align datasets from different

domains.

C.2 Details about Diverse Query Augmentations
Case Study of Augmented Queries. Table 5 shows some samples

which are generated by gpt-3.5-turbo-0613 APIs in the way of

different augmneted requierment, respectively. We can observe that

the complexity level of the augmented data showcased in the case

is generally consistent with the trend of complexity and diversity

scores presented in Table 3.

Tag Review of Training Data. In section “Discussion on Query

Augmentations”, we initially explore how the performance outcome

is linked to complexity and diversity within the Natural Questions

(NQ) dataset. Following the Instag [51], we also carry out an review

of the intent tags within the training dataset. We randomly selected

10,000 samples from the final Supervised Fine-Tuning (SFT) data

pool, which includes both the original data and 5 sets of augmented

data. Figure 7 displays the most common tags, which predominantly
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Figure 7: The sunburst chart displays all tags, with each seg-
ment representing the first two words of each tag. The size
of each segment is proportional to the tag’s frequency.

pertain to historical information, sports-related data, and entertain-

ment queries. The tags are represented by the initial two words, and

their size is directly proportional to their frequency. We limit our

visualization to only those tags that appear more than 600 times

within our dataset.

C.3 Case Studies for Preference Alignment
To gain a deeper understanding of how DPA-RAG aligns the pref-

erences of large models to knowledge, we conducted a case study

and manual analysis, marking key supporting knowledge and mis-

leading knowledge in the TOP-3 documents with green and red,

respectively.

NQ-Case1

Baseline

Query: Where was the diary of a wimpy kid filmed ?

Reference Documents:
document1:
Title: Diary of a Wimpy Kid: Rodrick Rules (film)

Content: The film was released on March 25, 2011. Talks

of a sequel were announced after the release of the first,

but was not officially announced until May 12, 2010,

announcing that it would be released March 25, 2011.

Filming took place in Vancouver, British Columbia and

New Westminster, British Columbia from August 23 to

October 27, 2010. The mall scene was filmed at Park Royal

Mall in West Vancouver. Director Thor Freudenthal was

replaced by director David Bowers (‘Flushed Away” and

“Astro Boy”). The film’s trailer was shown with “Gulliver’s

Travels” on December 25, 2010. It was later online on

document2:
Title: Diary of a Wimpy Kid: Dog Days (film)

Content: The outdoor pool scenes at the beginning and the

end of the movie were filmed at Steveston Outdoor pool in

Richmond, BC. Filming occurred at the Steveston Outdoor

pool during the beginning of September 2011. The Chinese

Bunkhouse at the Steveston Shipyards in Richmond,

BC was the location of the Wilderness Explorers cabin

for Troop 133. During filming, stars Zachary Gordon

and Robert Capron were seen riding the Corkscrew at

Playland at Vancouver’s fair, the PNE. A poster was leaked

in March 2012. A teaser trailer was attached to “The Three

Stooges”. An advance screening for the film was held on

document3:
Title: Diary of a Wimpy Kid (film series)

Content: The “Diary of a Wimpy Kid” film series was

released on March 25, 2011 and is based on the second

book, “Rodrick Rules” with scenes from “The Last Straw”.

Principal photography began on August 23, 2010, and was

completed on October 27, 2010, with filming taking place

in Vancouver and New Westminster. “Rodrick Rules” was

directed by David Bowers, with Zachary Gordon reprising

his role as Greg Heffley. New main characters include

Holly Hills (Peyton List), Grandpa (Terence Kelly), and

Bill Walter (Fran Kranz). Edward Shearmur composed the

original score for the film. “Diary of a Wimpy Kid: Dog

Days” is the third film in the series.

Output: New Westminster, British Columbia ✕

***************************************************************

DPA-RAG

Query: Where was the diary of a wimpy kid filmed ?

Reference Documents:
document1:
Title: Diary of a Wimpy Kid: Dog Days (film)

Content: Outdoor pool scenes at the beginning and the

end of the movie were filmed at Steveston Outdoor pool in

Richmond, B.C. Filming occurred at the Steveston Outdoor

pool during the beginning of September 2011. The Chinese

Bunkhouse at the Steveston Shipyards in Richmond, B.C.

was the location of the Wilderness Explorers cabin for

Troop 133. During filming, stars Zachary Gordon and

Robert Capron were seen riding the Corkscrew at Playland

at Vancouver’s fair, the P.N.E. A poster was leaked in

March 2012. A teaser trailer was attached to “The Three

Stooges”. An advance screening for the film was held on...

document1:
Title: Diary of a Wimpy Kid: Dog Days (film)

Content: All hang out together at the local pool. Greg
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describes that his summer did not go the way he expected,

but had positive circumstances. This film is the last

movie in the “Diary of a Wimpy Kid” film series to

feature the original cast, as they aged out of their roles as

middle-schoolers. Principal photography began on August

8, 2011, in Vancouver and was completed on October 7,

2011. The location for the country club pool was Eagle

Ridge Outdoor pool in Coquitlam, B.C. Filming at Eagle

Ridge Outdoor pool took place during the end of August

2011. The municipal...

Title: Diary of a Wimpy Kid (film series)

Content: “Diary of a Wimpy Kid” film series. It was

released on March 25, 2011, and is based on the second

book, “Rodrick Rules” with scenes from “The Last Straw”.

Principal photography began on August 23, 2010, and was

completed on October 27, 2010, with filming taking place

in Vancouver and New Westminster. “Rodrick Rules” was

directed by David Bowers, with Zachary Gordon reprising

his role as Greg Heffley. New main characters include

Holly Hills (Peyton List), Grandpa (Terence Kelly), and

Bill Walter (Fran Kranz). Edward Shearmur composes the

original score for the film. “Diary of a Wimpy Kid: Dog

Days” is the third film...

Output: Vancouver ✓

***************************************************************

Analysis: The retrieved documents of the baseline contain

both aligned knowledge and unaligned knowledge, with

the final reasoning being misled by the unaligned

knowledge. DPA-RAG filters out the unaligned knowledge

during the Reranker process, retaining only the aligned

knowledge, leading to successful reasoning in the end.
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