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Abstract
With the advent of large language models (LLMs) and multimodal
large languagemodels (MLLMs), the potential of retrieval-augmented
generation (RAG) has attracted considerable research attention.
However, the absence of a standardized framework for implemen-
tation, coupled with the inherently complex RAG process, makes it
challenging and time-consuming for researchers to compare and
evaluate these approaches in a consistent environment. In response
to this challenge, we develop FlashRAG, an efficient and modular
open-source toolkit designed to assist researchers in reproducing
and comparing existing RAG methods and developing their own al-
gorithms within a unified framework. Our toolkit has implemented
16 advanced RAG methods and gathered and organized 38 bench-
mark datasets. It has various features, including a customizablemod-
ular framework, a rich collection of pre-implemented RAG works,
comprehensive datasets, efficient auxiliary pre-processing scripts,
and extensive and standard evaluation metrics. Our toolkit and re-
sources are available at https://github.com/RUC-NLPIR/FlashRAG.
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1 Introduction
In the era of large language models (LLMs), retrieval-augmented
generation (RAG) [5] has emerged as an effective solution to miti-
gate hallucination issues by leveraging external knowledge bases.
However, with the introduction of a large number of new algo-
rithms and models in recent years, comparing these methods in a
consistent setting has become increasingly challenging.

Existing methods are often not open-source or require specific
configurations for implementation, making adaptation to custom
data and components challenging. Datasets and retrieval corpora
frequently vary, with resources scattered and necessitating signif-
icant pre-processing efforts. Additionally, the inherent complex-
ity of RAG systems—comprising indexing, retrieval, and genera-
tion—often demands extensive technical implementation. While
some RAG toolkits, such as LangChain1 and LlamaIndex2, are
available, they prove to be complex and cumbersome, limiting re-
searchers’ ability to tailor processes to their specific needs. Thus,
there is a clear demand for a unified, research-focused RAG toolkit
to simplify method development and facilitate comparative studies.

To address the aforementioned issues, we introduce FlashRAG,
an open-source library that empowers researchers to reproduce,
benchmark, and innovate within the RAG domain efficiently. This
library offers built-in pipelines for replicating existing work, cus-
tomizable components for crafting tailored RAG workflows, and
streamlined access to organized datasets and corpora to accelerate
research processes. FlashRAG provides a more researcher-friendly
solution compared to existing toolkits. To summarize, the key fea-
tures of our FlashRAG library include:

A comprehensive, customizable, and efficient modular
RAG framework. FlashRAG offers a highly modular setup at
both the component and pipeline levels, featuring 5 core modules
and 16 diverse RAG subcomponents that can be independently
integrated or combined into pipelines. Additionally, we provide 9
standardized RAG processes and auxiliary scripts for tasks such
as downloading and chunking Wikipedia for corpus construction,
building retrieval indexes, and preparing retrieval results, resulting
in an efficient and user-friendly end-to-end RAG framework.

1https://www.langchain.com
2https://www.llamaindex.ai
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Support for multi-modal RAG scenarios. FlashRAG covers a
diverse range of scenarios, encompassing both text-only and multi-
modal modalities in RAG system deployment, providing researchers
with technical support across a variety of application scenarios.

Pre-implemented advanced RAG algorithms and bench-
mark evaluation. FlashRAG provides the most comprehensive
implementation of existing work, featuring 16 advanced RAG al-
gorithms that encompass 4 paradigms, facilitating fair evaluation
under consistent settings and enhancing reproducibility. Addition-
ally, we have gathered 38 commonly used datasets and standardized
their formats while offering a broad set of RAG evaluation metrics.

2 The Toolkit: FlashRAG
FlashRAG is designed for RAG research and has three hierarchical
modules (Figure 1): environment, component, and pipeline. The
environment module offers resources like datasets, hyperparame-
ters, and evaluation metrics. The component module features RAG
components tailored for specific functions, such as retrieval and
generation. The pipeline module integrates these into a full RAG
process. This paper focuses on the component and pipeline modules,
with further details in our library’s documentation.

2.1 Component Module
FlashRAG is organized into five main components, each designed
to function autonomously or within a combined application, en-
hancing both flexibility and specificity in the RAG process.

Judger functions determines whether a query needs retrieval.
Given the limited studies in this domain, we implement a judger
based on SKR [23], which utilizes LLM self-knowledge data to
determine the necessity of retrieval.

Retriever implementations are extensively covered by our toolkit.
For the text-only retrieval, we integrate the Pyserini library [15]
to support sparse retrieval methods like BM25 [19]. For dense re-
trieval, we consider various BERT-based embedding models along
with T5-based models. In the multimodal domain, we deploy the
widely used CLIP family [18] for cross-modal retrieval. We em-
ploy FAISS for efficient vector database operations and integrate
sentence-transformers library to improve the overall adaptability.

Reranker aims at refining the order of retrieved results. FlashRAG
supports many cross-encoder models and facilitates the use of bi-
encoder models for scenarios using embedding models for rerank-
ing. Rerankers can be seamlessly integrated with any retriever
through a decorator, enabling simple and flexible combinations.

Refiner processes input text to optimize it for generation by
reducing token usage and noise. We have implemented three types
of refiners: extractive, abstractive, perplexity-based [8]. Each type
employs different methods to handle retrieved passages, such as
semantic extraction or summarization.

Generator is the final component in the RAG process. We in-
tegrate two advanced LLM acceleration libraries, vLLM [13] and
FastChat [30]. Moreover, we develop inference frameworkds for
both open-source and closed-source MLLMs, leveraging the Hug-
ging Face ecosystem and providing a native interface to the Trans-
formers library [24] to enhance system robustness. This module also
includes encoder-decoder models and supports fusion-in-decoder
technique to improve processing efficiency with retrieved content.

Table 1: Comparison between FlashRAG and other toolkits.

Toolkit
Automatic
Evaluation

Multi
modal

Corpus
Helper

# Provided
Dataset

# Support
Methods

Langchain ✕ ✓ ✓ - 2
LlamaIndex ✓ ✓ ✓ - 2
Haystack [17] ✓ ✕ ✕ - -
FastRAG [6] ✕ ✕ ✕ 2 1
LocalRQA [27] ✓ ✕ ✕ 3 -
AutoRAG [11] ✓ ✕ ✕ 4 2
RAGLab [29] ✓ ✕ ✓ 10 6
FlashRAG (ours) ✓ ✓ ✓ 38 16

2.2 Pipeline Module
To systematically implement the operational logic of various RAG
tasks, we identify four primary types of RAG process flows for
FlashRAG: Sequential, Branching, Conditional, and Loop, based on
an in-depth analysis of RAG-related literature [4].

Sequential Pipeline follows a linear execution flow: “query
→ retriever→ post-retrieval (reranker, refiner)→ generator.” Af-
ter configuring the settings, the library automatically loads the
required components and process logic. FlashRAG supports both
text-only and multimodal modes, providing researchers with more
deployment options.

Branching Pipeline executes multiple paths in parallel for a
single query (often one path per retrieved passage) and merges the
results from all paths to form the final output.

Conditional Pipeline utilizes a judger to direct the query into
different execution paths based on predefined criteria. Queries re-
quiring retrieval follow the standard sequential process, while oth-
ers bypass retrieval and proceed directly to generation. FlashRAG
provides utility functions to split and merge the input dataset based
on the judger’s decisions, ensuring batch processing and enhanced
pipeline efficiency. Additionally, the conditional pipeline supports
integration with various types of pipelines, enabling dynamic exe-
cution based on judger’s results.

Loop Pipeline involves complex interactions between retrieval
and generation processes, often containing multiple cycles of re-
trieval and generation. Compared to the previous ones, this pipeline
is more flexible, and thus can often yield better performance.

2.3 Datasets and Evaluation Metric
2.3.1 Datasets for RAG. We collect and pre-process 38 benchmark
datasets, covering a wide range of RAG scenarios. Each dataset
has been standardized into a unified JSONL format, comprising
four fields per item: ID, question, golden answer, and metadata.
These processed datasets are readily accessible on HuggingFace.
For multimodal datasets, image and text are set as two columns
respectively, and image is directly included in the dataset.

2.3.2 Retrieval Corpus. We use Wikipedia and MS MARCO as our
retrieval corpus.

Wikipedia passages: This collection includes passages from
English Wikipedia. We offer scripts for easy downloading and pre-
processing, as well as chunking functions for custom segmentation,
ensuring compatibility with various Wikipedia versions.
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Figure 1: An overview of FlashRAG.

Table 2: The benchmarking results. Optimize component rep-
resents the primary component optimized by the method.
Methods marked with ∗ denote the use of a trained generator.
Seq., Branch., and Cond. denote Sequential, Branching, and
Conditional pipelines, respectively.

Optimize Pipeline NQ TriviaQA HotpotQAMethod component type (EM) (EM) (F1)

Naive Generation - Seq. 22.6 55.7 28.4
Standard RAG - Seq. 35.1 58.8 35.3
AAR [28] Retriever Seq. 30.1 56.8 33.4
LongLLMLingua [9] Refiner Seq. 32.2 59.2 37.5
RECOMP-abs. [25] Refiner Seq. 33.1 56.4 37.5
Trace [2] Refiner Seq. 30.7 50.2 34.0
Spring [31] Generator Seq. 37.9 64.6 42.6
Ret-Robust∗ [26] Generator Seq. 42.9 68.2 35.8
SuRe [12] Flow Branch. 37.1 53.2 33.4
REPLUG [21] Generator Branch. 28.9 57.7 31.2
SKR [23] Judger Cond. 33.2 56.0 32.4
Adaptive-RAG [7] Judger Cond. 35.1 56.6 39.1
Self-RAG∗ [1] Flow Loop 36.4 38.2 29.6
FLARE [10] Flow Loop 22.5 55.8 28.0
Iter-RetGen [20] Flow Loop 36.8 60.1 38.3
IRCoT [22] Flow Loop 33.3 56.9 41.5

MS MARCO passages [16]: Comprising 8.8 million passages
from Bing, this dataset is smaller and pre-processed compared to
Wikipedia. It is available onHuggingFace, with direct links provided
in our library for easy access.

2.3.3 Evaluation Metrics. FlashRAG supports several commonly
used evaluation metrics to measure the quality of the RAG process:

Retrieval-aspect metrics: FlashRAG supports four metrics in-
cluding recall@𝑘 , precision@𝑘 , F1@𝑘 , and mean average precision
(MAP) to evaluate retrieval quality. Different from evaluation in
standalone retrieval systems, the passages retrieved in the RAG
process often lack golden labels (e.g., related or unrelated tags).
Therefore, we consider the presence of the golden answer within
retrieved passages as an indicator of relevance.

Generation-aspect metrics: To evaluate the quality of genera-
tion, FlashRAG supports five metrics: token-level F1 score, exact
match, accuracy, BLEU, and ROUGE-L. Moreover, FlashRAG also

0 10 20 30 40 50
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Figure 2: Average results on NQ, TriviaQA, and HotpotQA
datasets for baseline methods with different settings. Left:
Results with three retrievers. Right: Results with two gener-
ator models of varying parameter scales.

support llm-as-a-judge method for evaluation. To accommodate
custom evaluationmetrics, FlashRAG provides a metric template for
users. As our library automatically saves intermediate results, users
can conveniently evaluate results from intermediate components.

3 Experiments
Backbones andMethods. To assess FlashRAG, we conduct experi-
ments using LLaMA-3-8B-instruct as the generator and E5-base-v2
as the retriever, evaluating various RAG methods. For the multi-
modal domain, we use Qwen2-VL and InternVL2 as MLLM back-
bones. Our RAG baselines include: AAR [28] focuses on the re-
triever; LongLLMLingua [9], RECOMP [25], and SC [14] refine and
compress the input; Ret-Robust [26] and REPLUG [21] enhance the
generator and decoding strategies; SKR [23] and Adaptive-RAG [7]
assess the necessity of retrieval for a query; and SuRe [12], Self-
RAG [1], FLARE [10], Iter-RetGen [20], and ITRG [3], IRCOT [22]
optimize the entire RAG flow, including multi-turn retrieval and
generation processes.
Benchmarking Results. The main results are shown in Table 2.
Overall, RAG methods significantly outperform the direct gener-
ation baseline. This demonstrates the benefits of incorporating
external knowledge into the generation process. Key observations
include: (1) Standard RAG with advanced retrievers and genera-
tors is a strong baseline, showing robust performance across six
datasets. (2) All three methods employing refiners exhibit signif-
icant improvements, particularly on multi-hop datasets(e.g., Hot-
potQA). This is potentially because complex problems result in
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Table 3: The performance comparison of different MLLM
backbones with and without FlashRAG’s multimodal re-
trieval module, which combines BM25 and CLIP to recall
Top-1 knowledge from the corresponding training sets.
Method Use Retriever? MMQA (EM.) GAOKAO-MM (Acc.)

Qwen2-VL-2B ✕ 0.274 0.268
Qwen2-VL-2B ✓ 0.313 0.268
Qwen2-VL-7B ✕ 0.304 0.304
Qwen2-VL-7B ✓ 0.300 0.398
InternVL2.5-8B ✕ 0.343 0.409
InternVL2.5-8B ✓ 0.378 0.374

less accurate passage retrieval, introducing more noise and high-
lighting the necessity for refiner optimization. (3) As for generator
optimization, Ret-Robust fine-tunes the LLaMA-2-13B model via
LoRA, significantly enhancing the generator’s capability of under-
standing retrieved passages and outperforming other training-free
approaches.
Multimodal Results. To validate FlashRAG’s plug-and-play ca-
pability in multimodal scenarios, we evaluate various MLLM back-
bones on three VQAbenchmarks (Table 3). Our findings are: (1) Larger
MLLM backbones withmultimodal retrieval modules show stronger
VQA performance. (2) Multimodal retrieval improves performance
in common-sense VQA tasks but not in complex reasoning tasks
like GAOKAO-MM, where accuracy and consistency in retrieved
knowledge are crucial.
Impact of Retrievers and GeneratorsWe investigate the effect
of retrievers and generators. As shown in Figure 2, retrieval quality
greatly impacts performance, with a nearly 10% gap between BM25
and E5 retrievers, likely due to noise from sparse retrieval. Interest-
ingly, larger generators cannot always outperform smaller ones, as
seen in FLARE and RECOMP, suggesting that RAG performance is
more dependent on generation capabilities than model size.

4 Conclusion
In this study, we introduce FlashRAG, a modular toolkit designed to
address replicability and high development costs in RAG research.
FlashRAG provides benchmark datasets, advanced RAG methods,
pre-processing tools, and standardized evaluation metrics, enabling
both replication of existing techniques and the development of new
approaches. Our experiments across various datasets validate its
effectiveness, aiming to lower technical barriers, enhance repro-
ducibility, and accelerate innovation in the RAG domain.
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