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Abstract

Processing long contexts presents a significant challenge for large

language models (LLMs). While recent advancements allow LLMs

to handle much longer contexts than before (e.g., 32K or 128K

tokens), it is computationally expensive and can still be insufficient

for many applications. Retrieval-Augmented Generation (RAG) is

considered a promising strategy to address this problem. However,

conventional RAG methods face inherent limitations because of

two underlying requirements: 1) explicitly stated queries, and 2)

well-structured knowledge. These conditions, however, do not hold

in general long-context processing tasks.

In this work, we propose MemoRAG, a novel RAG framework

empowered by global memory-augmented retrieval. MemoRAG

features a dual-system architecture. First, it employs a light but
long-range system to create a global memory of the long context.

Once a task is presented, it generates draft answers, providing useful

clues for the retrieval tools to locate relevant information within

the long context. Second, it leverages an expensive but expressive
system, which generates the final answer based on the retrieved

information. Building upon this fundamental framework, we realize

the memory module in the form of KV compression, and reinforce

its memorization and cluing capacity from the Generation quality’s

Feedback (a.k.a. RLGF). In our experiments, MemoRAG achieves

superior performances across a variety of long-context evaluation
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tasks, not only complex scenarios where traditional RAG methods

struggle, but also simpler ones where RAG is typically applied. Our

source code is available at this repository.
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1 Introduction

Large language models (LLMs) need to process long contexts in

many real-world scenarios, such as long-document QA and summa-

rization [4, 57]. While some recent LLMs can handle much longer

contexts than before (e.g., Mistral-32K, Phi-128K) [1, 23], they can

still be insufficient for certain applications. Meanwhile, it’s com-

putationally expensive to process long contexts directly due to the

considerable costs on inference time and GPU memory [11].

Retrieval-Augmented Generation (RAG) is widely regarded as

a promising strategy for addressing long-context processing chal-

lenges [16, 22]. RAG allows LLMs to complete tasks more cost-

effectively by focusing only on the relevant parts retrieved from the

long input context [52, 59]. However, traditional RAG methods face

inherent limitations when applied to general long-context tasks,

due to two key constraints. First, the search intent must be explic-

itly expressed (or easily clarified through query rewriting) [6, 59].

Second, the external dataset must be well-structured for effective
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Figure 1: Comparison of MemoRAG with Standard RAG and

human cognition of a long document. Figure (a) shows stan-

dard RAG, where retrieval and generation take place in a se-

quential pipeline. Figure (b) illustrates how humans tackle a

task about the document: 1. going through the document and

forming the memory, 2. thinking about the clues to the pre-

sented task (i.e., recalling), checking the document for needed

details (i.e., retrieving), 3. making a response to the task based

on thememory-enhanced retrieval result. Inspired by the hu-

man cognition process, Figure (c) demonstrates MemoRAG,

which creates a global memory of the long context, recalling

useful clues based on memory, and retrieving information

based on the clues to generate a high-quality response.

encoding and indexing (e.g., Wikipedia passages) [37, 39]. Unfor-

tunately, neither of these conditions is typically met in general

long-context tasks. On one hand, there may be no clear search in-

tent (e.g., summarizing the main characters in a book, or clarifying

the relationships between characters) [13, 42]. On the other hand,

the input context is often unstructured (e.g., a 100-page text file, or

multi-year financial reports), making it difficult to partition, encode,

and index in a straightforward manner [41, 44, 59].

Human cognition of a long document, unlike standard RAG, is

significantly more effective (as shown in Figure 1). When a person is

presented with a long document, they first skim through it to form

a global memory of its high-level information. When tasked with a

document understanding question—such as “What are the mutual

relationships between themain characters?”—the person recalls use-

ful clues from their memory and uses these clues to locate specific

details within the document. Based on the retrieved information,

they can then generate a high-quality response to the task [2].

Inspired by the human cognitive process, we propose Mem-

oRAG, a novel framework for long-context processing on top of

global-memory enhanced retrieval augmentation. MemoRAG fea-

tures a dual-system architecture: a light but long-range system to

realize the memory module and a heavy but expressive system

to generate the final answer. For each presented task, MemoRAG

prompts its memory module to generate retrieval clues. These clues

are essentially drafted answers based on the compact memory.

While these clues may contain some inaccuracies or lack details,

they effectively reveal the underlying information needs of the task

and can be directly linked to the source information. By using these

clues as queries, MemoRAG can effectively retrieve the necessary

knowledge from the external knowledge base.

The memory module is the core of MemoRAG. It is expected

to be 1) length-scalable: cost-effectively handling long-contexts, 2)

retentive: memorizing the crucial information within long-contexts,

and 3) instructive: generating useful clues for the presented task.

Therefore, we introduce the following techniques to optimize its

performance. First, we realize the memory module in the form of

a KV-compressible LLM with configurable compression rates.

This structure can flexibly support a wide range of context lengths

and can be optimized in an end-to-end manner. Second, we design

a novel algorithm that learns to reinforce the memory module’s

memorization and cluing capacity from the generation quality’s

feedback (a.k.a. RLGF). That is, 1) the generated clues are posi-

tively rewarded if they can support the generation of high-quality

answers, and 2) the memory module is reinforced to generate the

positively rewarded clues.

We perform comprehensive experiments to evaluate MemoRAG.

In our experiment, we leverage a variety of datasets from two popu-

lar long-context benchmarks: LongBench [4] and InfiniteBench [57].

The two benchmarks contain both QA-style tasks, e.g., HotPotQA,

NarrativeQA, which are well-suited for traditional RAG methods,

and non-QA tasks, like government report summarization, which

are unfavorable to traditional RAG methods. We also curate a gen-

eral long-document understanding benchmark, containing general

tasks related to long documents from 20 diverse domains, such as

law, finance, physics, and programming, etc. Our experiment re-

sults lead to a series of critical insights. Firstly, MemoRAG not only

achieves notable advantages in both non-QA tasks where traditional

RAG methods struggle, but also QA-style tasks where traditional

RAG methods are usually applied. Secondly, MemoRAG outper-

forms advanced retrieval and RAG methods which are proposed

recently, such as HyDE [15], RQ-RAG [6], and GraphRAG [13].

Thirdly, MemoRAG even outperforms the direct-applied long LLMs

and some context-extended methods, which can fully cover the

input contexts [1, 24]. Finally, MemoRAG exhibits competitive effi-

ciency in terms of inference speed and memory cost.

To summarize, the contributions of our work are highlighted by

the following points: (1) We propose MemoRAG for long-context

processing tasks based on global-memory enhanced retrieval aug-

mentation. (2) We design a suite of architecture and optimization

algorithms, enabling the memory module to be length-scalable,

retentive, and instructive for long-context tasks. (3) We empirically

demonstrate that MemoRAG generalizes beyond traditional QA

tasks to effectively handle both non-QA tasks and complex QA

tasks, expanding RAG’s applicability to a wider range of scenarios.

2 Method

2.1 Background

The generation process of an LLM Θ(·) can be succinctly repre-

sented as 𝑌 = Θ(𝑞 | 𝜃 ), where 𝑞 denotes the input query, 𝑌 is

the generated response, and 𝜃 represents the model’s parameters,

which store the knowledge learned from the training corpus. Since

the training corpus typically consists of publicly available web data

up to a certain cutoff point, LLMs face challenges when handling

tasks that require up-to-date or domain-specific information. A
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Figure 2: Illustration of (a) task background, (b) framework comparison, and (c) application scenarios. When processing long

inputs like the entire Harry Potter series, most LLMs struggle with million-token contexts. Standard RAG methods also

face challenges with queries unsuitable for direct searching. MemoRAG overcomes these limitations by constructing a global

memory that generates clues, guiding the retrieval of relevant evidence and enablingmore accurate and comprehensive answers.

common and effective solution to this problem is to incorporate

an external knowledge base 𝐶 into the input, which can be formu-

lated as 𝑌 = Θ(𝑞,𝐶 | 𝜃 ), allowing for more accurate responses. In

practice, the external knowledge base 𝐶 can be substantially large,

often exceeding the LLM’s context size, leading to the long-context
issue, as shown in the top of Figure 2(a). In the following, we refer

to the external knowledge base 𝐶 as the long input context.

A straightforward idea to address the long-context issue is to em-

ploy LLMs with long-context processing ability. However, despite

recent advancements in increasing context lengths, handling very

long contexts remains infeasible for most LLMs, often resulting

in incomplete answers as the context is truncated. Besides, RAG

has emerged as a widely adopted solution to enable LLMs to effec-

tively handle the long-context issue. RAG allows LLMs to retrieve

and leverage only relevant information from the long context. A

standard RAG system typically consists of two components: a gen-

eration model, Θ(·), and a retrieval model, Γ(·). Given an input

query 𝑞, the retrieval model Γ first identifies the relevant evidence

𝐸 from the long context 𝐶 . This retrieved evidence is then passed

to the generation model Θ, which utilizes it to produce the final

response 𝑌 . Formally, this process can be described as:

𝑌 = Θ(𝑞, 𝐸 | 𝜃 ), 𝐸 = Γ(𝑞,𝐶) . (1)

In an ideal retrieval setting, the query 𝑞 serves as a piece of

text that is representative of the expected evidence [34], allowing

the retriever to easily locate the relevant evidence 𝐸. However, as

shown in the bottom of Figure 2(a), in many practical scenarios,

the input query 𝑞 often carries implicit information-seeking intents

that are not semantically aligned with the expected text evidence.

As a result, standard retrievers, which typically rely on lexical or

semantic matching, may struggle to accurately retrieve the expected

evidence, leading to performance degradation in RAG systems. This

issue underscores the need for an advanced RAG framework to

bridge the semantic gap frequently encountered in such situations.

Algorithm 1 MemoRAG Framework

1: Input: long context𝐶 , memory model Θmem ( ·)
2: Memory Formation: Generate global memory 𝜃mem = Θmem (X) ,
X = 𝐶 + auxiliary text

3: Input: queries {𝑞1, . . . , 𝑞𝑛 }, generator Θ( ·) , retriever Γ ( ·)
4: Initialize: answer set Y ← {}
5: for each query 𝑞𝑖 ∈ {𝑞1, . . . , 𝑞𝑛 } do
6: 𝑦𝑖 = Θmem (𝑞𝑖 | 𝜃mem ) # Generate draft answer clues for 𝑞𝑖
7: 𝐸𝑖 = Γ (𝑦𝑖 ,𝐶 ) # Retrieve relevant evidence based on the clues

8: 𝑌𝑖 = Θ(𝑞𝑖 , 𝐸𝑖 | 𝜃 ) # Generate the final answer for 𝑞𝑖
9: Y ← Y ∪ {𝑌𝑖 } # Add final answer to the answer set

10: end for

11: Optional - Memory Offload: Save global memory 𝜃mem to disk for

future reuse

12: Return: answer set Y

2.2 MemoRAG

In this paper, we propose MemoRAG, which leverages a memory

model Θmem (·) to learn and store the long context 𝐶 , forming a

global memory denoted as 𝜃mem. When a query or task instruction

𝑞 is presented, MemoRAG prompts the memory model to generate

draft answers 𝑦, which serve as a set of answer clues. These clues

guide the retrieval of accurate and comprehensive evidence 𝐸 from

the long context 𝐶 . Subsequently, the final answer 𝑌 is generated

using the retrieved evidence text 𝐸. This process is defined as:

𝑌 = Θ(𝑞, 𝐸 | 𝜃 ), 𝐸 = Γ(𝑦,𝐶), 𝑦 = Θmem (𝑞 | 𝜃mem). (2)

MemoRAG is illustrated in the middle of Figure 2(b).

To facilitate understanding, we illustrate the MemoRAG frame-

work with pseudo-code in Algorithm 1.

Specifically, in line 1 , MemoRAG begins by receiving a long in-

put context𝐶 , which is combined with auxiliary text (e.g., prompts),

referred to as the input sequence X. MemoRAG’s memory model
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then processes X to form a global memory representation, denoted

as 𝜃mem in line 2 (see Section 2.3 for details on the memorymodel).

This memory representation, 𝜃mem, encapsulates the high-level se-

mantics of the entire long context from a global perspective. In

practice, the memory can be offloaded for efficient reuse in future

tasks. In line 6 , when a query 𝑞 is presented, the global memory

𝜃mem is used to generate task-specific clues, denoted as 𝑦. These

clues serve to outline the expected answer 𝑌 , effectively bridging

the gap between the raw input context and the ground-truth answer.

Based on these memory-generated clues, MemoRAG’s retriever is

employed to locate precise evidence text 𝐸 within the long input

context, as shown in line 7 . Using the retrieved evidence text 𝐸

along with the input query 𝑞, MemoRAG’s generator produces the

final response 𝑌 , shown in line 8 . By default, MemoRAG utilizes

the memory model’s underlying LLM as the generator to ensure

parameter efficiency.

Application Scenario. MemoRAG can adapt to a variety of ap-

plication scenarios and determine how to generate appropriate

clues based on the specific type of long-context task presented.

In Figure 2(c), we illustrate three scenarios that are particularly

challenging for standard RAG but well-suited for MemoRAG. First,

in a question-answering task where the query requires gathering

distributed information, MemoRAG generates answer clues 𝑦 that

include intermediary reasoning steps, such as creating more ex-

plicit surrogate queries and retrieving relevant evidence from the

long context to support the final answer. Second, in query-focused

summarization tasks, the queries are inherently unsearchable, as

the target information must be aggregated from the entire context

rather than isolated segments. SinceMemoRAG has already compre-

hended the entire long context, it can recall multiple query-related

evidence clues, enabling more effective information retrieval and

synthesis. Third, for tasks without explicit queries, such as text sum-

marization, the draft answer may consist of key points or concepts

extracted from the context, which are essential for constructing a

coherent and accurate summary.

2.3 Memory Module

As discussed in Section 1, MemoRAG’s memory module is designed

to achieve three key objectives: 1) length scalability, enabling effi-

cient handling of long contexts; 2) retentiveness, ensuring the reten-

tion of crucial information from these contexts; and 3) instructive-

ness, providing useful clues that facilitate comprehensive retrieval.

The first two objectives are met through specialized model designs,

while the third is achieved via multi-stage, data-driven training.

2.3.1 Memory Model Design. The inference workflow in LLMs

consists of two stages: (i) the prefill stage, where the input sequence

is processed to generate key-value (KV) cache for each transformer

layer; and (ii) the decoding stage, where the model sequentially

generates tokens by utilizing and updating the KV cache.

In the prefill stage, let the input tensorX ∈ R𝑛×𝑑 = {𝑥1, · · · , 𝑥𝑛}
consist of 𝑛 token embeddings, where 𝑑 is the model’s hidden size.

The input X is processed by a transformer-based model Θ(·), and
the key-value cache [K,V] are generated as follows:

K = X𝑾K , V = X𝑾V , (3)

where𝑾K and𝑾V are the weight matrices for the key and value

projections, respectively. This attention mechanism is applied inde-

pendently at each layer and for each attention head. For simplicity,

we omit the layer and head indices in the equations.

In the decoding stage, let t ∈ R𝑡×𝑑
represent the new input tensor,

where 𝑡 is the length of the newly input tokens. We compute the

new key and value as:

Kt = t𝑾K , Vt = t𝑾V . (4)

The KV cache is then updated by concatenating the new key-value

pairs with the previous ones:

K ← Concat(K,Kt), V ← Concat(V,Vt) . (5)

Finally, the attention output is computed as:

Qt = t𝑾Q , 𝑨(Q,K,V) = softmax

(
QtK𝑇

√
𝑑

)
V, (6)

where𝑾Q is the weight matrix for the query projection, and 𝑨(·)
represents the attention function. For simplicity, we ignore other

parts of the inference process.

Light Global Memory. The key-value cache computed during

the prefill stage can be efficiently reused in the decoding stage.

Thus, the key-value cache [K,V] serves as the simplest form of

global memory, denoted as 𝜃mem = [K,V]. However, maintain-

ing a full key-value cache for long contexts is computationally

expensive and time-consuming. In this place, we first introduce a

kind of baseline solution called light global memory, which directly

takes advantage of recent light long-context techniques, e.g., MIn-

ference [24] and SelfExtend [27]. Formally, they can be defined as

𝜃
mem_lite

= 𝜐 (Θ(X | 𝜃 )), where 𝜐 (·) represents the optimization

techniques applied to the model.

While light global memory is easy to implement, empirical anal-

ysis in Section 3.4 demonstrates that it is inferior to the compact

global memory introduced below. This is due to several factors: (1)

it is constrained by the native context size of LLMs, limiting its

adaptability to extremely long contexts; and (3) the use of sparse

attention compromises semantic completeness. Besides, although

light memory reduces parameters, it still consumes substantial GPU

memory by maintaining the full length of the key-value cache

Compact Global Memory. We propose a flexible model ar-

chitecture designed to facilitate efficient memory formation. The

memory model progressively compresses the raw input tokens into

a significantly smaller set of memory tokens in KV space, while

preserving essential semantic information, resulting in compact

global memory. Specifically, we introduce memory tokens 𝑥𝑚 to

serve as the information carriers of global memory in LLMs. Sup-

pose the LLM Θ(·) has a working context window length of 𝑙 . After

each context window, we insert 𝑘 memory tokens, such that:

X = {𝑥1, · · · , 𝑥𝑙 , 𝑥𝑚1 , · · · , 𝑥𝑚
𝑘
, 𝑥𝑙+1, · · · }, 𝑘 ≪ 𝑙 . (7)

For the memory tokens denoted by X𝑚 , we initialize a separate

set of weight matrices specifically for memory formation, denoted

as𝑾Q𝑚 ,𝑾K𝑚 , and𝑾V𝑚 , where Q𝑚 , K𝑚
, andV𝑚

are the query,
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key, and value for the memory tokens X𝑚 . We compute the corre-

sponding query, key, and value as follows:

Q𝑚 = X𝑚𝑾Q𝑚 , K𝑚 = X𝑚𝑾K𝑚 , V𝑚 = X𝑚𝑾V𝑚 , (8)

𝑨(Q,K,V) = softmax

(
[Q;Q𝑚] ˜K𝑇

√
𝑑

)
˜V, (9)

˜K = [K𝑚
cache

;K ;K𝑚], ˜V = [V𝑚
cache

;V;V𝑚] . (10)

The termsK𝑚
cache

andV𝑚
cache

represent the KV cache for previously

computed memory tokens.

In the prefill stage, after processing each context window, we gen-

erate a newKV cache for thememory tokens, denoted as [K𝑚,V𝑚].
We update the previous memory token cache as follows:

K𝑚
cache

← Concat(K𝑚
cache

,K𝑚), (11)

V𝑚
cache

← Concat(V𝑚
cache

,V𝑚) . (12)

Meanwhile, the KV cache [K,V] for the regular tokens is discarded
to reduce memory consumption. For compact global memory, we

have 𝜃mem = [V𝑚
cache

,K𝑚
cache
]. In our experiments, we typically

select a compression ratio 𝛽 = 𝑙/𝑘 ∈ [4, 8, 16, 32, 64], resulting in

an approximate 𝛽× reduction in GPU memory usage. Furthermore,

since the number of memory tokens is much smaller than the num-

ber of raw tokens, LLMs can handle significantly longer contexts

than their native context window would typically allow. For exam-

ple, a 128K context LLM can process up to an 8M token context

when a compression ratio of 𝛽 = 64 is applied.

2.3.2 Memory Model Training. Since the memory model initializes

a new set of parameters, we begin by training the memory model

through pre-training. Following this, we perform supervised fine-

tuning (SFT) using task-specific SFT data. Finally, we apply a small

set of SFT data labeled with preferences to perform preference

alignment for the memory model.

Pre-Training. During the pre-training stage, the optimization

goal is to enable the memory model to generate a global memory

representation from raw input contexts.We only optimize the newly

initialized weight matrices,𝑾Q𝑚 ,𝑾K𝑚 , and𝑾V𝑚 , while keeping

the underlying LLM’s parameters frozen. The model’s objective is

to predict the next token using the memory tokens and the current

context. This can be expressed using a cross-entropy loss:

Lpre = −
𝑇∑︁
𝑡=1

logP(𝑥𝑡 | 𝒙𝑚
cache

, 𝑥1:𝑡−1), (13)

where 𝒙𝑚
cache

represents the previously accumulated memory to-

kens, and 𝑥 represents the raw tokens. This loss encourages the

model to maximize the probability of generating the correct next

token based on the previous memory and the current raw context.

Supervised Fine-Tuning. In the SFT stage, the loss function

is designed to help MemoRAG generate task-specific clues that

can later guide the retrieval of relevant evidence. Here, the model

is trained to minimize the difference between the generated out-

put and the ground-truth outputs provided by the SFT dataset.

The loss function is also a cross-entropy loss, but applied to task-

specific data:

LSFT = −
𝑇∑︁
𝑡=1

logP(𝑦𝑡 | 𝒙𝑚
cache

, 𝑞), (14)

where 𝑦 represents the ground-truth task-specific output and 𝑞 is

the query or task instruction. This loss ensures that MemoRAG

learns to produce accurate clues based on the global memory. The

SFT data is initially generated using strong LLMs and subsequently

reviewed and refined by human annotators (see Appendix B for

details). While the SFT data labels capture both LLM and human

preferences regarding the answer clues, they do not directly reflect

the quality of the final generated answers. To address this, we

further optimize the memory module using a tailored optimization

method which is introduced below.

RLGF (Reinforcement Learning with Generation Feed-

back). To further optimize the memory module for generating

truly useful answer clues, the memory model is trained to align its

outputs with preferred answer clues, selected based on their contri-

butions to the overall end-to-end performance. The loss function is

derived from a preference-based ranking loss, which encourages

the model to prioritize outputs that lead to better evidence retrieval

and final answer generation. This is defined as:

LRLGF =
∑︁
(𝑦+, 𝑦−)max

(
0, 1 − 𝑅(𝑦+) + 𝑅(𝑦−)

)
, (15)

where 𝑅(𝑦+) and 𝑅(𝑦−) represent the rewards assigned to the pre-

ferred and non-preferred outputs, respectively. This loss function

drives the model to generate outputs that align more closely with

the preferred answers, ensuring that the generated clues are both

relevant and lead to improved evidence retrieval. As a result, the

overall answer quality is enhanced. See Appendix B for details on

the data construction for RLGF.

3 Experiment

In this section, we investigate the following research questions (RQ):

RQ1: How does MemoRAG’s performance compare to that of stan-
dard RAG systems, advanced RAG systems, and long-context LLMs?

RQ2:CanMemoRAG effectively generalize beyond straightforward
QA tasks to handle non-QA tasks and complex QA tasks involving
long contexts and diverse domains?

RQ3: Are MemoRAG’s model designs and optimization strategies
well-justified and appropriately selected?

RQ4:How do MemoRAG’s inference time efficiency and GPUmem-
ory usage compare to baseline methods?

3.1 Dataset

To explore RQ1 and RQ2, we evaluate MemoRAG and baselines

using LongBench and InfiniteBench, two widely recognized bench-

marks for long-context tasks [4, 57], which include the following

tasks: (1) Single-Doc QA: NarrativeQA [29], Qasper [9], and Mul-

tiFieldQA [4]. (2) Multi-Doc QA: HotpotQA [54], 2WikiMQA [19],

and MuSiQue [50]. (3) Non-QA tasks: GovReport [20], En.SUM [57]

and MultiNews [14]. (4) Long-book QA: En.QA [57]. For summa-

rization tasks, we use the task instruct as a fake query.

To further addressRQ2, we evaluate MemoRAG across a broader

range of real-world scenarios by introducing the UltraDomain

benchmark, which consists of 20 datasets featuring long contexts

and high-level queries across various specialized domains. Many of

these tasks require a deep understanding of the entire context and

the ability to synthesize multiple pieces of information to generate

accurate answers. Additional details about UltraDomain can be
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Table 1: Main experiment results. Best results are in bold, second-best ones are underlined, and “†” indicates performance

surpasses all baselines in a t-test at 𝑝 < 0.05. Evaluation metrics for all datasets are in Appendix B.

Dataset nar qas mul mus 2wiki hot news gov en.sum en.qa fin legal misc ave.

LongBench InfBench UltraDomain

Full 21.4 39.4 51.5 28.2 38.1 48.1 24.9 32.6 13.0 15.2 47.8 46.5 48.7 35.0

Mnference 20.7 39.0 50.8 27.4 35.9 46.2 24.8 32.2 13.3 12.1 44.7 39.8 46.3 33.3

SelfExtend 19.6 37.8 47.4 22.7 37.2 42.0 21.4 29.1 11.1 9.3 41.2 37.9 34.1 30.1

BGE-M3 20.3 33.0 44.3 21.1 35.4 42.1 17.7 19.8 9.6 16.3 41.7 41.2 43.7 29.7

Stella-v5 13.7 32.4 43.5 21.0 35.6 40.6 20.3 18.2 10.0 19.5 42.8 35.1 43.9 29.0

Jina-emb-v3 15.9 34.7 42.8 17.8 33.1 41.8 21.9 25.2 11.3 18.7 41.8 37.1 43.8 29.7

GraphRAG 16.2 36.3 45.4 19.3 37.5 38.0 18.4 25.6 10.8 13.5 39.9 39.6 41.7 29.4

RQ-RAG 19.6 34.1 46.5 21.9 36.1 41.7 20.1 18.6 10.4 16.1 41.8 40.9 43.2 30.1

HyDE 18.7 36.0 47.5 20.5 36.8 42.7 - - - 19.6 43.1 41.6 44.2 -

MemoRAG 27.5
†

43.9
†

52.2
†

33.9
†

54.1
†

54.8
†

26.3
†

32.9
†

15.7
†

22.9
†

51.5
†

51.0
†

55.6
†

40.2

domain_experiment_results

Domain Full BGE-M3 Stella-v5 HyDE MemoRAG Ave(|gC|) (K)

Mix 42.1 41.1 42.1 43.9 53.6 20.3

Legal 35.8 42.0 34.9 35.1 51.2 51.4

Financial 36.5 40.5 40.9 42.8 48.0 40.6

Average (In-domain) 38.1 41.2 39.3 40.6 50.9 37.4

Computer 36.5 35.9 32.9 35.5 40.5 215.9

Physics 36.4 38.1 37.3 38.2 38.8 105.8

Religion 36.7 35.2 34.1 34.7 37.8 131.4

Psychology 34.3 33.6 31.9 33.0 37.6 150.1

Health 34.8 33.2 32.9 31.9 37.4 134.9

Technology 33.9 32.5 31.1 31.8 37.4 144.0

Agriculture 34.9 34.0 33.2 32.8 36.7 151.0

Art 32.5 33.7 33.1 33.0 36.6 129.0

Mathematics 34.5 35.0 33.8 35.4 36.4 198.0

Philosophy 33.0 32.5 31.8 32.2 36.2 135.7

Biology 34.1 32.2 32.1 31.5 35.7 125.2

History 33.3 31.9 32.3 31.1 35.6 195.2

Cooking 34.1 33.1 31.0 32.9 35.6 156.1

Biography 32.4 31.1 29.8 30.3 35.3 163.5

Politics 33.0 32.5 30.2 32.1 35.2 139.6

Music 33.9 33.5 31.5 32.9 35.1 168.7

Literature 30.5 29.6 28.8 29.2 34.4 129.4

Fiction 29.0 27.6 26.5 27.1 31.3 137.7

Average (Out-of-domain) 33.8 33.0 31.9 32.5 36.2 150.6
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Figure 3: Experiment results on the UltraDomain benchmark. These datasets feature contexts of up to one million tokens,

covering a wide range of subjects. See more details about the benchmark in Appendix C.

found in Appendix C. More information on the training datasets

and statistic information of all datasets can be found in Appendix B.

3.2 Baselines

We compare MemoRAG against three types of baselines: (1) Using
Full Context: In this setting, we feed the full context into long

LLMs, referred to as Full. For themain experiments, we utilize LLMs

with a 128K context length, allowing us to process all evaluation

data samples without truncation. In addition to directly processing

the full context, we explore two recent techniques that optimize

context pre-filling for comparison:MInference [24], which applies

strategic sparse attention to accelerate the pre-filling process, and

SelfExtend [27], which constructs bi-level hierarchical attention

to expand the original LLM’s context length. (2) Standard RAG
with Alternative Retrieval Methods: BGE-M3 [7]: A widely used

retrieval model that has proven effective across many applications.

Stella-en-1.5B-v5[12]: A state-of-the-art retrieval method that

ranks in the top 3 on the MTEB leaderboard at the time of writing

this paper. Jina-emb-v3 [48]: A newly released frontier multi-

lingual retrieval model, which claims to perform well in various

scenarios, particularly in RAG tasks. (3) Advanced RAG Methods:
RQ-RAG [6]: RQ-RAG prompts LLMs to refine the input query into

several sub-queries that are more effective for retrieval by explicit

rewriting, decomposition, and disambiguation. The supporting pas-

sages are retrieved using both the original and refined queries.

HyDE [15]: Directly prompts LLMs to generate hypothetical docu-

ments based solely on the query, and then retrieves relevant pas-

sages using these documents. The final answer is generated based

on the retrieved passages. GraphRAG [13]: A graph-based RAG

framework that transforms unstructured data into graph structures,

enabling the system to perform more complex question-answering

tasks based on graph-based information retrieval.

In themain experiments, thememorymodel is trained onMistral-

7B-Instruct-v0.2-32K. By default, MemoRAG uses the underlying

LLM of the memory model as the generator. But Mistral’s 32K

context window is insufficient for most evaluation dataset contexts.

To avoid context truncation, we use Phi-3-mini-128K-instruct [1]

as the generator for MemoRAG and all baseline methods except for

SelfExtend, which is specifically designed to enable LLMs to process

contexts much longer than their native window. SelfExtend utilizes

Phi-3-mini-4K-instruct as the generator and adjusts its effective

context window according to the maximum context length required

by different tasks. For GraphRAG, we utilize OpenAI’s GPT-4o API

for all requests during both the indexing and searching processes.

The results from GraphRAG’s global search setting are extracted
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Long Book QA Summ. Multi-Doc QA Single-Doc QA Complex Tasks
RAG 12.2 21.3 25.0 31.0 37.8
Zero 12.3 20.0 27.4 32.8 41.1
Light 11.9 19.6 26.1 33.0 42.1
Pretrain 13.1 20.2 26.6 32.5 44.1
SFT 15.4 25.5 33.4 34.8 50.9
RLGF 15.8 25.9 34.1 36.0 52.5
RAG 12.2 21.3 25.0 31.0 36.5
Full 12.3 18.6 25.7 32.1 38.1
Zero 12.4 20.6 27.2 33.4 39.8
Light 11.2 19.4 28.1 31.2 43.1
Pretrain 14.5 20.7 27.0 32.2 45.5
SFT 17.6 25.1 36.5 34.8 49.9
RLGF 18.3 26.5 38.1 36.1 51.1
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Figure 4: Ablation study. Figure (a) and (b) show the performance of different LLMs and optimization strategies. The Pretrain,
SFT, andRLGF settings refer to the training stages. The Light setting uses the light memorymodel, introduced in Section 2.3. The

Zero setting uses native LLMs without prior training. Figure (c) shows the outcomes of using different models as the generator.

and used as the grounding evidence for answer generation
1
. See

Appendix A for more implementation details.

3.3 Main Experiments

To address RQ1 and RQ2, we compare MemoRAG against all base-

line models across three benchmarks, as presented in Table 1. The

experimental results demonstrate that MemoRAG consistently out-

performs all baselines across the evaluated datasets:

First, while RAG is a promising solution for long-context tasks,

using long LLMs that handle the full context length often yields

better performance (Full vs. other baselines). In contrast, Mem-

oRAG significantly surpasses the performance of long LLMs, high-

lighting its superior ability to process long-context tasks. Second,

for straightforward QA tasks from LongBench and InfiniteBench,

MemoRAG outperforms all baselines, showing its effectiveness

in standard RAG scenarios with explicit information needs. Its

memory-generated clues allow for more accurate evidence retrieval

from long contexts. In complex QA tasks (e.g., financial and legal),

MemoRAG achieves notable improvements, demonstrating its ca-

pability to handle complex, long-context challenges. Third, while

traditional RAG methods often struggle with non-QA tasks that

lack explicit queries—such as summarization tasks (e.g., MultiNews,

GovReport, and En.SUM)—MemoRAG excels. It efficiently extracts

key points from the input context and retrieves additional details

to generate comprehensive summaries.

To further address RQ2, we evaluate MemoRAG on the remain-

ing 18 diverse datasets from UltraDomain, where most input con-

texts exceed the generator’s context limit (e.g., 128K tokens). The

results, presented in Figure 3, lead to the following conclusions:

First, MemoRAG consistently outperforms all baselines across all

datasets, demonstrating strong domain generalization capabilities.

Second, directly inputting the full context into LLMs generally

yields better performance compared to standard RAG methods,

revealing that RAG systems struggle with high-level queries and

locating relevant evidence. Third, MemoRAG surpasses the perfor-

mance of directly using the full context, illustrating its ability to

effectively process super-long contexts and address complex tasks.

In summary, MemoRAG consistently outperforms standard

and advanced RAG systems, as well as long LLMs. It generalizes

well beyond straightforward QA tasks, effectively handling non-

QA tasks and complex QA tasks. Its advantages, driven by global

memory-enhanced retrieval, are especially evident in scenarios

where standard RAG systems face challenges.

1
https://microsoft.github.io/graphrag/posts/query/0-global_search/

3.4 Ablation Study

To address RQ3, we conduct comprehensive ablation studies:

1) Model design and optimization strategy: We first compare

twomemorymodel design options: light memory and compact mem-
ory (see Section 2.3). Additionally, we evaluate the performance of

the MemoRAG pipeline using memory models at various stages of

training. This includes a zero-shot evaluation, where the foundation

model is directly applied to MemoRAG, as well as evaluations fol-

lowing pretraining, supervised fine-tuning (SFT), and reinforcement

learning with generation feedback (RLGF). The results, shown in

Figure 4 (a) and (b), indicate that each technical design contributes

uniquely to MemoRAG’s overall effectiveness. Removing any of

these designs results in performance degradation, validating the

necessity and impact of MemoRAG’s technical components.

2) Foundation model choice: To assess the impact of the foun-

dation model, we replace the underlying LLM of MemoRAG’s mem-

ory model with Qwen2-7B-instruct, which has a native context

window of 128K tokens [53]. By comparing Figure 4 (a) and (b),

we observe that utilizing either model as the foundation for Mem-

oRAG’s memory module results in consistent performance improve-

ments. This demonstrates that MemoRAG’s memory model design

is robust and adaptable across a wide range of LLMs.

3) Alternative generators: We evaluate MemoRAG’s effec-

tiveness with three different generators: Llama3.1-8B-inst-128K,

Mistral-7B-inst-v0.2-32K, and Phi-3-mini-128K. As shown in Fig-

ure 4 (c), MemoRAG consistently outperforms the direct use of

long LLMs, with the performance gap widening as the task context

exceeds the LLM’s native context length. This indicates that Mem-

oRAG can significantly enhance task performance when integrated

with various LLMs as generators.

4) Impact of compression rate: As discussed in Section 2.3, the

compression rate 𝛽 during compact memory formation affects both

efficiency and effectiveness. A smaller 𝛽 retains richer semantics but

requires more KV cache, while a larger 𝛽 improves efficiency but re-

duces semantic richness.We experimented with 𝛽 ∈ [4, 8, 16, 32, 64],
and the results, shown in Figure 5 (b), indicate that as 𝛽 increases,

performance declines but stabilizes at 𝛽 = 32. Despite higher com-

pression, MemoRAG consistently captures key information and

outperforms the standard RAG pipeline across all values of 𝛽 .

In summary, the ablation studies confirm the effectiveness of

MemoRAG’s technical designs and model choices, demonstrating

that its architecture is well-motivated and robustly designed.

https://microsoft.github.io/graphrag/posts/query/0-global_search/
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Figure 5: Analysis on the model efficiency (left) and the im-

pact of the choice of the compression ratio 𝛽 (right).

3.5 Efficiency Analysis

To address RQ4, Figure 5(a) compares model efficiency
2
. Key ob-

servations include: (1) Indexing latency analysis (top): Standard

RAG quickly indexes long inputs due to its simpler process, while

MemoRAG is slower due to the global memory formation. However,

it remains more efficient than long LLMs’ pre-filling, thanks to its

optimized memory model. GraphRAG is the slowest, heavily reliant

on GPT-4 APIs. (2) Retrieval latency analysis (middle): Standard

RAG retrieves efficiently using vector databases (e.g., FAISS [28]),

while MemoRAG is slower as it generates retrieval clues but still

outperforms GraphRAG. (3) GPU memory consumption anal-

ysis (bottom): Both MemoRAG and standard RAG process 128K

contexts with under 60 GiB of GPU memory, whereas long LLMs

require substantially more due to the large key-value cache. In

summary, MemoRAG maintains a balanced time and memory

efficiency. While it is slower than standard RAG, it outperforms

advanced RAG methods and long LLMs in both time and mem-

ory efficiency.

4 Related Work

Long Context: Handling long contexts is a fundamental issue for

LLMs. The most straightforward approach is to train LLMs on long

text sequences, giving them a native ability to handle extended

contexts [1, 5, 10, 40]. However, this is very expensive, as computa-

tional costs increase exponentially with longer contexts. As a result,

researchers focus on improving attention efficiency [3, 8, 10, 23].

Additionally, Liu et al. [33] highlight that LLM performance may

degrade when the target answer is located in the middle of the

context. To address this, various works explore data augmentation,

attention reweighting, and data re-organization [17, 32, 51, 56].

Another approach involves compressing the input through strate-

gies like sliding windows, context compression, and summariza-

tion [25, 30, 45, 52, 55]. With the rapid development of long-context

2
We randomly selected 5 samples with 128K context lengths from the UltraDomain

benchmark, truncating the context into shorter segments to test various methods

under the same configuration.

processing, context windows for LLMs have expanded significantly,

from 4K tokens (e.g., Llama-2)[49] to 128K tokens (e.g., Phi-3, GPT-

4)[1, 40]. Recent advancements even allow LLMs to extend their

context window to 1 million tokens [17]. Additionally, RAG has

become a common solution for long-context challenges, using re-

trieval to find precise evidence within large inputs [52].

RAG: Retrieval-augmented generation (RAG) was initially in-

troduced by Lewis et al. [31], defining a retrieval process that

assists language models in handling knowledge-intensive tasks.

Subsequent RAG research has focused on two areas: improving

retrieval quality, which sets the upper bound for final generation

quality [16, 43], and enhancing the use of retrieved passages for

increased relevance and flexible access [21, 26, 35, 36, 41].

With recent advancements in LLMs, incorporating RAG into

LLM-based systems has become popular, inspiring numerous appli-

cations [38, 46]. As a result, there has been a growing call for more

general-purpose RAG systems [58, 59]. However, the standard RAG

pipeline faces inherent limitations and struggles to generalize effec-

tively in complex tasks involving implicit information needs [16].

To expand RAG’s applicability, recent works have proposed mod-

ifying the RAG pipeline with tailored approaches. For instance,

HyDE generates a hypothetical document from the query, which

is used to retrieve relevant evidence [15], while RQ-RAG rewrites

the query into simpler forms to improve retrieval [6]. However,

both rely solely on the model’s internal knowledge, limiting their

effectiveness for domain-specific tasks. GraphRAG [13] constructs a

knowledge graph to assist retrieval, but its static graph construction

is difficult to optimize. Other methods [6, 18, 42] also fail to achieve

a comprehensive understanding of the input context, leading to

incomplete semantic comprehension.

5 Conclusion

In this paper, we tackle long-context processing using globalmemory-

enhanced retrieval by introducing MemoRAG, a framework that

builds a global memory from the entire context. When presented

with a task, MemoRAG generates draft answers that, although lack-

ing in detail, effectively guide the retrieval of relevant evidence

for more accurate final response generation. By leveraging these

clues, MemoRAG identifies precise information within the long con-

text, improving overall answer quality. Extensive experiments on

two long-context benchmarks and various real-world applications

demonstrate that MemoRAG significantly outperforms standard

RAG systems, advanced RAG systems, and long LLMs. MemoRAG

excels in tasks requiring high-level information aggregation, while

also offering notable advantages in traditional tasks commonly

handled by previous RAG systems, expanding the potential and

applicability of RAG to a broader range of scenarios.
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A Implementation Details

For pre-training the memory model, we sample text spans from the

RedPajama [47] dataset to create a training set of 2 billion tokens.

The memory context window size is set to 2048, and during training,

we randomly select a compression ratio 𝛽 ∈ [4, 8, 16, 32, 64] for each
context window. The model is trained for 1 epoch with a batch size

of 8 and a learning rate of 5e-5.

For supervised fine-tuning (SFT), we build an SFT dataset con-

sisting of 17,116 samples. In this stage, the model is trained for 2

epochs with a batch size of 8 and a learning rate of 1e-5. The lengths

of the SFT samples range from 4K to 64K tokens.

During RLGF optimization, we sample 2,000 instances from the

SFT training dataset and rank the generated clue answers, categoriz-

ing them into preferred and rejected based on their contributions to

the overall end-to-end performance. The data construction process

can refer to Appendix B.

During the memory module training, we keep the underlying

model’s parameters frozen and train only the newly initialized pa-

rameters of the memory model, avoiding the resource-intensive

process of full parameter fine-tuning. The size of the newly ini-

tialized parameters varies depending on the underlying LLM. For

instance, with Qwen2-7B-instruct, the newly initialized parameters

are approximately 1.1 billion.

For the light global memory setting, we utilize SelfExtend [27] to

extend the LLMs’ context window to the maximum length required

for each specific task. Additionally, we apply MInference [24] to

accelerate the prefill process.

For the main experiments, we set the compression ratio to 𝛽 = 4.

For MemoRAG, RQ-RAG, and HyDE, we use BGE-M3 [7] as the

retriever and set the hit number to 3. We use the semantic-text-

splitter tool to chunk the long context with a maximum length

of 512. For MemoRAG and all baselines, we use the same task

prompts provided by the official repositories of the corresponding

benchmarks
3
. We also use the same generation hyper-parameters

(varying by task) for MemoRAG and all baseline models.

All training and evaluation were conducted using 8 NVIDIA

A800-80G GPUs. For prompts used in MemoRAG please refer to

this repository.

A.1 Case Study

In Table 2, we present an example processed by MemoRAG. The

input query pertains to the high-level understanding of the term

“Outside Date” within the input context, a legal contract consisting

of 56.6K tokens. The standard RAG system searches for evidence

solely based on the input query, in which the semantics of “sig-

nificance of the Outside Date” is not explicitly present. Therefore,

direct semantic connections with the expected supporting evidence

are difficult to establish. As a result, the standard RAG system gener-

ates answers that provide a general definition of the term “Outside

Date” rather than its “significance” regarding this legal contract.

Our MemoRAG, on the other hand, benefits from the global per-

ception of the entire input context. It can evoke several clues that

bridge the semantic gap between the expected supporting evidence

and the input query. By leveraging these clue texts, we can more

3
LongBench: https://github.com/THUDM/LongBench, InfiniteBench: https://github.

com/OpenBMB/InfiniteBench

accurately locate the relevant evidence passages, leading to a more

comprehensive and precise response.

B More details of Dataset Construction

To construct the SFT training set, we first collect long contexts from

novels, academic papers, news, financial reports, and legal contracts.

The collection of novels, academic papers, and news comes from

the training datasets of NarrativeQA, Qasper, and HotpotQA. The

legal contracts are sourced from this repository, and the financial

reports are from this repository. We then sample long contexts

of up to 80K tokens and use strong LLMs (e.g., GPT-4 128K) to

generate high-level, insightful question-answer pairs. After quality

review, we selected 20,000 samples and prompted the same LLMs

to generate answer clues that bridge the gap between the query

and the long context. During this process, the LLMs were provided

with the query, the long context, and the answer, enabling them to

utilize both priori and posteriori knowledge to generate the answer

clues more effectively. These clues were then inspected for quality

through human review, resulting in 17,116 SFT training samples. Six

graduate students participated in the inspection, with each sample

reviewed by at least three students. Samples tagged as discard more

than twice were excluded from the final dataset.

For the RLGF training set, we selected 2,000 samples from the

SFT dataset, filtering for those with more than five answer clues. For

each clue, we retrieved the top-3 evidence. We then greedily evalu-

ated the performance of all combinations of three or more clues and

identified the best-performing combination as the preferred answer

and the worst-performing combination as the rejected answer.

C More details of UltraDomain

We begin constructing the UltraDomain benchmark by leveraging

contexts from datasets representing specific areas of knowledge,

focusing on two specialized datasets. The first is the Fin dataset,

derived from financial reports, which tests MemoRAG’s ability to

process and interpret complex financial data, ensuring it can man-

age the intricacies of financial language and reporting. The second

is the Leg dataset, composed of legal contracts, which challenges

MemoRAG to comprehend and navigate the precise, nuanced lan-

guage of legal documents.

In addition to these specialized datasets, we collected a diverse

set of 428 college textbooks covering 18 distinct domains, including

natural sciences, humanities, and social sciences
4
. These textbooks

are used to evaluate MemoRAG’s versatility and adaptability across

a broad range of topics, including those unrelated to finance and law.

By assessing MemoRAG on these varied contexts, we gain insights

into its potential for broader applications beyond specific domains.

We also created aMisc dataset, comprising mixed contexts from the

specialized datasets. This dataset is designed to assess MemoRAG’s

ability to generalize across different types of contexts.

Specifically, we sampled text spans up to 128K tokens in length

and fed them into GPT-4, prompting it to generate high-level question-

answer pairs that require a comprehensive understanding of the full

context. Six graduate students manually reviewed the generated QA

pairs by: (1) selecting questions that are not directly searchable, and

4
https://huggingface.co/datasets/P1ayer-1/books-3-textbooks

https://pypi.org/project/semantic-text-splitter/
https://pypi.org/project/semantic-text-splitter/
https://github.com/qhjqhj00/MemoRAG
https://github.com/THUDM/LongBench
https://github.com/OpenBMB/InfiniteBench
https://github.com/OpenBMB/InfiniteBench
https://huggingface.co/datasets/albertvillanova/legal_contracts/tree/main
https://huggingface.co/datasets/albertvillanova/legal_contracts/tree/main
https://huggingface.co/datasets/P1ayer-1/books-3-textbooks
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Table 2: Case study on the Legal dataset. Predicted answers that overlap with the ground-truth answers are marked in teal.

Query: What is the significance of the Outside Date mentioned in the agreement? Context: A Legal Contract (56.4K tokens)

Ground-truth target: The Outside Date is the deadline by which the Plan must become effective, or else the Agreement will terminate automatically. It is

set as October 5, 2020, at 11:59 p.m. Eastern Time.

Standard RAG: The Outside Date is significant as it is a date where both parties have agreed in advance that if the merger or acquisition has not yet

completed either side. It is set as October 5, 2020. (F1-Score: 0.36)

Clues #1: Definition of the “Outside Date” in the agreement Clues #2: “Outside Date” means October 5, 2020 at 11:59 p.m. Eastern Time.

MemoRAG: The Outside Date mentioned in the agreement is October 5, 2020, at 11:59 p.m. Eastern Time. It is a significant date in the context of the

agreement because it is the deadline for the Plan to become effective. If the Plan has not become effective by this date, certain parties may have the right to

terminate the agreement. (F1-Score: 0.83)

Table 3: Statistical information of the datasets utilized in this paper.

Dataset Narrative Qasper MultiField Hotpot MuSiQue 2Wiki

Num of Samples 200 200 150 200 200 200

Ave. Length 18,409 3,619 4,559 9,151 11,214 4,887

Metric F1 F1 F1 F1 F1 F1

Dataset GovReport MultiNews En.Sum En.QA Fin Legal

Num of Samples 200 200 103 351 345 438

Ave. Length 8,734 2,113 171,500 192,600 40,625 51,413

Metric Rouge-L Rouge-L F1 Rouge-L F1 F1

Table 4: Statistical information of the out-of-domain evaluation datasets utilized in this paper.

Dataset Num max( | C | ) min( | C | ) ave( | C | ) ave( | Q | ) ave( |A | )

Technology 240 306,073 44,549 144029.7 14.4 40.2

Biology 220 257,644 39,218 125284.9 16.8 49.1

Religion 220 1,071,342 34,257 131424.8 17.4 54.2

Fiction 220 564,980 44,057 137689.7 16.2 43.6

Psychology 200 571,725 37,988 150119.5 16.7 46.5

Music 200 381,043 51,517 168672.9 17.5 49.7

Art 200 305,001 32,793 128961.2 17.8 52.2

Philosophy 200 678,553 38,729 135682.7 17.2 51.0

Health 180 289,258 50,600 135902.0 16.2 48.2

History 180 688,074 53,277 195265.0 17.9 51.0

Literature 180 534,836 33,043 129363.7 16.9 47.0

Biography 180 408,969 45,052 163522.3 18.0 52.0

Politics 180 387,157 49,853 139624.3 17.9 54.9

Mathematics 160 726,144 60,936 197924.6 16.7 47.6

Physics 160 226,811 36,717 105805.6 14.8 54.2

Cooking 120 466,885 58,360 156139.2 16.5 46.6

Agriculture 100 385,915 76,581 150969.6 15.6 45.9

Computer 100 437,070 51,704 215929.5 14.3 39.8

Total 3,240 1,071,342 32,793 150684.0 16.6 48.5

(2) evaluating the quality of the generated answers. This process

yielded a total of 3,240 evaluation samples.

Statistical details of the UltraDomain benchmark are provided in

Table 3 and Table 4. Together, these datasets form a rigorous bench-

mark for evaluating MemoRAG’s effectiveness in both domain-

specific tasks and broader, cross-disciplinary applications. Example

cases from UltraDomain can be found in this repository.

https://huggingface.co/datasets/TommyChien/UltraDomain
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