
Collaborative Optimization Approach for Workflow Agents in
User Behavior Modeling

Xinyu Zhang1†
zhangxinyu1995@ruc.edu.cn
Renmin University of China

Beijing, China

Ran Dou1†
samast_dou@163.com
Huawei Poisson Lab

Hangzhou, Zhejiang, China

Enrui Hu1†
huenrui1@huawei.com
Huawei Poisson Lab

Hangzhou, Zhejiang, China

Minjun Zhao1†
zhaominjun1@huawei.com

Huawei Poisson Lab
Hangzhou, Zhejiang, China

Yangkai Ding
dingyangkai@huawei.com

Huawei Poisson Lab
Hangzhou, Zhejiang, China

Zhicheng Dou∗
dou@ruc.edu.cn

Renmin University of China
Beijing, China

Abstract
User behavior modeling is increasingly critical for personalized
services and decision-making systems, yet integrating diverse user
and product features into a coherent review generation process
remains challenging. Thus we propose a novel collaborative opti-
mization approach for workflow agents in user behavior modeling
that integrates user and product feature extraction with review
and rating generation. Firstly, to solve the difficulty in determin-
ing the optimal structure of agent workflows, we employ Monte
Carlo Tree Search (MCTS) to optimize the workflow architecture,
establishing a high-performance baseline. Meanwhile, to tackle the
challenges in generating and optimizing single-agent prompts and
demonstrations, we implement a heuristic optimization strategy
for joint automated tuning of system prompts and demo cases. Fur-
thermore, through comprehensive analysis of data distributions,
we construct a dynamic routing mechanism for the agent workflow,
achieving enhanced performance across diverse scenario-specific
datasets. We validate the effectiveness of our methods on three
real-world datasets, demonstrating significant performance im-
provements across all proposed techniques. This approach secured
second place overall (and first in star-rating prediction) in the user
modeling track of the AgentSociety Challenge @ WWW 2025.

CCS Concepts
• Computing methodologies→Multi-agent planning.

Keywords
Workflow Agents; User Behavior Modeling; Automatic Prompt
Optimization; In-context Learning; LLM

† Equal contribution.
∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW Companion ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1331-6/2025/04
https://doi.org/10.1145/3701716.3719228

ACM Reference Format:
Xinyu Zhang1†, Ran Dou1†, Enrui Hu1†, Minjun Zhao1†, Yangkai Ding,
and Zhicheng Dou∗. 2025. Collaborative Optimization Approach for Work-
flow Agents in User Behavior Modeling. In Companion Proceedings of the
ACM Web Conference 2025 (WWW Companion ’25), April 28-May 2, 2025,
Sydney, NSW, Australia. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3701716.3719228

1 Introduction
In the era of information overload, understanding, and simulating
user behavior has become a cornerstone of modern recommen-
dation systems, personalized services, and so on. User behavior
modeling aims to extract valuable insights and patterns from user
behaviors, facilitating customization and adaptation of systems to
meet specific users’ needs. Traditional user behavior modeling ap-
proaches rely on statistical analysis or shallow machine learning
techniques and often struggle to capture the slight interplay be-
tween user characteristics and item attributes [1, 2]. Recently, large
language models (LLMs) have achieved remarkable results in simu-
lating human-like reasoning and text generation. LLM-based agents
have demonstrated unprecedented capabilities and effectiveness in
modeling complex user behaviors in interactive environments [3, 4].

However, the single agent is not universally effective in the field
of user behavior modeling. Taking the scenario of generating user
reviews and ratings for items as an example, this task constitutes a
complex system engineering project that requires multiple steps
to form a complete workflow. Specifically, it necessitates separate
analyses of user characteristics and item attributes, followed by
synthesizing these analytical results into final reviews and ratings.
Consequently, the task needs to be decomposed into processing
units suitable for multi-agent collaboration. However, the decom-
posed workflow may have multiple potential structures and con-
figurations, requiring identification of the optimal workflow that
satisfies specified constraints [5].

Moreover, the LLM-based agents within the workflow require
both system prompts to define their roles, and supplementary
scenario-specific "demo cases" to activate LLM’s in-context learning
capabilities, thereby enhancing the ability to solve concrete tasks.
However, crafting high-quality system prompts presents significant
challenges, and manual dynamic adjustments for system prompts
based on performance prove difficult [6]. Concurrently, scenario
"demo cases" are generally challenging to manually construct [7]. In

2988

https://orcid.org/1234-5678-9012
https://orcid.org/0009-0009-0004-9086
https://orcid.org/0000-0002-9167-3897
https://doi.org/10.1145/3701716.3719228
https://doi.org/10.1145/3701716.3719228
https://doi.org/10.1145/3701716.3719228
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701716.3719228&domain=pdf&date_stamp=2025-05-23

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Xinyu Zhang et al.

Workflow Structure Search

Best Workflow

Joint-Prompt-Optimizer

Automatic Prompt Optimization Dynamic Workflow Routing

Dataset

Optimized Prompt

Initial
Prompt

Initial
Prompt

Initial
Prompt

Optimized PromptOptimized Prompt

Dataset

Ensemble Learning

...

...
...

Highest

Score

max(Vfinal)

Workflow A Workflow B

Agents before Automatic Prompt Optimization Agents after Automatic Prompt Optimization

Figure 1: The framework of the proposed collaborative optimization approach for workflow agents

the user review and rating generation scenario, the heterogeneous
distributions of users and items coupled with diverse commenting
styles make it difficult to manually devise a set of "demo cases" with
sufficient coverage and effectiveness. Furthermore, some critical
parameters, such as the quantity, sequencing, and distribution of
"demo cases," can substantially influence agent performance.

To address these challenges and maximize the effectiveness of
user review generation and rating tasks, we propose a novel col-
laborative optimization approach for workflow agents in user be-
havior modeling. Firstly, the proposed framework leverages Monte
Carlo Tree Search (MCTS) [8] to identify the optimal structure for
workflow agents by automatically searching for effective module
combinations and execution sequences tailored to multi-stage tasks,
such as user preference analysis, product feature extraction, and
review synthesis. In addition, we introduce a automatic prompt
optimization strategy that utilizes example selection and chain-of-
thought generation to jointly refine system prompts and illustrative
cases, enhancing the model’s performance in complex interactive
scenarios. Furthermore, a dynamic Workflow Router is incorpo-
rated to adaptively select the most appropriate workflow paths
based on dataset characteristics, ensuring both high efficiency and
robust performance across various domains. Experiments on three
real-world review datasets: Amazon, Goodreads, and Yelp demon-
strate that the proposed approach achieves high accuracy in both
star-rating prediction and strong relevance in generated reviews.

It is worth mentioning that the proposed method also secured
second place overall (first in star-rating prediction) in the user
modeling track of the AgentSociety Challenge @ WWW 2025,
underscoring the potential of optimizing workflow agents in user
behavior modeling.

2 Method
The proposed framework comprises three main components: work-
flow structure optimization, automatic prompt optimization, and
dynamic workflow routing. Our framework is shown in Figure 1.

2.1 Workflow structure search method
In this section, we present a workflow structure optimization

methodology aimed at maximizing the performance score while en-
suring the execution time constraints are satisfied. Specifically, the
structure of a workflow necessitates the clarification of the number

Algorithm 1 Workflow structure search method.
Require: Initial Workflow𝑊0, Dataset 𝐷 , Max iterations 𝐾
Ensure: Optimized Workflow𝑊 ∗
1: Initialize𝑊0
2: 𝑊 ∗ ←𝑊0
3: for iteration← 1 to 𝐾 do
4: 𝑛𝑜𝑑𝑒 ← Select {Using UCT}
5: 𝑐ℎ𝑖𝑙𝑑.𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤 ← Expand(𝑛𝑜𝑑𝑒)
6: 𝑠𝑐𝑜𝑟𝑒 ← Evaluate(𝐷) {Both simulation scores and

execution time}
7: 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝑠𝑐𝑜𝑟𝑒) {Update memory}
8: Update𝑊 ∗ if improved
9: if Terminal Condition then
10: break
11: end if
12: end for
13: return 𝑊 ∗

of nodes it contains, the identity of each node, and the manner in
which they are interconnected. In this context, we define each node
within the workflow as an agent that is composed of a LLM. Conse-
quently, a workflow can be conceptualized as a multi-agent system.
Additionally, the dataset provided for this competition comprises
three distinct types of data. Due to the variations in data distribu-
tion, we will conduct separate workflow structure optimizations
for each dataset. Based on AFLOW [9], our key idea is to leverage
the tree structure of Monte Carlo Tree Search (MCTS) to optimize
workflows. Optimization is performed across each dataset and the
complete process is detailed as follows:
Initialization. We first randomly initialize the workflow with
a single node, which directly takes the inputs and outputs the
prediction. It can also be initialized with a predefined structure.
Selection.We apply the Upper Confidence Bounds for Trees (UCT)
formula [10] to select the node, which will serve as the workflow
for subsequent expansion. The formula ensures a balance between
exploration and exploitation, it is defined as:

𝑈𝐶𝑇 (𝑠) = 𝑉 (𝑠) + 𝑐

√︄
ln𝑁𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠)

𝑁 (𝑠) (1)

2989

Collaborative Optimization Approach for Workflow Agents in User Behavior Modeling WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

where 𝑁 (𝑠) is the number of visits to node 𝑠 , 𝑉 (𝑠) is the value
function (expected return) from the subtree of 𝑠 , 𝑐 is the exploration
weight, and 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠) is the visiting count of the parent node
of 𝑠 . Starting from the root node each time select the child node
with the highest UCT value for exploration. As the number of visits
increases, the UCT value decreases, therebymaking it more inclined
to select nodes that have not yet been statistically evaluated.
Expansion.We use LLMs to generate new workflows by adding or
removing agents, thus creating new workflow configurations. The
prompt of the added agent is generated by the LLM. Each selection,
expansion, and evaluation will be recorded in memory, serving as
the prompt for the LLM used during the expansion phase to assist
in making decisions regarding the current expansion action.
Evaluation. The workflow is then evaluated both by the simulation
scores and execution times. Due to the efficiency, we design a new
evaluation function to simulate the scoring during this phase:

𝑉𝑓 𝑖𝑛𝑎𝑙 = 𝑤 ·𝑉𝑒 + (1 −𝑤) ·𝑉𝑡

𝑉𝑡 =


1 if 𝑡 ≤ 0.9 ×𝑇𝑙𝑖𝑚𝑖𝑡

𝑒−𝛼 (𝑡−0.9×𝑇𝑙𝑖𝑚𝑖𝑡) if 0.9 ×𝑇𝑙𝑖𝑚𝑖𝑡 < 𝑡 ≤ 1.2 ×𝑇𝑙𝑖𝑚𝑖𝑡

0 if 𝑡 > 1.2 ×𝑇𝑙𝑖𝑚𝑖𝑡

(2)

where 𝑉𝑒 is the value of evaluation of training dataset, 𝑉𝑡 is the
value of execution time, 𝑉𝑓 𝑖𝑛𝑎𝑙 is the final score of evaluation,𝑤 is
the weight of𝑉𝑒 , 𝑡 is the average execution time per task and𝑇𝑙𝑖𝑚𝑖𝑡

is the average execution time limit for each task. The function of this
formula is that when the average execution time for each task is less
than 0.9 times the 𝑇𝑙𝑖𝑚𝑖𝑡 , the dominant factor in evaluation is the
simulation scores. However, when the execution time transitions
from being close to the 𝑇𝑙𝑖𝑚𝑖𝑡 to slightly exceeding it, the score
will decrease exponentially.To ensure that 𝑉𝑡 approaches nearly
0 at 𝑡 = 1.2 ×𝑇𝑙𝑖𝑚𝑖𝑡 , the value of 𝛼 can be determined using the
following formula: 𝛼 = − 𝑙𝑛 (𝜖)

1.2×𝑇𝑙𝑖𝑚𝑖𝑡−0.9×𝑇𝑙𝑖𝑚𝑖𝑡
= − 𝑙𝑛 (𝜖)

0.3×𝑇𝑙𝑖𝑚𝑖𝑡
where

𝜖 is a decimals close to 0.
Backpropagation. After calculating the value in the evaluation
phase, the value is propagated back to the root, updating the statis-
tical data of each traversed node.
Terminal Condition. To prevent unnecessary costs due to over-
optimization, we implement a simple termination mechanism. If
the value does not improve over 𝑘 consecutive iterations, or if the
total time exceeds 1.2 times the limit, the iteration stops. If this
mechanism is not triggered, the process concludes after𝐾 iterations.

2.2 Automatic Prompt Optimization
We have obtained an optimized workflow structure based on the
workflow structure search. In this section, we focus on optimiz-
ing the agent prompt within the workflow. We propose a novel
self-optimization framework, Joint-Prompt-Optimizer, aimed at
achieving both efficient and accurate prompt optimization. The
framework is comprised of three core modules: 1) Prompt Build,
2) Example Selection and Chain-of-Thought Generation, and 3)
Joint Optimization of Instructions and Examples. As shown in Fig-
ure 2, these modules collaboratively generate, optimize, and refine
prompts, enhancing task execution accuracy and efficiency.
Preliminary. Given a training dataset 𝐷train = {(𝑞𝑖 , 𝑎𝑖)}𝑛𝑖=1 of
questions 𝑞𝑖 and answers 𝑎𝑖 , along with a test dataset 𝐷test and a

Figure 2: The framework of the Joint-Prompt-Optimizer

score function 𝑠 (·), the goal is to optimize a prompt 𝑝 to maximize
the task performance. The optimization objective is to find the
optimal prompt 𝑝∗ that maximizes the expected score over 𝐷test:

𝑝∗ = argmax
𝑝

E(𝑞𝑖 ,𝑎𝑖)∼𝐷test [𝑠 (𝑀𝑡 (𝑞𝑖 , 𝑝), 𝑎𝑖)] , (3)

Where the prompt 𝑝 consists of two key components: background
knowledge, which provides essential context, problem-solving strate-
gies, and workflows for task comprehension, and use-case knowl-
edge, which includes specific questions and solutions to guide the
model’s learning. A model𝑀𝑒 is employed to summarize feedback
and iteratively refine the prompt, optimizing task performance.
Prompt Build. To optimize prompt generation, we propose a
Prompt Build mechanism, inspired by Meta Prompting techniques
[11]. This mechanism employs a meta-prompt to guide the creation
of an initial prompt. The Prompt Build module combines a uni-
fied input 𝐼—which integrates the scene description, input-output
rules, background information, and an Initial prompt 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙—with
the meta-prompt 𝑝𝑚𝑒𝑡𝑎 to generate the constructed prompt 𝑃 ,
𝑃 = 𝑀𝑒 (𝐼 , 𝑝meta, 𝑃 initial), where 𝐼 encapsulates all task-specific de-
tails, and 𝑝𝑚𝑒𝑡𝑎 provides a predefined template for structuring the
prompt. The objective is to produce a high-quality initial prompt 𝑃
that serves as a foundation for further refinement and optimization.
Example Selection and Chain-of-Thought Generation. In this
module, we utilize an instructive meta-prompt to select the most
representative and relevant examples from the training set. The
input to this process consists of a prompt 𝑝 , samples, and associ-
ated metadata 𝑝meta, while the output is a set of exemplars. The
process can be formally expressed as 𝐸𝑡 = 𝑀𝑒 (𝑝, 𝐵;𝑝meta), where
𝐸𝑡 = {𝑒𝑖 }𝑚𝑖=1 = {(𝑞𝑖 , 𝑎𝑖 , cot𝑖)}𝑚𝑖=1 represents a set of exemplars 𝑒𝑖 ,
each consisting of a question 𝑞𝑖 , an answer 𝑎𝑖 , and an optional chain
of thought cot𝑖 . The set 𝐵 = {𝑞𝑖 , 𝑎𝑖 , 𝑎𝑖)}𝑛𝑖=1 contains erroneous sam-
ples, where 𝑞𝑖 is the question, 𝑎𝑖 is the model’s erroneous answer,
and 𝑎𝑖 is the true answer.
Joint Optimization of Instructions and Examples. In the final
optimization phase, both prompt instructions and selected examples
are iteratively refined to enhance performance beyond independent
optimization. Inspired by ProTeGi [12], this process involves ag-
gregating feedback from erroneous samples 𝐵 = (𝑞𝑖 , 𝑎𝑖), where the
task model’s response diverges from the expected answer 𝑎𝑖 . The
feedback 𝐹𝑡 = 𝑀𝑒 (𝑝𝑡 , 𝐵; 𝑝meta) is generated using a meta-prompt
𝑝meta, guiding the optimizer in refining the prompt instructions.
For multi-stage pipeline optimization without gold labels for inter-
mediate stages, feedback is generated from performance scores and
optimization history, following the principles of OPRO[13]. The

2990

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Xinyu Zhang et al.

feedback 𝐹𝑡 = 𝑀𝑒 (𝑝𝑡 ;𝑝meta, 𝑆, 𝐼), where 𝑆 captures past scores and
prompts, and 𝐼 integrates scene descriptions, input-output rules,
and background information. This guides the optimizer to adjust
model behavior, refining intermediate stages to align with the over-
all task, even without predefined ground truth labels. The prompt
optimizer then adjusts the prompt 𝑝𝑡 based on the feedback, produc-
ing an updated prompt 𝑝𝑡+1 = 𝑀𝑒 (𝑝𝑡 , 𝐵, 𝑓𝑡 ; 𝑝meta), where 𝑓𝑡 ∈ 𝐹𝑡
represents selected feedback, and 𝑝metax‘ directs the optimization.
This iterative process improves the task model’s performance. Sim-
ilarly, example optimization leverages error-driven self-reflection
to generate more diverse and task-relevant examples.

2.3 Dynamic Workflow Routing
Based on workflow structure search and automatic prompt op-
timization, we observed that data from different sources require
distinct workflow configurations for training and optimization. For
example, while complex workflows generally produce better results,
some datasets perform significantly better with a simple two-stage
workflow. To adapt flexibly to varying data characteristics, we pro-
pose a dynamic routing mechanism. Inspired by ensemble learning,
this mechanism integrates multiple candidate workflows and dy-
namically selects the most suitable workflow route based on the
current data characteristics. This approach effectively reduces bi-
ases that may arise from using a single workflow and enhances
the robustness and generalization capability of the system. Specifi-
cally, through experiments on different datasets, we determine the
most suitable workflow for each data type based on test results and
combine it with other workflows via the routing mechanism. As a
result, the generated workflow can adjust according to the input
data, automatically selecting the optimal workflow for inference.

3 Experiment
3.1 User Modeling Task and Datasets
The user modeling task is designed by AgentSociety Challenge @
WWW 2025. The goal of our task is to predict the rating stars and
generate a review for a given item (a business or a product) by a
specific user. For this task, the agent is provided with historical
data about both the user and the item, including previous review
information. The agent is designed to capture user behavior and
item features in order to simulate real user activity. For efficiency,
the average time for processing each task is limited to 1 minute.
We evaluated our model on three different datasets: Amazon [14],
Goodreads [15] and Yelp1. Additionally, to optimize the prompt,
we split each dataset into a training set (280 reviews) and a test set
(120 reviews). All results were evaluated on the test set.

3.2 Evaluation Metrics
Our evaluation focuses on two primary components: preference
estimation (PE) and review generation (RG). For the preference
estimation, we use the Mean Absolute Error (MAE) to measure the
deviation of predicted star ratings from the ground truth. The score
for the rating stars is given by 𝑃𝐸 = 1 − 1

𝑁

∑𝑁
𝑖 |𝑠𝑛𝑖 − 𝑠𝑛𝑖 |, where 𝑁

is the total number of reviews and 𝑠𝑛𝑖 and 𝑠𝑛𝑖 are the normalized
predicted and ground truth star ratings, respectively. For the review

1https://www.yelp.com/dataset

Table 1: User Modeling Track Results for AgentSociety Chal-
lenge @WWW 2025

Rank PE RG SIM REAL OP
1st 0.8587 0.8259 0.9011 0.8031 0.8423
2nd (ours) 0.8613 0.8207 0.9009 0.8010 0.8410
3rd 0.8532 0.8271 0.8943 0.8040 0.8401
4th 0.8573 0.8201 0.9017 0.7967 0.8387
5th 0.8505 0.8251 0.8971 0.7982 0.8378

generation, we evaluated three main aspects: 1. Emotional Tone
Error 𝑒emo: MAE of normalized emotion score [16]; 2. Sentiment
Attitude Error 𝑒senti: MAE of normalized sentiment scores, which
is evaluated by using the 𝑛𝑙𝑡𝑘 package; and 3. Topic Relevance
Error [17] 𝑠𝑖𝑚topic: Cosine similarity between the review’s text
embedding and the real topics. The review generation score is
determined by 𝑅𝐺 = 1− (0.25×𝑒emo + 0.25×𝑒senti + 0.5×𝑠𝑖𝑚topic) .
The overall performance (OP) is then evaluated by the average of
the preference estimation and review generation𝑂𝑃 = 1

2 (𝑃𝐸+𝑅𝐺) .

3.3 Overall Performance
The agent was evaluated using the Qwen2.5-72B-instruct model as
part of the AgentSociety Challenge @ WWW 2025, which incor-
porated 40% simulation data and 60% real data for final evaluation.
And our proposed agent earned second place in the final phase
with an overall score of 0.8410. The detailed performance is listed
in Table. 1. We achieved first place on the performance estimation
with a score of 0.8613.

3.4 Ablation Study
Workflow Search Results We initiated the structure search by
using the baseline provided by the challenge. We set𝑇𝑙𝑖𝑚𝑖𝑡 in Equa-
tion 2 to 1 minute, in accordance with the challenge requirements,
and chose𝑤 = 0.9 to place more emphasis on the simulation scores.
The structure was first selected using the training set and then eval-
uated using the test set. For each dataset, the search was performed
to generate 5 optimized versions, and each version is limited to 10 it-
erations. The results of the workflow search are presented in Figure
3, with the search conducted separately for each dataset. The results
indicate that, among the three datasets, the agent benefits most
from the Goodreads dataset. Additionally, further optimization on
the training set leads to overfitting on the Amazon dataset, resulting
in a decline in performance on the test set. Table 2 presents the
details of each version using the Goodreads dataset. In the second
version, which employs five agents for the task, 𝑉𝑓 𝑖𝑛𝑎𝑙 decreases
due to the prolonged execution time. Subsequent optimizations
reduce the number of agents to improve time efficiency. Ultimately,
the optimized workflow achieves an overall performance of 0.8903
while maintaining efficiency.
Prompt Optimization Results After selecting the optimal work-
flow for each dataset, we proceeded with prompt optimization
individually. To avoid exceeding the token limits for the agent, we
retained two examples for each workflow. The experimental re-
sults are presented in Table 3, which demonstrates that the overall
performance improves after optimization across all datasets.

2991

https://www.yelp.com/dataset

Collaborative Optimization Approach for Workflow Agents in User Behavior Modeling WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 2: Workflow search details on Goodreads dataset.

Version No. Overall Performance Execution Time (min/task) 𝑉𝑓 𝑖𝑛𝑎𝑙 Agent Num. Graph
1 0.8355 0.1988 0.8519 1

2 0.8485 0.9278 0.8382 5

3 0.8549 0.7014 0.8694 3

4 0.8573 0.8972 0.8715 4

5 0.8903 0.8741 0.9013 3
Note. •: predict rating stars and generate review; •: review summary agent for target item; •: item information summary agent; •: user information summary

agent; •: user review summary agent. The prompt for each agent may vary across different versions.

Figure 3: Workflow search results on the test set.

Table 3: Automatic Prompt Optimization Results
Optimization Amazon Goodreads Yelp

Before 0.9008 0.8786 0.9068
After 0.9016 0.8849 0.9085

Table 4: Detailed Performance of Non-Routing
PE RG OP

Single Workflow 0.8961 0.8930 0.8945
Workflow Router 0.9011 0.8955 0.8983

Workflow Router From the results of the agent flow optimization,
we noticed that different agent flows result in different perfor-
mances on three datasets. For example, the workflow with an extra
agent shows better results on the Goodreads dataset, which sum-
marizes the information of the provided user for the user reviews.
While on the other two datasets, the results are better when no
process is done on the user reviews. Therefore, for better overall
results, we select the best agent flow for each dataset. The results
are shown in Table. 4. The results show that with the workflow
router, both the performance estimation and the review generation
are improved.

4 Conclusion
In this paper, we introduce a novel collaborative optimization ap-
proach for workflow agents in user behavior modeling. We utilize
Monte Carlo Tree Search (MCTS) to automatically search for the
optimal workflow and apply a automatic prompt optimization strat-
egy on the refined workflow. Additionally, we introduce a dynamic
Workflow Router to enhance overall performance across three real-
world datasets . Our approach achieved second place overall and
first place in star-rating prediction in the user modeling track of the

AgentSociety Challenge @ WWW 2025, demonstrating its strong
potential for user behavior modeling.

References
[1] Guy Azov, Tatiana Pelc, Adi Fledel Alon, and Gila Kamhi. Self-improving cus-

tomer review response generation based on llms. arXiv preprint arXiv:2405.03845,
2024.

[2] Binzong Geng, Zhaoxin Huan, Xiaolu Zhang, Yong He, Liang Zhang, Fajie Yuan,
Jun Zhou, and Linjian Mo. Breaking the length barrier: Llm-enhanced ctr predic-
tion in long textual user behaviors. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
2311–2315, 2024.

[3] Qidong Liu, Xian Wu, Yejing Wang, Zijian Zhang, Feng Tian, Yefeng Zheng, and
Xiangyu Zhao. Llm-esr: Large language models enhancement for long-tailed
sequential recommendation. Advances in Neural Information Processing Systems,
37:26701–26727, 2025.

[4] Akira Kasuga and Ryo Yonetani. Cxsimulator: A user behavior simulation using
llm embeddings for web-marketing campaign assessment. In Proceedings of the
33rd ACM International Conference on Information and Knowledge Management,
pages 3817–3821, 2024.

[5] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii
Khizbullin, and Jürgen Schmidhuber. Language agents as optimizable graphs.
arXiv preprint arXiv:2402.16823, 2024.

[6] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. Large language models are human-level prompt
engineers. arXiv preprint arXiv:2211.01910, 2022.

[7] Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu
Wei. Why can gpt learn in-context? language models implicitly perform gradient
descent as meta-optimizers. arXiv preprint arXiv:2212.10559, 2022.

[8] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk.
Monte carlo tree search: A review of recent modifications and applications.
Artificial Intelligence Review, 56(3):2497–2562, 2023.

[9] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi
Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng,
Bang Liu, Yuyu Luo, and Chenglin Wu. AFLOW: Automating agentic workflow
generation. In ICLR, 2025.

[10] Levente Kocsis and Csaba Szepesvari. Bandit based montecarlo planning. In
European Conference on Machine Learning(ECML), 2006.

[11] Yifan Zhang. Meta prompting for agi systems. arXiv preprint arXiv:2311.11482,
2023.

[12] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng.
Automatic prompt optimization with" gradient descent" and beam search. arXiv
preprint arXiv:2305.03495, 2023.

[13] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou,
and Xinyun Chen. Large language models as optimizers, 2024.

[14] Y Hou, J Li, Z He, A Yan, X Chen, and JJ McAuley. Bridging language and items
for retrieval and recommendation (2024). CoRR, abs/2403.03952.

[15] Mengting Wan and Julian J. McAuley. Item recommendation on monotonic
behavior chains. In Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John
O’Donovan, editors, Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, pages 86–94. ACM,
2018.

[16] Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-
Anke. Tweeteval: Unified benchmark and comparative evaluation for tweet
classification. arXiv preprint arXiv:2010.12421, 2020.

[17] N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

2992

	Abstract
	1 Introduction
	2 Method
	2.1 Workflow structure search method
	2.2 Automatic Prompt Optimization
	2.3 Dynamic Workflow Routing

	3 Experiment
	3.1 User Modeling Task and Datasets
	3.2 Evaluation Metrics
	3.3 Overall Performance
	3.4 Ablation Study

	4 Conclusion
	References

