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Information Retrieval (IR) systems are crucial tools for users to access information, which have long been
dominated by traditional methods relying on similarity matching. With the advancement of pre-trained
language models, Generative Information Retrieval (GenIR) emerges as a novel paradigm, attracting increasing
attention. Based on the form of information provided to users, current research in GenlIR can be categorized
into two aspects: (1) Generative Retrieval (GR) leverages the generative model’s parameters for memorizing
documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing.
(2) Reliable Response Generation employs language models to directly generate information users seek, breaking
the limitations of traditional IR in terms of document granularity and relevance matching while offering
flexibility, efficiency, and creativity to meet practical needs. This article aims to systematically review the
latest research progress in GenIR. We will summarize the advancements in GR regarding model training
and structure, document identifier, incremental learning, and so on, as well as progress in reliable response
generation in aspects of internal knowledge memorization, external knowledge augmentation, and so on.
We also review the evaluation, challenges, and future developments in GenIR systems. This review aims to
offer a comprehensive reference for researchers, encouraging further development in the GenlR field (Github
Repository: https://github.com/RUC-NLPIR/GenIR-Survey).
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1 Introduction

Information Retrieval (IR) systems are crucial for navigating the vast sea of online information
in today’s digital landscape. From using search engines such as Google [75], Bing [195], and
Baidu [208], to engaging with Question-Answering (QA) or dialogue systems like ChatGPT [208]
and Bing Chat [196] and discovering content via recommendation platforms like Amazon [4] and
YouTube [76], IR technologies are integral to our everyday online experiences. These systems are
reliable and play a key role in spreading knowledge and ideas globally.

Traditional IR systems primarily rely on sparse retrieval methods based on word-level matching.
These methods, which include Boolean Retrieval [240], BM25 [236], SPLADE [64], and Uni-
COIL [162], establish connections between vocabulary and documents, offering high retrieval
efficiency and robust system performance. With the rise of deep learning, dense retrieval methods
such as DPR [116] and ANCE [322], based on the bidirectional encoding representations from the
BERT model [120], capture the deep semantic information of documents, significantly improv-
ing retrieval precision. Although these methods have achieved leaps in accuracy, they rely on
large-scale document indices [56, 186] and cannot be optimized in an end-to-end way. Moreover,
when people search for information, what they really need is a precise and reliable answer. This
document ranking list-based IR approach still requires users to spend time summarizing their
required answers, which is not ideal enough for information seeking [194].

With the development of Transformer-based pre-trained language models such as T5 [229],
BART [137], and GPT [226], they have demonstrated their strong text generation capabilities.
In recent years, Large Language Models (LLMs) have brought about revolutionary changes in
the field of AI-Generated Content (AIGC) [18, 357]. Based on large pre-training corpora and
advanced training techniques like RLHF [35], LLMs [8, 104, 208, 284] have made significant progress
in natural language tasks, such as dialogue [208, 280] and QA [173, 223]. The rapid development
of LLMs is transforming IR systems, giving rise to a new paradigm of Generative Information
Retrieval (GenIR), which achieves IR goals through generative approaches.

As envisioned by Metzler et al. [194], in order to build an IR system that can respond like a
domain expert, the system should not only provide accurate responses but also include source
citations to ensure the credibility of the results. To achieve this, GenIR models must possess both
sufficient memorized knowledge and the ability to recall the associations between knowledge
and source documents, which could be the final goal of GenlIR systems. Currently, research in
GenlR primarily focuses on two main patterns: (1) Generative Retrieval (GR), which involves
retrieving documents by generating their identifiers; and (2) Reliable Response Generation, which
entails directly generating user-centric responses with reliability enhancement strategies. Noting
that although these two methods have not yet been integrated technically, they represent two
primary forms by which IR systems present information to users in generative manners: either
by generating lists of Document Identifiers (DocIDs) or by generating reliable and user-centric
responses. Figure 1 illustrates the difference between these two forms. These strategies are essential
to the next generation of IR and constitute the central focus of this survey.

GR, a new retrieval paradigm based on generative models, is garnering increasing attention.
This approach leverages the parametric memory of generative models to directly generate DocIDs
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or sirloin, on a stovetop:

Steak (ribeye, sirloin, ...); Salt; Freshly ground black pepper; Olive oil
or butter; Optional: garlic cloves, fresh herbs [1].

* Equipment

Cast iron skillet or heavy-bottomed pan, Tongs, Meat thermometer [1].

* Instructions

(1) Prep the Steak: ... (2) Preheat the Pan: ... (3) Add Fat: ... (4) Cook
the Steak: ... (5) ... (6) ... (7) Rest the Steak: ... (8) Serve: ... [1].
Cooking times and temperatures can vary based on the steak's size, the
starting temperature of the meat, and your cooking setup [2][3], so
adjustments may be necessary. Enjoy your steak!

2022.2.12 — During cooking, aim to cook your steak medium-rare to medium —
any more and you'll be left with a tough piece of meat. Turning it every minute ...

How to cook the perfect steak | Steak recipe ’

How to Cook Steak - like a chef!
2019.7.19 — Ingredients - 1 — 2 boneless ribeye or scotch fillet , 2.5 cm / 1” thick,
approx 300g/10 oz each (Note 1) - 1 tbsp vegetable oil - Salt and ...

2021.9.26 — Cooking times (for a 2cm-2.5¢m thick Sirloin or Ribeye) - Rare: 3

minutes total - Medium Rare: 4 minutes total - Medium Well: 5-6 minutes total ... [1] How to cook steak on a stovetop [2] How to cook a perfect stack [3] How
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Fig. 1. Exploring IR evolution: from traditional to generative methods. This diagram illustrates the shift
from traditional similarity-based document matching (a) to GenlIR techniques. Current GenIR methods can
be categorized into two types: GR (b), which retrieves documents by directly generating relevant DocIDs
constrained by a DoclD prefix tree; and response generation (c), which directly generates reliable and user-
centric answers.

related to the documents [17, 279, 305, 369]. Figure 1 illustrates this transition, where traditional IR
systems match queries to documents based on an indexed database (Figure 1(a)), while generative
methods use language models to retrieve by directly generating relevant DocIDs (Figure 1(b)).
Specifically, GR assigns a unique identifier to each document, which can be numeric-based or
text-based, and then trains a GR model to learn the mapping from queries to the relevant DocIDs.
This allows the model to index documents using its internal parameters. During inference, GR
models use constrained beam search to limit the generated DocIDs to be valid within the corpus,
ranking them based on generation probability to produce a ranked list of DocIDs. This eliminates
the need for large-scale document indexes in traditional methods, enabling end-to-end training of
the model.

Recent studies on GR have delved into model training and structure [6, 152, 279, 305, 363,
367, 370], DocID design [17, 263, 279, 286, 328], continual learning on dynamic corpora [79, 123,
191], downstream task adaptation [26, 27, 151], multi-modal GR [156, 177, 355], and generative
recommender systems [73, 231, 302]. The progress in GR is shifting retrieval systems from matching
to generation. It has also led to the emergence of workshops [10] and tutorials [277]. However,
there is currently no comprehensive review that systematically organizes the research, challenges,
and prospects of this emerging field.

Reliable response generation is also a promising direction in the IR field, offering user-centric and
accurate answers that directly meet users’ needs. Since LLMs are particularly adept at following
instructions [357], capable of generating customized responses, and can even cite the knowledge
sources [203, 221], making direct response generation a new and intuitive way to access information
[53, 74, 239, 313, 365]. As illustrated in Figure 1, the generative approach marks a significant shift
from traditional IR systems, which return a ranked list of documents (as shown in Figure 1(a)
and (b)). Instead, response generation methods (depicted in Figure 1(c)) offer a more dynamic form
of information access by directly generating detailed, user-centric responses, thereby providing a
richer and more immediate understanding of the information need behind the users’ queries.

However, the responses generated by language models may not always be reliable. They have
the potential to generate irrelevant answers [84], contradict factual information [89, 103], provide
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outdated data [289], or generate toxic content [92, 261]. Consequently, these limitations render them
unsuitable for many scenarios that require accurate and up-to-date information. To address these
challenges, the academic community has developed strategies across four key aspects: enhancing
internal knowledge [15, 36, 55, 118, 131, 192, 241, 265, 283]; augmenting external knowledge
[5, 112, 138, 150, 203, 243, 331]; generating responses with citation [128, 141, 155, 203, 312]; and
improving personal information assistance [148, 171, 293, 325]. Despite these efforts, there is still
a lack of a systematic review that organizes the existing research under this new paradigm of
generative information access.

This review will systematically review the latest research progress and future developments
in the field of GenlR, as shown in Figure 2, which displays the classification of research related
to the GenlR system. We will introduce background knowledge in Section 2, GR technologies in
Section 3, direct information accessing with generative language models in Section 4, evaluation
in Section 5, current challenges and future directions in Section 6, respectively. Section 7 will
summarize the content of this review. This article is the first to systematically organize the re-
search, evaluation, challenges, and prospects of GenlIR, while also looking forward to the potential
and importance of GenIR’s future development. Through this review, readers will gain a deep
understanding of the latest progress in developing GenlR systems and how it shapes the future of
information access. The main contribution of this survey is summarized as follows:

— First comprehensive survey on GenlIR. This survey is the first to comprehensively organize the
techniques, evaluation, challenges, and prospects on the emerging field of GenlIR, providing
a deep understanding of the latest progress in developing GenlIR systems and its future in
shaping information access.

— Systematic categorization and in-depth analysis. The survey offers a systematic categorization
of research related to GenlR systems, including GR, reliable response generation. It provides
an in-depth analysis of each category, covering model training and structure, DocID, and so
on in GR; internal knowledge memorization, external knowledge enhancement, and so on for
reliable response generation.

— Comprehensive review of evaluation metrics and benchmarks. The survey reviews a range
of widely used evaluation metrics and benchmark datasets for accessing GenIR methods,
alongside analysis on the effectiveness and weaknesses of existing GenIR methods.

— Discussions of current challenges and future directions. The survey identifies and discusses
the current challenges faced in the GenlR field. We also provide potential solutions for each
challenge and outline future research directions for building GenlIR systems.

2 Background and Preliminaries

IR techniques aim at efficiently obtaining, processing, and understanding information from massive
data. Technological advancements have continuously driven the evolution of these methods: from
early keyword-based sparse retrieval to deep learning-based dense retrieval, and more recently, to
GR, LLMs, and their augmentation techniques. Each advancement enhances retrieval accuracy and
efficiency, catering to the complex and diverse query needs of users.

2.1 Traditional IR

Sparse Retrieval. In the field of traditional IR, sparse retrieval techniques implement fast and accurate
document retrieval through the inverted index method. Inverted indexing technology maps each
unique term to a list of all documents containing that term, providing an efficient means for IR
in large document collections. Among these methods, Term Frequency-Inverse Document
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Training (3.1.1): DSI [281], DynamicRetriever [370], NCI [307], DSI-QG [375],
Chen et al. [29], LTRGR [159], GenRRL [365], DGR [161], ListGR [280],

Structure (3.1.2): NCI [307], TOME [237], NP Decoding [130], MEVI [346],
DiffusionRet [224], GDR [342], Self-Retrieval [275], PAG [345]

Numeric (3.2.1): DSI [281], DynamicRetriever [370], Ultron [371], GenRet [265],
Tied-Atomic [206], MEVI [346], LMIndexer [112], ASI [330], RIPOR [344]

Text (3.2.2): GENRE [18], SEAL [13], Ultron [371], LLM-URL [376],

[
UGR [26], MINDER [160], AutoTSG [352], SE-DSI [352], NOVO [311], GLEN [135]

DSL++ [192], IncDSI [124], CLEVER [25], CorpusBrain++ [80]

CodeDSI [203], UGR [26], GCoQA [158], Re3val [257]

—[Joim Training (3.4.2): UniGen [155], CorpusLM [152], RetroLLM [153]

—[Mulri-Modal (3.4.3): IRGen [357], GeMKR [178], GRACE [157]

Generative Recommender Systems (3.4.4): P5 [74], TIGER [233], SEATER [254],
IDGenRec [273], LC-Rec [360], ColaRec [309]

Structure (4.1.1): Model Scaling: GPT3 [16], BLOOM [243], LLaMA [285],
Model Structure: PaLM [34], Mixtral 8x7B [106]

Internal Knowledge
Memorization (Sec 4.1)

Training and Inference (4.1.2): Training: Sadeq et al. [239] FactTune [211];
Inference: GenRead [339], RECITE [268], DoLa [37]

External Knowledge
Augmentation (Sec 4.2

Response
th Citation (Sec 4.3)

Personal Information
Assistant (Sec 4.4)

Generative Document
Retrieval (Sec 5.1)

Evaluation (Sec 5)

Separate Training (3.4.1): GERE [27], CorpusBrain [28], GMR [131], DearDR [283],]

Knowledge Updating (4.1.3): Incremental Learning: Exnie 2.0 [267], DAP [119];
Dynalnst [201], Knowledge Editing: KE [17], MEND [199], ROME [193]

{Dimct Citation (4.3.1): According-to Prompting [314], IFL [129], Fierro et al. [63],

Retrieval (4.2.1): Sequential: RAG [139], RRR [183], ARL2 [350];

Branching: TOC [123], BlendFilter [297], REPLUG [252];

Conditional: SKR [308], Self-DC [296], Rowen [52];

Loop: Tter-RetGen [248], IR-COT [287], FLARE [111], Self-RAG [5], Search-o1 [151]

Tool (4.2.2): Search Engine: ReAct [333], WebGPT [204];
Knowledge Graph: StructGPT [110], ToG [262], RoG [181];
API-based Tools: Toolformer [245], ToolLLM [226], AssistGPT [69];
Model-based Tools: HuggingGPT [250], Visual ChatGPT [317]

Credible without Credit [217], 1-PAGER [97], Khalifa et al. [122]

Retrieval-based Citation (4.3.2): WebGPT [204], WebBrain [223], RARR [70],
SearChain [326], LLatrieval [71], VTG [261], CEG [150], APO [142]

Personalized Dialogue (4.4.1): Zhang et al. [354], P?Bot [172], Wu et al. [322],
SAFARI [295], Personalized Soups [98], OPPU [274]

D specific (4.4.2): F : Zhongjing [177], Mental-LLM [327];
Academic: RevGAN [149], Pearl [202]; Education: EduChat [48]; Recipe, Robot, etc.

—[Metrics (5.1.1): Recall, MRR [40], R-Precision, MAP, nDCG [101]

Benchmarks (5.1.2): MS MARCO [205], NQ [126], TriviaQA [115], KILT [218],
TREC DL 19 & 20 [41, 42], DynamicIR [337], Liu et al. [176], ExclulR [356]

Analysis (5.1.3): Chen et al. [29], Pradeep et al. [220], Liu et al. [176],
Wau et al. [319]

Experiments (5.1.4): Performance Comparison on MS MARCO [205], NQ [126]
and KILT [218] Benchmarks

Metrics (5.2.1): Rule-based: EM, BLEU [213], ROUGE [162], Perplexity;
Model-based: BERTScore [355], BLEURT [247], GPTScore [66], FActScore [198];

Reliable Response
Generation (Sec 5.2)

Human luation: C , Fluency

Benchmarks (5.2.2): General: MMLU [84], BIG-bench [259], LLM-Eval [166];
Tool: API-Bank [148], ToolBench [226];

Factuality: TruthfulQA [164], ALCE [71], HaluEval [144];
Real Time: RealTime QA [118], FreshQA [291];
Trustworthy: SafetyBench [358], TrustGPT [93], TrustLLM [263]

Generative Document
Retrieval (Sec 6.1)

Scalability (6.1.1); Dynamic Corpora (6.1.2); Document Representation (6.1.3);

Efficiency (6.1.4); Multi-modal (6.1.5)

Challenges and
Prospects (Sec 6)
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Fig. 2. Taxonomy of research on GenlR: investigating GR, reliable response generation, evaluation, challenges,

and prospects. GDR, Generative Dense Retrieval.
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Frequency (TF-IDF) [233] is a particularly important statistical tool used to assess the importance
of a word in a document collection, thereby widely applied in various traditional retrieval systems.

The core of sparse retrieval technology lies in evaluating the relevance between documents
and user queries. Specifically, given a document collection D and a user query g, traditional IR
systems identify and retrieve information by calculating the relevance R between document d and
query q. This relevance evaluation typically relies on the similarity measure between document d
and query g, as shown below:

R(q d) = qund t-idf(t, d) - t-idf(t, q), (1)

where ¢ represents the terms common to both query g and document d, and tf-idf(t, d) and tf-idf(¢, q)
represent the TF-IDF weights of term ¢ in document d and query g, respectively. Although sparse
retrieval methods like TF-IDF [233] and BM25 [238] excel at fast retrieval, it struggles with complex
queries involving synonyms, specialized terms, or context, as term matching and TF-IDF may not
fully meet users’ information needs [179].

Dense Retrieval. The advent of pre-trained language models like BERT [120] has revolutionized
IR, leading to the development of dense retrieval methods, like DPR [116], ANCE [322], E5 [296],
and SimLM [297]. Unlike traditional sparse retrieval, these methods leverage Transformer-based
encoders to create dense vector representations for both queries and documents. This approach
enhances the capability to grasp the underlying semantics, thereby improving retrieval accuracy.

The core of dense retrieval lies in converting documents and queries into vector representations.
Given document d and query g and their vector representations v,, each document d is transformed
into a dense vector v, through a pre-trained language model, similarly, query q is transformed
into vector v,. Specifically, we can use encoder functions E4(+) and Eg4(-) to represent the encoding
process for documents and queries, respectively:

vq = Eq(d), Vg = Eq(CI)’ (2)

where Eg(+) and E4(-) can be the same model or different models optimized for specific tasks.
Dense retrieval methods evaluate relevance by calculating the similarity between the query
vector and document vector, which can be measured by cosine similarity, expressed as follows:

Vq Vg

vgllval’

R(q,d) = cos(vg,vq) = (3)
where v, - vg represents the dot product of query vector v, and document vector vy, and |v4| and
|v4| respectively represent the magnitudes of the query and document vector. Finally, documents
are ranked based on these similarity scores to identify the most relevant ones for the user.

22 GR

With the significant progress of language models, GR has emerged as a new direction in the
field of IR [194, 279, 326]. Unlike traditional index-based retrieval methods, GR relies on pre-
trained generative language models, such as T5 [229] and BART [137], to directly generate DocIDs
relevant to the query, thereby achieving end-to-end retrieval without relying on large-scale pre-built
document indices.

DocID Construction and Prefix Constraints. To facilitate GR, each document d in the corpus
D = {dy,d,...,dn} is assigned a unique DocID d’, forming the set D’ = {d},d;, .. .,dy}. This
mapping is typically established via a bijective function ¢ : D — D’, ensuring that:

#(d;) =d], Vd;eD. (4)

ACM Transactions on Information Systems, Vol. 43, No. 3, Article 83. Publication date: May 2025.



From Matching to Generation: A Survey on Generative Information Retrieval 837

To enable the language model to generate only valid DocIDs during inference, we construct prefix
constraints based on D’. This is typically implemented using a trie (prefix tree), where each path
from the root to a leaf node corresponds to a valid DocID.

Constrained Beam Search. Given a query ¢, the GR model aims to generate the top-k DocIDs that
are most relevant to g. The language model P(-|q; ) generates DocIDs token by token, guided by
the prefix constraints. At each decoding step i, only those tokens that extend the current partial
sequence d’_; into a valid prefix of some DocIDs in D’ are considered. Formally, the set of allowable
next tokens is:

V(d.;) ={v|3d" € D’ such that d_,v is a prefix of d'}. (5)

By employing constrained beam search, the model efficiently explores the space of valid DocIDs,
maintaining a beam of the most probable sequences at each decoding step while adhering to the
DocID prefix constraints.

Document Relevance. The relevance between the query g and a document d is quantified by the
probability of generating its corresponding DocID d’ given g. This is computed as:

T
R(g.d) = P(d'|q:0) = | | _ P(df | d;,:6), (6)

where T is the length of the DocID d’ in tokens, d; is the token at position i, and d’_; denotes the se-
quence of tokens generated before position i. The constrained beam search produces a ranked list of
top-k DocIDs {d’'V,d’®, ..., d"®)} based on their generation probabilities {R(q,d"), R(q,d?),
..., R(q,d"®)}. The corresponding documents {dV),d®, ..., d*)} are then considered the most
relevant to the query gq.

Model Optimization. GR models are typically optimized using cross-entropy loss, which measures
the discrepancy between the generated DocID sequence and the ground truth DocID. Given a query
q and its corresponding DocID d’, the cross-entropy loss is defined as:

T
L=-)" logP(d]|d.;q0), 7)

where T is the length of the DocID in tokens, d; is the token at position i, and d’; denotes the
sequence of tokens generated before position i. This loss function encourages the model to learn
the association between query and labeled DocID sequence.

This approach allows the GR model to produce a relevance-ordered list of documents without
relying on traditional indexing structures. The core of this approach lies in leveraging the language
model’s capability to generate DocID sequences within prefix constraints. This section discusses the
simplest GR method. In Section 3, we will delve into advanced methods from multiple perspectives,
including model architectures, training strategies, and DocID design, to further enhance retrieval
performance across various scenarios.

2.3 LLMs

The evolution of LLMs marks a significant leap in Natural Language Processing (NLP), rooted
from early statistical and neural network-based language models [372]. These models, through
pre-training on vast text corpora, learned deep semantic features of language, greatly enriching
the understanding of text. Subsequently, generative language models, most notably the GPT series
[15, 226, 227], significantly improved text generation and understanding capabilities with improved
model size and number of parameters.

LLMs can be mainly divided into two categories: encoder—decoder models and decoder-only
models. Encoder—decoder models, like T5 [229] and BART [137], convert input text into vector
representations through their encoder, then the decoder generates output text based on these
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representations. This model perspective treats various NLP tasks as text-to-text conversion prob-
lems, solving them through text generation. On the other hand, decoder-only models, like the
GPT [226] and GPT-2 [227], rely entirely on the Transformer decoder, generating text step by
step through the self-attention mechanism. The introduction of GPT-3 [15], with its 175 billion
parameters, marked a significant milestone in this field and led to the creation of models like
InstructGPT [209], Falcon [213], PaLM [33], and Llama series [58, 283, 284]. These models, all using
a decoder-only architecture, trained on large-scale datasets, have shown astonishing language
processing capabilities [357].

For IR tasks, LLMs play a crucial role in directly generating the exact information users seek
[54, 172, 372]. This capability marks a significant step towards a new era of GenlR. In this era,
the retrieval process is not solely about locating existing information but also about creating
new content that meets the specific needs of users. This feature is especially advantageous in
situations where users might not know how to phrase their queries or when they are in search of
complex and highly personalized information, scenarios where traditional matching-based methods
fall short.

2.4 Augmented Language Models

Despite the advances of LLMs, they still face significant challenges such as hallucination, particu-
larly in complex tasks or those requiring access to long-tail or real-time information [89, 357]. To
address these issues, retrieval augmentation and tool augmentation have emerged as effective strate-
gies. Retrieval augmentation involves integrating external knowledge sources into the language
model’s workflow. This integration allows the model to access up-to-date and accurate information
during the generation process, thereby grounding its responses in verified data and reducing the
likelihood of hallucinations [138, 250, 269]. Tool augmentation, on the other hand, extends the
capabilities of LLMs by incorporating specialized tools or APIs that can perform specific functions
like mathematical computations, data retrieval, or executing predefined commands [224, 243, 274].
With retrieval and tool augmentations, language models can provide more precise and contextually
relevant responses, thereby improving factuality and functionality in practical applications.

Moreover, due to the aforementioned issue of hallucinations, the responses generated by LLMs are
often considered unreliable because users are unaware of the sources behind the generated content,
making it difficult to verify its accuracy. To enhance the credibility of responses, some studies have
focused on generating responses with citations [142, 203, 254]. This approach involves enabling
language models to cite the source documents of their generated content, thereby increasing the
trustworthiness of the responses. All these methods are effective strategies for improving both
the quality and reliability of language model outputs and are essential technologies for building
the next generation of GenlIR systems.

3 GR: From Similarity Matching to Generating DocIDs

In recent advancements in AIGC, GR has emerged as a promising approach in the field of information
retrieval, garnering increasing interest from the academic community. Figure 3 showcases a timeline
of the GR methods. Initially, GENRE [17] proposed to retrieve entities by generating their unique
names through constrained beam search via a pre-built entity prefix tree, achieving advanced entity
retrieval performance. Subsequently, Metzler et al. [194] envisioned a model-based IR framework
aiming to combine the strengths of traditional document retrieval systems and pre-trained language
models to create systems capable of providing expert-quality answers in various domains.
Following their lead, a diverse range of methods including DSI [279], DynamicRetriever [368],
SEAL [12], NCI [305], and so on, have been developed, with a continuously growing body of
work. These methods explore various aspects such as model training and architectures, DocIDs,
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Fig. 4. A conceptual framework for a GR system, with a focus on challenges in incremental learning, identifier
construction, model training and structure, and integration with downstream tasks and recommendation
systems.

incremental learning, task-specific adaptation, and generative recommendations. Figure 4 presents
an overview of the GR system, and we’ll provide an in-depth discussion of each associated challenge
in the following sections.

3.1 Model Training and Structure

One of the core components of GR is the model training and structure, aiming to enhance the
model’s ability to memorize documents in the corpus.

3.1.1 Model Training. To effectively train generative models for indexing documents, the stan-
dard approach is to train the mapping from queries to relevant DocIDs, based on standard Sequence-
to-Sequence (seq2seq) training methods, as described in Equation (2). This method has been
widely used in numerous GR research works, such as DSI [279], NCI [305], SEAL [12], and so on.
Moreover, a series of works have proposed various model training methods tailored for GR tasks
to further enhance GR retrieval performance, such as sampling documents or generating queries
based on document content to serve as pseudo queries for data augmentation, or including training
objectives for document ranking.

Specifically, DSI [279] proposed two training strategies: one is “indexing,” that is, training the
model to associate document tokens with their corresponding DocIDs, where DocIDs are pre-built
based on documents in corpus, which will be discussed in detail in Section 3.2; the other is “retrieval,’
using labeled query-DocID pairs to fine-tune the model. Notably, DSI was the first to realize a
differentiable search index based on the Transformer [288] structure, showing good performance
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in web search [204] and QA [125] scenarios. Next, a series of methods propose training methods
for data augmentation and improving GR model ranking ability.

Sampling Document Pieces as Pseudo Queries. In the same era, DynamicRetriever [368], also based
on the encoder—decoder model, constructed a model-based IR system by initializing the encoder
with a pre-trained BERT [120]. Besides, DynamicRetriever utilizes passages, sampled terms, and
N-grams to serve as pseudo queries to enhance the model’s memorization of DocIDs. Formally, the
training methods can be summarized as follows:

Sampled Document : d;, — DocID,i € {1,..., k4, }, (8)
Labeled Query : g; — DocID, i € {1,...,kq}, 9)

where dg; and g; denote each of the k;; sampled document text and each of the k, labeled query
for the corresponding DoclD, respectively.

Generating Pseudo Queries from Documents. Following DSI, the NCI [305] model was trained
using a combination of labeled query-document pairs and augmented pseudo query-document
pairs. Specifically, NCI proposed two strategies: one using the DocT5Query [207] model as a
query generator, generating pseudo queries for each document in the corpus through beam search;
the other strategy directly uses the document as a query, as stated in Equation (8). Similarly,
DSI-QG [373] also proposed using a query generator to enhance training data, establishing a
bridge between indexing and retrieval in DSI. This data augmentation method has been proven
in subsequent works to be an effective method to enhance the model’s memorization for DocIDs,
which can be expressed as follows:

Pseudo Query : g;, — DocID, i € {1,..., kg, }, (10)

where g, represents each of the k,, generated pseudo query for the corresponding DocID.

Improving Ranking Capability. Additionally, a series of methods focus on further optimizing
the ranking capability of GR models. Chen et al. [29] proposed a multi-task distillation method to
improve retrieval quality without changing the model structure, thereby obtaining better indexing
and ranking capabilities. Meanwhile, LTRGR [158] introduced a ranking loss to train the model
in ranking paragraphs. Subsequently, Zhou et al. [363] proposed GenRRL, which improves rank-
ing quality through reinforcement learning with relevance feedback, aligning token-level DocID
generation with document-level relevance estimation. Moreover, Li et al. [160] introduced DGR,
which enhances GR through knowledge distillation. Specifically, DGR uses a cross-encoder as a
teacher model, providing fine-grained passage ranking supervision signals, and then optimizes
the model with a distilled RankNet loss. ListGR [278] defined positional conditional probabilities,
emphasizing the importance of the generation order of each DocID in the list. In addition, ListGR
employs relevance calibration that adjusts the generated list of DocIDs to better align with the
labeled ranking list. See Table 1 for a detailed comparison of GR methods.

3.1.2  Model Structure. Basic GR models mostly use pre-trained encoder—decoder structured
generative models, such as T5 [229] and BART [137], fine-tuned for the DocID generation task.
To better adapt to the GR task, researchers have proposed a series of specifically designed model
structures [129, 222, 235, 273, 305, 340, 344].

Model Decoding Methods. For the semantic structured DocID proposed by DSI [279], NCI [305]
designed a prefix-aware weight-adaptive decoder. By adjusting the weights at different positions
of DocIDs, this decoder can capture the semantic hierarchy of DocIDs. To allow the GR model to
utilize both own parametric knowledge and external information, NP-Decoding [129] proposed
using non-parametric contextualized word embeddings (as external memory) instead of traditional
word embeddings as the input to the decoder. Additionally, PAG [343] proposed a planning-ahead
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Table 1. Comparisons of Representative GR Methods, Focusing on DocID, Training Data Augmentation,
and Training Objective

Method DocID Training Data Augmentation Training Objective
State Data Type Order  Sample Doc Doc2Query Seq2seq DocID Ranking

GENRE [17] Static Text Sequence - - v - -
DSI [279] Static Numeric Sequence v - v - -
DynamicRetriever [368] Static Numeric Sequence v - v - -
SEAL [12] Static Text Sequence v - v - -
DSI-QG [373] Static Numeric Sequence - v v - -
NCI [305] Static Numeric Sequence v N N - -
Ultron [369] Static Numeric/Text Sequence v v v - -
CorpusBrain [27] Static Text Sequence v - v - -
GenRet [263] Learnable Numeric Sequence - v v Ve -
AutoTSG [350] Static Text Set - v v - -
SE-DSI [276] Static Text Sequence v - v - -
Chen et al. [29] Static Numeric Sequence v v N - N
LLM-URL [374] Static Text Sequence - - - - -
MINDER [159] Static Text Sequence - v v - -
LTRGR [158] Static Text Sequence - v v - v
NOVO [309] Learnable Text Set v - - v -
GenRRL [363] Static Text Sequence - v v - v
LMIndexer [111] Learnable Numeric Sequence - v v Vv -
ASI [328] Learnable Numeric Sequence - v v v -
RIPOR [342] Learnable Numeric Sequence - v v v v
GLEN [134] Learnable Text Sequence - v v v v
DGR [160] Static Text Sequence - v v - v
ListGR [278] Static Numeric Sequence - v v - v

Generative retrieval, Document Representation, Training Data Augmentation, and Training Objective

generation approach, which first decodes the set-based DocID to approximate document-level
scores, and then continues to decode the sequence-based DocID on this basis.

Combining Generative and Dense Retrieval Methods. Combining seq2seq generative models with
dual-encoder retrieval models, MEVI [344] utilizes Residual Quantization (RQ) [188] to organize
documents into hierarchical clusters, enabling efficient retrieval of candidate clusters and precise
document retrieval within those clusters. Similarly, Generative Dense Retrieval [340] proposed to
first broadly match queries to document clusters, optimizing for interaction depth and memory
efficiency, and then perform precise, cluster-specific document retrieval, boosting both recall and
scalability.

Utilizing Multiple Models. TOME [235] proposed to decompose the GR task into two stages,
first generating text paragraphs related to the query through an additional model, then using the
GR model to generate the URL related to the paragraph. DiffusionRet [222] proposed to first use
a diffusion model (SeqDiffuSeq [339]) to generate a pseudo-document from a query, where the
generated pseudo-document is similar to real documents in length, format, and content, rich in
semantic information; then, it employs another generative model to perform retrieval based on
N-grams, similar to the process used by SEAL [12], leveraging an FM-Index [61] for generating
N-grams found in the corpus. Self-Retrieval [273] fully integrated indexing, retrieval, and evaluation
into a single LLM. It generates natural language indices and document segments and performs
self-evaluation to score and rank the generated documents.

3.2 Design of DoclDs

Another essential component of GR is document representation, also known as DocIDs, which
act as the target outputs for the GR model. Accurate document representations are crucial as they
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enable the model to more effectively memorize document information, leading to enhanced retrieval
performance. Table 1 provides a detailed comparison of the states, data types, and order of DocIDs
across numerous GR methods. In the following sections, we will explore the design of DocIDs from
two categories: numeric-based identifiers and text-based identifiers.

3.2.1  Numeric-Based Identifiers. An intuitive method to represent documents is by using a
single number or a series of numbers, referred to as DocIDs. Existing methods have designed both
static and learnable DocIDs.

Static DoclDs. Initially, DSI [279] introduced three numeric DocIDs to represent documents:
(1) Unstructured Atomic DocID: a unique integer identifier is randomly assigned to each document,
containing no structure or semantic information. (2) Naively Structured String DocID: treating
random integers as divisible strings, implementing character-level DocID decoding to replace large
softmax output layers. (3) Semantically Structured DocID: introducing semantic structure through
hierarchical k-means method, allowing semantically similar documents to share prefixes in their
identifiers, effectively reducing the search space. Concurrently, DynamicRetriever [368] also built a
model-based IR system based on unstructured atomic DocID. Subsequently, Ultron [369] encoded
documents into a latent semantic space using BERT [120], and compressed vectors into a smaller
semantic space via Product Quantization (PQ) [72, 101], preserving semantic information. Each
document’s PQ code serves as its semantic identifier. MEVI [344] clusters documents using RQ [188]
and utilizes dual-tower and seq2seq model embeddings for a balanced performance in large-scale
document retrieval.

Learnable DocIDs. Unlike previous static DocIDs, GenRet [263] proposed learnable document
representations, transforming documents into DocIDs through an encoder, then reconstructs doc-
uments from DoclDs using a decoder, trained to minimize reconstruction error. Furthermore, it
used progressive training and diversity clustering for optimization. To ensure that DocID embed-
dings can reflect document content, Tied-Atomic [205] proposed to link document text with token
embeddings and employs contrastive loss for DocID generation. LMIndexer [111] and ASI [328]
learned optimal DocIDs through semantic indexing, with LMIndexer using a reparameterization
mechanism for unified optimization, facilitating efficient retrieval by aligning semantically simi-
lar documents under common DocIDs. ASI extends this by establishing an end-to-end retrieval
framework, incorporating semantic loss functions and reparameterization to enable joint training.
Furthermore, RIPOR [342] treats the GR model as a dense encoder to encode document content.
It then splits these representations into vectors via RQ [188], creating unique DocID sequences.
Furthermore, RIPOR implements a prefix-guided ranking optimization, increasing relevance scores
for prefixes of pertinent DocIDs through margin decomposed pairwise loss during decoding.

In summary, numeric-based document representations can utilize the embeddings of dense
retrievers, obtaining semantically meaningful DocID sequences through methods such as k-means,
PQ [101], and RQ [188]; they can also combine encoder—decoder GR models with bi-encoder DR
models to achieve complementary advantages [205, 344].

3.2.2 Text-Based ldentifiers. Text-based DocIDs have the inherent advantage of effectively
leveraging the strong capabilities of pre-trained language models and offering better interpretability.

Document Titles. The most straightforward text-based identifier is the document title, which
requires each title to uniquely represent a document in the corpus, otherwise, it would not be
possible to accurately retrieve a specific document. The Wikipedia corpus used in the KILT [216]
benchmark, due to its well-regulated manual annotation, has a unique title corresponding to each
document. Thus, GENRE [17], based on the title as DocID and leveraging the generative model
BART [137] and pre-built DocID prefix, achieved superior retrieval performance across 11 datasets
in KILT. Following GENRE, GERE [26], CorpusBrain [27], Re3val [255], and CorpusBrain++ [79]
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also based their work on title DocIDs for Wikipedia-based tasks. Notably, LLM-URL [376] directly
generated URLs using ChatGPT prompts, achieving commendable performance after removing
invalid URLs. However, in the web search scenario [204], document titles in the corpus often have
significant duplication and many meaningless titles, making it unfeasible to use titles alone as
DoclDs. Thus, Ultron [369] effectively addressed this issue by combining URLs and titles as DocIDs,
identifying documents through keywords in web page URLs and titles.

Sub-Strings of Documents. To increase the flexibility of DocIDs, SEAL [12] proposed a sub-string
identifier, representing documents with any N-grams within them. Using FM-Index (a compressed
full-text sub-string index) [61], SEAL could generate N-grams present in the corpus to retrieve all
documents containing those N-grams, scoring and ranking documents based on the frequency of
N-grams in each document and the importance of N-grams. Following SEAL, various GR models
[25, 158-160] also utilized sub-string DocIDs and FM-Index during inference. For a more compre-
hensive representation of documents, MINDER [159] proposed multi-view identifiers, including
generated pseudo queries from document content via DocT5Query [207], titles, and sub-strings.
This multi-view DocID was also used in LTRGR [158] and DGR [160].

Term Sets. Unlike the sequential DocIDs described earlier, AutoTSG [350] proposed a term set-
based document representation, using keywords extracted from titles and content, rather than
predefined sequences, allowing for retrieval of the target document as long as the generated term
set is included in the extracted keywords. Recently, PAG [343] also constructed DocIDs based on
sets of key terms, disregarding the order of terms, which is utilized for approximating document
relevance in decoding.

Learnable DoclIDs. Text-based identifiers can also be learnable. Similarly based on term sets,
NOVO [309] proposed learnable continuous N-grams constituting term-set DocIDs. Through de-
noising query modeling, the model learned to generate queries from documents with noise, thereby
implicitly learning to filter out document N-grams more relevant to queries. NOVO also improves
the document’s semantic representation by updating N-gram embeddings. Later, GLEN [134] uses
dynamic lexical DocIDs and follows a two-phase index learning strategy. First, it assigns DocIDs
by extracting keywords from documents using self-supervised signals. Then, it refines DocIDs by
integrating query-document relevance through two loss functions. During inference, GLEN ranks
documents using DocID weights without additional overhead.

3.3 Incremental Learning on Dynamic Corpora

Prior studies have focused on GR from static document corpora. However, in reality, the documents
available for retrieval are continuously updated and expanded. To address this challenge, researchers
have developed a range of methods to optimize GR models for adapting to dynamic corpora.

Optimizer and Document Rehearsal. At first, DSI++ [191] aims to address the incremental learning
challenges encountered by DSI [279]. DSI++ modifies the training by optimizing flat loss basins
through the Sharpness-Aware Minimization optimizer, stabilizing the learning process of the model.
It also employs DocT5Query [207] to generate pseudo queries for documents in the existing corpus
as training data augmentation, mitigating the forgetting issue of GR models.

Constrained Optimization. Addressing the scenario of real-time addition of new documents, such
as news or scientific literature IR systems, IncDSI [123] views the addition of new documents as
a constrained optimization problem to find optimal representations for the new documents. This
approach aims to (1) ensure new documents can be correctly retrieved by their relevant queries,
and (2) maintain the retrieval performance of existing documents unaffected.

Incremental PQ (IPQ). CLEVER [24], based on PQ [101], proposes IPQ for generating PQ codes
as DocIDs for documents. Compared to traditional PQ methods, IPQ designs two adaptive thresholds
to update only a subset of centroids instead of all, maintaining the indices of updated centroids
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constant. This method reduces computational costs and allows the system to adapt flexibly to new
documents.

Fine-Tuning Adapters for Specific Tasks. CorpusBrain++ [79] introduces the KILT++ benchmark
for continuously updated KILT [216] tasks and designs a dynamic architecture paradigm with a
backbone-adapter structure. By fixing a shared backbone model to provide basic retrieval capabilities
while introducing task-specific adapters to incrementally learn new documents for each task, it
effectively avoids catastrophic forgetting. During training, CorpusBrain++ generates pseudo queries
for new document sets and continues to pre-train adapters for specific tasks.

3.4 Downstream Task Adaption

GR methods, apart from addressing retrieval tasks individually, have been tailored to various
downstream generative tasks. These include fact verification [282], entity linking [85], open-domain
QA [125], dialogue [50], slot filling [136], among others, as well as knowledge-intensive tasks [216],
code [178], conversational QA [3], and multi-modal retrieval scenarios [164], demonstrating superior
performance and efficiency. These methods are discussed in terms of separate training, joint training,
and multi-modal GR.

3.4.1 Separate Training. For fact verification tasks [282], which involve determining the cor-
rectness of input claims, GERE [26] proposed using an encoder—decoder-based GR model to replace
traditional indexing-based methods. Specifically, GERE first utilizes a claim encoder to encode input
claims and then generates document titles related to the claim through a title decoder to obtain
candidate sentences for corresponding documents.

Knowledge-Intensive Language Tasks (KILT). For KILT [216], CorpusBrain [27] introduced
three pre-training tasks to enhance the model’s understanding of query-document relationships
at various granularities: Internal Sentence Selection, Leading Paragraph Selection, and Hyperlink
Identifier Prediction. Similarly, UGR [25] proposed using different granularities of N-gram DocIDs
to adapt to various downstream tasks, unifying different retrieval tasks into a single generative form.
UGR achieves this by letting the GR model learn prompts specific to tasks, generating corresponding
document, passage, sentence, or entity identifiers.

Furthermore, DearDR [281] utilizes remote supervision and self-supervised learning techniques,
using Wikipedia page titles and hyperlinks as training data. The model samples sentences from
Wikipedia documents as input and trains a self-regressive model to decode page titles or hyperlinks,
or both, without the need for manually labeled data. Re3val [255] proposes a retrieval framework
combining generative reordering and reinforcement learning. It first reorders retrieved page titles
using context information obtained from a dense retriever, then optimizes the reordering using the
REINFORCE algorithm to maximize rewards generated by constrained decoding.

Multi-Hop Retrieval. In multi-hop retrieval tasks, which require iterative document retrievals to
gather adequate evidence for answering a query, GMR [130] proposed to employ language model
memory and multi-hop memory to train a GR model, enabling it to memorize the target corpus
and simulate real retrieval scenarios through constructing pseudo multi-hop query data, achieving
dynamic stopping and efficient performance in multi-hop retrieval tasks.

Code Retrieval. CodeDSI [202] is an end-to-end generative code search method that directly maps
queries to pre-stored code samples’ DocIDs instead of generating new code. Similar to DSI [279],
it includes indexing and retrieval stages, learning to map code samples and real queries to their
respective DocIDs. CodeDSI explores different DocID representation strategies, including direct
and clustered representation, as well as numerical and character representations.

Conversational QA. GCoQA [157] is a GR method for conversational QA systems that directly
generates DocIDs for passage retrieval. This method focuses on key information in the dialogue
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context at each decoding step, achieving more precise and efficient passage retrieval and answer
generation, thereby improving retrieval performance and overall system efficiency.

3.4.2  Joint Training. The methods in the previous section involve separately training generative
retrievers and downstream task generators. However, due to the inherent nature of GR models as
generative models, a natural advantage lies in their ability to be jointly trained with downstream
generators to obtain a unified model for retrieval and generation tasks.

Multi-Decoder Structure. UniGen [154] proposes a unified generation framework to integrate
retrieval and QA tasks, bridging the gap between query input and generation targets using connec-
tors generated by LLMs. UniGen employs shared encoders and task-specific decoders for retrieval
and QA, introducing iterative enhancement strategies to continuously improve the performance of
both tasks.

Multi-Task Training. Later, CorpusLM [151] introduces a unified language model that inte-
grates GR, closed-book generation, and Retrieval-Augmented Generation (RAG) to handle
various knowledge-intensive tasks. The model adopts a multi-task learning approach and intro-
duces ranking-guided DocID decoding strategies and continuous generation strategies to improve
retrieval and generation performance. In addition, CorpusLM designs a series of auxiliary DocID
understanding tasks to deepen the model’s understanding of DocID semantics.

3.4.3 Multi-Modal GR. GR methods can also leverage multi-modal data such as text, images,
and so on, to achieve end-to-end multi-modal retrieval.

Tokenizing Images to DocID Sequences. At first, IRGen [355] transforms image retrieval problems
into generative problems, predicting relevant discrete visual tokens, i.e., image identifiers, through
a seq2seq model given a query image. IRGen proposed a semantic image tokenizer, which converts
global image features into short sequences capturing high-level semantic information.

Advanced Model Training and Structure. Later, GeMKR [177] combines LLMs’ generation capa-
bilities with visual-text features, designing a generative knowledge retrieval framework. It first
guides multi-granularity visual learning using object-aware prefix tuning techniques to align visual
features with LLMs’ text feature space, achieving cross-modal interaction. GeMKR then employs
a two-step retrieval process: generating knowledge clues closely related to the query and then
retrieving corresponding documents based on these clues. GRACE [177] achieves generative cross-
modal retrieval method by assigning unique identifier strings to images and training multi-modal
LLMs [7] to memorize the association between images and their identifiers. The training process
includes (1) learning to memorize images and their corresponding identifiers, and (2) learning
to generate the target image identifiers from textual queries. GRACE explores various types of
image identifiers, including strings, numbers, semantic and atomic identifiers, to adapt to different
memory and retrieval requirements.

3.4.4 Generative Recommender Systems. Recommendation systems, as an integral part of the
information retrieval, are currently undergoing a paradigm shift from discriminative models to
generative models. Generative recommendation systems do not require the computation of ranking
scores for each item followed by database indexing, but instead accomplish item recommendations
through the direct generation of IDs. In this section, several seminal works, including P5 [73],
GPT4Rec [145], TIGER [231], SEATER [252], IDGenRec [271], LC-Rec [358], and ColaRec [307], are
summarized to outline the development trends in generative recommendations.

P5 [73] transforms various recommendation tasks into different natural language sequences,
designing a universal, shared framework for recommendation completion. This method, by setting
unique training objectives, prompts, and prediction paradigms for each recommendation domain’s
downstream tasks, serves well as a backbone model, accomplishing various recommendation tasks
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through generated text. In GR, effective indexing identifiers have been proven to significantly
enhance the performance of generative methods. Similarly, TIGER [231] initially learns a residual
quantized autoencoder to generate semantically informative indexing identifiers for different items.
It then trains a transformer-based encoder-decoder model with this semantically informative
indexing identifier sequence to generate item identifiers for recommending the next item based on
historical sequences.

Focusing solely on semantic information and overlooking the collaborative filtering infor-
mation under the recommendation context might limit the further development of generative
models. Therefore, after generating semantic indexing identifiers similar to TIGER using a residual
quantized autoencoder with uniform semantic mapping, LC-Rec [358] also engages in a series
of alignment tasks, including sequential item prediction, explicit index-language alignment, and
recommendation-oriented implicit alignment. Based on the learned item identifiers, it integrates
semantic and collaborative information, enabling LLMs to better adapt to sequence recommendation
tasks.

IDGenRec [271] innovatively combines generative recommendation systems with LLMs by
using human language tokens to generate unique, concise, semantically rich and platform-agnostic
textual identifiers for recommended items. The framework includes a text ID generator trained
on item metadata with a diversified ID generation algorithm, and an alternating training strategy
that optimizes both the ID generator and the LLM-based recommendation model for improved
performance and accuracy in sequential recommendations. SEATER [252] designs a balanced k-ary
tree-structured indexes, using a constrained k-means clustering method to recursively cluster
vectors encoded from item texts, obtaining equal-length identifiers. Compared to the method
proposed by DSI [279], this balanced k-ary tree index maintains semantic consistency at every level.
It then trains a Transformer-based encoder-decoder model and enhances the semantics of each
level of indexing through contrastive learning and multi-task learning. ColaRec [307] integrates
collaborative filtering signals and content information by deriving generative item identifiers from
a pre-trained recommendation model and representing users via aggregated item content. Then it
uses an item indexing generation loss and contrastive loss to align content-based semantic spaces
with collaborative interaction spaces, enhancing the model’s ability to recommend items in an
end-to-end framework.

4 Reliable Response Generation: Direct Information Accessing with Generative
Language Models

The rapid advancement of LLMs has positioned them as a novel form of IR system, capable of
generating reliable responses directly aligned with users’ informational needs. This not only saves
the time users would otherwise spend on collecting and integrating information but also provides
personalized, user-centric answers tailored to individual users.

However, challenges remain in creating a grounded system that delivers faithful answers, such
as hallucination, prolonged inference time, and high operational costs. This section will outline
strategies for constructing a faithful GenlIR system by: (1) optimizing the GenIR model internally,
(2) enhancing the model with external knowledge, (3) increasing accountability, and (4) developing
personalized information assistants.

4.1 Internal Knowledge Memorization

To develop a user-friendly and reliable IR system, the generative model should be equipped with
comprehensive internal knowledge. Optimization of the backbone generative model can be catego-
rized into three aspects: structural enhancements, training strategies, and inference techniques.
The overview of this section is shown in the green part of Figure 5.
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Fig. 5. An illustration of strategies for enhancing language models to generate user-centric and reliable
responses, including model internal knowledge memorization and external knowledge augmentation.

4.1.1  Model Structure. With the advent of generative models, various methods have been
introduced to improve model structure and enhance generative reliability. We aim to discuss the
crucial technologies contributing to this advancement in this subsection.

(1) Model Scaling. Model parameter scaling is a pivotal factor influencing performance. Contem-
porary language models predominantly employ the Transformer architecture, and scaling both
the model parameters and the training data enhances the model’s capacity to retain knowledge
and capabilities [115]. For instance, in the GPT [2, 15, 226, 227] series and LLaMA [283, 284]
family, larger models tend to perform better on diverse downstream tasks, including few-shot
learning, language understanding, and generation [33]. Additionally, scaling the model contributes
to improved instruction-following capabilities [225], enabling a more adept comprehension of user
intent and generating responses that better satisfy user requests.

(2) Model Integration. Model integration is an effective method to enhance the reliability of
generated outputs by capitalizing on the diverse strengths of various models. The predominant
approach is the Mixture of Experts [95], which utilizes a gating mechanism to selectively activate
sections of network parameters during inference, greatly increasing the effective parameters without
inflating inference costs [57, 60, 105, 135]. This method also boasts impressive scalability, with
efficacy augmented alongside the expanding parameter volume and the number of expert models
[37]. Alternatively, the LLM-Blender framework [106] employs a ranker and a fuser to combine
answers from various LLMs, including black-box models, but faces high deployment costs.

4.1.2  Training and Inference. In the model training stage, methods to enhance the reliability
of answers can be categorized into two aspects: training data optimization and training methods
optimization.

(1) Training Data Optimization. The quality of training data substantially affects the reliability of
model outputs. Noise, misinformation, and incomplete information can disrupt the learning process,
leading to hallucinations and other issues. To address this, Gunasekar et al. [78] used GPT-3.5
to artificially create textbooks filled with examples and language descriptions as training data,
resulting in significant improvements on downstream tasks after minor fine-tuning. LIMA [361]
used dialogues from community forums to construct a small-scale fine-tuning dataset, enhancing the
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model’s conversation capabilities during the alignment phase. To reduce redundancies in crawled
internet data, Lee et al. [131] combined suffix arrays [187], and MinHash [14] to approximate
matching and deduplicate the training dataset, reducing direct reproduction from the same source.

(2) Training Methods Optimization. Beyond conventional training methods, additional tech-
niques have been proposed to improve the factuality of model outputs. MixCL [262] incorporates
contrastive learning into the training objective, using an external knowledge base to identify
correct snippets and reduce the probability of generating incorrect tokens, thus enhancing model
reliability. CaliNet [55] utilizes a contrastive method to assess erroneous knowledge learned by
the model and fine-tunes the parameters of the FEN layer to rectify these errors. FactTune [210]
incorporates factuality assessment during the RLHF phase, using automatic evaluation meth-
ods like FactScore [197] to rank outputs and employing DPO [228] to teach the model factuality
preference.

Apart from enhancing the internal knowledge reliability during training, the inference stage
significantly impacts the reliability of answers. The overall inference process consists of user input
and the model’s token decoding, and approaches to increase generation reliability can be divided
into prompt engineering and decoding strategy.

(3) Prompt Engineering. Prompting methods play a vital role in guiding the model. A well-designed
prompt can better promote the model’s internal capabilities to provide more accurate answers.
The Chain-of-Thought (CoT) [311] prompting method guides the model to explicitly decompose
the question into a reasoning chain during decoding, improving response accuracy by grounding
the final answer on accurate intermediate steps. Further, CoT-SC [304] samples multiple answers
and chooses the most consistent one as the final answer. The Tree of Thoughts [330] expands
CoT’s single reasoning path to multiple paths, synthesizing their outcomes to arrive at the final
answer. The Chain-of-Verification [48] introduces a self-reflection mechanism where the LLM
generates a draft response, then validates each statement for factual inaccuracies, correcting errors
to enhance factual accuracy. Additionally, methods like RECITE [266] and GenRead [337] prompt
the model to output relevant internal knowledge fragments, which are then used to bolster the
QA process.

(4) Decoding Strategy. Decoding strategies are another critical factor influencing the reliabil-
ity of model-generated responses. An appropriate decoding method can maintain the reliability
and diversity of a model’s response. Nucleus Sampling [132] samples within a set probability
range for tokens, ensuring better diversity while balancing variety and reliability. Building on
this, Factual-Nucleus Sampling [133] employs a dynamic, decaying threshold for token sampling,
ensuring later tokens are not influenced by earlier less factual tokens. Wan et al. [290] proposed
a faithfulness-aware decoding method to enhance the faithfulness of the beam-search approach
by incorporating a Ranker to reorder generated sequences and a lookahead method to avoid
unfaithful tokens.

Apart from directly modifying the decoding method, several studies influence the decoding
distribution by leveraging hidden layer information. DoLa [36] uses distributional differences
between hidden and output layers to prioritize newly learned factual knowledge or key terms,
increasing their generation likelihood. Inference-Time Intervention [146] identifies attention heads
strongly correlated with response correctness, adjusts their orientations, and moderates their
activation, achieving more truthful generation with minimal model interference. Shi et al. [249]
proposed CAD, comparing output distributions before and after adding extra information, reducing
reliance on the model’s own knowledge to avoid conflicts leading to inaccuracies.

4.1.3 Knowledge Updating. In real-life scenarios, information is constantly evolving, and there-
fore, the GenIR system needs to continuously acquire the latest knowledge to meet users’
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information needs. Since the model’s knowledge storage is limited, knowledge updating is neces-
sary to ensure more reliable generated responses. In this section, we will discuss existing methods
for knowledge updating from two perspectives: incremental learning and knowledge editing.

(1) Incremental Learning. Incremental learning refers to the ability of machine learning models to
continuously learn new skills and tasks while retaining previously acquired knowledge [299, 301,
319, 349]. In the GenlR system, it is crucial to enable the language model to memorize the latest
information while preventing the forgetting of previous knowledge.

One approach is Incremental Pre-Training, which does not rely on supervised data but continues
pre-training on continuously updated corpora to alleviate catastrophic forgetting. For example,
Baidu proposed the ERNIE 2.0 framework [265], enhancing language understanding through
continuous multi-task learning. Jang et al. [99] introduced Continual Knowledge Learning
(CKL) to explore how LLMs update and retain knowledge amidst rapidly changing information,
creating benchmarks like FUAR. Cossu et al. [38] studied continual pre-training for language and
vision, finding that self-supervised or unsupervised methods are more effective in retaining previous
knowledge compared to supervised learning. Additionally, Ke et al. [118] proposed Domain Adaptive
Pre-training to improve the model’s adaptability to new domains while preventing forgetting using
techniques like soft masking and contrastive learning. For domain-specific model construction,
Xie et al. [321] introduced FinPythia-6.9B, an efficient continual pre-training method specifically
designed for large-scale language models in the financial domain.

On the other hand, Incremental Fine-tuning utilizes only labeled data for training. Progressive
Prompts [234] appends new soft prompts for each new task, facilitating knowledge transfer and
reducing forgetting. Dynalnst [200] enhances lifelong learning in pre-trained language models
through parameter regularization and experience replay, employing dynamic instance and task
selection for efficient learning under resource constraints. Jang et al. [98] challenge traditional multi-
task prompt fine-tuning by refining expert models on individual tasks. Suhr et al. [258] introduce
a feedback-driven continual learning approach for instruction-following agents, where natural
language feedback is converted into immediate rewards via contextual bandits to optimize learning.
O-LoRA [303] achieves superior continual learning by training new tasks in orthogonal low-rank
subspaces, significantly minimizing task interference. Peng et al. [214] propose a scalable language
model that dynamically adjusts parameters based on task requirements, effectively preventing the
forgetting of previously learned tasks.

(2) Knowledge Editing. Knowledge editing refers to the process of modifying and updating
existing knowledge within language models [190, 301], distinct from incremental learning that
focuses on adapting to new domains or tasks. By editing the weights or layers of a model, knowl-
edge editing methods can correct erroneous facts and incorporate new knowledge, making it
important before deploying GenIR systems. There are primarily three paradigms for internal
knowledge editing within language models: adding trainable parameters, locate-then-edit, and
meta-learning.

One method of Adding Trainable Parameters is by integrating new single neurons (patches) in the
final Feed-Forward Neural Network (FFN) layer, as in T-Patcher [93] and CaliNet [55], which
serve as trainable parameters to adjust the model’s behavior. Alternatively, discrete code-book
modules are introduced in the middle layers of the language model, as in GRACE [82], to adjust
and correct information.

Moreover, the Locate-then-Edit method first identifies the parameters corresponding to specific
knowledge and then updates these targeted parameters directly. Common techniques involve
identifying key-value pairs in the FFN matrix, known as “knowledge neurons,” and updating
them [44]. Techniques like ROME [192] use causal mediation analysis to pinpoint areas needing
editing, and MEMIT [193] builds on ROME to implement synchronized editing in various scenarios.
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Table 2. Comparison of Representative Reliable Response Generation Methods, Considering Model
Configurations, Specializations, and Evaluations

Method Model Configuration Target Domain

Backbone Parameters Trained Capability Evaluation Task
GPT-3 [15] Transformer 175B v General General Tasks (LM, QA, Reasoning, ...)
Llama-3.1 [58] Transformer 8B/70B/405B v General General Tasks
Mistral [104] Transformer 7B/22B/123B v General General Tasks
PalM [33] Transformer 540B v General General Tasks
FactTune [210] Llama-2 7B v Factuality Domain-Specific QA
GenRead [337] InstructGPT 175B X Factuality Knowledge-Intensive Tasks
DoLa [36] LLaMA 7B65B X Factuality Multi-Choice QA, Open-Ended Generation
RAG [138] BART 400M v Factuality Knowledge-Intensive Tasks
REPLUG [250] GPT-3 175B X Factuality LM, Multi-Choice QA, ODQA
FLARE [110] GPT-3 175B X Factuality Knowledge-Intensive Tasks
Self-RAG [5] Llama-2 7B/13B v Factuality ODQA, Reasoning, Fact Check.
IR-CoT [285] GPT-3/Flan-T5 175B/11B X Factuality Multi-Hop QA
ReAct [331] PaLM 540B X Tools Multi-Hop QA, Fact Check., Decision Making
StructGPT [109] GPT-3/GPT-3.5 175B/- X Tools KG-Based QA, Table-Based QA, Text-to-SQL
ToolFormer [243] GPT-J] 6B v Tools LM, Math, QA, Temporal Tasks
ToolLLM [224] LLaMA 7B v Tools Tool Use
HuggingGPT [248] GPT-3.5 - X Tools Various Complex Al Tasks
According to [312]  GPT-3/Flan-T5/...  175B/11B/... X Accountability ODQA
IFL [128] GPT-J 6B v Accountability Long-Form QA
WebGPT [203] GPT-3 175B v Accountability Long-Form QA
WebBrain [221] BART 400M v Accountability Long-Form QA
RARR [69] PaLM 540B X Accountability ODQA, Reasoning, Conversational QA
SearChain [324] GPT-3.5 - X Accountability Knowledge-Intensive Tasks
P2Bot [171] Transformer - v Personalization Personalized Dialogue
P-Soups [97] Tulu 7B v Personalization Personalized Dialogue
OPPU [272] Llama-2 7B v Personalization Language Model Personalization Tasks
Zhongjing [11] Ziya-LLaMA 13B v Healthcare Chinese Medical Dialogue
Mental-LLM [325]  Alpaca/GPT-3.5/... 7B/-/... V% Healthcare Mental Health Reasoning Tasks
Edu-Chat [47] LLaMA 13B v Education ODQA, Education Tasks

LM, Language Modeling; ODQA, Open-Domain QA.

Methods such as PMET [153] employ attention mechanisms for editing, while BIRD [181] introduces
a bidirectional inverse relation modeling approach.

Meta-Learning, another paradigm, uses hyper-networks to generate the necessary updates
for model editing. Knowledge Editor [16] predicts weight updates for each data point using a
hyper-network. MEND [198], by taking low-order decomposition of gradients as input, learns to
rapidly edit language models to enhance performance. Additionally, MALMEN [268] separates the
computations of hyper-networks and language models, facilitating the editing of multiple facts
under a limited memory budget. These meta-learning mechanisms enable models to swiftly adapt
to new knowledge and tasks. A detailed comparison of representative reliable response generation
methods is provided in Table 2.

4.2 External Knowledge Augmentation

Although LLMs have demonstrated significant effectiveness in response generation, issues such
as susceptibility to hallucinations, difficulty handling in-domain knowledge, and challenges with
knowledge updating persist. Augmenting the model’s generative process with external knowledge
sources can serve as an effective way to tackle these issues. Based on the form of external knowledge
employed, these approaches can be classified into retrieval augmentation and tool augmentation.
The blue area in Figure 5 provides an overview of this section.
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4.2.1 Retrieval Augmentation. RAG enhances the response of generative models by combining
them with a retrieval mechanism [94, 138, 366]. By querying a large collection of documents,
information that is relevant to the input query can be fetched and integrated into the input of the
generative model. RAG enables generative models to be grounded in existing reliable knowledge,
significantly improving the reliability of model generation. Typically, an RAG method involves a
retriever and a generator. Based on the interaction flow between these two, RAG methods can be
divided into four categories [71].

(1) Sequential RAG. Sequential RAG operates on a linear progression, where the retriever first
retrieves relevant information and the generator utilizes this information to directly complete the
response generation process.

The basic form of sequential RAG is a “Retrieve-Read” framework [182], where early works
perform joint [13, 80, 138] or separate [94] training of retriever and generator but require costly
pre-training. In-Context RALM [232] addresses this by directly using retrieved documents as input,
leveraging the model’s in-context learning without additional training.

With the widespread adoption of LLMs, most subsequent works are built on the foundation of a
frozen generator. AAR [338] fine-tunes a general retriever to adapt to the information acquisition
preferences of the generative model. LLM-embedder [351] uses rewards produced by LLM to train
an embedding model dedicated to retrieval augmentation. ARL2 [348] leverages LLM to annotate
relevance scores in the training set and trains a retriever using contrastive learning.

Several works introduce pre-retrieval and post-retrieval processes [71] into the sequential pipeline
to enhance the overall efficiency. In the pre-retrieval process, the RRR model [182] introduces a
rewriter module before the retriever, trained using the generator’s feedback to enable the retrieval
system to provide more suitable information for generation.

In the post-retrieval process, information compressors are proposed to filter out irrelevant
content from documents, avoiding misleading the generator’s response [42, 113, 169]. RECOMP
[323] uses both abstractive and extractive compressors to generate concise summaries of retrieved
documents. LLMLingua [108] retains important tokens by calculating token importance based
on the Perplexity (PPL) provided by the generative model. LongLLMLingua [107] introduces
query-aware compression and reranks retrieved documents based on importance scores to alleviate
the “loss in the middle” phenomenon [169]. PRCA [327] employs reinforcement learning to train a
text compressor adaptable to black-box LLMs and various retrievers, serving as a versatile plug-in.

(2) Branching RAG. In the Branching RAG framework, the input query is processed across multiple
pipelines, and each pipeline may involve the entire process in the sequential pipeline. The outputs
from all pipelines are merged to form the final response, allowing for finer-grained handling of the
query or retrieval results.

In the pre-retrieval stage, TOC [122] uses few-shot prompting to recursively decompose complex
questions into clear sub-questions in a tree structure, retrieving relevant documents for each and
generating a comprehensive answer. BlendFilter [295] enhances the original query using prompts
with internal and external knowledge, retrieves related documents with the augmented queries,
and merges them for a comprehensive response.

In the post-retrieval stage, REPLUG [250] processes each retrieved document with the query
through the generator separately and combines the resulting probability distributions to form the
final prediction. GenRead [337] prompts LLM to generate related documents and merges them with
retrieved documents from the retriever as input, enhancing content coverage.

(3) Conditional RAG. The Conditional RAG framework adapts to various query types through
distinct processes, improving the system’s flexibility. Since there can be knowledge conflict between
the knowledge from retrieved documents and the generator’s own knowledge, RAG’s effective-
ness isn’t consistent across all scenarios. To address this, common conditional RAG methods

ACM Transactions on Information Systems, Vol. 43, No. 3, Article 83. Publication date: May 2025.



83:22 X. Li et al.

include a decision-making module that determines whether to engage the retrieval process for
each query.

SKR [306] trains a binary classifier on a dataset of questions LLMs can or cannot answer,
determining at inference whether to use retrieval. Training labels are obtained by prompting
the model to assess if external knowledge is needed. Self-DC [294] uses the model’s confidence
score to decide on retrieval necessity, categorizing queries into unknown, uncertain, and known,
with unknown queries processed through sequential RAG and uncertain ones decomposed into
sub-questions. Rowen [51] introduces a multilingual detection module that perturbs the original
question and measures response consistency to decide on retrieval.

(4) Loop RAG. Loop RAG involves deep interactions between the retriever and generator compo-
nents. Owing to multi-turn retrieval and generation processes, accompanied by comprehensive
interactions, it excels at handling complex and diverse input queries, yielding superior results in
response generation.

ITER-RETGEN [246] introduces an iterative framework alternating between RAG and generation-
augmented retrieval, repeating this process to produce the final answer. IR-COT [285] follows a
similar procedure to ITER-RETGEN but the iteration pauses based on the model’s own generative
process. FLARE [110] conducts concurrent retrieval during generation, evaluating the need for
retrieval at each new sentence based on the LLM’s confidence score, dynamically supplementing
information to enhance content reliability. COG [127] models generation as continual retrieval
and copying of segments from an external corpus, with the generator producing conjunctions to
maintain fluency. Self-RAG [5] adds special tokens into the vocabulary, allowing the generator to
decide on retrieval, document importance, and whether to perform a critique.

Some works focus on deconstructing complex inquiries into sub-questions, addressing these
individually to produce a more dependable response. Press et al. [219] guide LLM to decompose
complex questions into sub-questions, answer each using retrieved results, and synthesize the
answers; RET-Robust [336] builds upon this by incorporating a Natural Language Inference (NLI)
model to verify retrieved documents support the sub-question answers, reducing misinformation.

4.2.2  Tool Augmentation. Although retrieval-augmented techniques have significantly improved
upon the blind spots of a generator’s self-knowledge, these methods struggle with the rapid and
flexible update of information since they rely on the existence of information within an external
corpus of documents. Tool augmentation, on the other hand, excels in addressing this issue by
invoking various tools that allow for the timely acquisition and usage of the latest data, including
finance, news, and more. Moreover, tool augmentation expands the scope of responses a model can
offer, such as language translation, image generation, and other tasks, to more comprehensively
meet users’ IR needs.

There are four categories of tools that can be utilized to construct a more reliable IR system:

(1) Search Engine. Common search engine tools like Google Search and Bing Search help an-
swer frequent and time-sensitive queries effectively. Self-Ask [219] initially decomposes complex
questions into multiple sub-questions, then uses a search engine to answer each sub-question, and
finally generates a comprehensive answer to the complex question. ReAct [331] embeds search
engine calls into the model’s reasoning process, allowing the generative model to determine when
to make calls and what queries to input for more flexible reasoning. New Bing can automatically
search relevant information from Bing based on user input, yielding reliable and detailed answers,
including citation annotations in the generated content.

Some works have also built advanced conversational systems based on tools like search engines.
Internet-Augmented Generation [124] enhances the quality of conversational replies by using search
engines during conversations. LaMDA [280] and BlenderBot [251] combine search engines with
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conversational agents, constantly accessing internet information to enrich conversation factualness.
WebGPT [203] and WebCPM [223] directly teach models to perform human-like browser operations
by generating commands such as Search, Click, and Quote, facilitating the automated retrieval and
acquisition of information.

(2) Knowledge Graph (KG). Compared to search engines, KGs are particularly useful for ex-
tracting structured, explicit knowledge. Relevant knowledge from a KG can be extracted and used
as a prompt input to enhance the generative process [260]. StructGPT [109] introduces an iterative
reading-and-reasoning framework where the model can access a KG through a well-designed
interface, continually acquiring information and reasoning until an answer is obtained. RoG [180]
generates plausible reasoning paths from a KG, executes them in parallel, and integrates outcomes
for a final answer; ToG [260] allows the model to explore entities and links without pre-planning
paths, continuously assessing reasoning feasibility.

(3) API-Based Tools. An important part of the tools is the real-world APIs, which enable the
model to obtain information from specific data sources, such as real-time stock information, movie
services, code interpreters, and so on. However, the multitude and diversity of APIs, coupled with
the adherence to certain operational protocols, make the teaching of API usage to models a focal
point of this area.

Toolformer [243] trains language models in a self-supervised manner to automatically call APIs
when needed, using prompts to generate API calls, executing them, and filtering ineffective ones
to form the dataset. Training with standard language modeling objectives yields models that can
autonomously invoke APIs across tasks without losing language modeling capabilities. RestGPT
[256] formulates a framework prompting LLMs to invoke RESTful APIs, comprising an online
planner, an API selector, and an executor. ToolLLM [224] uses a large corpus of scraped APIs to
build a dataset for fine-tuning. Gorilla [212] introduces an information retriever providing the
model with reference API documentation, facilitating retrieval-based information utilization during
fine-tuning. ToolkenGPT [81] incorporates each tool as a new token into the vocabulary, enabling
the model to invoke APIs during inference as naturally as generating text.

Beyond learning to invoke APIs, CREATOR [220] prompts models to write code based on actual
problems as new tool implementations, with generated tools functioning through a code interpreter
and demonstrating impressive results on complex tasks.

Some works additionally support multi-modal inputs, broadening the application scope of the
models. AssistGPT [68] offers a framework including modules like Planner, Executor, Inspector, and
Learner, utilizing language and code for intricate inference. ViperGPT [267] feeds CodeX with user
queries and visual API information to generate Python code invoking APIs, successfully completing
complex visual tasks.

(4) Model-Based Tools. With the swift expansion of diverse Al communities (i.e., Huggingface,
ModelScope, GitHub), various types of Al models have become readily accessible for use, serving
as a pivotal tool in enhancing GR systems. These Al models encompass a wide array of tasks, each
accompanied by comprehensive model descriptions and usage examples.

HuggingGPT [248] employs ChatGPT as a controller to deconstruct user queries into tasks,
determining which models to invoke for execution. Similarly, Visual ChatGPT [315] integrates a
visual foundation model with LLMs, leveraging ChatGPT as a prompt manager to mobilize visual
foundation models like BLIP [144] and ControlNet [347], adept at processing image-based requests
efficiently compared to multi-modal models.

4.3 Generating Response with Citation

To build a reliable GenIR system, generating responses with citations is a promising approach
[87, 167, 194]. Citations allow users to clearly understand the source of each piece of knowledge
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in the response, enhancing trust and facilitating widespread adoption. Existing methods can be
divided into directly generating responses with citations and using a retrieval module to enhance

the generated content. Refer to the green portion in Figure 6 for an overview of this section.

4.3.1 Direct Generating Response with Ci-
tation. This method uses the model’s intrinsic
memory to generate source citations without
relying on a retrieval module.

(1) Model Intrinsic Knowledge. Leveraging
the capabilities of the language model itself,
according-to prompting [312] guides LLMs to
more accurately cite information from pre-
training data by adding phrases like “according
to Wikipedia” in the prompts.

To improve citation quality, Iterative Feed-
back Learning (IFL) [128] employs a critique
model to assess and provide feedback on gen-
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erated text, iteratively enhancing LLMs’ cita-
tion accuracy, content correctness, and fluency.
Additionally, Fierro et al. [62] introduce a plan-
based approach using a series of questions as a
blueprint for content generation, with abstract
and extractive attribution models, showing that
planning improves citation quality.

(2) Incorporating GR. As envisioned by Metzler et al. [194], allowing the model to directly
generate responses with citations is a promising approach for building an expert-level reliable IR
system. Users receive reliable responses tailored to their needs without searching through returned
documents. Moreover, the cited document is generated by the model through the GR approach
described in Section 3, directly producing corresponding DocIDs.

Utilizing GR, 1-PAGER [96] combines answer generation and evidence retrieval by generating
N-gram DocIDs through constrained decoding using FM-Index [61], enabling step-by-step corpus
partitioning, document selection, and response generation. This method matches retrieval-then-read
methods in accuracy and surpasses closed-book QA models by attributing predictions to specific
evidence, offering a new scheme for integrating retrieval into seq2seq generation.

Recently, Khalifa et al. [121] propose a source-aware training method where models learn to
associate DocIDs with knowledge during pre-training and provide supporting citations during
instruction tuning, effectively achieving knowledge attribution and enhancing LLM verifiability.

Fig. 6. Generating response with citation and personal
information assistant are also crucial approaches for
building a reliable and user-centric GenlIR system.

4.3.2 Retrieval-Based Response with Citation. To enhance the accuracy of citations, several
methods have been developed based on retrieval techniques to fetch relevant documents, thereby
improving the quality of responses with embedded citations.

(1) Citation within Generation. Following retrieval, models directly generate responses that in-
clude citations. Initially, systems like WebGPT [203], LaMDA [280], and WebBrain [221] utilized
web pages or Wikipedia to construct large-scale pre-training datasets, teaching models how to
generate responses with citations.

Subsequently, more advanced strategies for citation generation were proposed. For instance,
Search-in-the-Chain (SearChain) [324] first generates a reasoning chain (Chain-of-Query
[CoQ]) via LLM prompts, then interacts with each CoQ node using retrieval for verification and
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completion, ultimately generating the reasoning process and marking citations at each
inference step.

LLatrieval [155] suggests continuously improving retrieval results through iterative updating,
verifying whether retrieved documents support the generated answers until satisfaction. AGREE
[333] uses a NLI model to verify consistency between LLM-generated answers and retrieved
documents, employing a Test-Time Adaptation strategy that allows LLMs to actively search and
cite current information during generation, enhancing response accuracy and reliability. VTG [259]
integrates an evolved memory system and a dual-layer validator for generating verifiable text,
combining long-term and short-term memories to adapt to dynamic content, and uses an NLI model
to evaluate logical support between claims and evidence.

Based on the Graph of Thoughts (GoT), HGOT [59] improves context learning in retrieval-
augmented settings by constructing a hierarchical GoT, leveraging the LLM’s planning capabilities
to break down complex queries into smaller sub-queries and introducing a scoring mechanism to
assess the quality of retrieved paragraphs.

Employing reinforcement learning, Huang et al. [86] introduce a fine-grained reward mechanism
to train language models, allocating specific rewards for each generated sentence and citation
to teach models accurate external source citation. This approach uses rejection sampling and
reinforcement learning algorithms to enhance citation-inclusive text generation through localized
reward signals. APO [141] reimagines attributive text generation as a preference learning problem,
automatically generating preference data pairs to reduce annotation costs, and uses progressive
preference optimization and experience replay to reinforce preference signals without overfitting
or text degradation.

(2) Citation after Generation. This approach involves models first generating a response, then
adding citations through models like NLI. RARR [69] improves attributability by automatically
finding external evidence for the language model’s output and post-editing to correct content while
preserving the original output, enhancing attribution capabilities without altering the existing
model. PURR [23] employs an unsupervised learning method where LLMs generate text noise
themselves, then trains an editor to eliminate this noise, improving attribution performance and
significantly speeding up generation. CEG [149] searches for supporting documents related to
generated content and uses an NLI-based citation generation module to ensure each statement is
supported by citations. “Attribute First, then Generate” [254] decomposes the generation process,
first selecting relevant source text details and then generating based on these details, achieving
localized attributability with each sentence supported by a clear source, greatly reducing manual
fact-checking workload.

4.4 Personal Information Assistant

The core of the GenlIR system is the user, so understanding user intent is crucial. Researchers
have explored various methods like personalized search [300, 362, 371], dialogue [171, 183, 352],
and recommender [45, 168, 359] systems to explore users’ interests. Specifically, personalized
information assistants aim to better understand users’ personalities and preferences, generating
personalized responses to better meet their information needs. This section reviews the progress in
research on personalized dialogue and domain-specific personalization. An overview of this section
is provided in the blue area of Figure 6.

4.4.1 Personalized Dialogue System. To better understand user needs, researchers have explored
two main approaches: personalized prompt design and model fine-tuning.

(1) Personalized Prompt. For personalized prompt design, Liu et al. [168] and Dai et al. [45]
input users’ interaction and rating history into ChatGPT [208] for in-context learning, effectively
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generating personalized responses. LaMP [238] enhances the language model’s personalized output
by retrieving personalized history from user profiles. Using long-term history, Christakopoulou
et al. [34] design prompts describing users’ long-term interests, needs, and goals for input into
LLMs. BookGPT [359] uses LLM prompts, interactive querying methods, and result verification
frameworks to obtain personalized book recommendations. PerSE [292] infers preferences from
several reviews by a specific reviewer and provides personalized evaluations for new story inputs.

Using prompt rewriting, Li et al. [139] propose a method combining supervised and reinforcement
learning to better generate responses from frozen LLMs. Similarly, Chen et al. [30] rewrites user
input prompts using extensive user text-to-image interaction history to align better with expected
visual outputs.

(2) Personalized Fine-Tuning. This line of work focuses on fine-tuning models for personalized
response generation. Zhang et al. [352] introduced the Persona-Chat dataset with 5 million personas
to train models for more personalized dialogues. Mazaré et al. [189] created a dataset of over 700
million conversations extracted from Reddit, demonstrating the effectiveness of training dialogue
models on large-scale personal profiles. P?Bot [171] generates personalized and consistent dialogues
by simulating the perception of personalities between conversation participants. DHAP [183]
designs a novel Transformer structure to automatically learn implicit user profiles from dialogue
history without explicit personal information. Wu et al. [320] propose a generative segmentation
memory network to integrate diverse personal information. Fu et al. [66] developed a variational
approach to model the relationship between personal memory and knowledge selection, with a
bidirectional learning mechanism.

Using reinforcement learning, Cheng et al. [31] collected a domain-specific preference dataset
and proposed a three-stage reward model learning scheme, including base model training, general
preference fine-tuning, and customized preference fine-tuning. Jang et al. [97] developed “Person-
alized Soups,” first optimizing multiple policy models with different preferences using PPO [244],
then dynamically combining parameters during inference.

Using retrieval-enhanced methods, LAPDOG [90] retrieves relevant information from story
documents to enhance personal profiles and generate better personalized responses. SAFARI
[293] leverages LLMs’ planning and knowledge integration to generate responses consistent with
character settings. Inspired by writing education, Li et al. [140] proposed a multi-stage, multi-task
framework including retrieval, ranking, summarization, synthesis, and generation to teach LLMs
personalized responses. For subjective tasks, [314] studied the superior performance of personalized
fine-tuning in subjective text perception tasks compared to non-personalized models.

To achieve a personalized information assistant for every user, OPPU [272] uses personalized
PEFT [52] to store user-specific behavioral patterns and preferences, showing superior performance.
For multi-modal scenarios, PMG [247] proposes a personalized multi-modal generation method
that transforms user behavior into natural language, allowing LLMs to understand and extract user
preferences.

4.4.2 Domain-Specific Personalization. Understanding users’ personalized information needs,
the GenlR system has broad applications across various domains such as healthcare, academia,
education, and recipes.

(1) Healthcare. In Al-assisted healthcare, personalization plays a crucial role. Liu et al. [174] utilize
few-shot tuning to process time-series physiological and behavioral data. Zhang et al. [345] imple-
ment medical diagnosis identification and diagnostic assistance using prompts from ChatGPT [208]
and GPT-4 [2]. Yang et al. [11] propose an LLM for traditional Chinese medicine called Zhongjing,
based on LLaMA [283], undergoing pre-training, supervised fine-tuning, and RLHF [35]. Abbasian
et al. [1] introduce an open source LLM-based conversational health agent framework called
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openCHA, which collects necessary information through specific actions and generates personal-
ized responses. MedAgents [275] propose a multidisciplinary collaboration framework where LLM-
based agents engage in multi-round cooperative discussions to enhance expertise and reasoning.

For mental healthcare, Mental-LLM [325] presents a framework using LLMs to predict mental
health from social media text data, with prompting-based and fine-tuning methods for real-time
monitoring of issues like depression and anxiety. Lai et al. [126] introduce Psy-LLM, a psychological
consultation aid combining pre-trained LLMs with real psychologist Q&As and psychological
articles.

For medication suggestions, Liu et al. [176] propose PharmacyGPT, a framework for generating
personalized patient groups, formulating medication plans, and predicting outcomes.

(2) Academic. In the academic domain, RevGAN [148] can automatically generate controllable
and personalized user reviews based on users’ emotional tendencies and stylistic information. For
writing assistants, Porsdam et al. [217] explore personalized enhancement of academic writing
using LLMs like GPT-3 [15], showing higher quality after training with authors’ published works.
Similarly, to address the lack of personalized outputs in LLMs, Mysore et al. [201] propose Pearl,
a personalized LLM writing assistant trained on users’ historical documents and develop a KL
divergence training objective for retrievers.

(3) Education. Cui et al. [43] propose an adaptive and personalized exercise generation method
that adjusts difficulty to match students’ progress by combining knowledge tracing and controlled
text generation. EduChat [47] learns education-specific functionalities through pre-training on
educational corpora and fine-tuning on customized instructions, addressing delayed knowledge
updates and lack of expertise in LLMs.

(4) Other Domains. For recipe generation tasks, Majumder et al. [185] propose a personalized
generation model based on users’ historical recipe consumption, enhancing personalization. For
personalized headline generation, Zhang et al. [346] simulate users’ interests based on browsing
history to generate news headlines. Salemi et al. [238] propose the LaMP benchmark, including
personalized generation tasks like news headline, academic title, email subject, and tweet rewriting.
Additionally, for personalized assistance with home cleaning robots, TidyBot [316] uses LLMs to
generalize from user examples to infer user preference rules.

5 Evaluation

This section will provide a range of evaluation metrics and benchmarks for GenIR methods, along
with analysis and discussions on their performance.

5.1 Evaluation for GR

5.1.1  Metrics. In this section, we discuss several core metrics for evaluating GR methods.
These metrics provide different perspectives on the effectiveness of a GR system, including its
accuracy, efficiency, and the relevance of its results. Specifically, we consider Recall, R-Precision,
Mean Reciprocal Rank (MRR), Mean Average Precision (MAP), and Normalized Discounted
Cumulative Gain (nDCG). Each metric captures unique aspects of retrieval performance, allowing
for a comprehensive assessment of the system’s capabilities.

— Recall measures the proportion of relevant documents retrieved by the search system, reflecting
its ability to find all relevant items.

— R-Precision evaluates the precision at a rank position corresponding to the number of relevant
documents, balancing precision and recall at a specific cutoft.

— MRR captures the average rank position of the first relevant document, emphasizing the
system’s ability to return relevant results early in the ranking.
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— MAP calculates the average precision across multiple queries, considering the exact positions
of all relevant documents and providing a comprehensive measure of retrieval accuracy.

—nDCG takes into account not only the relevance of the documents returned but also their
positions in the result list, reflecting both the quality and the ordering of the results.

For detailed mathematical formulations of these metrics, please refer to Appendix A.1.

5.1.2  Benchmarks. Evaluating the effectiveness of GR methods relies on high-quality and chal-
lenging benchmark datasets.

MS MARCO [204] is a large-scale dataset designed for machine reading comprehension, retrieval,
and QA tasks in web search environments. It contains millions of documents and passages derived
from real user queries, providing a realistic benchmark for assessing GR systems in complex search
scenarios.

Natural Questions (NQ) [125] is a QA dataset introduced by Google, utilizing Wikipedia as its
primary corpus. It includes a vast number of natural user queries and their corresponding answers,
making it suitable for evaluating the retrieval performance of GR systems in addressing real-world
informational needs.

KILT [216] is a comprehensive benchmark integrating multiple categories of knowledge-intensive
tasks such as fact checking, entity linking, slot filling, open-domain QA, and dialogue. Utilizing
Wikipedia as its corpus, KILT aims to evaluate the effectiveness of IR systems in handling complex
language tasks that require extensive background knowledge.

TREC Deep Learning Track 2019 and 2020 [40, 41] focus on leveraging deep learning techniques
to enhance IR efficiency, primarily through document and passage ranking tasks. These tracks
utilize the MS MARCO dataset to emulate real-world search queries, providing a standardized
environment for benchmarking various retrieval methodologies.

DynamicIR. For dynamic corpora, DynamicIR [335] proposes a task framework based on Stream-
ingQA [166] benchmark for evaluating IR models within dynamically updated corpora. Through
experimental analysis, DynamicIR revealed that GR systems are superior in adapting to evolving
knowledge, handling temporally informed data, and are more efficient in terms of memory, indexing
time, and FLOPs compared to dense retrieval systems.

ExclulR. For exclusionary retrieval tasks, where users explicitly indicate in their queries that
they do not want certain information, ExclulR [354] provides a set of resources. This includes
an evaluation benchmark and a training set to help retrieval models understand and process
exclusionary queries.

For detailed descriptions and comprehensive information about benchmark datasets, please refer
to Appendix A.2.

5.1.3 Analysis. In addition to the benchmarks and metrics for evaluating the performance of
GR methods, there is a series of works that have conducted detailed analyses and discussions to
study the behavior of GR models.

Understanding GR. To understand the performance of DSI [279] in text retrieval, Chen et al. [28]
examine uniqueness, completeness, and relevance ordering. These respectively reflect the system’s
ability to distinguish between different documents, retrieve all relevant documents, and accurately
rank documents by relevance. Experimental analysis finds that DSI excels in remembering the
mapping from pseudo queries to DocIDs, indicating a strong capability to recall specific DocIDs
from particular queries. However, the study also pointed out DSI’s deficiency in distinguishing
relevant documents from random ones, negatively impacting its retrieval effectiveness.

Exploring the connection between generative and dense retrieval, Nguyen and Yates [205]
demonstrate that they can be considered as bi-encoders in dense retrieval. Specifically, the authors
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analyze the computation of dot products during the GR process, which is similar to the calculation
of dot products between query vectors and document vectors in dense retrieval. Following this,
Wau et al. [317] revisit GR from the perspective of multi-vector dense retrieval, revealing a common
framework in computing document-query relevance between the two methods. This work also
analyzes their differences in document encoding and alignment strategies, further confirming
through experiments the phenomenon of term matching in the alignment matrices and their
commonalities in retrieval.

Large-Scale Experimental Analysis. Later, Pradeep et al. [218] conduct the first comprehensive
experimental study on GR techniques over large document sets, such as the 8.8M MS MARCO
passages. It was found that among all the techniques examined, using generated pseudo queries to
augment training data remains the only effective method on large document corpus. The strongest
result in the experiments was achieved by using a training task that only utilized synthetic queries
to Naive DocIDs, expanding the model to T5-XL (3B parameters) to achieve an MRR@10 of
26.7. Surprisingly, increasing the parameters to T5 XXL (11B) in the same setup did not improve
performance but rather led to a decline. These findings suggest that more research and in-depth
analysis are needed in the GR field, and possibly additional improvements to the paradigm, to fully
leverage the power of larger language models.

Out-of-Distribution (OOD) Perspective. For OOD robustness of GR models, Liu et al. [175]
investigate three aspects: query variations, new query types, and new tasks. Their study showed
that all types of retrieval models suffer from performance drops with query variations, indicating
sensitivity to query quality and structure. However, when dealing with new query types and tasks,
GR models showed different levels of adaptability, with pre-training enhancing their flexibility.
The research highlights the critical need for OOD robustness in GR models for dealing with
ever-changing real-world information sources.

5.1.4 Experiments. Analyzing experimental results is essential for understanding the perfor-
mance of different GR models. This section provides a comprehensive evaluation of current GR
models on widely used benchmark tests and examines their applicability and limitations in scenar-
ios such as web search, QA, and knowledge-intensive tasks. The overall results are presented in
Tables 3 and 4.

Experimental Settings. Our evaluation is based on the MS MARCO [204], NQ [125], and KILT
[216] benchmarks, which are commonly used datasets for existing GR methods. For the MS MARCO
dataset, following previous works [263, 350, 369], we use the MS MARCO 300K subset, which
contains 320k documents, 360k training instances, and 772 testing instances. For the NQ dataset,
following [134, 263, 279, 305, 350], we use the NQ320K subset, which, after deduplication based on
titles, contains 109k documents, 320k training instances, and 7,830 testing instances. For the KILT
benchmark, we use the standard development sets. Detailed statistics are available in previous
works [27, 216].

Regarding evaluation metrics, we employ Recall@{1, 10, 100} and MRR@({10, 100} for the MS
MARCO and NQ datasets, and R-Precision for the KILT benchmark. In our comparisons, we include
not only existing representative GR methods but also sparse retrieval methods such as BM25 [236]
and SPLADEv2 [63], which are based on bag-of-words representations, and dense retrieval methods
like DPR [116], GTR [206], RAG [138], and MT-DPR [184], which rely on dense embeddings.

Due to variations in datasets, corpus sizes, and evaluation metrics across different methods,
alignment is necessary for a fair comparison. For the methods evaluated in our experiments, we
primarily use results reported in existing papers. For methods where settings are not aligned, we
provide results based on our own implementations.

Results on MS MARCO and NQ Datasets. MS MARCO and NQ are among the most widely
used benchmarks for evaluating GR methods, particularly in the contexts of web search and QA.
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Table 3. Overall Retrieval Performance on the MS MARCO (300K) and NQ (320K) Datasets

MS MARCO NQ

Model Doc Rep.
R@1 R@10 R@100 M@10 M@100 R@1 R@10 R@100 M@10 M@100

Sparse and Dense Retrieval

BM25 [263] Bag-of-words  0.196  0.591 0.861 0.313 0.325 0.297 0.603 0.821 - 0.402
SPLADEV2 [350] Bag-of-words  0.328  0.779 0.956 0.443 0.452 0.624  0.873 0.954 0.726 0.731
DPR [263] Dense Vector  0.271 0.764 0.948 0.424 0.433 0.502 0.777 0.909 - 0.489
GTR-Base [263] Dense Vector  0.332  0.793 0.960 0.484 0.485 0.560 0.844 0.937 - 0.662
GR

GENRE [350] Title 0.266  0.579 0.751 0.361 0.368 0.591 0.756 0.814 0.653 0.656
DSI [350] Semantic ID 0.257  0.538 0.692 0.339 0.346 0.533 0.715 0.816 0.594 0.598
DSI-QG [263, 369] Semantic ID 0.288  0.623 - 0.385 - 0.631 0.807 0.880 - 0.695
NCI [263] Semantic ID 0.301 0.643 0.851 0.408 - 0.659  0.852 0.924 - 0.731
SEAL [263] Sub-string 0.259  0.686 0.879 0.393 0.402 0.570 0.800 0.914 - 0.655
Ultron [350] Title+URL 0.304  0.676 0.794 0.432 0.437 0.654  0.854 0.911 0.726 0.729
GenRet [263] Learnable - - - - - 0.681  0.888 0.952 - 0.759
MINDER [350] Multi-view 0.289  0.728 0.916 0.431 0.435 0.627 0.869 0.933 0.709 0.713
LTRGR?* Multi-view 0.327  0.759 0.929 0.463 0.469 0.644  0.879 0.941 0.721 0.726
GLEN [134] Learnable - - - - - 0.691  0.860 - - 0.754
TSGen [350] Term Set 0.384 0.781 0.931 0.502 0.505 0.708 0.889 0.948 0.771 0.774
NOVO [309] Term Set - - - - - 0.693 0.897  0.959 - 0.767
DGR? Multi-view ~ 0.359 0779 0934 0498 0504  0.682 0.887 0949 0759  0.764

The best results are in bold, and the second-best are underlined.
a
Results from our own implementation, while other results are consistent with those reported in existing papers.

Table 3 presents a detailed comparison of various GR models against traditional sparse and dense
retrieval methods on these datasets.

(1) Overall Performance Comparison. Overall, GR methods demonstrate competitive performance
compared to sparse and dense retrieval baselines. Specifically, on the MS MARCO dataset, GR
models such as TSGen and DGR achieve Recall@1 scores of 0.384 and 0.359, respectively, surpassing
dense methods like DPR (0.271) and being comparable to SPLADEv2 (0.328). On the NQ dataset,
GR models also show strong performance, with TSGen attaining the highest Recall@1 of 0.708,
outperforming both SPLADEv2 (0.624) and DPR (0.502).

(2) Term Set DocID Methods. Analyzing models that utilize term set-based DocIDs, such as
TSGen and NOVO, reveals that these methods excel in both datasets. TSGen leads with the highest
Recall@1 and MRR@10 on MS MARCO and NQ, respectively, indicating robust retrieval capabilities.
NOVO also performs exceptionally well on the NQ dataset, achieving the second-best Recall@1
and MRR@10, demonstrating the effectiveness of term set representations in capturing relevant
document information.

(3) Multi-View DocID Methods. Multi-view approaches, exemplified by MINDER, LTRGR, and
DGR, show consistent improvements over several metrics. For instance, LTRGR achieves the
highest Recall@10 on MS MARCO (0.759) and maintains strong performance across other met-
rics and on the NQ dataset. These results suggest that leveraging multi-view DocIDs, ranking
and distillation training methods enhances retrieval effectiveness by capturing diverse aspects of
the documents.

(4) Learnable DocID Methods. Learnable DocID models, such as GenRet and GLEN, exhibit mixed
performance. While GenRet shows competitive Recall@1 on NQ (0.681), it does not report results
on MS MARCO. GLEN achieves the highest MRR@100 on NQ (0.754) but lags behind in other
metrics. This indicates that learnable DocID approaches may benefit from further refinement to
consistently outperform other representation methods across different datasets.
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Table 4. Overall Retrieval Performance on the KILT Benchmark

Model Doc Rep. FC Entity Linking Slot Filling Open Domain QA Dial.

FEVER AY2 WnWi WnCw TREx zsRE NQ HoPo TQA ELI5 WoW

Sparse and Dense Retrieval

BM25 [184] Bag-of-words 0501  0.035 - - 0586 0.664 0258 0440 0294 - 0.275
RAG [216] Dense Vector ~ 0.635 0774 0490 0467 0293 0.654 0.603 308 0493 0.104 0.467
MT-DPR [184] Dense Vector ~ 0.747  0.838 - - 0692 0772 0615 0442 0620 - 0.397
GR

BART? SemanticID  0.003  0.001  0.000  0.000  0.000 0.001 0.000 0.00 0.000 0.000 0.000
BART [27] Title 0819 0892 0.676 0623 0752 0911 0586 0487 0676 0.121 0510
T5 [216] Title - 0866 0474  0.465 - - - - - - -
GENRE [17] Title 0.847 0928 0.877 0.706 0797 0.948 0.643 0518 0711 0.135 0.563
SEAL? Sub-string  0.826  0.866  0.809  0.651  0.704 0919 0.658 0.565 0.715 0.124 0.527
CorpusBrain [27] Title 0821 0908 0723  0.662 0776 0.983 0591 0501 0.688 0.129 0.538

The best results are in bold, and the second-best are underlined.
a
Results from our own implementation, while other results are consistent with those reported in existing papers.

(5) Other DocID Methods. Other methods like GENRE, DSI, NCI, SEAL, and Ultron, generally un-
derperform compared to term set and multi-view DocID methods. For example, on the MS MARCO
dataset, GENRE achieves a Recall@1 of 0.266 and an MRR@10 of 0.361, which are significantly
lower than TSGen (Recall@1 = 0.384, MRR@10 = 0.502) and LTRGR (Recall@1 = 0.327, MRR@10 =
0.463). The lower performance of methods utilizing simpler DocID designs (e.g., titles, semantic IDs)
highlights the need for more sophisticated or alternative DocID strategies to effectively capture
key information for high-quality retrieval across different scenarios.

Results on KILT Benchmark. The KILT benchmark provides a comprehensive evaluation across
various knowledge-intensive tasks, utilizing a large-scale Wikipedia corpus comprising 5.9 million
documents. Overall results are shown in Table 4.

(1) Overall Performance Comparison. GR methods generally outperform traditional sparse and
dense retrieval approaches in most tasks. Notably, GENRE achieves the highest scores in several
categories, including FEVER (0.847), AY2 (0.928), WnWi (0.877), and WnCw (0.706), outperforming
the best sparse method BM25 and dense methods like MT-DPR.

(2) Title DocID Methods. Models utilizing title-based DocIDs consistently perform well on
the KILT benchmark. For instance, GENRE and BART achieve FEVER scores of 0.847 and 0.821,
respectively. This superior performance can be attributed to the fact that Wikipedia document titles
accurately represent the key entities within each document, making the task of predicting titles
relatively straightforward. Moreover, these models effectively leverage the pre-trained knowledge
embedded within language models, enhancing their ability to generalize and retrieve relevant
documents based on titles.

(3) Sub-String DocID Methods. Methods based on sub-string DocIDs also demonstrate strong
performance on the KILT benchmark, particularly in QA tasks. SEAL achieves the highest QA
scores across several categories, including NQ (0.658), HoPo (0.565), TQA (0.715), and WoW (0.527).
The ability of sub-string DocID methods to capture meaningful fragments of the documents likely
contributes to their high accuracy in retrieving precise information necessary for answering
questions effectively.

(4) DSI-Based Numeric DocID Methods. In contrast, methods employing numeric Semantic
DocIDs based on hierarchical k-means clustering [279] exhibit significantly diminished performance
on the KILT benchmark. The BART model, which uses Semantic IDs and trained with just labeled
queries, records scores close to zero across all tasks (e.g., FEVER: 0.003, AY2: 0.001). This decline is
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primarily due to the substantial increase in corpus size, and <query, document> pairs in training
data cover only a small fraction of the entire document set. Consequently, these models struggle
to generalize beyond the training pairs, just “memorizing” DocIDs without capturing the broader
diversity of the corpus. This observation aligns with findings from [218], which reported similar
challenges of DSI [279] when scaling to an 8.8 million passage corpus in the MS MARCO benchmark.

5.2 Evaluation for Response Generation

5.2.1 Metrics. Evaluating the quality of generated responses includes aspects such as accuracy,
fluency, relevance, and so on. In this section, we’ll introduce the main metrics for evaluating reliable
response generation, categorized into rule-based, model-based, and human evaluation metrics.

(1) Rule-Based Metrics. Exact Match is a straightforward evaluation method requiring the model’s
output to be completely identical to the reference answer at the word level. This full character-level
matching is stringent, often used in tasks requiring precise and concise answers, such as QA
systems, e.g., NQ [125], TriviaQA [114], SQuAD [230], and so on. It simply calculates the ratio of
perfectly matched instances to the total number of instances.

For the generation of longer text sequences, BLEU [211] is a common metric initially used to
evaluate the quality of machine translation. It compares the similarity between the model’s output
and a set of reference texts by calculating the overlap of n-grams, thereby deriving a score. This
method assumes that high-quality generation should have a high lexical overlap with the labeled
answer. Optimized from BLEU, METEOR [9] is an alignment-based metric that considers not only
exact word matches but also synonyms and stem matches. Additionally, METEOR introduces
considerations for word order and syntactic structure to better assess the fluency and consistency
of the generated text.

ROUGE [161] is also a commonly used metric for evaluating longer texts, by measuring the
extent of overlap in words, sentences, n-grams, and so forth, between the generated text and a
collection of reference texts. It focuses on recall, meaning it evaluates how much of the information
in the reference text is covered by the generated text. ROUGE comes in various forms, including
ROUGE-N, which evaluates based on n-gram overlap, and ROUGE-L, which considers the longest
common subsequence, catering to diverse evaluation requirements.

PPL is a metric for evaluating the performance of language models, defined as the exponentiation
of the average negative log-likelihood, reflecting the model’s average predictive ability for a given
corpus of text sequences. The lower the PPL, the stronger the model’s predictive ability. Specifically,
given a sequence of words W =wy, wy, ..., wn, where N is the total number of words in the
sequence, PPL can be expressed as:

N
PPL(W) = exp {-% Z 10gp(wiIW<i)} , (11)

i=1

where p(w;|w«;) represents the pre-trained language model’s probability of predicting the ith word
w; given the previous words w;.

(2) Model-Based Metrics. With the rise of pre-trained language models, a series of model-based
evaluation metrics have emerged. These metrics utilize neural models to capture the deep semantic
relationships between texts.

Unlike traditional rule-based metrics, BERTScore [353] utilizes the contextual embeddings of
BERT [120] to capture the deep semantics of words, evaluating the similarity between candidate
and reference sentences through the cosine similarity of embeddings. BERTScore employs a greedy
matching strategy to optimize word-level matching and uses optional IDF weighting to emphasize
important words, ultimately providing a comprehensive evaluation through a combination of recall,
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precision, and F1 score. BERTScore captures not only surface lexical overlap but also a deeper
understanding of the semantic content of sentences.

Similarly based on BERT [120], BLEURT [245] designed multiple pre-training tasks, enhancing
the model’s ability to recognize textual differences with millions of synthetic training pairs. These
pre-training tasks include automatic evaluation metrics (such as BLEU [211], ROUGE [161], and
BERTScore [353]), back-translation likelihood, textual entailment, and so on. Each task provides
different signals to help the model learn how to evaluate the quality of text generation.

BARTScore [341], based on the pre-trained seq2seq generative model BART [137], treats the
evaluation of generated text as a text generation problem. Specifically, BARTScore determines
the quality of text based on the transition probability between the generated text and reference
text. BARTScore does not require additional parameters or labeled data and can flexibly evalu-
ate generated text from multiple perspectives (such as informativeness, fluency, factuality, etc.)
and further enhance evaluation performance through text prompts or fine-tuning for specific
tasks.

FActScore [197] focuses on the factual accuracy of each independent information point in long
texts. It calculates a score representing factual accuracy by decomposing the text into atomic
facts and verifying whether these facts are supported by reliable knowledge sources. This method
provides a more detailed evaluation than traditional binary judgments and can be implemented
efficiently and accurately through human evaluation and automated models (combining retrieval
and powerful language models).

GPTScore [65] is a flexible, multi-faceted evaluation tool that allows users to evaluate text using
natural language instructions without the need for complex training processes or costly annotations.
GPTScore constructs an evaluation protocol dynamically through task specification and aspect
definition and utilizes the zero-shot capability of pre-trained language models to evaluate text
quality, optionally using demonstration samples to improve evaluation accuracy.

(3) Human Evaluation Metrics. Human evaluation is an important method for assessing the
performance of language models, especially in complex tasks where automated evaluation tools
struggle to provide accurate assessments. Compared to rule-based and model-based metrics, human
evaluation is more accurate and reliable in real-world applications. This evaluation method requires
human evaluators (such as experts, researchers, or everyday users) to provide comprehensive
assessments of the model-generated content based on their intuition and knowledge.

Human evaluation measures the quality of language model outputs by integrating multiple
assessment criteria, following [22]: Accuracy [253] primarily evaluates the correctness of informa-
tion and its correspondence with facts; Relevance [360] focuses on whether the model’s output is
pertinent to the specific context and user query; Fluency [287] examines whether the text is coher-
ent, natural, and facilitates smooth communication with users; Safety [102] scrutinizes whether
the content may lead to potential adverse consequences or harm. These indicators collectively
provide a comprehensive assessment of the model’s performance in real-world settings, ensuring
its effectiveness and applicability.

However, human evaluation also faces numerous challenges, primarily including high costs
and time consumption, difficulty in controlling evaluation quality, inconsistency in evaluation
dimensions, issues of consistency due to evaluators’ subjectivity, and the need for professional
evaluators for specific tasks. These problems limit the widespread application of human evaluation
and the comparability of results [21].

5.2.2 Benchmarks and Analysis. In this section, we explore various benchmarks for evaluating
the performance of language models in generating reliable responses. These benchmarks assess
language understanding, factual accuracy, reliability, and the ability to provide timely information.
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(1) General Evaluation. To comprehensively assess the language models’ understanding capa-
bilities across a wide range of scenarios, MMLU [83] utilizes a multiple-choice format covering
57 different tasks, from basic mathematics to American history, computer science, and law. This
benchmark spans evaluations in humanities, social science, and science, technology, engineering,
and mathematics, providing a comprehensive and challenging test. It has been widely used in the
evaluation of LLMs in recent years [104, 283, 284].

Furthermore, BIG-bench [257] introduces a large-scale and diverse benchmark designed to
measure and understand the capabilities and limitations of LLMs across a broad range of tasks.
Including 204 tasks contributed by 450 authors from 132 institutions, it covers areas such as
linguistics, mathematics, and common sense reasoning. It focuses on tasks beyond the capabilities
of language models, exploring how model performance and societal biases evolve with scale and
complexity.

LLM-Eval [165] offers a unified multi-dimensional automatic evaluation method for open-domain
dialogue of LLMs, eliminating the need for manual annotation. The performance of LLM-Eval
across various datasets demonstrates its effectiveness, efficiency, and adaptability, improving over
existing evaluation methods. The research also analyzes the impact of different LLMs and decoding
strategies on the evaluation outcomes, underscoring the importance of selecting suitable LLMs and
decoding strategies.

For Chinese, C-Eval [91] aims to comprehensively evaluate LLMs’ advanced knowledge and
reasoning capabilities in the Chinese context. It is based on a multiple-choice format, covering
four difficulty levels and 52 different academic fields from secondary school to professional levels.
C-Eval also introduces C-Eval Hard, a subset containing highly challenging subjects to test the
models’ advanced reasoning capabilities. Through evaluating state-of-the-art English and Chinese
LLMs, C-Eval reveals areas where current models still fall short in handling complex tasks, guiding
the development and optimization of Chinese LLMs.

(2) Tool Evaluation. To assess the ability of language models to utilize tools, API-Bank [147]
provides a comprehensive evaluation framework containing 73 APIs and 314 tool usage dialogs,
along with a rich training dataset of 1,888 dialogs covering 1,000 domains to improve LLMs’
tool usage capabilities. Experiments show that different LLMs perform variably in tool usage,
highlighting their strengths and areas for improvement.

Later, ToolBench [224] developed a comprehensive framework including a dataset and evaluation
tools to facilitate and assess the ability of LLMs to use over 16,000 real-world APIs. It enhances
reasoning capabilities by automatically generating diverse instruction and API usage scenario
paths, introducing a decision tree based on depth-first search. ToolBench significantly enhances
LLMs’ performance in executing complex instructions and in their ability to generalize to unseen
APIs. ToolLLaMA, an LLM fine-tuned from LLaMA [283], exhibits remarkable zero-shot capabilities
and performance comparable to state-of-the-art LLMs like ChatGPT [208].

(3) Factuality Evaluation. Truthful QA [163] measures the truthfulness of language models in
answering questions. This benchmark consists of 817 questions covering 38 categories, including
health, law, finance, and politics. This evaluation reveals that, even in optimal conditions, the
truthfulness of model responses only reaches 58%, in stark contrast to human performance at
94%. Moreover, they proposed an automated evaluation metric named GPT-judge, which classifies
the truthfulness of answers by fine-tuning the GPT-3 [16] model, achieving 90-96% accuracy in
predicting human evaluations.

HaluEval [143] is a benchmark for evaluating LLM illusions, constructed using a dataset con-
taining 35K illusion samples, employing a combination of automated generation and manual
annotation. This provides effective tools and methods for assessing and enhancing LLMs’ capa-
bilities in identifying and reducing illusions. For Chinese scenarios, HalluQA [32] designs 450
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meticulously selected adversarial questions to assess the illusion phenomenon in Chinese LLMs,
covering multiple domains and reflecting Chinese culture and history, identifying two main types
of illusions: imitative falsehoods and factual errors.

To evaluate the ability of LLMs to generate answers with cited text, ALCE [70] builds an end-
to-end system for retrieving relevant text passages and generating answers with citations. ALCE
contains three datasets, covering different types of questions, and evaluates the generated text’s
quality from “fluency;” “correctness,” and “citation quality” dimensions, combining human evaluation
to verify the effectiveness of the evaluation metrics. The experimental results show that while
LLMs excel at generating fluent text, there is significant room for improvement in ensuring content
factual correctness and citation quality, especially on the ELI5 dataset where the best model was
incomplete in citation support half of the time.

(4) Real-Time Evaluation. RealTime QA [117] created a dynamic question-and-answer platform
that regularly releases questions and evaluates systems weekly to ask and answer questions about
the latest events or information. It challenges the static assumption of traditional QA datasets
aiming for immediate application. Experiments based on LLMs like GPT-3 and T5 found that models
could effectively update their generated results based on newly retrieved documents. However,
when the retrieved documents failed to provide sufficient information, models tended to return
outdated answers.

Furthermore, FreshQA [289] evaluates LLMs’ performance in challenges involving time-sensitive
and erroneous premise questions by creating a new benchmark containing questions of this nature.
Evaluating various open and closed-source LLMs revealed significant limitations in handling
questions involving rapidly changing knowledge and erroneous premises. Based on these findings,
the study proposed a simple in-context learning method, FreshPrompt, significantly improving
LLMs’ performance on FreshQA by integrating relevant and up-to-date information sourced from
search engines into the prompt.

(5) Safety, Ethic, and Trustworthiness. To comprehensively evaluate the safety of LLMs, Safe-
tyBench [356] implements an efficient and accurate evaluation of LLMs’ safety through 11,435
multiple-choice questions covering 7 safety categories in multiple languages (Chinese and English).
The diversity of question types and the broad data sources ensure rigorous testing of LLMs in
various safety-related scenarios. Comparing the performance of 25 popular LLMs, SafetyBench
revealed GPT-4’s significant advantage and pointed out the areas where current models need
improvements in safety to promote the rapid development of safer LLMs.

For ethics, TrustGPT [92] aims to assess LLMs’ ethical performance from toxicity, bias, and value
alignment, three key dimensions. The benchmark uses pre-defined prompt templates based on
social norms to guide LLMs in generating content and employs multiple metrics to quantitatively
assess the toxicity, bias, and value consistency of these contents. Experimental analysis revealed
that even the most advanced LLMs still have significant issues and potential risks in these ethical
considerations.

For trustworthiness, TrustLLM [261] explores principles and benchmarks including truthful-
ness, safety, fairness, robustness, privacy, and machine ethics across six dimensions. Extensive
experiments, including assessing 16 mainstream LLMs’ performance on 30 datasets, found that
trustworthiness usually positively correlates with functional effectiveness. While proprietary mod-
els typically outperform open-source models in trustworthiness, some open-source models like
Llama2 showed comparable high performance.

These benchmarks provide important tools and metrics for evaluating and improving the capa-
bilities of language models, contributing to the development of more accurate, reliable, safe, and
timely GenlR systems. For further understanding of the evaluation works, [22, 46, 89, 291] offer
more detailed introductions.
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6 Challenges and Prospects

This section discusses the key challenges faced in the fields of GR and reliable response generation,
as well as potential directions for future research.

6.1 Challenges on GR

6.1.1  Scalability Issues. As extensively studied by [218], GR demonstrates significantly lower
retrieval accuracy compared to dense retrieval when handling million-level document corpora
in web search scenarios. Merely increasing the model size does not yield stable performance
improvements. However, GR outperforms dense retrieval in document collections smaller than
300K, posing a question: What impedes GR methods from scaling to large document sizes? This
issue encompasses several aspects.

Training Data. Current LLMs are pre-trained on huge datasets ranging from hundreds of billions
to several trillion tokens, covering vast knowledge sources such as the internet, books, and news
articles, consuming substantial computational power [357]. They are then extensively fine-tuned
with high-quality, human-annotated data to achieve substantial generalization capabilities 137, 209,
229, 283]. In contrast, GR models often begin with a pre-trained language model and are fine-tuned
on labeled data comprising <query, DocID> pairs, which does not sufficiently prepare them to fully
grasp GR tasks. For numeric-based DocIDs, the models, having not encountered these numbers
in their pre-training phase, tend to rote memorize the DocIDs seen during training, struggling
to predict unseen ones effectively. Similarly, if text-based DocIDs fail to precisely represent the
documents, the model also tends to rote learning.

A potential solution is to create a large-scale pre-training dataset for GR on a general corpus,
possibly including a variety of common DocIDs such as URLs, titles, and numerical sequences.
We can utilize instructions to distinguish generation targets for various DocIDs. Then we can
pre-train a GR model from scratch, the model can understand GR across diverse domains. This
method could bridge the gap between language model pre-training data and GR tasks, enhancing
the generalization ability of GR models across different corpora.

Training Method. As described in Section 3.1.1, existing training methods explore various training
objectives, including seq2seq training, learning DocID, and ranking capabilities. Other methods
involve knowledge distillation [29], reinforcement learning [363], and so on. Is there a better
training method to enable GR models to master generating DocID ranking lists? For example, RLHF
[35] has been effectively used to train LLMs [209, 284], though at a high cost. Exploring RLHF in
the GR field is also worthwhile.

Model Structure. As discussed in Section 3.1.2, most current GR models are based on encoder—
decoder Transformers structures [279, 305, 369], such as T5 [229] and BART [137]. Some GR
methods like CorpusLM [151] have experimented with a decoder-only structure of the LLM Llama2
[284], requiring more training computational power but not significantly improving performance.
Research is needed to determine which structure is more suitable for GR. Additionally, whether
increasing model and data size could lead to emergent phenomena similar to those observed in LLMs
[242, 310] is also a promising research direction.

6.1.2  Handling Dynamic Corpora. Real-world applications often involve dynamically changing
corpora, such as the web and news archives, where incremental learning is essential. However,
for language models, indexing new documents inevitably leads to forgetting old ones, posing a
challenge for GR systems. Existing methods like DSI++ [191], IncDSI [123], CLEVER [24], and
CorpusBrain++ [79] propose solutions such as experience replay, constrained optimization, IPQ,
and continual generative pre-training frameworks to address incremental learning issues. Yet, these
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methods have their specific applicable scenarios, and more effective and universally applicable
incremental learning strategies remain a key area for exploration.

6.1.3  DoclD. Accurately representing a document with high-quality DocIDs is crucial for GR.

For example, the KILT dataset based on the Wikipedia corpus, which includes 5.9 million doc-
uments, demonstrates optimistic retrieval performance for GR methods using titles as DocIDs
[17, 27, 151]. This is because each document in Wikipedia has a unique manually annotated title
that represents the core entity discussed in that page. However, in the web search scenario, such as
in the MS MARCO dataset [204], many documents lack a unique title, are overlapping, and the titles
do not accurately represent the core content of the documents. Thus, GR performance significantly
declines in the MS MARCO corpus of 8.8 million passages.

Therefore, how to construct high-quality titles (or other types of DocIDs) in general corpora,
similar to those in Wikipedia, that not only accurately represent documents but also are lightweight,
is a critical factor for implementing GR methods and warrants in-depth research.

Text or Numeric? As discussed in Section 3.2, current methods include text-based and numeric-
based DocIDs, each with their advantages and disadvantages. Text-based DocIDs effectively leverage
the linguistic capabilities of pre-trained generative language models and offer better interpretability.
Numeric-based DocIDs can utilize dense retriever embeddings to obtain semantic DocID sequences;
they can also complement dense retrievers to achieve synergistic benefits.

However, to ensure good generalization ability of GR models without extensive pre-training, it is
essential to utilize the inherent pre-trained parameters of the model. Coherent textual DocIDs can
naturally leverage this aspect, but they also need to capture key document semantics and maintain
linguistic sequence characteristics. Numeric DocIDs, however, do not offer this advantage. Thus, as
mentioned in Section 6.1.1, extensive pre-training is necessary to enable models to fully understand
the meanings behind these numerical strings, which is a costly endeavor.

Do We Need a Unique ID for Each Document? Most current GR methods use a unique DocID to
uniquely identify a document. However, as the number of documents in a corpus increases, main-
taining a unique DocID becomes increasingly challenging. Even if a unique DocID is maintained, it
is difficult to differentiate significantly from other DocIDs semantically, leading to reduced retrieval
precision. Some methods, such as using sub-string as DocIDs [12, 25], have proven effective. These
methods utilize the FM-Index [61] to ensure the generated sub-string exists in the corpus and use
the number of generated sub-strings in different documents to rank documents, demonstrating
good performance and generalization ability.

However, since this method is based on FM-Index, its inference latency is high, which is an issue
that needs addressing. Furthermore, exploring other more efficient alternatives to FM-Index and
even considering not using constrained search but freely generating a DocID sequence followed by
a lightweight matching and scoring module to efficiently return a document ranking list are also
worthy of exploration.

6.1.4 Efficiency Concerns. Current GR methods generally rely on constrained beam search to
generate multiple DocID sequences during inference, resulting in high latency. This is particu-
larly severe when returning 100 or more documents, with latencies reaching several hundred
milliseconds [305], which is unacceptable for low-latency IR systems. Therefore, designing more
efficient inference methods is crucial. To reduce inference latency, the length of the DocID sequence
should not be too long; 16 tokens or fewer is an efficient range. This necessitates designing DocIDs
that are precise and concise enough to represent documents while maintaining performance and
improving efficiency. Additionally, developing more efficient decoding strategies is a valuable
research direction for the future.

ACM Transactions on Information Systems, Vol. 43, No. 3, Article 83. Publication date: May 2025.



83:38 X. Li et al.

6.1.5 Multi-Modal GR. Existing multi-modal GR models aim to retrieve images by converting
each image in the collection into a unique sequence that serves as its identifier. A language model is
then employed to predict these image identifiers, enabling effective image retrieval. However, there
are still potential areas for future optimization: (1) Image Representation: Developing advanced
image representation techniques is essential for enhancing the performance of multi-modal GR.
These techniques should capture the key features of an image within its identifier sequence. (2) End-
to-end Training: Existing methods perform image representation and image identifier prediction
separately for GR. Exploring how to train these two tasks in a fully end-to-end manner is also worth
investigating. (3) Extend to Additional Modalities: Current multi-modal GR methods predominantly
focus on text and image modalities. Expanding these approaches to incorporate additional modalities
such as audio and video presents a valuable research opportunity.

6.2 Challenges on Reliable Response Generation

6.2.1 Improving Accuracy and Factuality. In GenIR systems, ensuring content accuracy and
factuality is crucial. To achieve this, as mentioned in Section 4, there are two main areas of
improvement.

Internal Knowledge Memorization. Firstly, training stronger generative models is critical for
building reliable GenIR systems. Various commercial LLMs continue to progress, utilizing vast
training data and computational resources, but exploring better model structures is also worthwhile.
Recent research such as Retentive Networks [264], Mamba [77], and others have shown potential
to challenge the performance and efficiency of Transformers [288]. However, whether these can
scale and truly surpass Transformer-based LLMs in generation quality is still an open question.
Moreover, what types of training data and methods can consistently produce models capable
of generating high-quality, reliable text also deserve thorough investigation and summary. The
mechanisms by which language models recall knowledge during inference are not yet clear and
need to be fully understood to better serve user information needs.

External Knowledge Enhancement. As described in Section 4.2.1, RAG is an effective method
widely applied in LLMs. However, there is still room for improvement. (1) For example, whether
inserting retrieved documents directly into generative models via prompts is the best method, or
if there are better ways, such as inputting embeddings [334], needs exploration. (2) Additionally,
whether models can autonomously decide whether to perform retrieval [270, 294], and when in the
generation process to perform it [110]. (3) Third, in dialogue scenarios, enhancing RAG models to
better utilize long conversational history is also worth further exploration [199].

Tool-augmented generation, as discussed in Section 4.2.2, is also a popular method for endowing
LLMs with fine-grained world knowledge and performing complex tasks. Recent research has
raised questions, such as “Should tools always be used?” [308]. More specifically, whether the
performance improvements brought by using tools justify the extra computational costs incurred
during model training or the inference costs during testing. Existing work mainly focuses on task
accuracy, but studying the cost-effectiveness of these methods is also a valuable topic.

6.2.2  Real-Time Properties of GenIR Systems. Timeliness is critical for GenlIR systems, as well as
traditional IR systems, to provide users with the most up-to-date information. However, since the
knowledge of pre-trained generative models is fixed after training, methods like retrieval and tool
augmentation are needed to acquire new external knowledge. Research on real-time knowledge
acquisition remains limited, making it a valuable area for investigation.

Moreover, continually relying on outdated knowledge from language models is inadequate,
as models cannot comprehend the significance of given contexts or backgrounds in the current
era, thus reducing the reliability of the generated content. Therefore, updating the information in
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language models while avoiding the forgetting of existing knowledge, such as through continual
learning [299, 318], knowledge editing [190, 301, 332], and so on, is a topic worth further exploring.

6.2.3 Bias and Fairness. Since LLMs are often trained on large, unfiltered datasets, GenIR
systems may propagate stereotypes and biases present in the data regarding race, culture, and
other aspects [67]. Researchers have explored various methods to enhance the fairness of generated
content during training data selection, training methods, generation techniques, and rewriting
phases. However, biases have not been eradicated and require a thorough understanding of the
mechanisms by which generative models produce biases, to design methods to solve them and
build fair GenlIR systems that further the practical application of GenIR.

6.2.4  Privacy and Security. Firstly, the content generated by GenlIR systems risks plagiarism
[49, 119]. Studies such as [20, 88] indicate that pre-trained language models can reproduce large
segments of their training data, leading to inadvertent plagiarism and causing academic dishonesty
or copyright issues. On one hand, legal regulations regarding the copyright of AIGC will gradually
emerge and evolve. On the other hand, technical research aimed at reducing plagiarism by generative
models, such as generating text with correct citations [87, 170, 194], is a promising research direction
for reliable GenlIR that has received increasing attention in recent years.

Moreover, due to the unclear mechanisms of memory and generation in pre-trained language
models, GenlR systems inevitably return unsafe content. For example, studies [19, 20, 364] show
that when attacked, LLMs may return private information of users seen in training data. Therefore,
understanding the mechanisms by which LLMs recall training data and designing effective defense
mechanisms to enhance security are crucial for the widespread use of GenlIR systems. Additionally,
developing effective detection methods for content generated by LLMs is essential for enhancing
the security of GenlIR systems [329].

6.3 Unified Framework

This article discusses two mainstream forms of GenIR: GR and reliable response generation. How-
ever, each approach has its advantages and limitations. GR still returns a list of documents, whereas
the reliable response generation model itself cannot effectively capture document-level relation-
ships. Therefore, integrating these two approaches is a promising research direction.

6.3.1 Unified Framework for Retrieval and Generation. Given that both GR and downstream
generation tasks can be based on generative language models, could a single model perform both
retrieval and generation tasks? Indeed, it could.

Current attempts, such as UniGen [154], use a shared encoder and two decoders for GR and
QA tasks, respectively, and show superior performance on small-scale retrieval and QA datasets.
However, they struggle to generalize across multiple downstream tasks and to integrate with
powerful LLMs. Additionally, CorpusLM [151] uses a multi-task training approach to obtain a
universal model for GR, QA, and RAG. Yet, merely merging training data does not significantly
improve retrieval and generation performance, and CorpusLM remains limited to the Wikipedia
corpus. Facing a broader internet corpus presents significant challenges.

In the future, can we construct a Large Search Model (LSM) that allows an LLM to have the
capability to generate DocIDs and reliable responses autonomously? Even LSM could decide when
to generate DocIDs to access the required knowledge before continuing generation. Unlike the LSM
defined in [298], which unifies models beyond the first-stage retrieval (such as re-ranking, snippet,
and answer models), we aim to integrate the first-stage retrieval as well, enabling the LSM to fully
understand the meaning of retrieval and its connection with various downstream generation tasks.
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6.3.2 Towards End-to-End Framework for Various IR Tasks. Metzler et al. [194] envisioned an
expert-level corpus model that not only possesses linguistic capabilities but also understands
document-level DocIDs and knows the sources of its own knowledge. Such a model could not only
solve the issue of hallucinations common in traditional language models but could also generate
texts with references pointing to the source documents, thus achieving a reliable end-to-end GenIR
model. By understanding DocIDs and knowledge sources, this end-to-end system could also perform
additional IR tasks, such as returning the main content of a document given its DocID or returning
other related document DocIDs, as well as enabling multi-lingual and multi-modal retrieval.

Current methods, as discussed in this GenIR survey, primarily focus on GR and response genera-
tion as separate entities. GR models excel at comprehending DocIDs at the document-level, while
downstream models demonstrate powerful task generation capabilities. However, existing methods
face challenges when it comes to effectively integrating these two generative abilities, limiting the
overall performance and effectiveness of the GenlIR system. The integration of these generative
abilities in a seamless and efficient manner remains a key challenge in the field.

In the future, we can design training methods that align knowledge and DocIDs and construct
high-quality training datasets for generating answers with references, to train such an end-to-end
GenlR model. Achieving this goal remains challenging and requires the collaborative efforts of
researchers to contribute to building the next generation of GenlIR systems.

7 Conclusion

In this survey, we explore the latest research developments, evaluations, current challenges, and
future directions in GenIR. We discuss two main directions in the GenlR field: GR and reliable
response generation. Specifically, we systematically review the progress of GR covering model
training, DocID design, incremental learning, adaptability to downstream tasks, multi-modal GR,
and generative recommendation systems; as well as advancements in reliable response generation in
terms of internal knowledge memorization, external knowledge enhancement, generating responses
with citations, and personal information assistance. Additionally, we have sorted out the existing
evaluation methods and benchmarks for GR and response generation. We organize the current
limitations and future directions of GR systems, addressing scalability, handling dynamic corpora,
document representation, and efficiency challenges. Furthermore, we identify challenges in reliable
response generation, such as accuracy, real-time capabilities, bias and fairness, privacy, and security.
We propose potential solutions and future research directions to tackle these challenges. Finally,
we also envision a unified framework, including unified retrieval and generation tasks, and even
building an end-to-end framework capable of handling various IR tasks. Through this review, we
hope to provide a comprehensive reference for researchers in the GenlR field to further promote
the development of this area.
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Appendix
A Details for Evaluation
A.1 Evaluation Metrics for GR

Recall. Recall is a metric that measures the proportion of relevant documents retrieved by the search
system. For a given cutoff point k, the recall Recall@k is defined as:

10|
1 retq;c
Recall@k = — g —, (A1)
[e] =i relg

where |Q| is the number of queries in the set, ret,x is the number of relevant documents retrieved
for the gth query within the top k results, and rel, is the total number of relevant documents for
the gth query.

R-Precision. R-Precision measures the precision at the rank position R, which corresponds to the
number of relevant documents for a given query gq. It is calculated as:

retgr
R-Precision = L

, (A2)
rely
where rety g is the number of relevant documents retrieved within the top R positions, and R is
equivalent to rel,.
MRR. MRR reflects the average rank position of the first relevant document returned in the
search results. It is computed as follows:

ey
MRR = — , (A3)
|O| qz_; rank,

where rank, is the rank of the first relevant document returned for the gth query.
MAP. MAP calculates the average precision across multiple queries. It considers the exact position
of all relevant documents and is calculated using the following formula:

19| g
1 1
MAP = — S [ S p@k x (g, k)|, (Ad)
QI qz_; relg ;

where P@k is the precision at cutoff k, and I(g, k) is an indicator function that is 1 if the document
at position k is relevant to the g-th query and 0 otherwise.

nDCG. nDCG takes into account not only the relevance of the documents returned but also their
positions in the result list. It is defined by:

(A5)

k .
zrel, -1
DCG@k = _—
@ ; log,(i+ 1)’
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DCG@k

DCC@k = ———2F
nbCGC@k = 15 Gk

(A6)

where rel; represents the graded relevance of the ith document, DCG@k is the discounted cumula-
tive gain, and IDCG@k represents the maximum possible DCG@*k.

A.2 Benchmarks for GR

MS MARCO. MS MARCO (Microsoft Machine Reading Comprehension) is a large-scale dataset de-
veloped by Microsoft for evaluating machine reading comprehension, retrieval, and QA capabilities
within web search contexts. It comprises two primary benchmarks:

— Document Ranking: This benchmark includes approximately 3.2 million documents derived
from real user queries extracted from Microsoft Bing’s search logs. Each query is paired with
annotated relevant documents, facilitating the evaluation of retrieval accuracy and scalability.

— Passage Ranking: Containing around 8.8 million passages, this benchmark focuses on more
granular retrieval tasks, assessing the system’s ability to identify relevant information at the
passage level.

The diversity of question types and document genres in MS MARCO aims to mimic complex
web search scenarios, making it a pivotal resource for testing the robustness and effectiveness of
GR systems.

NQ. NQ is a QA dataset introduced by Google, utilizing Wikipedia as its foundational corpus.
It encompasses approximately 3.2 million documents, each corresponding to a Wikipedia page.
The dataset includes a wide array of natural user queries along with their respective answers
extracted directly from web pages in Google search results. NQ is designed to evaluate the retrieval
performance of GR systems in addressing real-world, information-seeking questions, emphasizing
the ability to understand and retrieve precise answers from a vast knowledge base.

KILT. KILT is an extensive benchmark dataset that integrates five categories of knowledge-
intensive tasks, including:

— Fact Checking: Utilizing datasets like FEVER, KILT assesses the system’s ability to verify
factual claims against a knowledge base.

— Entity Linking: Incorporates datasets such as AIDA CoNLL-YAGO, WNED-WIKI, and WNED-
CWEB to evaluate the linking of entities mentioned in text to their corresponding entries in a
knowledge base.

— Slot Filling: Includes T-REx and Zero Shot RE datasets to test the system’s ability to populate
predefined slots with relevant information extracted from the text.

— Open-Domain QA: Combines datasets like NQ, HotpotQA, TriviaQA, and ELI5 to evaluate the
retrieval and comprehension capabilities of the system in answering open-ended questions.

— Dialogue: Utilizes the Wizard of Wikipedia dataset to assess the system’s performance in
maintaining informative and coherent dialogues based on retrieved knowledge.

KILT employs Wikipedia as its primary corpus, consisting of approximately 5.9 million wiki
pages. The benchmark aims to evaluate the effectiveness of IR systems in handling complex language
tasks that require extensive background knowledge and the ability to integrate information across
multiple domains.

TREC Deep Learning Track 2019 and 2020. The TREC Deep Learning Tracks for 2019 and 2020
are specialized evaluation campaigns focusing on the application of deep learning techniques to
enhance the efficiency and effectiveness of IR systems. The primary tasks in these tracks include:
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— Document Ranking: Assessing the ability of retrieval systems to rank entire documents based
on their relevance to a given query.

— Passage Ranking: Evaluating the system’s capability to identify and rank specific passages
within documents that are most relevant to the query.
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